JP4914994B2 - Construction method of direct-type suspension floor slab bridge - Google Patents

Construction method of direct-type suspension floor slab bridge Download PDF

Info

Publication number
JP4914994B2
JP4914994B2 JP2007089181A JP2007089181A JP4914994B2 JP 4914994 B2 JP4914994 B2 JP 4914994B2 JP 2007089181 A JP2007089181 A JP 2007089181A JP 2007089181 A JP2007089181 A JP 2007089181A JP 4914994 B2 JP4914994 B2 JP 4914994B2
Authority
JP
Japan
Prior art keywords
floor slab
cable
abutment
suspension
suspended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007089181A
Other languages
Japanese (ja)
Other versions
JP2008248529A (en
Inventor
周 角本
勉 町
卓 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Shiraishi Corp
Original Assignee
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Shiraishi Corp filed Critical Oriental Shiraishi Corp
Priority to JP2007089181A priority Critical patent/JP4914994B2/en
Publication of JP2008248529A publication Critical patent/JP2008248529A/en
Application granted granted Critical
Publication of JP4914994B2 publication Critical patent/JP4914994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、外ケーブルを併用した直路式吊床版橋の構築方法に関する。
The present invention relates to a method for constructing a direct-type suspension floor slab bridge using an external cable.

橋台や橋脚の間に張り渡したPC鋼材を、薄いコンクリートで包み込んで床版としたPC吊床版橋として、図11に示す直路式吊床版橋Aがあると共に、これに類似の床版橋として、図12に示す上路式吊床版橋Bがある(例えば、引用文献1〜3並びに非特許文献1参照)。   As a PC suspended floor slab bridge, a PC slab stretched between abutments and piers and wrapped in thin concrete to form a floor slab, there is a straight-line suspension floor slab bridge A shown in FIG. There is an upper suspension type suspension floor bridge B shown in FIG. 12 (see, for example, cited documents 1 to 3 and non-patent document 1).

直路式吊床版橋Aは、橋台間を張り渡したケーブル(1次ケーブル)を包み込んだ床版(吊床版)の上を、直接、人や車が通れるようにした構造であり、特徴的な構造として、路面にサグ(垂距)Sが残るようになる構造であり、撓みやすい構造である。他方、上路式吊床版橋Bは、吊床版20の上に鉛直材(またはトラス斜材)21を立て、鉛直材21の上に路面となる上床版22を載せた構造であり、特徴的な構造として、路面は水平になる。
前記の場合、図示を省略するが、直路式吊床版橋Aにおける吊床版内に配置されるプレストレス導入用PC鋼材は橋台2の背面において緊張定着され、同様に上路式吊床版橋Bにおける吊床版20内に配置されるプレストレス導入用PC鋼材は橋台2の背面において緊張定着される。また、上路式吊床版橋Bの上床版ケーブルは上床版22の橋軸方向端部で定着される。また、吊床版20の上に鉛直材21とコンクリート製上床版22が載るので、自重が重くなり、ケーブルあるいは橋台2さらには、アンカー材が負担する水平力が減らない(吊床版のサグを大きくすれば水平力は減るが自重が増えるので相殺されるため)という欠点があるが、全体剛性が、直路式吊床版橋Aの場合よりも剛性が大きいという利点を有している。本発明は前記の直路式吊床版橋に属する。
The direct-type suspension floor slab bridge A is a structure that allows people and cars to pass directly over the floor slab (suspended floor slab) that wraps the cable (primary cable) that spans between the abutments. As a structure, a sag (suspension) S remains on the road surface, and the structure is easy to bend. On the other hand, the upper-floor type suspension floor slab bridge B has a structure in which a vertical material (or truss diagonal member) 21 is erected on the suspension floor slab 20 and an upper floor slab 22 serving as a road surface is placed on the vertical material 21. As a structure, the road surface is horizontal.
In the above case, although not shown in the drawings, the prestress-introducing PC steel material disposed in the suspended floor slab of the direct suspension type slab bridge A is tension-fixed on the back surface of the abutment 2, and similarly the suspended floor in the upper suspension type suspension slab bridge B. The pre-stress introducing PC steel material disposed in the plate 20 is tension-fixed on the back surface of the abutment 2. Further, the upper floor slab cable of the upper-floor type suspension floor slab bridge B is fixed at the bridge axial direction end portion of the upper floor slab 22. Further, since the vertical material 21 and the concrete upper floor slab 22 are placed on the suspended floor slab 20, the weight is increased, and the horizontal force borne by the cable or the abutment 2 and the anchor material is not reduced (the sag of the suspended floor slab is greatly increased). If this is done, the horizontal force is reduced, but the weight is offset because the weight is increased). However, this has the advantage that the overall rigidity is higher than that of the straight suspension type slab bridge A. The present invention belongs to the straight-line type suspension floor slab described above.

従来の吊床版橋は、橋台間に張設されたPCケーブル上にプレキャスト床版を懸垂配置したのち、後打ちコンクリートを打設する方法が一般的である。
また従来、長支間対応の吊床版橋では、2次ケーブルとして外ケーブルを配置し、プレキャスト床版と外ケーブルとの間に鉛直材を設けることにより、橋台に作用する水平力を減少させることは知られている(前記特許文献2、5参照)。
特許第2967874号公報 特許第2979297号公報 特許第3678719号公報 特開平11−323841号公報 特開平10−140521号公報 PC床版橋設計施工基準(案)P4,5,11 平成12年11月、社団法人プレストレスコンクリート技術協会
A conventional suspension floor slab bridge is generally constructed by placing a precast floor slab on a PC cable stretched between abutments and then placing post-cast concrete.
Conventionally, in suspended floor slab bridges for long spans, it is possible to reduce the horizontal force acting on the abutment by arranging an outer cable as a secondary cable and providing a vertical member between the precast floor slab and the outer cable. Known (see Patent Documents 2 and 5).
Japanese Patent No. 2967874 Japanese Patent No. 2979297 Japanese Patent No. 3678719 Japanese Patent Laid-Open No. 11-323841 JP-A-10-140521 PC floor slab bridge design and construction standards (draft) P4, 5, 11 November 2000, Prestressed Concrete Technology Association

ところで、基本サグの設定は、吊床版橋において最も重要なものであり、サグは、ケーブル本数、橋台に作用する水平力とグランドアンカー本数、供用時の振動、耐風安定性、直路式床版橋の場合における最大縦断勾配、景観、排水計画などに影響を及ぼすので、重要な要素として検討される。   By the way, the setting of the basic sag is the most important thing in the suspension floor slab bridge. The sag is the number of cables, horizontal force acting on the abutment and the number of ground anchors, vibration during operation, wind resistance stability, straight type floor slab bridge. It will be considered as an important factor because it will affect the maximum vertical slope, landscape, drainage plan, etc.

