JP5532886B2 - Method for producing metallic indium - Google Patents
Method for producing metallic indium Download PDFInfo
- Publication number
- JP5532886B2 JP5532886B2 JP2009280006A JP2009280006A JP5532886B2 JP 5532886 B2 JP5532886 B2 JP 5532886B2 JP 2009280006 A JP2009280006 A JP 2009280006A JP 2009280006 A JP2009280006 A JP 2009280006A JP 5532886 B2 JP5532886 B2 JP 5532886B2
- Authority
- JP
- Japan
- Prior art keywords
- indium
- molten salt
- metal
- weight
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B58/00—Obtaining gallium or indium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/14—Refining in the solid state
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/34—Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/005—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、金属インジウム含有合金から金属インジウムを製造する方法に関するものである。 The present invention relates to a method for producing metallic indium from a metallic indium-containing alloy.
インジウムは、特定の鉱石中に高濃度で含まれることはなく、亜鉛鉱などに微量成分として含まれる希少金属である。近年、インジウムを主成分とするインジウム−スズ酸化物(ITO)は液晶表示装置の透明導電膜などに使用され、その需要が急激に伸びている。そのため、ITO製造工程内から発生したインジウムを含む端材や、ITOをターゲットとして使用した後のスクラップ(これらを総称して「ITOスクラップ」という)から金属インジウムを精製、回収することで、高価な金属インジウムをリサイクル利用する方法が種々検討されている。 Indium is a rare metal that is not contained in a specific ore at a high concentration and is contained as a trace component in zinc ore and the like. In recent years, indium-tin oxide (ITO) containing indium as a main component has been used for a transparent conductive film of a liquid crystal display device, and the demand for it has increased rapidly. Therefore, it is expensive by refining and recovering metal indium from scraps containing indium generated from within the ITO manufacturing process and scrap after using ITO as a target (collectively referred to as “ITO scrap”). Various methods for recycling metal indium have been studied.
これらの方法の一つとして、溶融塩電解法による金属インジウムの製造方法が知られている。たとえば、金属インジウム−スズを含む水銀(インジウム−スズアマルガム)を陽極とし、溶融塩電解質を媒体とした溶融塩電解にて、陰極に金属インジウムを回収する方法が知られている(例えば、特許文献1参照)。この方法では、金属インジウムとスズの標準析出電位が近い為、通常の溶融塩電解では、金属インジウムにスズが混入するので、アマルガムを使用する事により、インジウムを選択的に酸化溶解させる方法がとられている。 As one of these methods, a method for producing metal indium by a molten salt electrolysis method is known. For example, a method is known in which metal indium is collected at the cathode by molten salt electrolysis using mercury (indium-tin amalgam) containing metallic indium-tin as an anode and a molten salt electrolyte as a medium (for example, Patent Documents). 1). In this method, since the standard precipitation potentials of metal indium and tin are close, in ordinary molten salt electrolysis, tin is mixed into metal indium. Therefore, by using amalgam, indium can be selectively oxidized and dissolved. It has been.
この方法によってスズをはじめとする不純物を殆ど含まない精製された金属インジウムを回収することは可能であるが、陽極に水銀を用い、温度160℃以上にて溶融塩電解するため、水銀が一部蒸気となって揮発するなど、実施にあたっては健康面や環境面に配慮が要求される方法である。また、陰極に析出した金属インジウム中には微量ながら水銀が含まれ、その水銀除去のため更なる高度な精製技術を組み合わせる必要があった。 Although it is possible to recover purified metallic indium containing almost no impurities such as tin by this method, since mercury is used for the anode and molten salt electrolysis is performed at a temperature of 160 ° C. or higher, a part of the mercury is generated. It is a method that requires consideration for health and the environment, such as vaporizing as vapor. In addition, the metal indium deposited on the cathode contains a small amount of mercury, and it was necessary to combine further advanced purification techniques to remove the mercury.
また、インジウムを含む合金から金属インジウムを回収する方法として、インジウム含有合金を陽極とし、一塩化インジウムを含む溶融塩電解質を用いて電解精製し、陰極に金属インジウムを析出させる方法も知られている(例えば、特許文献2参照)。しかしながら、塩化インジウムを含む溶融塩は、通常のガス組成、即ち水蒸気濃度が高い空気と接触すると、溶融塩の水分含有量が高くなり、溶融塩が化学反応により変性し、槽電圧の上昇や陰極に析出した金属インジウムの品位を低下させる。又、吸湿により劣化した溶融塩は一部又は全量を交換する必要がある。 In addition, as a method for recovering metallic indium from an alloy containing indium, a method is also known in which an indium-containing alloy is used as an anode, electrolytic purification is performed using a molten salt electrolyte containing indium monochloride, and metallic indium is deposited on the cathode. (For example, refer to Patent Document 2). However, when the molten salt containing indium chloride comes into contact with air having a normal gas composition, that is, a high water vapor concentration, the moisture content of the molten salt increases, and the molten salt is denatured by a chemical reaction, increasing the cell voltage and the cathode. The quality of metallic indium deposited on the steel is lowered. Moreover, it is necessary to exchange part or all of the molten salt deteriorated by moisture absorption.
又、この特許文献2では、塩化インジウムの含有量が50〜67重量%が好ましく、その理由は、50重量%より低い場合は、析出するインジウム中に亜鉛が混入して好ましくなく、67重量%より高い場合は、析出するインジウム中にスズが混入して好ましくないからである。
Moreover, in this
更に、金属インジウム含有合金を陽極とし、塩化インジウムと塩化亜鉛を含む混合溶融塩を用いて電解精製する方法において、該混合溶融塩の耐酸化性を向上させる目的で塩化アンモニウムを添加する方法も知られている(例えば、特許文献3参照)。しかしながら、塩化アンモニウムの添加は、溶融塩の融点を高め、そのため溶融塩の電気抵抗が高まって電解槽電圧がアップし、不純物含量も高まり、又、塩化アンモニウムの分解生成物であるアンモニアの臭気が作業環境を悪化させるため、その対策として排ガス処理設備が必要となるなど多くの課題があった。 Further, in a method of electrolytic purification using a mixed molten salt containing indium chloride and zinc chloride using an alloy containing indium metal as an anode, a method of adding ammonium chloride for the purpose of improving the oxidation resistance of the mixed molten salt is also known. (For example, see Patent Document 3). However, the addition of ammonium chloride increases the melting point of the molten salt, so that the electric resistance of the molten salt increases, the electrolytic cell voltage increases, the impurity content increases, and the odor of ammonia, which is a decomposition product of ammonium chloride, increases. In order to worsen the working environment, there were many problems such as the need for an exhaust gas treatment facility as a countermeasure.
一方、塩化アルミニウムを主体として、少なくとも1種の塩化物を含む塩化アルミニウム系溶融塩電解質浴は、アルミニウム又はアルミニウム合金の電気メッキ等に使用されている。この電解質浴中に含まれる水分等の不純物量が多くなると、平滑なメッキ被膜の形成が困難となるため、この不純物を除去すべく、電解質浴の組成を塩化アルミニウム含有量が50モル%以下になるように調整し、沈澱した不純物を浴から分離することによって電解質浴を精製する方法が知られている(例えば、特許文献4参照)。 On the other hand, an aluminum chloride-based molten salt electrolyte bath mainly composed of aluminum chloride and containing at least one chloride is used for electroplating aluminum or aluminum alloy. When the amount of impurities such as moisture contained in the electrolyte bath increases, it becomes difficult to form a smooth plating film. Therefore, in order to remove this impurity, the composition of the electrolyte bath is adjusted so that the aluminum chloride content is 50 mol% or less. There is known a method of purifying an electrolyte bath by adjusting so that the precipitated impurities are separated from the bath (see, for example, Patent Document 4).
