JP4913699B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP4913699B2
JP4913699B2 JP2007256934A JP2007256934A JP4913699B2 JP 4913699 B2 JP4913699 B2 JP 4913699B2 JP 2007256934 A JP2007256934 A JP 2007256934A JP 2007256934 A JP2007256934 A JP 2007256934A JP 4913699 B2 JP4913699 B2 JP 4913699B2
Authority
JP
Japan
Prior art keywords
electrolytic
capacitor
enzyme
electrolyte
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007256934A
Other languages
Japanese (ja)
Other versions
JP2009088295A (en
Inventor
潤一 清澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2007256934A priority Critical patent/JP4913699B2/en
Publication of JP2009088295A publication Critical patent/JP2009088295A/en
Application granted granted Critical
Publication of JP4913699B2 publication Critical patent/JP4913699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、各種電気・電子機器に搭載される電解コンデンサに関するものである。特に、電解コンデンサの外観異常止に関するものである。 The present invention relates to an electrolytic capacitor to be mounted on various electric and electronic devices. In particular, it relates to the prevention of the appearance of the electrolytic capacitor abnormality.

アルミニウム電解コンデンサは一般に、高純度アルミニウム箔をエッチングし、その表面を陽極酸化した陽極電極箔と、アルミニウム箔をエッチングした陰極電極箔とを、これらの電極箔の間に電解紙が介在するように巻回したコンデンサ素子に電解液を含浸させ、その後、コンデンサ素子をアルミニウム製ケースに収納し、弾性封口体によって密封した構造となっている。ここで、電解コンデンサ用の電解紙はセルロース、ヘミセルロース、リグニンを主成分としている。これらの成分のうち、ヘミセルロースは反応性が高く分解し、ガスを発生させる傾向にある(例えば、特許文献1参照)。
特開平9−213573
In general, an aluminum electrolytic capacitor is formed by etching a high-purity aluminum foil, an anode electrode foil having its surface anodized, and a cathode electrode foil having an aluminum foil etched so that electrolytic paper is interposed between these electrode foils. The wound capacitor element is impregnated with an electrolytic solution, and then the capacitor element is housed in an aluminum case and sealed with an elastic sealing member. Here, the electrolytic paper for an electrolytic capacitor is mainly composed of cellulose, hemicellulose, and lignin. Among these components, hemicellulose has a high reactivity and tends to decompose and generate gas (see, for example, Patent Document 1).
JP-A-9-213573

近年、電子機器の小形化および軽量化を図ることを目的に、電子部品にも小形化、軽量化が要求され、電解コンデンサでも小形化が図られている。その結果、ケース内では、余剰な空間が狭くなるので、高温条件下で長期間にわたって使用すると、ケース内でのガスの発生により内圧が上昇し、防爆弁が膨張するなどの外観不良が発生しやすくなる。このため、電解紙と電解液とが反応して電解紙が分解する際に発生するガスも、内圧の上昇および外観不良に大きく影響することになる。   In recent years, in order to reduce the size and weight of electronic devices, electronic components are also required to be smaller and lighter, and electrolytic capacitors are also being reduced in size. As a result, the excess space in the case becomes narrow, so if it is used for a long time under high temperature conditions, the appearance of gas such as the internal pressure will increase due to the generation of gas in the case and the explosion-proof valve will expand. It becomes easy. For this reason, the gas generated when the electrolytic paper reacts with the electrolytic solution to decompose the electrolytic paper also greatly affects the increase in internal pressure and the appearance defect.

なお、内圧上昇を抑える技術としては、従来、ニトロ化合物などの水素ガス吸収剤を電解液に配合することが採用されているが、ニトロ化合物が吸収するガスは、陰極電極箔と電解液の反応により発生した水素ガスであり、ニトロ化合物では、電解紙の分解ガスを吸収することは期待できない。   In addition, as a technology to suppress the increase in internal pressure, conventionally, a hydrogen gas absorbent such as a nitro compound has been used in the electrolyte, but the gas absorbed by the nitro compound is a reaction between the cathode electrode foil and the electrolyte. The nitro compound cannot be expected to absorb the decomposition gas of the electrolytic paper.