吊り床版橋のサグ比(括弧内でサグによる道路縦断勾配を併記)は、吊支間の1/30(13.3%)〜1/50(8%)としているのが多く、前記の道路縦断勾配(サグ比を併記)で6.7%(1/60)以下、例えば、道路縦断勾配(サグ比)で3%(1/133.3)以下にすると、吊り床版の上面が、より水平面に近くなるために、歩行者の歩行が平易になり、バリアフリー化が図れる大きなメリットがある。   The sag ratio of suspended floor slab bridges (along with the road longitudinal gradient by sag in parentheses) is often 1/30 (13.3%) to 1/50 (8%) between the suspension branches. When the longitudinal gradient (sag ratio is also shown) is 6.7% (1/60) or less, for example, when the road longitudinal gradient (sag ratio) is 3% (1 / 133.3) or less, the upper surface of the suspended floor slab is Since it is closer to the horizontal plane, there is a great merit that the pedestrian can walk easily and can be barrier-free.

しかし、前記のように吊り床版橋のサグ(道路縦断勾配)を吊支間の1/30(13.3%)〜1/50(8%)としているのは、次のような理由による。
吊床版端部の支持条件として、吊床版端部を橋台に固定する固定構造とした場合には、吊床版端部は、サグを小さくすると、吊床版のクリープ、乾燥収縮及び温度変化による橋台に作用する引張力(主に水平力)が大きくなり、構造として成立することが困難となるためである。
However, the reason why the sag (longitudinal gradient of the road) of the suspended floor slab is set to 1/30 (13.3%) to 1/50 (8%) between the suspension branches as described above is as follows.
If the suspension floor plate end is fixed to the abutment as a supporting condition for the suspension floor plate end, the suspension floor plate end can be changed to abutment due to creep, drying shrinkage, and temperature change of the suspension floor plate when the sag is reduced. This is because the acting tensile force (mainly horizontal force) increases and it is difficult to establish a structure.

また、床版架設用の1次ケーブルを解放して桁部材にプレストレスを導入することも知られている(例えば、特許文献4参照)が、これを直路式吊床版に適用した場合、完成系において吊床版自体は、直接ケーブルで吊られた状態ではなくなるため、ねじりに対する配慮が必要になる。   In addition, it is also known that prestress is introduced into the girder member by releasing the primary cable for slab erection (see, for example, Patent Document 4), but when this is applied to a straight-line suspension floor slab, it is completed. In the system, the suspended floor slab itself is not in a state of being directly suspended by a cable, so that consideration must be given to torsion.

前記のように、吊床版端部は、橋台に吊床版を固定する固定構造よりサグを小さくすると、クリープ、乾燥収縮及び温度変化による引張力が大きくなり、構造として成立することが困難となる問題があると共に、吊床版の構造を決定する上では、ねじりに対する安定性が必要となる。
本発明は前記の課題を解消することができ、サグを小さくして道路縦断勾配を緩くできると共に橋台に作用する水平力を小さくすることが可能な直路式吊床版橋の構築方法を提供することを目的とする。
As described above, when the sag is made smaller than the fixed structure for fixing the suspended floor slab to the abutment, the tensile force due to creep, drying shrinkage, and temperature change is increased, making it difficult to establish the structure as the end of the suspended floor slab. In addition, in determining the structure of a suspended floor slab, stability against torsion is required.
The present invention can eliminate the above problems, it is to provide a method for constructing a straight path type Tsuridoko slab bridge which can reduce the horizontal force acting on the abutment with to reduce the sag can loosely road longitudinal slope With the goal.

第1発明の直路式吊床版橋の構築方法では、直路式吊床版橋における吊床版を架設するための第1のケーブルと、前記吊床版の下側に配置される鉛直材を介して前記吊床版を支持する第2のケーブルを備え、前記第1のケーブルおよび第2のケーブルは共に橋台にて緊張定着され、吊床版本体には直接プレストレスを導入するケーブルを配置し吊床版端部で緊張定着し、橋台とは分離された状態の前記吊床版端部は、橋台に固定されていない直路式吊床版橋を構築するための直路式吊床版橋の構築方法であって、その直路式吊床版橋における第1のケーブルで吊床版を架設し、第2のケーブルで前記吊床版の下側に配置される鉛直材を介して前記吊床版を支持し、前記第1のケーブルおよび第2のケーブルを橋台にて緊張定着した後、橋台上に支承を介して支持される吊床版端部の端部吊床版を構築し、吊床版本体に直接プレストレスを導入するケーブルを配置して吊床版端部の端部吊床版で緊張定着し、橋台とは分離された状態の前記端部吊床版を橋台に固定しないことを特徴とする。
また、第2発明では、第1発明の直路式吊床版橋の構築方法において、第1のケーブルでサドルを備えた吊床版が支持されることを特徴とする。
第3発明では、第1発明又は第2発明の直路式吊床版橋の構築方法において、吊床版端部は支承を介して橋台に支持されることを特徴とする。
In the construction method of the straight road type suspension floor slab bridge of the first invention, the suspension floor via the first cable for laying the suspension floor slab in the direct road type suspension floor slab bridge and the vertical material arranged below the suspension floor slab. A second cable for supporting the plate, and the first cable and the second cable are both tension-fixed at the abutment, and a cable for directly introducing prestress is arranged on the suspended floor plate body at the end of the suspended floor plate The suspension floor slab end in a state where the tension is fixed and separated from the abutment is a method for constructing a direct suspension type slab bridge for constructing a direct suspension type slab bridge that is not fixed to the abutment. A suspended floor slab is erected with a first cable in a suspended floor slab bridge, the suspended floor slab is supported by a second cable via a vertical member disposed below the suspended floor slab, and the first cable and the second cable After fixing the tension of the cable at the abutment, on the abutment An end suspended floor slab at the end of the suspended floor slab supported through the support is constructed, and a cable that directly introduces prestress into the suspended floor slab body is placed, and the tension is fixed at the end suspended floor slab at the end of the suspended floor slab. The end suspended floor slab in a separated state is not fixed to the abutment.
According to a second aspect of the present invention, in the method for constructing a direct-type suspension floor slab bridge according to the first aspect of the invention, the suspended floor slab having a saddle is supported by the first cable.
In the third invention, in the direct path type method for constructing a Tsuridoko slab bridge of the first or second aspect of the invention, Tsuridoko plate end, characterized in that it is supported on the abutment via the bearing.

本願発明の直路式吊床版橋によると、従来のように端部吊床版は橋台に固定されることなく分離された状態であるので、従来の固定構造のように、床版橋のクリープ、乾燥収縮及び温度変化による橋台に作用する引張力が大きくなることはないため、橋台に作用する水平力を減らすことができ、またサグを小さくすることが可能となる。以上より、道路縦断勾配の小さい歩行者へのバリアフリーを高めた構造の直路式吊床版橋を提供することができる。
また、サグを例えば道路縦断勾配で3%程度に小さくした場合、吊床版端部を橋台に固定すると、2次ケーブルの緊張により、橋台に作用する水平力が大きくなったり、吊床版の端部で大きな曲げモーメントが生じたりするが、本発明では、吊床版端部を橋台から切り離し、分離した状態であるので、2次ケーブルの緊張により、橋台に作用する水平力や吊床版端部の曲げモーメントを増加させずに、吊床版内に配置するケーブルによりプレストレスを導入することができる。
また、本発明の直路式吊床版橋の構築方法によると、直路式吊床版橋の構築方法において、1次ケーブルで吊床版を架設し、2次ケーブルで橋体全体を支持し、前記1次ケーブルおよび2次ケーブルを橋台にて緊張定着した後、橋台上に支承を介して支持される吊床版端部の端部吊床版を構築し、吊床版本体に直接プレストレスを導入するケーブルを配置して吊床版端部で緊張定着し、端部吊床版を橋台に固定しないので、端部吊床版を橋台に固定しない構造の直路式吊床版橋を容易に構築することができる。また、1次ケーブルおよび2次ケーブルを橋台に緊張定着した後、端部吊床版を橋台に設置の支承上に設けるようにすればよいので、施工も容易であるなどの効果が得られる。