この方法によって、電気メッキ等の電気化学的操作は可能であるが、この溶融塩は塩化アルミニウムを主体とするため吸湿性が顕著で、加水分解性が著しく、気相部に僅かに漏れ込んだ水分によって溶融塩が変質することがあった。又、塩化アルミニウムは蒸気圧が高いため、塩化アルミニウムの一部が蒸発し、組成が変化し、工業的に長期安定運転が困難であった。又、本発明者らはこの塩化アルミニウムを溶融塩とし、金属インジウム含有合金から金属インジウムの製造を行った。その結果、金属インジウム中に金属アルミニウムが一部電析し、インジウムの純度を低下させるなど、多くの課題があることが判った。 By this method, electrochemical operation such as electroplating is possible, but since this molten salt is mainly composed of aluminum chloride, it is highly hygroscopic, has a remarkable hydrolyzability, and slightly leaks into the gas phase. The molten salt may be altered by moisture. In addition, since aluminum chloride has a high vapor pressure, a part of the aluminum chloride evaporates, the composition changes, and industrially long-term stable operation is difficult. In addition, the present inventors made this aluminum chloride as a molten salt and produced metal indium from a metal indium-containing alloy. As a result, it has been found that there are many problems such as a part of metal aluminum being electrodeposited in metal indium and reducing the purity of indium.
本発明の課題は、前記従来法の種々の問題点を解決できる効果的、効率的な金属インジウムの製造方法、すなわち、金属インジウム含有合金から、高度に精製された金属インジウムを長期間に亘って、高回収率で製造する方法を提供することにある。 An object of the present invention is to provide an effective and efficient method for producing metal indium capable of solving various problems of the conventional method, that is, highly purified metal indium from a metal indium-containing alloy over a long period of time. An object of the present invention is to provide a method for producing at a high recovery rate.
本発明者らは、金属インジウム含有合金から金属インジウムを製造する技術について鋭意検討した結果、溶融塩電解精製に用いる電解質の種類とその組成を適正化し、且つ溶融塩中の水分含有量を適正化することで、陰極に析出する金属インジウムの純度を高くでき、溶融塩の電解質を安定化させ、効率良く金属インジウムを電析回収できることを見出し、本発明を完成するに至った。 As a result of intensive studies on the technology for producing metal indium from an alloy containing metal indium, the present inventors have optimized the type and composition of the electrolyte used for molten salt electrorefining and optimized the water content in the molten salt. As a result, it was found that the purity of the metal indium deposited on the cathode can be increased, the electrolyte of the molten salt is stabilized, and the metal indium can be efficiently electrodeposited and recovered, and the present invention has been completed.
すなわち本発明は、金属インジウム含有合金の陽極、陰極に金属インジウムを使用し、電解質として、塩化インジウムを主成分とする塩化インジウム−塩化亜鉛溶融塩を使用し、溶融塩電解により、陽極からインジウムを陽イオンとして溶出させ、陰極上に金属インジウムを電析する金属インジウムの製造方法において、塩化インジウム−塩化亜鉛溶融塩中の塩化インジウム含有量が68重量%以上、溶融塩の水分含有量が0.5重量%以下であることを特徴とする金属インジウムの製造方法に関する。 That is, the present invention uses metal indium for the anode and cathode of a metal indium-containing alloy, uses an indium chloride-zinc chloride molten salt mainly composed of indium chloride as an electrolyte, and indium from the anode by molten salt electrolysis. In the method for producing metal indium, which is eluted as a cation and electrodeposits metal indium on the cathode, the indium chloride content in the indium chloride-zinc chloride molten salt is 68% by weight or more, and the water content in the molten salt is 0.00. The present invention relates to a method for producing metallic indium, characterized by being 5% by weight or less.
尚、本発明における水分含有量とは、溶融塩の湿量をベースとした値であり、湿量とは、水分を含んだ溶融塩の単位重量当りの水分量を示す(粉体工学会編、「粉体工学便覧」第588頁(1986年)参照)
以下、本発明について詳細に説明する。
The moisture content in the present invention is a value based on the moisture content of the molten salt, and the moisture content indicates the moisture content per unit weight of the molten salt containing moisture (edited by the Powder Engineering Society). (See "Handbook of Powder Engineering", page 588 (1986))
Hereinafter, the present invention will be described in detail.
本発明において、陽極には金属インジウム含有合金を用いる。本発明における合金とは、金属インジウムと他の一種類以上の金属元素及び/又は非金属元素からなる金属様のものをいい、その結合状態などについては特に限定しない。金属インジウムの含有量についても特に限定しない。すなわち、金属インジウムが主成分であっても、微量含まれるものであっても好適に用いることができる。金属インジウムの精製度合い、インジウムの回収率、インジウムの生産性から、金属インジウム含有合金中の金属インジウム含有量は好ましくは100重量ppmから99.999重量%、より好ましくは1重量%から99.99重量%、更に好ましくは60重量%から99.9重量%である。 In the present invention, a metal indium-containing alloy is used for the anode. The alloy in the present invention refers to a metal-like material composed of indium metal and one or more other metal elements and / or non-metal elements, and the bonding state thereof is not particularly limited. The content of metal indium is not particularly limited. That is, it can be suitably used regardless of whether metal indium is a main component or a trace amount. The metal indium content in the metal indium-containing alloy is preferably 100 ppm by weight to 99.999% by weight, more preferably 1% by weight to 99.99, from the degree of metal indium purification, indium recovery, and indium productivity. % By weight, more preferably 60% by weight to 99.9% by weight.
金属インジウム含有合金中の金属インジウム以外の金属の種類は特に限定しないが、例を挙げるとLi,Na,Mg,Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Ge,As,Se,Sr,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Cd,Sn,Sb,Te,Cs,Ba,Ta,W,Re,Os,Ir,Pt,Au,Tl,Pb,Biから選ばれた1種以上である。 The type of metal other than metal indium in the metal indium-containing alloy is not particularly limited. For example, Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co , Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, Ta, W, Re , Os, Ir, Pt, Au, Tl, Pb, Bi.
これらの中で溶融塩電解におけるインジウムとの分離精製が良好な金属は、Li,Na,Mg,Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Cd,Sn,Cs,Ba,Ta,W,Re,Os,Ir,Pt,Au,Tl,Pb,Biであり、特にSn,Cu,Fe,Si,Ni,Pb,Na,Ca,Mgは、インジウムとの分離精製が容易であり好ましい。 Among these, metals having good separation and purification from indium in molten salt electrolysis are Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu. , Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sn, Cs, Ba, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb Bi, especially Sn, Cu, Fe, Si, Ni, Pb, Na, Ca and Mg are preferable because they can be easily separated and purified from indium.
又、金属インジウム含有合金としては、金属インジウムをハンダとして使用した後の使用済みインジウムハンダや、インジウム化合物を還元処理して得られた金属インジウム含有合金等も使用することができる。インジウム化合物としては、インジウムを含む化合物であれば特に限定しないが、具体的には酸化インジウム,水酸化インジウム,塩化インジウム,硫酸インジウム,硝酸インジウム等やITOスクラップを挙げることができる。 Further, as the metal indium-containing alloy, used indium solder after using metal indium as solder, metal indium-containing alloy obtained by reducing the indium compound, and the like can also be used. The indium compound is not particularly limited as long as it is a compound containing indium. Specific examples include indium oxide, indium hydroxide, indium chloride, indium sulfate, indium nitrate, and ITO scrap.
例えば、ITOスクラップから金属インジウム含有合金を得る方法としては、ITOスクラップを還元剤にて還元処理する方法、ITOスクラップを、塩酸、硝酸、硫酸等やこれらの混酸等の酸性水溶液に溶解して、塩化インジウム、硫酸インジウム又は硝酸インジウム等を得、次いでアルカリを添加することで水酸化インジウムを含む化合物とし、更に該水酸化インジウムを含む化合物を加熱処理して酸化インジウムに転化させた後に、還元剤と反応させることで金属インジウム含有合金を得る方法や、塩化インジウム、硫酸インジウム又は硝酸インジウムを含む水溶液とした後、インジウムよりも卑な金属、具体的には金属アルミニウムや金属亜鉛を添加することで、金属インジウム含有合金を置換析出させ、金属インジウム含有合金を得る方法等を挙げることができる。 For example, as a method of obtaining an alloy containing indium metal from ITO scrap, a method of reducing the ITO scrap with a reducing agent, dissolving the ITO scrap in an acidic aqueous solution such as hydrochloric acid, nitric acid, sulfuric acid, or a mixed acid thereof, After obtaining indium chloride, indium sulfate, indium nitrate or the like, and then adding an alkali to form a compound containing indium hydroxide, and further converting the compound containing indium hydroxide into indium oxide by heat treatment, a reducing agent Or a solution containing indium chloride, indium sulfate or indium nitrate, and then adding a base metal rather than indium, specifically metallic aluminum or metallic zinc. The metal indium containing alloy is deposited by substitution, and the metal indium containing alloy is deposited. That method and the like can be mentioned.