以上の問題点に鑑みて、本発明の課題は、電解紙との反応に起因するガス発生を抑え、防爆弁膨張のような外観異常を防止することのできる電解コンデンサを提供することにある。 In view of the above problems, an object of the present invention is to provide suppress gas generation due to reaction with the electrolyte sheet, the electrolyte capacitor capable of preventing abnormal appearance such as explosion-proof valve expansion .

上記課題を解決するために、本発明に係る電解コンデンサでは、溶媒中に溶質と共に、キシラナーゼ、リグニンペルオキシターゼ、セルラーゼから選ばれる少なくとも1種の酵素を配合し、酵素の配合量が電解液全体に対して0.1〜10.0wt%の範囲である駆動用電解液と、複数枚の電極箔が電解紙を介して巻回または積層されるとともに、駆動用電解液が含浸されたコンデンサ素子と、コンデンサ素子を収納するケースとを備え、コンデンサ素子および駆動用電解液の少なくとも一方が20〜60℃に加温された状態で、コンデンサ素子に駆動用電解液が含浸されていることを特徴とする。 In order to solve the above problems, the engagement Ru electrolytic capacitor of the present invention, the solute in the solvent, xylanase, lignin peroxidase, blended least one enzyme selected from cellulases, whole electrolyte amount of enzyme Capacitor element impregnated with driving electrolytic solution and a plurality of electrode foils wound or laminated via electrolytic paper and being in a range of 0.1 to 10.0 wt% with respect to And a case for storing the capacitor element, wherein the capacitor element is impregnated with the driving electrolyte in a state where at least one of the capacitor element and the driving electrolyte is heated to 20 to 60 ° C. And

本願発明者が繰り返し行った実験結果によれば、本発明に係る電解液を用いると、電解液と電解紙との反応が抑えられ、電解紙の分解に起因するガス発生を抑制、防止することができる。それ故、本発明によれば、電解コンデンサの内圧の上昇および外観不良を抑制することができる。   According to the results of experiments conducted repeatedly by the inventors of the present application, when the electrolytic solution according to the present invention is used, the reaction between the electrolytic solution and the electrolytic paper is suppressed, and the generation of gas due to the decomposition of the electrolytic paper is suppressed and prevented. Can do. Therefore, according to the present invention, it is possible to suppress an increase in internal pressure and an appearance defect of the electrolytic capacitor.

本発明で用いる酵素とは、セルロース分解酵素、ヘミセルロース分解酵素、リグニン分解酵素である。これら各酵素は何れも高分子物質の分解酵素である。酵素によってはその作用様式がエンド型とエクソ型に大別されるものもあるが、本発明を実施するにあたってはいずれの型の酵素を使用しても良く、両者の型の酵素を併用しても良い。   Enzymes used in the present invention are cellulose degrading enzymes, hemicellulose degrading enzymes, and lignin degrading enzymes. Each of these enzymes is a polymer degrading enzyme. Depending on the enzyme, the mode of action can be broadly divided into endo-type and exo-type, but any type of enzyme may be used in carrying out the present invention, and both types of enzymes may be used in combination. Also good.

酵素はその由来により基質特異性、作用pH域、作用温度域に特徴があるが、本発明を実施するにあたっては特に酵素の性質や由来の限定はない。処理の対象となる電解紙についても電解紙として使用可能な繊維であれば、天然繊維、再生セルロース繊維の区別なく利用できる。天然繊維にあっては、その繊維のろ水度、晒しパルプ・未晒しパルプの別、木材パルプ・比木材パルプの別等に限定はない。再生セルロースにあってはその製造方法、繊維径、繊維長に限定はない。   The enzyme is characterized by substrate specificity, working pH range, and working temperature range depending on its origin, but there are no particular limitations on the nature or origin of the enzyme in carrying out the present invention. The electrolytic paper to be treated can be used without distinction between natural fibers and regenerated cellulose fibers as long as the fibers can be used as electrolytic paper. In the case of natural fibers, there are no limitations on the freeness of the fibers, whether the pulp is bleached or unbleached, and whether wood pulp or specific wood pulp is used. In the case of regenerated cellulose, its production method, fiber diameter, and fiber length are not limited.