According to the straight-line suspension floor slab of the present invention, since the end suspension floor slab is separated without being fixed to the abutment as in the prior art, the floor slab bridge is creeped and dried as in the conventional fixed structure. Since the tensile force acting on the abutment due to shrinkage and temperature change does not increase, the horizontal force acting on the abutment can be reduced, and the sag can be reduced. From the above, it is possible to provide a straight-line suspension floor slab bridge with a structure that improves barrier-free for pedestrians with a small road longitudinal gradient.
In addition, when the sag is reduced to, for example, about 3% in the road longitudinal gradient, if the suspension floor plate end is fixed to the abutment, the horizontal force acting on the abutment increases due to the tension of the secondary cable, or the end of the suspension floor slab However, in the present invention, the suspended floor slab end is separated from the abutment and separated, so that the horizontal force acting on the abutment and the bending of the suspended floor slab end are caused by the tension of the secondary cable. Prestress can be introduced by the cable placed in the suspended floor slab without increasing the moment.
Moreover, according to the construction method of the direct route type suspension floor slab bridge of the present invention, in the construction method of the direct route type suspension floor slab bridge, the suspension floor slab is constructed with a primary cable, and the entire bridge body is supported with a secondary cable. After fixing the cable and the secondary cable on the abutment, construct an end suspension floor slab at the end of the suspension floor slab supported on the abutment and place the cable that directly introduces prestress into the suspension floor slab body Then, the tension is fixed at the end of the suspended floor slab, and the end suspended floor slab is not fixed to the abutment. Therefore, a straight-line suspended floor slab bridge having a structure in which the end suspended floor slab is not fixed to the abutment can be easily constructed. In addition, after the primary cable and the secondary cable are tensioned and fixed on the abutment, the end suspended floor slab may be provided on the support of the installation on the abutment, so that effects such as easy construction can be obtained.

次に、本発明を図示の実施形態に基づいて詳細に説明する。     Next, the present invention will be described in detail based on the illustrated embodiment.

図1(a)〜図9は、本発明の直路式吊床版橋1の一実施形態を示すものであって、各橋台2間に渡って、1次ケーブル3が緊張した状態で定着されていると共に、前記1次ケーブル3に、端部吊床版4(図8f参照)を除く多数のプレキャスト製の中間部吊床版5(図6参照)が直列に架設され、直列に配置された多数の中間部吊床版5の橋軸方向の端部には、橋台2上に設置された弾性支承装置6上に設置された吊床版端部としての端部吊床版4が、前記1次ケーブル(第1のケーブル、以下同様)3および弾性支承装置6に支持されるように設けられている。前記の吊床版端部としての端部吊床版4は橋台2から分離した状態で設けられ、端部吊床版4から橋台2に、床版橋のクリープ、乾燥収縮及び温度変化による橋台2に作用する引張力が大きくなることがないようにされている。
FIG. 1A to FIG. 9 show an embodiment of the straight-line suspension floor slab bridge 1 of the present invention, and the primary cable 3 is fixed in a tensioned state between the abutments 2. In addition, a large number of precast intermediate suspended floor slabs 5 (see FIG. 6) except for the end suspended floor slabs 4 (see FIG. 8f) are laid in series on the primary cable 3, and a large number of serially arranged An end suspension floor slab 4 serving as a suspension floor slab end installed on an elastic bearing device 6 installed on the abutment 2 is provided at the end of the intermediate suspension slab 5 in the bridge axis direction . 1 and the like) 3 and the elastic bearing device 6 are provided so as to be supported. The end suspension floor slab 4 as the end of the suspension floor slab is provided in a state separated from the abutment 2, and acts on the abutment 2 from the end suspension floor slab 4 to the abutment 2 due to creep, drying shrinkage and temperature change of the floor slab bridge. The tensile force to be applied is not increased.

前記の弾性支承装置6としては、公知のゴムのような弾性層を有する弾性支承装置が設置され、端部吊床版4および中間部吊床版5の鉛直荷重あるいは橋軸直角方向等の横方向の変動に対して弾性的に緩衝支承している。前記の弾性支承装置6以外の鋼製支承装置等の支承装置6としてもよい。   As the elastic bearing device 6, a known elastic bearing device having an elastic layer such as rubber is installed, and a vertical load of the end suspension floor slab 4 and the intermediate suspension floor slab 5 or a lateral direction such as a direction perpendicular to the bridge axis is provided. It is cushioned elastically against fluctuations. A bearing device 6 such as a steel bearing device other than the elastic bearing device 6 may be used.

前記の各中間部吊床版5および端部吊床版4には、図1(b)に示すように、1次ケーブル3に支持させるためのサドル7が、橋軸直角方向の床版幅方向に間隔をおいて複数設けられている。前記各サドル7は、それぞれ複数の1次ケーブル3上に載置するように配置されて、吊床版17を構成する各中間部吊床版5が1次ケーブル3により支持されている。前記の端部吊床版4は支承装置により支持され、端部吊床版4には、サドル7は適宜設けられる。
1次ケーブル3にサドル7側の下向き開口溝の下面を載置するようにしてもよく、図10に示すように、吊床版本体内に配置されたサドル7を1次ケーブル3に支持させる形態でもよい。また、サドル7は、吊床版本体5bに対して、図1および図5(a)に示すように外側に露出するように取付ける形態でもよい。
また、1次ケーブル3に中間部吊床版5または端部吊床版4を支持させる場合、図5(b)に示すように、吊床版の上面側の両側部に凹部23を形成し、それぞれの凹部23に、吊治具24を複数埋設配置されている形態でもよい。なお、前記吊治具24は、その下側に1次ケーブル3を挿通し、中間部吊床版5又は端部吊床版4を橋台2,2間に架設するために用いられ、吊床版架設後には、凹部23に打設される後埋め材としての後打ちコンクリート25によって埋設するようにしてもよい(ただし、吊床版4,5はプレストレス導入用ケーブル9の緊張定着前後において、図5(a)に示すように、1次ケーブル3に対して橋軸方向にスライド可能な構造にしておく必要がある)。前記の図5(b)ように1次ケーブル3を吊治具24の下側に挿通する形態でもよく、あるいは図5(c)に示すようにサドル7内に挿通する形態でもよい。
なお、図1等では、プレストレス導入用ケーブル9と1次ケーブル3とをわかりやすくするために、便宜上、1次ケーブル3を各中間部吊床版5および端部吊床版4の若干下側に記載し、橋軸方向に所定の長さのサドル7を単に丸で示している。
As shown in FIG. 1 (b), each of the intermediate suspended floor slab 5 and the end suspended floor slab 4 has a saddle 7 to be supported by the primary cable 3 in the floor slab width direction perpendicular to the bridge axis. A plurality are provided at intervals. The saddles 7 are arranged so as to be placed on the plurality of primary cables 3, and the intermediate suspended floor slabs 5 constituting the suspended floor slab 17 are supported by the primary cables 3. The end suspension floor slab 4 is supported by a support device, and a saddle 7 is appropriately provided on the end suspension floor slab 4.
The lower surface of the downward opening groove on the saddle 7 side may be placed on the primary cable 3, and as shown in FIG. 10, the saddle 7 disposed in the suspended floor slab body may be supported by the primary cable 3. Good. Further, the saddle 7 may be attached to the suspended floor slab body 5b so as to be exposed to the outside as shown in FIG. 1 and FIG. 5 (a).
Moreover, when the intermediate cable suspension floor slab 5 or the end suspension floor slab 4 is supported by the primary cable 3, as shown in FIG. 5 (b), concave portions 23 are formed on both sides on the upper surface side of the suspension floor slab, A form in which a plurality of suspension jigs 24 are embedded in the recess 23 may be employed. The suspension jig 24 is used to insert the primary cable 3 below the suspension jig 24 and to construct the intermediate suspension floor slab 5 or the end suspension floor slab 4 between the abutments 2 and 2. May be embedded with post-cast concrete 25 as a post-filling material to be placed in the recess 23 (however, the suspended floor slabs 4 and 5 are shown in FIG. As shown in a), the primary cable 3 needs to be slidable in the bridge axis direction). As shown in FIG. 5 (b), the primary cable 3 may be inserted under the hanging jig 24, or may be inserted into the saddle 7 as shown in FIG. 5 (c).
In addition, in FIG. 1 etc., in order to make the prestress introduction cable 9 and the primary cable 3 easy to understand, for convenience, the primary cable 3 is slightly below the intermediate suspension floor slab 5 and the end suspension floor slab 4. The saddle 7 having a predetermined length is simply indicated by a circle in the bridge axis direction.