本発明に用いる溶融塩としては、先ずインジウムを含む塩が当然ながら必須である。 As a molten salt used in the present invention, first, a salt containing indium is naturally essential.
その種類として、融点が低く、且つ、耐酸化性に優れ、電気抵抗が低い特徴を有する点から、本発明では、塩化インジウムを使用する。しかしながら、塩化インジウムを単独で使用すると、インジウムは希少金属で、高価であるため、経済的ではない。 In the present invention, indium chloride is used because of its low melting point, excellent oxidation resistance, and low electrical resistance. However, using indium chloride alone is not economical because indium is a rare metal and expensive.
そこで、塩化インジウム以外の塩を含む混合溶融塩として使用するが、その塩として、吸湿性及び加水分解性が低く、比較的融点も低い特徴を有する点を考慮して、塩化亜鉛を併用した。 Therefore, although it is used as a mixed molten salt containing a salt other than indium chloride, zinc chloride is used in combination in consideration of the features of low hygroscopicity and hydrolyzability and relatively low melting point.
その溶融塩中の塩化インジウムの含有量は68重量%以上とし、更に、溶融塩の水分含有量が0.5重量%以下とすることを必須とする。塩化インジウムの含量が68重量%より少ない場合、即ち塩化亜鉛含量が32重量%以上では、陰極に亜鉛がかなり電析し、金属インジウムの純度が低下する。更に、塩化亜鉛は溶融塩中において導電率が低く、32重量%以上含有すると液抵抗が大きくなり、電解槽電圧がアップし、ランニングコストがアップするため経済的ではない。本発明における溶融塩では、塩化インジウムを68重量%以上含むことで電解槽電圧を低くでき、又融点を低くでき、運転操作温度を低くできる。これらのことから溶融塩中の塩化インジウムの含有量としては、70重量%以上が好ましく、75重量%以上がより好ましい。 It is essential that the content of indium chloride in the molten salt is 68% by weight or more, and that the water content of the molten salt is 0.5% by weight or less. When the content of indium chloride is less than 68% by weight, that is, when the zinc chloride content is 32% by weight or more, zinc is considerably electrodeposited on the cathode, and the purity of metallic indium is lowered. Furthermore, zinc chloride has a low electrical conductivity in the molten salt, and if it is contained at 32% by weight or more, the liquid resistance increases, the electrolytic cell voltage increases, and the running cost increases, which is not economical. In the molten salt in the present invention, the electrolytic cell voltage can be lowered, the melting point can be lowered, and the operating temperature can be lowered by containing 68% by weight or more of indium chloride. Accordingly, the content of indium chloride in the molten salt is preferably 70% by weight or more, and more preferably 75% by weight or more.
また、既述の様に、特許文献2では、塩化インジウムの含有量が67重量%より高い場合は、析出するインジウム中にスズが混入して好ましくないと記載されているが、本発明では、塩化インジウム含有量を68重量%以上にするだけでなく、溶融塩の水分含有量が0.5重量%以下とすることにより、インジウム中にスズが混入せず、更に、溶融塩中において導電率が高くなり、液抵抗が小さくなり、電解槽電圧が低下してランニングコストが低減するため経済的であることを明らかにして、本発明を完成した。
In addition, as described above, in
本発明で用いる溶融塩では、塩化インジウムの含有量を68重量%以上とし、溶融塩の水分含有量が0.5重量%以下とする。前述の特許文献4における溶融時においては、溶融塩中の水分含有量を0.5重量重量%以下とすることが記載されているが、この先行文献における塩化インジウム含有量は50モル%以下(=53重量%以下)であり、塩化インジウム含有量やその作用が本発明とは全く相違する。
In the molten salt used in the present invention, the content of indium chloride is 68% by weight or more, and the water content of the molten salt is 0.5% by weight or less. At the time of melting in the above-mentioned
溶融塩に含まれる塩化インジウムには、インジウムの価数が1価、2価、3価であるInCl、InCl2、InCl3があり、いずれか1種以上を含むことを必須とする。より好ましくは、融点が低く、より低温での溶融塩電解が可能なInClである。InClを含む溶融塩電解質浴では、インジウムは1価で移動するため、3価であるInCl3に比べ、同じ電気量でもInの生産速度を3倍にできることからも好ましい。 Indium chloride contained in the molten salt includes InCl, InCl 2 , and InCl 3 whose indium valences are monovalent, divalent, and trivalent, and it is essential to include at least one of them. More preferred is InCl that has a low melting point and enables molten salt electrolysis at a lower temperature. The molten salt electrolyte bath containing InCl, since indium move univalent preferable from the fact that compared to InCl 3 is trivalent, it triples the production rate of In in the same amount of electricity.
本発明の溶融塩の水分含有量については、0.5重量%以下とする。水分含有量が0.5重量%を越えると、溶融塩中には固形物が析出し、陰極上での金属インジウムの電析を阻害し、電流効率の低下を招き、更には、理由は定かではないが、陰極に析出する金属インジウム中の不純物含量が高くなり、十分な精製ができないことがあるからである。 The water content of the molten salt of the present invention is 0.5% by weight or less. If the water content exceeds 0.5% by weight, solids are deposited in the molten salt, inhibiting the deposition of indium metal on the cathode, leading to a decrease in current efficiency. However, this is because the impurity content in the metal indium deposited on the cathode becomes high and sufficient purification may not be possible.
尚、本発明における溶融塩中の水分含有量とは、溶融塩電解開始当初〜溶融塩電解終了するまでの運転中のいずれかの時点における水分量を示すものである。最も好ましい態様は、運転開始前に溶融塩の水分を脱水し、溶融塩中における水分含有量0.5重量%以下に低減し、運転中も溶融塩の水分吸収を防止し、0.5重量%以下を維持することである。更に、好ましい溶融塩の水分含有量は、0.4重量%以下である。 In addition, the water content in the molten salt in the present invention indicates the water content at any time during the operation from the beginning of molten salt electrolysis to the end of molten salt electrolysis. The most preferred embodiment is to dehydrate the water in the molten salt before the start of operation, reduce the water content in the molten salt to 0.5 wt% or less, prevent water absorption of the molten salt even during operation, % Or less. Furthermore, the water content of a preferable molten salt is 0.4% by weight or less.
溶融塩と接触している気相部の水蒸気濃度は特に限定しないが、水蒸気濃度が低い場合、溶融塩の水分は蒸発するが、逆に高い場合、溶融塩が吸湿し水分含有量が高くなることもある。そのため、水分含有量を低く維持する方法の一つとして、電解槽中の気相部の水蒸気濃度を低く維持する方法がある。具体的には、気相部の水蒸気濃度を1容量%以下とすることが好ましく、より好ましくは0.5容量%以下である。又、溶融塩と接触している気相部の成分は特に限定することなく、例えば、空気,窒素,アルゴン,ヘリウム,水素,一酸化炭素,二酸化炭素などを使用することができる。好ましくは気相中の酸素濃度を10容量%以下とすることであり、溶融塩中の溶存酸素濃度を低く維持でき、溶融塩や電析インジウムの酸化防止になるからである。更に好ましくは主成分を窒素、アルゴン、ヘリウムから選ばれた1種以上とすることである。 The water vapor concentration in the gas phase part in contact with the molten salt is not particularly limited, but when the water vapor concentration is low, the water content of the molten salt evaporates, but when it is high, the molten salt absorbs moisture and the water content increases. Sometimes. Therefore, as one method for keeping the water content low, there is a method for keeping the water vapor concentration in the gas phase portion in the electrolytic cell low. Specifically, the water vapor concentration in the gas phase part is preferably 1% by volume or less, more preferably 0.5% by volume or less. Moreover, the component of the gaseous phase part which is contacting with molten salt is not specifically limited, For example, air, nitrogen, argon, helium, hydrogen, carbon monoxide, a carbon dioxide etc. can be used. Preferably, the oxygen concentration in the gas phase is set to 10% by volume or less, so that the dissolved oxygen concentration in the molten salt can be kept low, and oxidation of the molten salt and electrodeposited indium is prevented. More preferably, the main component is at least one selected from nitrogen, argon and helium.