本発明において、前記溶媒は、例えば、主溶媒がγ−ブチロラクトンやエチレングリコールであり、前記溶質は少なくともカルボン酸および/またはその塩である。前記溶質において、主溶質としては、例えば、有機酸、無機酸および/またはその塩を用いることができる。ここで溶質としては、アゼライン酸、アジピン酸、1,6−デカンジカルボン酸などのカルボン酸類、安息香酸、サリチル酸、フタル酸等の芳香族カルボン酸類、ホウ酸等の無機酸類またはこれらの塩類を用いることができる。
また、前記溶媒は、エチレングリコールとγ−ブチロラクトンとの混合溶媒や、主溶媒に水、副溶媒として、プロピレングリコール等のグリコール類、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、N−メチル−2−ピロリドン等のラクトン類、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミド等のアミド類、エチレンカーボネート、プロピレンカーボネート、イソブチレンカーボネート等の炭酸化合物類、アセトニトリル等のニトリル類、ジメチルスルホキシド等のオキシド類、エーテル類、ケトン類、エステル類、スルホラン類等を混合してもよく、前記溶質としては、耐電圧の向上、ガス発生の抑制等を目的に公知の添加剤を混合してもよい。
In the present invention, for example, the solvent is γ-butyrolactone or ethylene glycol, and the solute is at least a carboxylic acid and / or a salt thereof. In the solute, as the main solute, for example, an organic acid, an inorganic acid and / or a salt thereof can be used. Here, as the solute, carboxylic acids such as azelaic acid, adipic acid and 1,6-decanedicarboxylic acid, aromatic carboxylic acids such as benzoic acid, salicylic acid and phthalic acid, inorganic acids such as boric acid or salts thereof are used. be able to.
The solvent is a mixed solvent of ethylene glycol and γ-butyrolactone, water as a main solvent, glycols such as propylene glycol as a co-solvent, γ-butyrolactone, γ-valerolactone, δ-valerolactone, N- Lactones such as methyl-2-pyrrolidone, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide Amides such as N, N-diethylacetamide and hexamethylphosphoric amide, carbonates such as ethylene carbonate, propylene carbonate and isobutylene carbonate, nitriles such as acetonitrile, oxides such as dimethyl sulfoxide, ethers, keto S, esters may be mixed sulfolane, etc., as the solute, improving the withstand voltage may be mixed with known additives for the purpose of suppressing such a gas generation.

本発明において、前記酵素の配合量は、電解液全体に対して0.1wt%〜10.0wt%までの範囲(0.1〜10.0wt%)である。酵素の配合量は酵素の種類にもよるが、その種類、溶媒の種類等々にかかわらず、電解紙のヘミセルロースを効果的に分解するという観点からすれば、上記の範囲とすることが望ましい。
すなわち、酵素の配合量が0.1wt%未満の場合には、電解紙への酵素による作用が不十分になりその効果が小さい。一方、10.0wt%を超えると、他の溶質の濃度が下がり、比抵抗上昇を招く傾向にある。
In the present invention, the amount of the enzyme, area by (0.1~10.0wt%) der to 0.1wt% ~10.0wt% with respect to the total electrolyte. Although the amount of the enzyme depends on the type of enzyme, it is preferably within the above range from the viewpoint of effectively degrading the hemicellulose of the electrolytic paper regardless of the type, the type of solvent, and the like.
That is, when the amount of the enzyme is less than 0.1 wt%, the action of the enzyme on the electrolytic paper becomes insufficient and the effect is small. On the other hand, if it exceeds 10.0 wt%, the concentration of other solutes tends to decrease, leading to an increase in specific resistance.

本発明において、前記電解液をコンデンサ素子に含浸する際、電解液またはコンデンサ素子のうちの少なくとも一方を加温することが多く、この場合の温度は、望ましくは20〜60℃、特に望ましくは40〜60℃である。このような温度範囲で上記酵素の一種類または二種類以上を作用させれば、繊維の処理を行なうことができる。 In the present invention, when impregnated with the electrolyte in the capacitor element, often to warm at least one of the electrolyte or the capacitor elements, the temperature in this case has Mashiku is 20 to 60 ° C., particularly preferably Is 40-60 ° C. If one or more of the above enzymes are allowed to act in such a temperature range, the fiber can be treated.