各中間部吊床版5および端部吊床版4における前記床版幅方向には、間隔をおいて、ケーブル挿通孔8が、シースの埋め込み配置により形成され、前記各ケーブル挿通孔8内に配置されたプレストレス導入用ケーブル9は、端部吊床版4の端部において、緊張された状態で定着金具10により定着されている(図2参照)。
なお、図1および図3のように、サドル7を吊床版5の断面の外側に配置するようにしてもよいが、サドル7を吊床版5の中央寄りに配置すると架設時に不安定になるので、幅方向外側よりの中間部に配置する。
図5(c)の形態では、ケーブル挿通孔8を吊床版の幅方向中間部に配置し、サドル7を吊床版の幅方向端部側に配置しているが、図1および図3に示すようにケーブル挿通孔8を吊床版の幅方向中間部および両端部側に配置し、サドル7を吊床版の幅方向端部側に配置してもよい。
In the width direction of the floor slab in each of the intermediate suspended floor slabs 5 and the end suspended floor slabs 4, cable insertion holes 8 are formed by being embedded in sheaths and are disposed in the respective cable insertion holes 8. The prestress introduction cable 9 is fixed by the fixing bracket 10 in a tensioned state at the end portion of the end suspension floor slab 4 (see FIG. 2).
1 and 3, the saddle 7 may be disposed outside the cross section of the suspended floor slab 5, but if the saddle 7 is disposed near the center of the suspended floor slab 5, it becomes unstable during installation. It arranges in the middle part from the width direction outside.
In the form of FIG. 5C, the cable insertion hole 8 is disposed in the intermediate portion in the width direction of the suspended floor slab, and the saddle 7 is disposed on the end portion in the width direction of the suspended floor slab, as shown in FIGS. In this way, the cable insertion holes 8 may be disposed on the width direction intermediate portion and both end sides of the suspended floor slab, and the saddle 7 may be disposed on the width direction end portion side of the suspended floor slab.

多数の中間部吊床版5には、支持体11が設けられ、各中間部吊床版5と各支持体11とにより立体トラスが形成され、各支持体11は、鉛直材12a,12a,12b,12bと横材12dとを主要部として備えている(図3参照)。端部吊床版4は支持体11を備えていない点以外は中間部吊床版5と同様である。   A large number of intermediate suspension floor slabs 5 are provided with supports 11, and each intermediate suspension floor slab 5 and each support 11 form a three-dimensional truss, and each support 11 includes vertical members 12a, 12a, 12b, 12b and a cross member 12d are provided as main parts (see FIG. 3). The end suspension floor slab 4 is the same as the intermediate suspension floor slab 5 except that the support 11 is not provided.

図3に示すように、前記の中間部吊床版本体5bのそれぞれ両側下面には支承具12e,12eを介して、鉛直材12a,12aが橋軸方向に回動可能に枢着されており、床版本体5bにおいて1次ケーブル3が配置されていない中央下面には支承具12f,12fを介して、鉛直材12b,12bが橋軸方向に回動可能に枢着されており、一対の鉛直材12aと12bとは下端部で一体化されていると共に横ピン接合27を介して同一の連結具12cにて橋軸方向に回動可能に枢着して相互に連結され、この連結具12cと12cとには横材12dが縦ピン接合28を介して回動可能に枢着され、さらに、連結具12cには2次ケーブル(第2のケーブル、以下同様)13を挿通するための2次ケーブル挿通孔14が形成されている。このように鉛直材12b,12bが中間部吊床版5の中央下面に枢着され、2次ケーブル13の作用と併せて中間部吊床版5の中央下面部分を下方から支持するようにされている。このように配置して相互に連結された鉛直材12a,12a,12b,12bは相互の間隔が所定長以上に保持されて、横材12dや中間部吊床版5と一体になり一つの施工ユニットを形成している。
前記のように、一対の縦ピン接合28を備えている構造とされているので、図3において各2次ケーブル13が橋軸方向に異なる方向の動作を許容する連結構造とされ、左右の各一対の鉛直材12a,12bは、これに追随して間隔を保持する構造とされている。
なお、鉛直材12b,12bおよび水平な横材12dは全方向に回動可能に取付けられていてもよいが、橋軸方向に回動可能な構造で取付けあるいは連結される構造、例えば、ピン構造が望ましい。
As shown in FIG. 3, vertical members 12 a and 12 a are pivotally attached to the lower surfaces on both sides of the intermediate suspended floor slab body 5 b via bearings 12 e and 12 e so as to be rotatable in the bridge axis direction, Vertical members 12b and 12b are pivotally attached to the lower surface of the center of the floor slab body 5b where the primary cable 3 is not disposed via bearings 12f and 12f so as to be rotatable in the direction of the bridge axis. The members 12a and 12b are integrated at the lower end, and are connected to each other by being pivotally attached to the same connecting tool 12c via the lateral pin joint 27 so as to be pivotable in the bridge axis direction. 12c and a horizontal member 12d are pivotally attached to each other through a vertical pin joint 28. Further, a secondary cable (second cable, the same shall apply hereinafter) 13 is inserted through the connector 12c. A next cable insertion hole 14 is formed. Thus, the vertical members 12b, 12b are pivotally attached to the central lower surface of the intermediate suspended floor slab 5 so as to support the central lower surface portion of the intermediate suspended floor slab 5 from below together with the action of the secondary cable 13. . The vertical members 12a, 12a, 12b, and 12b that are arranged and connected to each other in this way are kept at a predetermined distance or more and integrated with the cross member 12d and the intermediate suspended floor slab 5 as one construction unit. Is forming.
As described above, since the structure is provided with a pair of vertical pin joints 28, each secondary cable 13 in FIG. 3 is a connecting structure that allows the movement in a different direction in the bridge axis direction. The pair of vertical members 12a and 12b has a structure that keeps a distance therebetween.
The vertical members 12b and 12b and the horizontal cross member 12d may be attached so as to be rotatable in all directions. However, a structure that is attached or connected in a structure that is rotatable in the bridge axis direction, for example, a pin structure. Is desirable.