溶融塩電解に用いる電解槽の形状は、陽極室と陰極室が接しておらず、直接電気が流れない構造であれば特に制限はない。即ち、陽極室と陰極室が隔離された構造であればよく、例えば、成書「溶融塩技術は21世紀のキーテクノロジー 溶融塩の応用(アイピーシー出版編)」で紹介されている、通常使用される溶融塩電解槽を適用できる。陽極、陰極が固体であるか液体であるか、運転操作が連続式か回分式か、等の運転操作方法によっても、適正な電解槽形状は異なり、適宜選定すれば良い。 The shape of the electrolytic cell used for molten salt electrolysis is not particularly limited as long as the anode chamber and the cathode chamber are not in contact with each other and electricity does not flow directly. In other words, it is sufficient if the anode chamber and the cathode chamber are separated from each other. For example, normal use as described in the book “Molten salt technology is a key technology in the 21st century (Application of Molten Salt (IPC Publishing))” A molten salt electrolyzer can be applied. The appropriate electrolytic cell shape differs depending on the operation method such as whether the anode and the cathode are solid or liquid, and whether the operation is a continuous type or a batch type, and may be appropriately selected.
具体的には、陽極室の金属インジウム含有合金が溶融しており、陰極室の金属インジウムも溶融している場合、陰極室と陽極室を隔壁にて仕切り、両極の上部を溶融塩電解質浴で塩橋させた構造、或いは電解槽形状が円筒型であって、陽極が溶融塩電解質浴の中央部の絶縁性の容器に入れられ、陽極を囲むように陰極が配置された電解槽などを挙げることができる。溶融塩電解槽のガス雰囲気は、前述の通り、水蒸気濃度や酸素濃度を低くすることで溶融塩の安定性をアップできることもある。更に、溶融塩電解槽の構造によっては、溶融塩が気相部と接触する面積を低減し溶融塩の吸湿を抑制できることもある。好ましくは気相部との接触面積を、単位溶融塩容量当たり0.1〜100m2/m3とすることであり、より好ましくは0.2〜80m2/m3である。 Specifically, when the metal indium-containing alloy in the anode chamber is melted and the metal indium in the cathode chamber is also melted, the cathode chamber and the anode chamber are partitioned by a partition, and the upper part of both electrodes is a molten salt electrolyte bath. Examples include an electrolytic cell in which a salt bridge structure or an electrolytic cell shape is cylindrical, and an anode is placed in an insulating container in the center of a molten salt electrolyte bath, and a cathode is disposed so as to surround the anode. be able to. As described above, the gas atmosphere in the molten salt electrolyzer may sometimes improve the stability of the molten salt by lowering the water vapor concentration and the oxygen concentration. Furthermore, depending on the structure of the molten salt electrolysis tank, the area where the molten salt comes into contact with the gas phase part may be reduced, and moisture absorption of the molten salt may be suppressed. Preferably, the contact area with the gas phase part is 0.1 to 100 m 2 / m 3 per unit molten salt capacity, and more preferably 0.2 to 80 m 2 / m 3 .
このような溶融塩電解法では、電流密度を高くできることが一つの特徴であり、電流密度は1〜200A/dm2が好ましい。1A/dm2未満で運転すると、単位電極面積当たりの生産速度が低下する場合がある。生産性の面からは電流密度は高いほど良いが、200A/dm2を超える電流密度では陰極に金属インジウムが析出する際、不純物を取り込み、高純度のインジウムが得にくくなることがある。電流密度としては、より好ましくは2〜100A/dm2、更には、3〜50A/dm2である。 In such molten salt electrolysis method, a One of the features that can increase the current density, the current density is preferably from 1~200A / dm 2. When operating at less than 1 A / dm 2 , the production rate per unit electrode area may decrease. From the viewpoint of productivity, the higher the current density, the better. However, at a current density exceeding 200 A / dm 2 , when metal indium is deposited on the cathode, impurities may be taken in and it may be difficult to obtain high-purity indium. The current density is more preferably 2 to 100 A / dm 2 and further 3 to 50 A / dm 2 .
又、溶融塩電解の操作温度は、溶融塩電解質浴の融点以上であれば特に限定されない。装置材質の腐食、溶融塩電解の運転操作面から90〜500℃が好ましく、100〜450℃が更に好ましい。 Moreover, the operation temperature of molten salt electrolysis will not be specifically limited if it is more than melting | fusing point of a molten salt electrolyte bath. 90-500 degreeC is preferable and 100-450 degreeC is more preferable from the operation | use operation surface of corrosion of apparatus material and molten salt electrolysis.
更に、溶融塩電解に要する時間は、十分な回収率および不純物の混入を回避するために、合金中に含まれるインジウムの50〜100%を電解できる時間行えば十分である。 Furthermore, the time required for the molten salt electrolysis is sufficient if it is sufficient to perform electrolysis of 50 to 100% of indium contained in the alloy in order to avoid a sufficient recovery rate and mixing of impurities.
以上述べた適正な運転条件にて電解することで、陰極に高純度な金属インジウムを析出することができるが、該金属インジウムが目標とする純度にまで達成していない場合は、同様の操作で溶融塩電解を更に1回以上実施して目標とする純度に達するまで精製しても良い。あるいは、不純物の種類によっては、従来から知られている金属インジウムの精製方法を組み合わせて実施しても良い。具体的には、アルカリ金属水酸化物を用いたアルカリ溶鋳法や塩化アンモニウム等の塩素化剤を用いた塩化法等を採用でき、これらの精製技術を適宜組み合わせることで、より効果的、効率的に金属インジウムを製造することができる。 By electrolyzing under the proper operating conditions described above, high-purity metal indium can be deposited on the cathode, but if the metal indium has not achieved the target purity, the same operation is performed. Molten salt electrolysis may be further performed one or more times, and purification may be performed until the target purity is reached. Or depending on the kind of impurity, you may implement combining the purification method of the metal indium known conventionally. Specifically, alkali casting methods using alkali metal hydroxides and chlorination methods using chlorinating agents such as ammonium chloride can be adopted, and by combining these purification techniques as appropriate, more effective and efficient Indium metal can be manufactured.
本発明の方法によれば、金属インジウム含有合金から、高度に精製された金属インジウムを長期間に亘って、高回収率で製造することができる。 According to the method of the present invention, highly purified metal indium can be produced from a metal indium-containing alloy with a high recovery rate over a long period of time.
以下、本発明を実施例により説明するが、本発明はこれらの実施例にのみ限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited only to these Examples.
なお、本発明における溶融塩中の水分含有量の測定方法は、溶融塩を脱水メタノール溶媒に溶解し、一部をサンプリングし、カールフィッシャー試薬(シグマアルドリッチ社製、商品名「ハイドラナールコンポジット5」)にて滴定して算出した。
In the present invention, the water content in the molten salt is measured by dissolving the molten salt in a dehydrated methanol solvent, sampling a part thereof, and Karl Fischer reagent (trade name “
実施例1
金属インジウム含有合金の原料として、ITOターゲット製造時に発生したITOスクラップ(酸化インジウム91.1重量%、酸化スズ8.9重量%)1814gをクラッシャーで平均粒径51μmに粉砕し、粉砕粉1735gと還元剤のグラファイト(ロンザ社製、商品名「KS−75」)170.9gを混合後、混合物を内容積1Lの磁製ルツボに入れ、電気炉に仕込んだ。電気炉内は窒素ガスにて置換後、炉壁の温度を1100℃まで6時間で昇温し、1100℃で3時間保持した。反応終了後、電気炉内を冷却し、還元生成物と未反応原料粉の合計重量を測定したところ1456.3gであった。
Example 1
As raw material for the metal indium-containing alloy, 1814 g of ITO scrap (91.1 wt% indium oxide, 8.9 wt% tin oxide) generated during the production of the ITO target was ground to an average particle size of 51 μm with a crusher, and reduced to 1735 g of ground powder. 170.9 g of graphite (product name “KS-75”, manufactured by Lonza) was mixed, and the mixture was placed in a magnetic crucible having an internal volume of 1 L and charged into an electric furnace. After replacing the inside of the electric furnace with nitrogen gas, the temperature of the furnace wall was raised to 1100 ° C. in 6 hours and held at 1100 ° C. for 3 hours. After completion of the reaction, the inside of the electric furnace was cooled and the total weight of the reduction product and the unreacted raw material powder was measured to be 1456.3 g.