本発明では、電解液に酵素を配合したことに特徴を有し、かかる酵素の配合は電解液と電解紙との反応を低減させ、電解紙の分解によるガス発生を抑制する。従って、本発明を適用した電解コンデンサでは、高温雰囲気下に於いて長時間に渡って防爆弁の膨張が低減されるなどの効果を奏する。   The present invention is characterized in that an enzyme is blended in the electrolytic solution, and the blending of the enzyme reduces the reaction between the electrolytic solution and the electrolytic paper and suppresses gas generation due to the decomposition of the electrolytic paper. Therefore, the electrolytic capacitor to which the present invention is applied has such an effect that the expansion of the explosion-proof valve is reduced over a long period of time in a high temperature atmosphere.

本発明を適用した電解コンデンサの実施例を説明する。以下の各実施例は、基本的な構成が最も一般的な巻回構造の電解コンデンサに適用した例である。このため、電解コンデンサの構造についての図示や詳細な説明は省略するが、概ね以下の工程によって製造される。 Examples of electrolytic capacitors according to the present invention will be described. Each of the following examples is an example in which the basic configuration is applied to an electrolytic capacitor having the most general winding structure. For this reason, although illustration and detailed description of the structure of the electrolytic capacitor are omitted, the electrolytic capacitor is generally manufactured by the following steps.

本例の電解コンデンサを製造するにあたっては、まず、陽極用のアルミニウム箔に対して電気化学的なエッチング処理を行った後、無機酸塩の中性ないし弱酸性水溶液中で陽極酸化を行い、表面に酸化皮膜を形成させ、その後、引き出し用リードタブを取り付けてアルミニウム陽極箔を形成する。一方、陰極用のアルミニウム箔にエッチング処理を行ない、引き出し用リードタブを取り付けてアルミニウム陰極箔を作製する。次に、陽極箔と陰極箔との間に電解紙が介在するように、陽極箔、陰極箔および電解紙を重ね合わせて巻回し、コンデンサ素子を作製する。
次に、コンデンサ素子に対して、加温下で電解液を含浸した後、有底筒状のアルミニウムケースに収納し、その後、ケース開口部を弾性封口体で密閉する。そして、陽極電極箔の端面の未化成部位を電解液にて化成するため、コンデンサに定格電圧を印加する。なお、コンデンサ素子に用いた陽極電極箔の端面の未化成部位に対する化成は、有底筒状のアルミニウムケースに収納する前、収納した後、または双方で実施してもよい。
In producing the electrolytic capacitor of this example, first, the aluminum foil for the anode was subjected to an electrochemical etching treatment, and then anodized in a neutral or weakly acidic aqueous solution of an inorganic acid salt. Then, an oxide film is formed, and then a lead tab for drawing is attached to form an aluminum anode foil. On the other hand, the aluminum foil for cathode is etched, and a lead tab for drawing is attached to produce an aluminum cathode foil. Next, the anode foil, the cathode foil, and the electrolytic paper are overlapped and wound so that the electrolytic paper is interposed between the anode foil and the cathode foil, thereby producing a capacitor element.
Next, the capacitor element is impregnated with an electrolytic solution under heating, and then stored in a bottomed cylindrical aluminum case, and then the case opening is sealed with an elastic sealing body. Then, a rated voltage is applied to the capacitor in order to form the unformed part of the end face of the anode electrode foil with the electrolytic solution. In addition, you may implement the formation with respect to the unformed part of the end surface of the anode electrode foil used for the capacitor | condenser element before storing in a bottomed cylindrical aluminum case, after storing, or both.

このような方法により製造される電解コンデンサにおいて、本発明では、電解液として、表1に示す組成の電解液を用いる。   In the electrolytic capacitor manufactured by such a method, in the present invention, an electrolytic solution having the composition shown in Table 1 is used as the electrolytic solution.

Figure 0004913699
Figure 0004913699

ここで、電解液の主溶媒は何れもエチレングリコールと水との混合溶媒であり、アジピン酸アンモニウムを溶質としている。なお、表1に示す電解液のうち、試料Aは従来例1に係る電解液であり、この組成を基本に酵素を配合した電解液(試料C,D,E,F,H,I,J,K)が本発明の実施例に係る電解液、電解液(試料B,G)が比較例に係る電解液である。 Here, the main solvent of the electrolytic solution is a mixed solvent of ethylene glycol and water, and uses ammonium adipate as a solute. Of the electrolytic solutions shown in Table 1, Sample A is an electrolytic solution according to Conventional Example 1, and an electrolytic solution (samples C, D, E, F, H, I, J) containing an enzyme based on this composition. , K) is an electrolytic solution according to an example of the present invention, and an electrolytic solution (samples B and G) is an electrolytic solution according to a comparative example .