前記支持体11における橋軸直角方向の両端下部には、2次ケーブル挿通孔14を有して、2次ケーブル13が挿通配置され、各2次ケーブル13の端部は、橋台2に緊張定着されている。1次ケーブル3と2次ケーブル13との両端は、上下方向(または図示を省略するが、水平方向)に所定長離間して橋台2に固定されている。   The support 11 has secondary cable insertion holes 14 at the lower ends of both ends in the direction perpendicular to the bridge axis, and the secondary cables 13 are inserted and arranged, and the ends of the secondary cables 13 are fixed to the abutment 2 in tension. Has been. Both ends of the primary cable 3 and the secondary cable 13 are fixed to the abutment 2 with a predetermined distance in the vertical direction (or horizontal direction, not shown).

前記のように、1次及び2次ケーブル3,13の固定端が所定長離隔されているので橋全体としての剛性が向上し、吊床版橋のねじれ振動数が高まり、ねじれ発散振動に対する抵抗力が向上する。   As described above, the fixed ends of the primary and secondary cables 3 and 13 are separated by a predetermined length, so that the rigidity of the bridge as a whole is improved, the torsional frequency of the suspended floor slab bridge is increased, and resistance to torsional divergence vibration is increased. Will improve.

また、本発明の直路式吊床版橋1においては、2次ケーブル13には緊張力が導入されるため、2次ケーブル13には引張応力が生じ、鉛直材12a,12a,12b,12bには2次ケーブル13から上方に向かう力が作用するが、特に、本発明では、中間部吊床版5の一体化を2次ケーブル13の緊張定着後で、かつ橋台から分離した状態で一体化されるため、2次ケーブル13の緊張定着あるいは1次ケーブルの緊張定着により、中間部吊床版5に橋軸方向の圧縮応力が作用することはなく、また床版を介して橋台2に橋軸方向の圧縮応力が作用することはない。すなわち、本発明では、1次ケーブル3の緊張定着および2次ケーブル13の緊張定着により、中間部吊床版5および端部吊床版4にプレストレスは導入されることはなく、1次ケーブル3の緊張定着および2次ケーブル13の緊張定着後に、中間部吊床版5および端部吊床版4内に配置される内ケーブルのプレストレス導入用ケーブル9のみが、前記の中間部吊床版5および端部吊床版4の目地部処理を施した後に直接、プレストレスが導入されて、プレストレスが導入された吊床版17とされている。   Further, in the straight-line suspension floor slab bridge 1 of the present invention, since a tension force is introduced into the secondary cable 13, a tensile stress is generated in the secondary cable 13, and the vertical members 12a, 12a, 12b, 12b Although an upward force from the secondary cable 13 acts, in particular, in the present invention, the integration of the intermediate suspended floor slab 5 is integrated after the tension of the secondary cable 13 is fixed and separated from the abutment. Therefore, due to the tension fixation of the secondary cable 13 or the tension fixation of the primary cable, the compressive stress in the bridge axis direction does not act on the intermediate suspended floor slab 5 and the bridge axis direction is applied to the abutment 2 via the floor slab. Compressive stress does not act. That is, according to the present invention, prestress is not introduced into the intermediate suspension floor slab 5 and the end suspension floor slab 4 due to the tension fixation of the primary cable 3 and the tension fixation of the secondary cable 13. After tension fixation and tension fixation of the secondary cable 13, only the prestress introduction cable 9 of the inner cable disposed in the intermediate suspension floor slab 5 and the end suspension floor slab 4 is the intermediate suspension floor slab 5 and the end. Prestress is directly introduced after the joint processing of the suspended floor slab 4 is performed, and the suspended floor slab 17 is introduced with prestress.

さらに、本発明の直路式吊床版橋1において2次ケーブル13の撓み(サグ)を、図1に示したように、1次ケーブル3よりも大きく設定すれば、死荷重の一部を1次ケーブルより大きな撓み(サグ)を有する2次ケーブル13で負担することになるので、同一支間で同一荷重を受けるケーブル構造に作用する水平力はケーブルの撓み量に反比例して小さくなるという理由によって、橋台2やグランドアンカー16等の下部工に作用する総水平力を減少させることができる。
また、本発明では、吊床版端部は、橋台2から分離して弾性支承により支承しているため、完成系の吊床版17および路面のサグS1を小さくすることができ、道路縦断勾配を、例えば3%程度に小さくすることが可能になる。
Furthermore, if the deflection (sag) of the secondary cable 13 is set to be larger than that of the primary cable 3 as shown in FIG. Because the load is borne by the secondary cable 13 having a larger deflection (sag) than the cable, the horizontal force acting on the cable structure that receives the same load between the same supports becomes smaller in inverse proportion to the amount of cable deflection. The total horizontal force acting on the substructure such as the abutment 2 and the ground anchor 16 can be reduced.
Further, in the present invention, the end of the suspended floor slab is separated from the abutment 2 and supported by an elastic bearing, so that the completed system suspended floor slab 17 and the road surface sag S1 can be reduced, and the road longitudinal gradient can be reduced. For example, it can be reduced to about 3%.

次に、本発明の直路式吊床版橋の構築工程について、説明する。   Next, the construction process of the direct route type suspended floor slab bridge of the present invention will be described.

図6〜図9は、本発明の直路式吊床版橋の構築工程を示すものであって、図示省略の地山上に、橋台2を構築し、それぞれの橋台2にはグランドアンカー16を設けて地山に支持させ、次いで、図6(a)に示すように、橋台2間に渡って、1次ケーブル3を張設し、1次ケーブル3の両端部を各橋台2に緊張した状態で定着する。   FIGS. 6 to 9 show the construction process of the straight-line suspension floor slab bridge of the present invention. The abutment 2 is constructed on a ground (not shown), and a ground anchor 16 is provided on each abutment 2. As shown in FIG. 6A, the primary cable 3 is stretched between the abutments 2, and both ends of the primary cable 3 are tensioned to each abutment 2 as shown in FIG. To settle.

次いで、図6(b)に示すように、1次ケーブル3に支持させるように、一方の橋台2から支持体11を備えた中間部吊床版5を他方の橋台2に向かって順次架設し、架設された中間部床版5相互は、適宜位置を固定する。
前記の中間部床版5の位置固定手段としては、例えば、図示省略の中間部吊床版5に設けるクランプ金具により位置を固定するようにすればよい。
Next, as shown in FIG. 6 (b), the intermediate suspended floor slab 5 provided with the support 11 is sequentially installed from one abutment 2 toward the other abutment 2 so as to be supported by the primary cable 3. The positions of the installed intermediate floor slabs 5 are appropriately fixed.
As the position fixing means of the intermediate floor slab 5, for example, the position may be fixed by a clamp fitting provided on the intermediate suspended floor slab 5 (not shown).