該処理物をX線回折装置にて分析したところ、スクラップ中にあった酸化インジウムの回折ピークは弱くなり、代わりに金属インジウムの強いピークが認められたため、粉砕したITOスクラップ中の酸化インジウムの還元が良好であることを確認した。又、酸化スズもほぼ全量金属スズに転化しており、還元生成物はインジウム−スズ合金であることを確認できた。 When the processed product was analyzed with an X-ray diffractometer, the diffraction peak of indium oxide in the scrap became weak, and instead a strong peak of metal indium was observed, so the reduction of indium oxide in the ground ITO scrap was reduced. Was confirmed to be good. Also, almost all of the tin oxide was converted to metal tin, and it was confirmed that the reduction product was an indium-tin alloy.
次に、該合金から金属インジウムを精製回収するため、溶融塩電解を実施した。電解槽は図1に示すような、パイレックス(登録商標)ガラスにて製作した内径2cm、高さ13cmのH型電解槽とし、陽極には還元生成物であるインジウム−スズ合金63.2gを、陰極には別途準備した純度99.999重量%の金属インジウム29.9gを仕込んだ。また、仕込みの溶融塩重量は70.3gであり、その組成は一塩化インジウム73.5重量%(=71.5モル%)、塩化亜鉛28.5モル%とした。そしてこの時の水分含有量は0.4重量%であった。 Next, molten salt electrolysis was performed to purify and recover metallic indium from the alloy. The electrolytic cell is an H-type electrolytic cell having an inner diameter of 2 cm and a height of 13 cm made of Pyrex (registered trademark) glass as shown in FIG. 1, and 63.2 g of an indium-tin alloy as a reduction product is formed on the anode. The cathode was charged with 29.9 g of indium metal having a purity of 99.999% by weight. The weight of the molten salt charged was 70.3 g, and the composition was 73.5 wt% (= 71.5 mol%) indium monochloride and 28.5 mol% zinc chloride. The water content at this time was 0.4% by weight.
次いで、該電解槽の陽極と陰極に白金導線を挿入し、電解槽ごと電気マッフル炉に入れ、電解槽の温度を240℃として溶融塩電解を実施した。溶融塩電解は、定電流装置(菊水電子工業(製)、商品名「PMC18−5」)を用い、電流値0.94A、電流密度30A/dm2に設定して8時間通電した。 Next, platinum conducting wires were inserted into the anode and cathode of the electrolytic cell, and the electrolytic cell was placed in an electric muffle furnace, and the temperature of the electrolytic cell was 240 ° C., and molten salt electrolysis was performed. Molten salt electrolysis was carried out for 8 hours using a constant current device (Kikusui Electronics Co., Ltd., trade name “PMC18-5”) at a current value of 0.94 A and a current density of 30 A / dm 2 .
その結果、陽極室に仕込んだインジウム−スズ合金からは金属インジウム31.5gが溶解し、陰極室から金属インジウム61.1gが得られ、電解終了時の溶融塩中の水分含量は0.3重量%であった。陰極室への仕込量は29.9gであったので、電析量は31.2gになる。 As a result, 31.5 g of metal indium was dissolved from the indium-tin alloy charged in the anode chamber, and 61.1 g of metal indium was obtained from the cathode chamber. The water content in the molten salt at the end of electrolysis was 0.3 wt. %Met. Since the amount charged into the cathode chamber was 29.9 g, the amount of electrodeposition was 31.2 g.
又、電解槽電圧は4.5Vで推移した。 Moreover, the electrolytic cell voltage changed at 4.5V.
陰極の金属インジウムの一部を取り出し、塩酸にて溶解後、ICP分析装置にて不純物含量を求め、仕込金属インジウムの量と純度から補正した電析金属インジウム中のスズ含量は95重量ppmと低く、亜鉛含量も2重量ppmと低く良好であった。 A part of the metal indium on the cathode is taken out, dissolved in hydrochloric acid, the impurity content is obtained with an ICP analyzer, and the tin content in the electrodeposited metal indium corrected by the amount and purity of the charged metal indium is as low as 95 ppm by weight. The zinc content was also as low as 2 ppm by weight.
この回収された金属インジウムを原料として酸化インジウムを製造し、その酸化インジウムと酸化スズとからITOターゲットを製造し、ITOターゲットとしてのスパッタリング性能を評価した。その結果、ノジュールの発生が殆ど認められず、ITOターゲットの製造原料として再利用可能であった。 Indium oxide was produced using the recovered metal indium as a raw material, an ITO target was produced from the indium oxide and tin oxide, and the sputtering performance as the ITO target was evaluated. As a result, the generation of nodules was hardly observed, and it was reusable as a raw material for producing the ITO target.
実施例2
実施例1の還元により回収したインジウム−スズ合金を用い、実施例1と同様のパイレックス(登録商標)ガラス製H型電解槽を用いて溶融塩電解精製を実施した。
Example 2
Using the indium-tin alloy recovered by the reduction in Example 1, the molten salt electrolytic purification was performed using the same Pyrex (registered trademark) glass H-type electrolytic cell as in Example 1.
陽極室には該合金61.7gを、陰極室には別途準備した純度99.999重量%の金属インジウム30.4gを仕込んだ。仕込みの溶融塩重量は75.4gであり、その組成は一塩化インジウム73.6重量%(=71.6モル%)、塩化亜鉛28.4モル%、水分含量0.5重量%とした。該電解槽の陽極と陰極に白金導線を挿入し、電解槽ごと電気マッフル炉に入れ、電解槽の温度を240℃として溶融塩電解を実施した。 The anode chamber was charged with 61.7 g of the alloy, and the cathode chamber was charged with 30.4 g of 99.999 wt% metallic indium prepared separately. The weight of the molten salt charged was 75.4 g, and its composition was 73.6% by weight of indium monochloride (= 71.6% by mole), 28.4% by mole of zinc chloride, and 0.5% by weight of water content. Platinum lead wires were inserted into the anode and cathode of the electrolytic cell, and the electrolytic cell was placed in an electric muffle furnace, and the temperature of the electrolytic cell was 240 ° C., and molten salt electrolysis was performed.
溶融塩電解は、実施例1にて用いた定電流装置を用い、電流値0.94A、電流密度30A/dm2に設定して14時間通電した。 Molten salt electrolysis was carried out for 14 hours using the constant current device used in Example 1 with a current value of 0.94 A and a current density of 30 A / dm 2 .
その結果、陽極室に仕込んだインジウム−スズ合金からは55.8gが溶解し、陰極室からは86.1gが得られ、電解終了時の溶融塩中の水分含量は0.3重量%であった。陰極室への仕込量は30.4gであったので、電析量は55.7gになる。陰極の金属インジウムの一部を取り出し、塩酸にて溶解後、ICP分析装置にて不純物含量を求め、仕込金属インジウムの量と純度から補正した電析金属インジウム中のスズは520重量ppm、亜鉛含量も3重量ppmと低く良好であった。また、陽極室に仕込んだインジウム重量56.5gに対し、陰極室に電析させたインジウム重量55.7gで、回収率98.6%と良好であった。 As a result, 55.8 g was dissolved from the indium-tin alloy charged in the anode chamber, and 86.1 g was obtained from the cathode chamber. The water content in the molten salt at the end of electrolysis was 0.3% by weight. It was. Since the amount charged into the cathode chamber was 30.4 g, the amount of electrodeposition was 55.7 g. A part of the metal indium on the cathode is taken out, dissolved in hydrochloric acid, the impurity content is obtained with an ICP analyzer, and tin in the deposited metal indium corrected from the amount and purity of the charged metal indium is 520 ppm by weight, the zinc content Was also as low as 3 ppm by weight. Further, the weight of indium electrodeposited in the cathode chamber was 55.7 g against the indium weight of 56.5 g charged in the anode chamber, and the recovery rate was 98.6%, which was good.
又、電解槽電圧は4.8Vで推移した。 Moreover, the electrolytic cell voltage changed at 4.8V.
比較例1
実施例1の還元により回収したインジウム−スズ合金を用い、実施例1と同様のパイレックス(登録商標)ガラス製H型電解槽を用いて溶融塩電解精製を実施した。陽極室には該合金63.3gを、陰極室には別途準備した純度99.999重量%の金属インジウム30.1gを仕込んだ。仕込みの溶融塩重量は70.8gであり、その組成は一塩化インジウム73.5重量%(=71.5モル%)、塩化亜鉛28.5モル%であった。水分含有量は溶融塩に水分を添加して0.9重量%とした。
Comparative Example 1
Using the indium-tin alloy recovered by the reduction in Example 1, the molten salt electrolytic purification was performed using the same Pyrex (registered trademark) glass H-type electrolytic cell as in Example 1. The anode chamber was charged with 63.3 g of the alloy, and the cathode chamber was charged with 30.1 g of indium metal having a purity of 99.999 wt% prepared separately. The weight of the molten salt charged was 70.8 g, and the composition was 73.5% by weight of indium monochloride (= 71.5% by mole) and 28.5% by mole of zinc chloride. The water content was adjusted to 0.9% by weight by adding water to the molten salt.
該電解槽の陽極と陰極に白金導線を挿入し、電解槽ごと電気マッフル炉に入れ、電解槽の温度を240℃として溶融塩電解を実施した。溶融塩電解は、実施例1にて用いた定電流装置を用い、電流値0.94A、電流密度30A/dm2に設定し、実施例2と同様に14時間通電した。 Platinum lead wires were inserted into the anode and cathode of the electrolytic cell, and the electrolytic cell was placed in an electric muffle furnace, and the temperature of the electrolytic cell was 240 ° C., and molten salt electrolysis was performed. Molten salt electrolysis was carried out for 14 hours in the same manner as in Example 2, using the constant current device used in Example 1 and setting the current value to 0.94 A and the current density to 30 A / dm 2 .
その結果、陽極室に仕込んだインジウム−スズ合金からは53.8gが溶解し、陰極室からは83.7gが得られ、電解終了時の溶融塩中の水分含量は0.8重量%であった。陰極室への仕込量は30.1gであったので、電析量は53.6gになる。陰極の金属インジウムの一部を取り出し、塩酸にて溶解後、ICP分析装置にて不純物含量を求め、仕込金属インジウムの量と純度から補正した電析金属インジウム中のスズは1860重量ppm、亜鉛含量も52重量ppmと高かった。また、陽極室に仕込んだインジウム重量57.2gに対し、陰極室に電析させたインジウム重量は53.7g、インジウム回収率93.9%と、実施例2の98.6%より低かった。 As a result, 53.8 g was dissolved from the indium-tin alloy charged in the anode chamber, and 83.7 g was obtained from the cathode chamber. The water content in the molten salt at the end of electrolysis was 0.8% by weight. It was. Since the amount charged into the cathode chamber was 30.1 g, the amount of electrodeposition was 53.6 g. A part of the metal indium on the cathode was taken out, dissolved in hydrochloric acid, the impurity content was determined with an ICP analyzer, and tin in the electrodeposited metal indium corrected from the amount and purity of the charged metal indium was 1860 ppm by weight, the zinc content Was as high as 52 ppm by weight. In addition, the weight of indium electrodeposited in the cathode chamber was 53.7 g, the indium recovery rate was 93.9%, which was lower than 98.6% in Example 2, compared to 57.2 g of indium charged in the anode chamber.
又、電解槽電圧は不安定で初期5.2V、運転終了直前6.1Vにアップした。 In addition, the electrolytic cell voltage was unstable and increased to initial 5.2V and to 6.1V just before the end of operation.
実施例3
使用済みインジウムハンダから金属インジウムを精製回収するため、溶融塩電解精製を実施した。使用済みインジウムハンダは、主成分のインジウムを99.22重量%、不純物であるスズを4580重量ppm、銅を3220重量ppmを含んでいた。
Example 3
In order to purify and recover metallic indium from used indium solder, molten salt electrolytic purification was performed. The used indium solder contained 99.22 wt% of the main component indium, 4580 wt ppm of tin, which is an impurity, and 3220 wt ppm of copper.
溶融塩電解精製は、図2に示すパイレックス(登録商標)ガラス製H型の連続式電解槽を用いた。陽極室には該合金143.9gを、陰極室には別途準備した純度99.999重量%の金属インジウム49.1gを仕込んだ。仕込みの溶融塩重量は127.1gであり、その組成は一塩化インジウム68.1重量%(=65.9モル%)、塩化亜鉛34.1モル%とした。この時の水分含有量は0.4重量%であった。該電解槽の陽極と陰極にステンレス導線を挿入し、電解槽ごと電気マッフル炉に入れ、電解槽の温度を290℃とし、電解槽のガス相に、窒素ガスを1.2L/hrで連続的に流通しながら溶融塩電解を実施した。この時の窒素ガス中の水蒸気濃度は0.1vol%であった。 For the molten salt electrolytic purification, an H-type continuous electrolytic cell made of Pyrex (registered trademark) glass shown in FIG. 2 was used. The anode chamber was charged with 143.9 g of the alloy, and the cathode chamber was charged with 49.1 g of 99.999 wt% metallic indium prepared separately. The weight of the molten salt charged was 127.1 g, and the composition was 68.1% by weight of indium monochloride (= 65.9% by mole) and 34.1% by mole of zinc chloride. The water content at this time was 0.4% by weight. Stainless steel wires are inserted into the anode and cathode of the electrolytic cell, the electrolytic cell is placed in an electric muffle furnace, the temperature of the electrolytic cell is set to 290 ° C., and nitrogen gas is continuously introduced into the electrolytic cell at 1.2 L / hr. Molten salt electrolysis was carried out while circulating the product. At this time, the water vapor concentration in the nitrogen gas was 0.1 vol%.
溶融塩電解は、実施例1にて用いた定電流装置を用い、電流値0.45A、電流密度20A/dm2に設定して30日間、連続通電した。陽極室のインジウムは電解され、保持量が減少するため、1日に1回使用済みインジウムハンダ46.3gを供給した。陰極室に電析した金属インジウムはオーバーフロー管より連続的に流出させることで回収した。 Molten salt electrolysis was carried out continuously for 30 days using the constant current apparatus used in Example 1 with a current value of 0.45 A and a current density of 20 A / dm 2 . Since indium in the anode chamber is electrolyzed and the holding amount decreases, 46.3 g of used indium solder is supplied once a day. The metal indium electrodeposited in the cathode chamber was recovered by continuously flowing out from the overflow tube.
その結果、陰極室から回収した金属インジウムの重量、陰極室の電流効率、そして不純物スズ,銅,亜鉛の含有量を、以下の表1に示す。 As a result, the weight of metal indium recovered from the cathode chamber, the current efficiency of the cathode chamber, and the contents of impurities tin, copper, and zinc are shown in Table 1 below.
又、電解槽電圧は、陽極室にインジウムハンダを供給する直前が極間距離が最大となるため3.5Vと高く、入れた直後は極間距離が最小となり2.5Vとなった。この電解槽電圧は30日間に亘ってほぼ一定で推移した。 The electrolytic cell voltage was as high as 3.5 V immediately before supplying the indium solder to the anode chamber because the maximum distance between the electrodes was 2.5 V, and immediately after the insertion, the distance between the electrodes was minimum and became 2.5 V. This electrolytic cell voltage remained substantially constant over 30 days.
比較例2
実施例3にて使用した使用済インジウムハンダから金属インジウムを精製回収するため、溶融塩電解精製を実施した。
Comparative Example 2
In order to purify and recover metallic indium from the used indium solder used in Example 3, molten salt electrolytic purification was performed.
溶融塩電解精製は、実施例3と同様、図2に示すパイレックス(登録商標)ガラス製H型の連続式電解槽を用いた。陽極室には該合金140.3gを、陰極室には別途準備した純度99.999重量%の金属インジウム50.4gを仕込んだ。仕込みの溶融塩重量は125.6gであり、その組成は一塩化インジウム63.1重量%(=60.8モル%)、塩化亜鉛39.2モル%とした。この時の水分含有量は0.4重量%であった。該電解槽の陽極と陰極にステンレス導線を挿入し、電解槽ごと電気マッフル炉に入れ、電解槽の温度を290℃とし、電解槽のガス相に窒素ガスを1.2L/hrで連続的に流通しながら溶融塩電解を実施した。この時の窒素ガス中の水蒸気濃度は0.1vol%であった。 As in Example 3, the molten salt electrolytic purification used an H-type continuous electrolytic cell made of Pyrex (registered trademark) glass as shown in FIG. The anode chamber was charged with 140.3 g of the alloy, and the cathode chamber was charged with 50.4 g of metallic indium of 99.999 wt% prepared separately. The weight of the molten salt charged was 125.6 g, and the composition was 63.1% by weight of indium monochloride (= 60.8% by mole) and 39.2% by mole of zinc chloride. The water content at this time was 0.4% by weight. Stainless steel wires are inserted into the anode and cathode of the electrolytic cell, the electrolytic cell is placed in an electric muffle furnace, the temperature of the electrolytic cell is set to 290 ° C., and nitrogen gas is continuously introduced into the gas phase of the electrolytic cell at 1.2 L / hr. Molten salt electrolysis was carried out while circulating. At this time, the water vapor concentration in the nitrogen gas was 0.1 vol%.