次いで、図7(c)に示すように、一方の橋台2から他方の橋台2に渡って、橋台2直上を除いた状態で支持体11を備えた中間部吊床版5を架設し位置を固定した後、図7(d)に示すように、一方の橋台2から他方の橋台2に渡って、各中間部吊床版5下部の鉛直材に係合するように、2次ケーブル13を架設する。なお、前記の2次ケーブル13の架設にあたっては、適宜、吊り足場(図示を省略した)を一方の橋台2から他方の橋台2に渡って架設し、前記吊り足場を利用して架設する。なお、前記の吊り足場は吊床版架設時に設置しておいてもよい。   Next, as shown in FIG. 7 (c), the intermediate suspended floor slab 5 provided with the support 11 is erected from one abutment 2 to the other abutment 2 except for the position just above the abutment 2 to fix the position. After that, as shown in FIG. 7 (d), the secondary cable 13 is installed so as to engage with the vertical member at the lower part of each intermediate suspension floor slab 5 from one abutment 2 to the other abutment 2. . In constructing the secondary cable 13, a suspension scaffold (not shown) is appropriately constructed from one abutment 2 to the other abutment 2 and constructed using the suspension scaffold. In addition, you may install the said suspension scaffold at the time of suspension floor slab construction.

次いで、図8(e)に示すように、前記2次ケーブル13の緊張力を調整しながら、中間部吊床版5のサグを調整して、各2次ケーブル13の端部を橋台2に定着する。   Next, as shown in FIG. 8 (e), while adjusting the tension of the secondary cable 13, the sag of the intermediate suspension floor slab 5 is adjusted, and the end of each secondary cable 13 is fixed to the abutment 2. To do.

次いで、図8(f)に示すように、各橋台2上にそれぞれ弾性支承装置6を設置すると共に、弾性支承装置6の上面を型枠装置の一部と利用して、前記弾性支承装置6に支持させるようにコンクリート製の各端部吊床版4を吊床版端部として、端部側の中間部吊床版5に接続するように築造する。前記支承装置6における上面は、すべり支承面として橋軸方向にスライド可能に支承するようにしてもよい。したがって、橋台2と端部吊床版4との間には、橋軸方向の間隙が形成されており、必要に応じ、前記間隙に公知の橋軸方向の伸縮作用を有する伸縮継目材や伸縮装置を配置するようにしてもよい。
前記弾性支承装置6の上部には、適宜ボルトまたはアンカーボルトを設けて、端部吊床版4との一体化を図る。弾性支承装置6と橋台2とは、ボルト等により固定する。
前記の弾性支承装置6としては、タイプBの支承装置を使用するが、直路式吊床版橋の規模によっては、タイプAの支承装置としてもよい。
Next, as shown in FIG. 8 (f), the elastic bearing device 6 is installed on each abutment 2, and the upper surface of the elastic bearing device 6 is used as a part of the mold device to make the elastic bearing device 6. Each end suspended floor slab 4 made of concrete is constructed as a suspended floor slab end so as to be connected to the intermediate suspended floor slab 5 on the end side. The upper surface of the bearing device 6 may be slidably supported in the direction of the bridge axis as a sliding bearing surface. Accordingly, a gap in the bridge axis direction is formed between the abutment 2 and the end suspension floor slab 4, and if necessary, the expansion joint material or the expansion device having a known bridge axis direction expansion / contraction action in the gap. May be arranged.
Bolts or anchor bolts are appropriately provided on the upper part of the elastic bearing device 6 so as to be integrated with the end suspension floor slab 4. The elastic bearing device 6 and the abutment 2 are fixed with bolts or the like.
As the elastic bearing device 6, a type B bearing device is used. However, depending on the scale of the straight-line suspension floor slab bridge, it may be a type A bearing device.

次いで、プレストレス導入用ケーブル9を挿通配置可能なようにするために適宜シースを配置し、中間吊床版5間には目地材を設け、目地材の硬化した後に、図9(g)に示すように、各端部吊床版4およびこれらの間の中間部吊床版5に渡ってプレストレス導入用ケーブル9を挿通配置し、そのプレストレス導入用ケーブル9を緊張して、端部吊床版4に緊張定着する。このように、プレストレス導入用ケーブル9を橋台2背面に緊張定着しないで、端部吊床版4の端部で緊張定着することにより、橋台2にプレストレス導入用ケーブル9の緊張力による水平力が作用することはない。また、中間部吊床版5と端部吊床版4のサドル7と1次ケーブル3とは、サドル7の下向き開口凹部26下面が係合した状態で完成系とされている。
次いで、図9(h)に示すように、端部吊床版4および中間部吊床版5上の橋面を施工し、また、図10に示すように高欄15を施工して、直路式吊床版橋1の施工を完了する。
なお、中間部吊床版5と端部吊床版4のサドル7に1次ケーブル3を配置される形態(図2、図3、図10参照)では、サドル7の1次ケーブル配置用凹部または挿通孔がプラスチック製管等の支承部であるので、完成系において、充填材を充填しなくてもよい。
Next, in order to allow the prestress introduction cable 9 to be inserted and arranged, a sheath is appropriately arranged, and a joint material is provided between the intermediate suspended floor slabs 5, and after the joint material is cured, it is shown in FIG. Thus, the prestress introduction cable 9 is inserted and arranged across each end suspension floor slab 4 and the intermediate suspension floor slab 5 between them, and the prestress introduction cable 9 is tensioned to end suspension suspension slab 4. Tension settles in. Thus, the tension force of the prestress introduction cable 9 is applied to the abutment 2 by fixing the tension of the prestress introduction cable 9 to the rear surface of the abutment 2 but by fixing the tension at the end of the end suspension floor slab 4. Will not work. Further, the saddle 7 and the primary cable 3 of the intermediate suspension floor slab 5 and the end suspension floor slab 4 are in a completed system in a state where the lower surface of the downward opening recess 26 of the saddle 7 is engaged.
Next, as shown in FIG. 9 (h), the bridge surface on the end suspension floor slab 4 and the intermediate suspension floor slab 5 is constructed, and the railing 15 is constructed as shown in FIG. Complete construction of bridge 1.
In the form in which the primary cable 3 is disposed on the saddle 7 of the intermediate suspension floor slab 5 and the end suspension floor slab 4 (see FIGS. 2, 3, and 10), the recess or insertion of the primary cable for the saddle 7 is inserted. Since the hole is a support part such as a plastic pipe, it is not necessary to fill the filler in the completed system.