溶融塩電解は、実施例1にて用いた定電流装置を用い、電流値0.45A、電流密度20A/dm2に設定して30日間、連続通電した。陽極室のインジウムは電解され、保持量が減少するため、1日に1回使用済みインジウムハンダ45.2gを供給した。陰極室に電析した金属インジウムはオーバーフロー管より連続的に流出させることで回収した。 Molten salt electrolysis was carried out continuously for 30 days using the constant current apparatus used in Example 1 with a current value of 0.45 A and a current density of 20 A / dm 2 . Since indium in the anode chamber is electrolyzed and the holding amount decreases, 45.2 g of used indium solder was supplied once a day. The metal indium electrodeposited in the cathode chamber was recovered by continuously flowing out from the overflow tube.
その結果、運転終了後に溶融塩中の水分含有量を測定した結果0.3重量%と低かった。又、陰極室から回収した金属インジウムの重量、陰極室の電流効率、そして不純物スズ,銅,亜鉛の含有量を、以下の表2に示す。 As a result, the moisture content in the molten salt was measured after the operation was completed, and the result was as low as 0.3% by weight. Table 2 below shows the weight of metal indium recovered from the cathode chamber, the current efficiency of the cathode chamber, and the contents of impurities tin, copper, and zinc.
比較例3
比較例2に用いた使用済みインジウムハンダを用い、実施例3と同様のパイレックス(登録商標)ガラス製H型の連続式電解槽を用いて電解精製を実施した。陽極室には該合金145.7gを、陰極室には別途準備した純度99.999重量%の金属インジウム50.4gを仕込んだ。仕込みの溶融塩重量は128.6gであり、その組成は一塩化インジウム63.2重量%(=61.5モル%)、塩化亜鉛38.5モル%とした。水分含有量は、溶融塩に水分を添加して0.7重量%とした。該電解槽の陽極と陰極にステンレス導線を挿入し、電解槽ごと電気マッフル炉に入れ、電解槽の温度を290℃とし、電解槽のガス相には、水蒸気濃度1.5vol%の空気を1.2L/hrで連続的に流通しながら溶融塩電解を実施した。
Comparative Example 3
Using the used indium solder used in Comparative Example 2, electrolytic purification was performed using the same Pyrex (registered trademark) glass H-type continuous electrolytic cell as in Example 3. The anode chamber was charged with 145.7 g of the alloy, and the cathode chamber was charged with 50.4 g of metallic indium with a purity of 99.999 wt% prepared separately. The weight of the molten salt charged was 128.6 g, and the composition was 63.2% by weight of indium monochloride (= 61.5% by mole) and 38.5% by mole of zinc chloride. The water content was 0.7% by weight by adding water to the molten salt. Stainless steel wires are inserted into the anode and cathode of the electrolytic cell, the electrolytic cell is placed in an electric muffle furnace, the temperature of the electrolytic cell is set to 290 ° C., and the gas phase of the electrolytic cell is 1% of water having a water vapor concentration of 1.5 vol%. Molten salt electrolysis was performed while continuously flowing at 2 L / hr.
溶融塩電解は、実施例1にて用いた定電流装置を用い、電流値0.45A、電流密度20A/dm2に設定して連続通電した。陽極室のインジウムは電解され、保持量が減少するため、1日に1回使用済みインジウムハンダを供給した。陰極室に電析した金属インジウムはオーバーフロー管より連続的に流出させることで回収した。 Molten salt electrolysis was carried out continuously by using the constant current device used in Example 1 with a current value of 0.45 A and a current density of 20 A / dm 2 . Since indium in the anode chamber is electrolyzed and the holding amount decreases, used indium solder is supplied once a day. The metal indium electrodeposited in the cathode chamber was recovered by continuously flowing out from the overflow tube.
その結果、溶融塩中には白色固形物が大量に生成し、運転開始10日目にはで電流効率76%まで低下したので停止した。この間の運転結果、すなわち回収した金属インジウム重量、陰極室の電流効率、そして不純物スズ,銅,亜鉛の含有量を、以下の表3に示す。 As a result, a large amount of white solid was produced in the molten salt, and the current efficiency dropped to 76% on the 10th day from the start of operation, so it was stopped. Table 3 below shows the operation results during this period, that is, the weight of recovered metal indium, the current efficiency of the cathode chamber, and the contents of impurities tin, copper, and zinc.
比較例4
比較例2に用いた使用済みインジウムハンダを用い、実施例3と同様のパイレックス(登録商標)ガラス製H型の連続式電解槽を用いて電解精製を実施した。陽極室には該合金141.7gを、陰極室には別途準備した純度99.999重量%の金属インジウム48.5gを仕込んだ。仕込みの溶融塩重量は135.3gであり、その組成は一塩化インジウム46.6重量%(=45.3モル%)、塩化亜鉛54.7モル%、水分含有量0.4重量%とした。該電解槽の陽極と陰極にステンレス導線を挿入し、電解槽ごと電気マッフル炉に入れ、電解槽の温度を290℃とし、電解槽のガス相には、水蒸気濃度0.1vol%の窒素ガスを1.2L/hrで連続的に流通しながら溶融塩電解を実施した。
Comparative Example 4
Using the used indium solder used in Comparative Example 2, electrolytic purification was performed using the same Pyrex (registered trademark) glass H-type continuous electrolytic cell as in Example 3. The anode chamber was charged with 141.7 g of the alloy, and the cathode chamber was charged with 48.5 g of 99.999 wt% metallic indium prepared separately. The weight of the molten salt charged was 135.3 g, and the composition thereof was 46.6% by weight of indium monochloride (= 45.3% by mole), 54.7% by mole of zinc chloride, and the water content was 0.4% by weight. . Stainless steel wires are inserted into the anode and cathode of the electrolytic cell, the electrolytic cell is placed in an electric muffle furnace, the temperature of the electrolytic cell is 290 ° C., and nitrogen gas having a water vapor concentration of 0.1 vol% is added to the gas phase of the electrolytic cell. Molten salt electrolysis was performed while continuously flowing at 1.2 L / hr.
溶融塩電解は、実施例1にて用いた定電流装置を用い、電流値0.45A、電流密度20A/dm2に設定して連続通電した。陽極室のインジウムは電解され、保持量が減少するため、1日に1回使用済みインジウムハンダを供給した。陰極室に電析した金属インジウムはオーバーフロー管より連続的に流出させることで回収した。 Molten salt electrolysis was carried out continuously by using the constant current device used in Example 1 with a current value of 0.45 A and a current density of 20 A / dm 2 . Since indium in the anode chamber is electrolyzed and the holding amount decreases, used indium solder is supplied once a day. The metal indium electrodeposited in the cathode chamber was recovered by continuously flowing out from the overflow tube.
回収した金属インジウム重量、陰極室の電流効率、そして不純物スズ,銅,亜鉛の含有量を、以下の表4に示す。 Table 4 below shows the recovered metal indium weight, the current efficiency of the cathode chamber, and the contents of impurities tin, copper, and zinc.
比較例5
比較例2に用いた使用済みインジウムハンダを用い、実施例3と同様のパイレックス(登録商標)ガラス製H型の連続式電解槽を用いて電解精製を実施した。陽極室には該合金137.5gを、陰極室には別途準備した純度99.999重量%の金属インジウム51.6gを仕込んだ。仕込みの溶融塩重量は115.4gであり、その組成は一塩化インジウム26.2重量%(=25.5モル%)、塩化アルミニウム74.5モル%とした。この時の水分含有量は0.5重量%であった。該電解槽の陽極と陰極にステンレス導線を挿入し、電解槽ごと電気マッフル炉に入れ、電解槽の温度を250℃とした。溶融塩電解は、電流値0.45A、電流密度20A/dm2に設定して通電した。電解槽のガス相には、水蒸気濃度0.3vol%の窒素ガスを1.2L/hrで連続的に流通しながら溶融塩電解を実施した。
Comparative Example 5
Using the used indium solder used in Comparative Example 2, electrolytic purification was performed using the same Pyrex (registered trademark) glass H-type continuous electrolytic cell as in Example 3. The anode chamber was charged with 137.5 g of the alloy, and the cathode chamber was charged with 51.6 g of 99.999% by weight metallic indium prepared separately. The weight of the molten salt charged was 115.4 g, and its composition was 26.2% by weight of indium monochloride (= 25.5% by mole) and 74.5% by mole of aluminum chloride. The water content at this time was 0.5% by weight. Stainless steel wires were inserted into the anode and cathode of the electrolytic cell, and the electrolytic cell was placed in an electric muffle furnace, and the temperature of the electrolytic cell was 250 ° C. Molten salt electrolysis was conducted by setting the current value to 0.45 A and the current density to 20 A / dm 2 . Molten salt electrolysis was performed while continuously flowing nitrogen gas having a water vapor concentration of 0.3 vol% at 1.2 L / hr in the gas phase of the electrolytic cell.
その結果、運転開始13hr後、排ガスラインに白色固形物がスケーリングし、ラインが閉塞し、連続運転が困難となったため停止した。運転停止直前の陰極室から流出したインジウム中不純物含量を、以下の表5に示す。 As a result, 13 hours after starting operation, white solids were scaled in the exhaust gas line, the line was blocked, and continuous operation became difficult, so the operation was stopped. Table 5 below shows the impurity content in the indium flowing out of the cathode chamber immediately before the shutdown.
本発明は、金属インジウム含有合金から金属インジウムを精製回収する方法に関する。 The present invention relates to a method for purifying and recovering metal indium from an alloy containing metal indium.
1:陽極(室)粗In合金
2:陰極(室)精製In
3:溶融塩
4:陽極導線(保護管付白金導線)
5:陰極導線(保護管付白金導線)
6:陽極(室)粗In合金
7:陰極(室)精製In
8:溶融塩
9:陽極導線(SUS線)
10:陰極導線(SUS線)
11:粗In合金投入口
12:精製Inオーバーフロー口
13:ガス導入口
14:排ガス出口
15:ガス連通管
1: Anode (chamber) crude In alloy 2: Cathode (chamber) purified In
3: Molten salt 4: Anode conductor (platinum conductor with protective tube)
5: Cathode conductor (platinum conductor with protective tube)
6: Anode (chamber) crude In alloy 7: Cathode (chamber) purified In
8: Molten salt 9: Anode conductor (SUS wire)
10: Cathode conductor (SUS wire)
11: Crude In alloy inlet 12: Purified In overflow port 13: Gas inlet 14: Exhaust gas outlet 15: Gas communication pipe
Claims (9)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009280006A JP5532886B2 (en) | 2009-12-10 | 2009-12-10 | Method for producing metallic indium |
TW99142414A TW201139693A (en) | 2009-12-10 | 2010-12-06 | Method for producing metal indium and molten salt electrolytic bath |
PCT/JP2010/072248 WO2011071151A1 (en) | 2009-12-10 | 2010-12-10 | Method for producing indium metal, molten salt electrolytic cell, and method for purifying low melting point metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009280006A JP5532886B2 (en) | 2009-12-10 | 2009-12-10 | Method for producing metallic indium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011122197A JP2011122197A (en) | 2011-06-23 |
JP5532886B2 true JP5532886B2 (en) | 2014-06-25 |
Family
ID=44145694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009280006A Active JP5532886B2 (en) | 2009-12-10 | 2009-12-10 | Method for producing metallic indium |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5532886B2 (en) |
TW (1) | TW201139693A (en) |
WO (1) | WO2011071151A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200130526A (en) * | 2019-05-08 | 2020-11-19 | 한국생산기술연구원 | Method of controlling impurity of indium metal by electrolytic refining of molten salt |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140212347A1 (en) * | 2011-08-17 | 2014-07-31 | Jernkontoret Ab | Recovery of lead and indium from glass, primarily from electronic waste material |
EP2744927A4 (en) * | 2011-08-19 | 2015-04-01 | Jernkontoret | A process for recovering metals and an electrolytic apparatus for performing the process |
CN102978665B (en) * | 2012-12-21 | 2016-05-18 | 江西稀有金属钨业控股集团有限公司 | A kind of special-shaped tungsten cathode or molybdenum negative electrode |
KR101717204B1 (en) * | 2016-01-22 | 2017-03-17 | (주)코리아테크노브레인 | Apparatus for recovering metal including indium, system for recovering indium and method for recovering indium from indium-tin metral |
KR101719307B1 (en) * | 2016-02-26 | 2017-03-23 | 주식회사 엔코 | Method for recovering high-purity indium compound using the complex fused-saltmolten salt electrorefining |
DE102017104886A1 (en) * | 2017-03-08 | 2018-09-13 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic component and optoelectronic component |
WO2018187194A1 (en) * | 2017-04-03 | 2018-10-11 | Battelle Energy Alliance, Llc | System for determining molten salt mass, and related methods |
CN112961985B (en) * | 2021-02-01 | 2023-06-13 | 韶关市欧莱高纯材料技术有限公司 | Fire recovery process for recovering refined indium from target material recovered material |
KR102715581B1 (en) * | 2021-12-22 | 2024-10-11 | 주식회사 퀀타머티리얼스 | Method of high purity indium-gallium collecting from igzo waste targer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU531380A1 (en) * | 1970-05-25 | 1978-07-05 | Новосибирский оловозавод | Method of indium electrolytic refining |
JP2001174590A (en) * | 1999-12-15 | 2001-06-29 | Toshiba Corp | Treating method for radioactive waste |
KR100614890B1 (en) * | 2004-10-26 | 2006-08-25 | (주)나인디지트 | Method for manufacturing the high purity Indium and the apparatus therefor |
-
2009
- 2009-12-10 JP JP2009280006A patent/JP5532886B2/en active Active
-
2010
- 2010-12-06 TW TW99142414A patent/TW201139693A/en unknown
- 2010-12-10 WO PCT/JP2010/072248 patent/WO2011071151A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200130526A (en) * | 2019-05-08 | 2020-11-19 | 한국생산기술연구원 | Method of controlling impurity of indium metal by electrolytic refining of molten salt |
KR102255478B1 (en) | 2019-05-08 | 2021-05-25 | 한국생산기술연구원 | Method of controlling impurity of indium metal by electrolytic refining of molten salt |
Also Published As
Publication number | Publication date |
---|---|
TW201139693A (en) | 2011-11-16 |
JP2011122197A (en) | 2011-06-23 |
WO2011071151A1 (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5532886B2 (en) | Method for producing metallic indium | |
JP5043027B2 (en) | Recovery method of valuable metals from ITO scrap | |
WO2015035954A1 (en) | A method for extracting metal titanium through molten-salt electrolysis of a titanium-containing soluble anode | |
JP4647695B2 (en) | Method for recovering valuable metals from ITO scrap | |
JP5043029B2 (en) | Recovery method of valuable metals from ITO scrap | |
US8308933B2 (en) | Method of recovering valuable metals from IZO scrap | |
JP3203587B2 (en) | How to recover indium | |
US8308932B2 (en) | Method of recovering valuable metals from IZO scrap | |
JP5043028B2 (en) | Recovery method of valuable metals from ITO scrap | |
US6843896B2 (en) | Apparatus for processing metals | |
TW200846503A (en) | Methods of recovering valuable metal from scrap containing electrically conductive oxide | |
CN114105229A (en) | Preparation method of high-purity iridium trichloride | |
CN110129572B (en) | Method for preparing high-purity ammonium rhenate by using waste nickel-based high-temperature alloy | |
CN107587163B (en) | A method of reducing magnesium eletrolysis impurity content in melt magnesium chloride | |
JPS6327434B2 (en) | ||
US3983018A (en) | Purification of nickel electrolyte by electrolytic oxidation | |
EP0021809A1 (en) | Chloride leaching | |
CN111501064A (en) | Production method of 6N copper | |
JP2015086436A (en) | Method for recovering valuable material | |
JPH0684551B2 (en) | Process for producing praseodymium or praseodymium-containing alloy | |
JP4544414B2 (en) | High purity metallic indium and its production method and application | |
JP5544746B2 (en) | Method for producing metallic indium | |
JP2019052329A (en) | Electrorefining method of low-grade copper anode, and electrolytic solution used therefor | |
Shamsuddin et al. | Role of electrochemical processes in the extraction of metals and alloys–a review | |
JP2013227621A (en) | Method of electrorefining bismuth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140401 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5532886 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140414 |