前記実施形態では、(1)従来の直路式吊床版橋では吊床版と一体化された1次ケーブルであるが、1次ケーブル3をサドル7を介して外ケーブル化している。(2)また、1次ケーブル3よりさらにサグの大きい外ケーブルの2次ケーブル13で橋体全体(端部吊床版および中間部吊床版全体)を支持している。(3)さらに、従来、橋台2背面に定着していたプレストレス導入用ケーブル9を、橋台2背面に定着することなく、橋台2上に設置された支承装置6で支持された端部吊床版4に緊張状態で定着している。前記の(1)(2)(3)の3点から、橋体のサグの小さい場合でも、橋台2に作用する水平力を大幅に低減することができる。このように本発明では、橋台間に張り渡したPC鋼材を薄いコンクリートで包み込んだ吊床版上を人や車両が直接通れるようにした直路式吊床版橋において、橋台に作用する水平力を小さく抑え、かつねじれ振動に対する抵抗を高めたうえで、さらに縦断勾配(サグ)を小さくして歩行者へのバリアフリーを高めている。   In the above-described embodiment, (1) in the conventional straight-line suspension floor slab bridge, the primary cable is integrated with the suspension floor slab, but the primary cable 3 is formed as an external cable through a saddle 7. (2) Further, the entire bridge body (the entire end suspended floor slab and the entire intermediate suspended floor slab) is supported by the secondary cable 13 of the outer cable having a larger sag than the primary cable 3. (3) Further, the end suspended floor slab supported by the support device 6 installed on the abutment 2 without fixing the prestress introduction cable 9 that has been conventionally fixed on the abutment 2 backside. No. 4 is firmly established. From the three points (1), (2) and (3), the horizontal force acting on the abutment 2 can be greatly reduced even when the sag of the bridge body is small. As described above, in the present invention, the horizontal force acting on the abutment is kept small in the straight-line suspension floor slab bridge that allows a person or a vehicle to pass directly over the suspended floor slab wrapped with PC concrete stretched between the abutments. In addition to increasing resistance to torsional vibration, the vertical gradient (sag) is further reduced to increase barrier-free for pedestrians.

吊床版端部を橋台に固定する形態では、従来構造の場合では、サグを例えば道路縦断勾配で3%程度に小さくした場合、吊床版端部を橋台に固定すると、2次ケーブルの緊張により、橋台に作用する水平力が大きくなったり、吊床版の端部で大きな曲げモーメントが生じたりするが、前記のような本発明では、吊床版端部を橋台から切り離し、分離した状態であるので、2次ケーブルの緊張により、吊床版には水平力を増加させずに、吊床版内に配置するケーブルによりプレストレスを導入することができる。   In the form of fixing the suspension floor slab end to the abutment, in the case of the conventional structure, when the sag is reduced to, for example, about 3% by the road longitudinal gradient, when the suspension floor slab end is fixed to the abutment, due to the tension of the secondary cable, The horizontal force acting on the abutment increases or a large bending moment occurs at the end of the suspended floor slab, but in the present invention as described above, the suspended floor slab end is separated from the abutment and is in a separated state, Due to the tension of the secondary cable, prestress can be introduced by the cable arranged in the suspended floor slab without increasing the horizontal force on the suspended floor slab.

(a)は本発明の直路式吊床版橋を示す概略側面図、(b)は床版および1次ケーブルおよび2次ケーブル並びにプレストレス導入用ケーブルの配置関係を示す縦断正面図である。(A) is a schematic side view which shows the direct route type suspended floor slab bridge of this invention, (b) is a vertical front view which shows the arrangement | positioning relationship of a floor slab, a primary cable, a secondary cable, and the cable for prestress introduction. 図1の一部を拡大して示す概略側面図である。It is a schematic side view which expands and shows a part of FIG. 床版および鉛直材との関係を示す縦断正面図である。It is a vertical front view which shows the relationship with a floor slab and a vertical material. 図3を橋軸直角方向から見た側面図である。FIG. 4 is a side view of FIG. 3 viewed from a direction perpendicular to the bridge axis. 1次ケーブルとサドルまたは吊床版の位置関係の各種形態を示すものであって、(a)は吊床版の外側にサドルを配置する形態、(b)は吊治具を配置する形態、(c)はサドルを吊床版に配置する形態を示す説明図である。The various forms of the positional relationship between the primary cable and the saddle or the suspended floor slab are shown, wherein (a) is a form in which a saddle is disposed outside the suspended floor slab, (b) is a form in which a hanging jig is disposed, (c ) Is an explanatory view showing a form in which the saddle is arranged on the suspended floor slab. (a)および(b)は本発明の直路式吊床版橋の架設工程を示す概略側面図である。(A) And (b) is a schematic side view which shows the construction process of the direct route type suspension floor slab bridge of this invention. (c)および(d)は本発明の直路式吊床版橋の架設工程を示す概略側面図である。(C) And (d) is a schematic side view which shows the construction process of the direct route type suspension floor slab bridge of this invention. (e)および(f)は本発明の直路式吊床版橋の架設工程を示す概略側面図である。(E) And (f) is a schematic side view which shows the construction process of the direct route type suspension floor slab bridge of this invention. (g)および(h)は本発明の直路式吊床版橋の架設工程を示す概略側面図である。(G) And (h) is a schematic side view which shows the construction process of the direct route type suspension floor slab bridge of this invention. 他の形態の床版および鉛直材との関係を示す縦断正面図である。It is a vertical front view which shows the relationship with the floor slab of another form, and a vertical material. 従来の直路式吊床版橋を示す概略側面図である。It is a schematic side view which shows the conventional direct route type suspended floor slab bridge. 上路式床版橋を示す概略側面図である。It is a schematic side view which shows an upper road type slab bridge.

符号の説明Explanation of symbols

1 直路式吊床版橋
2 橋台
3 1次ケーブル(第1のケーブル)
4 端部床版
5 中間部吊床版
6 支承装置
7 サドル
8 ケーブル挿通孔
9 プレストレス導入用ケーブル
10 定着金具
11 支持体
12a 鉛直材
12b 鉛直材
12c 連結具
12d 横材
12e 支承具
12f 支承具
13 2次ケーブル(第2のケーブル)
14 2次ケーブル挿通孔
15 高欄
16 グランドアンカー
17 吊床版
20 吊床版
21 鉛直材
22 上床版
23 凹部
24 吊治具
25 後打ちコンクリート
26 下向き開口凹部
27 横ピン接合
28 縦ピン接合
A 直路式吊床版橋
B 上路式床版橋

1 Direct-type suspension floor slab bridge 2 Abutment 3 Primary cable (first cable)
4 End floor slab 5 Intermediate suspended floor slab 6 Bearing device 7 Saddle 8 Cable insertion hole 9 Prestress introduction cable 10 Fixing bracket 11 Support member 12a Vertical member 12b Vertical member 12c Linkage member 12d Cross member 12e Bearing member 12f Bearing member 13 Secondary cable (second cable)
14 Secondary cable insertion hole 15 Rail 16 Ground anchor 17 Suspended floor slab 20 Suspended floor slab 21 Vertical material 22 Upper floor slab 23 Recess 24 Suspension jig 25 Downward opening recess 26 Lateral pin joint 28 Vertical pin joint A Straight-line suspension floor slab Bridge B Upper floor type slab bridge

Claims (3)

直路式吊床版橋における吊床版を架設するための第1のケーブルと、前記吊床版の下側に配置される鉛直材を介して前記吊床版を支持する第2のケーブルを備え、前記第1のケーブルおよび第2のケーブルは共に橋台にて緊張定着され、吊床版本体には直接プレストレスを導入するケーブルを配置し吊床版端部で緊張定着し、橋台とは分離された状態の前記吊床版端部は、橋台に固定されていない直路式吊床版橋を構築するための直路式吊床版橋の構築方法であって、その直路式吊床版橋における第1のケーブルで吊床版を架設し、第2のケーブルで前記吊床版の下側に配置される鉛直材を介して前記吊床版を支持し、前記第1のケーブルおよび第2のケーブルを橋台にて緊張定着した後、橋台上に支承を介して支持される吊床版端部の端部吊床版を構築し、吊床版本体に直接プレストレスを導入するケーブルを配置して吊床版端部の端部吊床版で緊張定着し、橋台とは分離された状態の前記端部吊床版を橋台に固定しないことを特徴とする直路式吊床版橋の構築方法。 A first cable for laying a suspended floor slab in a direct-type suspended floor slab bridge; and a second cable for supporting the suspended floor slab via a vertical member disposed below the suspended floor slab, The cable and the second cable are both tension-fixed at the abutment, and the suspension floor is in a state where a cable for directly introducing pre-stress is placed on the suspension floor main body and tension is fixed at the end of the suspension floor slab, and separated from the abutment. The end of the plate is a method for constructing a direct-type suspension floor slab bridge for constructing a direct-type suspension floor slab bridge that is not fixed to the abutment, and the suspension floor slab is installed with the first cable in the direct-type suspension floor slab bridge The second cable supports the suspended floor slab via a vertical member disposed on the lower side of the suspended floor slab, and after the first cable and the second cable are tensioned and fixed on the abutment, on the abutment End of suspended floor slab supported via support Build a floor slab, place a cable to introduce prestress directly into the suspended floor slab body, fix the tension at the end of the suspended floor slab, and fix the end suspended floor slab separated from the abutment A method for constructing a direct-type suspension floor slab bridge, characterized by not being fixed to. 第1のケーブルでサドルを備えた吊床版が支持されることを特徴とする請求項1に記載の直路式吊床版橋の構築方法The method for constructing a direct-type suspension floor slab bridge according to claim 1, wherein a suspended floor slab provided with a saddle is supported by the first cable. 吊床版端部は支承を介して橋台に支持されることを特徴とする請求項1又は請求項2に記載の直路式吊床版橋の構築方法The method for constructing a straight-line type suspended floor slab bridge according to claim 1 or 2, wherein the end of the suspended floor slab is supported by an abutment via a support.
JP2007089181A 2007-03-29 2007-03-29 Construction method of direct-type suspension floor slab bridge Active JP4914994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089181A JP4914994B2 (en) 2007-03-29 2007-03-29 Construction method of direct-type suspension floor slab bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089181A JP4914994B2 (en) 2007-03-29 2007-03-29 Construction method of direct-type suspension floor slab bridge

Publications (2)

Publication Number Publication Date
JP2008248529A JP2008248529A (en) 2008-10-16
JP4914994B2 true JP4914994B2 (en) 2012-04-11

Family

ID=39973795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089181A Active JP4914994B2 (en) 2007-03-29 2007-03-29 Construction method of direct-type suspension floor slab bridge

Country Status (1)

Country Link
JP (1) JP4914994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106758753A (en) * 2017-03-17 2017-05-31 西安科技大学 A kind of Suo Liang combined bridges and its construction method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611792B2 (en) * 2010-12-03 2014-10-22 株式会社技研製作所 Construction method of structure and structure
KR101251298B1 (en) 2011-05-16 2013-04-05 주식회사 디에스글로벌이엔씨 Precast segment fixing the connection member of closed structure and method constructing a stress ribbon bridge therewith
KR101181232B1 (en) * 2011-05-18 2012-09-10 주식회사 디에스글로벌이엔씨 Upper structure of bicycle and sidewalk brdige using cable and construction method thereof
KR101499767B1 (en) * 2011-09-22 2015-03-10 주식회사 디에스글로벌이엔씨 Method of constructing arch-type bridge and bridge using same
KR101317753B1 (en) 2012-03-09 2013-10-11 주식회사 동호 The bridge construction technique for which a construction cable was used
KR101201210B1 (en) * 2012-03-12 2012-11-15 김석희 Prefabricated construction using cable
CN107190627B (en) * 2017-06-13 2022-02-18 同济大学 Partial ground anchor type suspension bridge and construction method thereof
CN110067209A (en) * 2019-06-05 2019-07-30 中国建筑第四工程局有限公司 A kind of anti-fulcrum preloading bracket construction of Continuous Rigid Box Beam 0+1 block steel strand wires
CN113389131B (en) * 2021-07-26 2023-03-07 刘顺民 Three-cable bridge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979297B2 (en) * 1996-11-15 1999-11-15 オリエンタル建設株式会社 Suspended slab bridge using external cable and its construction method
JP3496919B2 (en) * 1998-02-13 2004-02-16 三井住友建設株式会社 Upper road suspension deck bridge
JP2967874B1 (en) * 1998-05-08 1999-10-25 住友建設株式会社 How to build an overhead suspension bridge
JP4493245B2 (en) * 2001-08-27 2010-06-30 三井住友建設株式会社 Suspended floor slab bridge and method for reinforcing suspended floor slab
JP3678719B2 (en) * 2002-08-28 2005-08-03 オリエンタル建設株式会社 End separation type upper suspension type suspension floor slab bridge
JP4056540B2 (en) * 2005-08-08 2008-03-05 三井住友建設株式会社 Bridge girder construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106758753A (en) * 2017-03-17 2017-05-31 西安科技大学 A kind of Suo Liang combined bridges and its construction method
CN106758753B (en) * 2017-03-17 2018-07-20 西安科技大学 A kind of Suo Liang combined bridges and its construction method

Also Published As

Publication number Publication date
JP2008248529A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4914994B2 (en) Construction method of direct-type suspension floor slab bridge
JP2007077630A (en) Continuous girder using precast main-girder segment, and its erection method
KR101293285B1 (en) Fixed running track on a bridge structure
KR101198812B1 (en) composite rahmen bridge using a preflex girder
KR101107826B1 (en) Slab-type box girder made by precast concrete and method constructing the bridge therewith
JP3844743B2 (en) Box girder bridge structure and its construction method
KR101135634B1 (en) Rahmen bridge construction method using hinge joint in support parts and rigid joint in rahmen conner parts
KR100936944B1 (en) Continuity Girder, Continuity Structure of Girder and Construction Method of the Same
KR101272278B1 (en) Truss-arch type composite bridge
JP3701250B2 (en) Cable stayed bridge and its construction method
KR100823448B1 (en) The improved seismic resistant continuation structure of prestressed concrete composite beam bridge and method thereof
JP2003253621A (en) Continuous beam structure for continuing existing simple beam bridge
JP3737475B2 (en) Box girder bridge structure and construction method
JP3739045B2 (en) Construction method of steel PC composite bridge
JP3847604B2 (en) Floor slab replacement method
JP4056540B2 (en) Bridge girder construction method
JP2979297B2 (en) Suspended slab bridge using external cable and its construction method
KR101492077B1 (en) Construction method for cable bridge using transverse prestressed girder
JP4493245B2 (en) Suspended floor slab bridge and method for reinforcing suspended floor slab
JP3678719B2 (en) End separation type upper suspension type suspension floor slab bridge
KR100458046B1 (en) Struture for continuing intermediate support of compositive girder bridge
KR20100137749A (en) Precast concrete girder unified with slab
KR101458091B1 (en) Construction method for cable bridge using transverse prestressed girder
JP2005060964A (en) Construction method for girder bridge
JP6089096B2 (en) Method for suppressing twist of precast girder and method for joining precast girder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4914994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250