また、本例では上記と同じ構造の電解コンデンサにおいて、表2に示す組成の電解液についても検討を行った。   In this example, an electrolytic solution having the composition shown in Table 2 was also examined in an electrolytic capacitor having the same structure as described above.

Figure 0004913699
Figure 0004913699

表2に示す電解液では、エチレングリコールを主溶媒とし、安息香酸アンモニウムを溶質としている。また、表2に示す電解液のうち、試料Lは従来例2に係る電解液であり、この組成を基本に酵素を配合した電解液(試料L,M,N,O,P,Q,R)が本発明の実施例に係る電解液である。   In the electrolytic solution shown in Table 2, ethylene glycol is the main solvent and ammonium benzoate is the solute. Of the electrolytic solutions shown in Table 2, Sample L is an electrolytic solution according to Conventional Example 2, and an electrolytic solution (samples L, M, N, O, P, Q, R) containing an enzyme based on this composition. ) Is an electrolytic solution according to an example of the present invention.

次に、表1に示す従来例、比較例および実施例の電解液を用いて、定格35V−1000μFの電解コンデンサを作製した。また、表2に示す従来例および実施例の電解液を用いて、定格200V−100μFの電解コンデンサを作製した。その際、アルミニウムケースとしては、底部に防爆弁を有するものを用いた。かかる防爆弁は、コンデンサの内圧が上昇すると外側に膨らみ、さらに内圧が上昇すると弁が開いてガスを逃がすことにより、電解コンデンサが破裂することを防止する。 Next, an electrolytic capacitor having a rating of 35 V to 1000 μF was produced using the electrolytic solutions of the conventional example , the comparative example, and the example shown in Table 1. In addition, electrolytic capacitors having a rating of 200 V to 100 μF were manufactured using the electrolytic solutions of the conventional examples and examples shown in Table 2. At that time, an aluminum case having an explosion-proof valve at the bottom was used. Such an explosion-proof valve bulges outward when the internal pressure of the capacitor rises, and further opens to release the gas when the internal pressure rises, thereby preventing the electrolytic capacitor from bursting.

これらの供試コンデンサを、105℃に保持された恒温槽内にて定格直流電圧を5000時間印加し、防爆弁の弁膨張率(試験前後におけるコンデンサの長さ寸法の増加率)を調査するとともに、試験後の電気的特性を測定した。それらの結果を表3および表4に示す。なお、電気的特性は120Hzにおける静電容量、tanδ、および定格電圧を1分間印加した後に電解コンデンサに流れる電流(漏洩電流)を20℃にて測定した。   With these test capacitors, a rated DC voltage was applied for 5000 hours in a thermostat maintained at 105 ° C., and the valve expansion rate of the explosion-proof valve (the rate of increase in the length of the capacitor before and after the test) was investigated. The electrical characteristics after the test were measured. The results are shown in Tables 3 and 4. The electrical characteristics were measured by measuring the current (leakage current) flowing through the electrolytic capacitor at 20 ° C. after applying the electrostatic capacity at 120 Hz, tan δ, and the rated voltage for 1 minute.

Figure 0004913699
Figure 0004913699

Figure 0004913699
Figure 0004913699

表3および表4に示す結果から分かるように、従来の電解液(試料A,L)を用いた電解コンデンサは、105℃雰囲気中での負荷試験において5000時間経過後の防爆弁の弁膨張率が105%台である。   As can be seen from the results shown in Tables 3 and 4, the electrolytic capacitors using the conventional electrolytes (Samples A and L) are the expansion coefficient of the explosion-proof valve after 5000 hours in the load test in the 105 ° C. atmosphere. Is in the 105% range.

これに対して、電解液(試料B〜Kおよび試料M〜R)を用いた電解コンデンサは105℃雰囲気中での定格電圧印加試験において5000時間経過後の防爆弁の弁膨張率が低減されており、従来の電解液(試料A,L)を用いた電解コンデンサと比較し、高温での安定性に優れていることが確認できた。 In contrast, electrolytic solution (samples B~K and sample M~R) a valve expansion of the explosion-proof valve after 5000 hours elapsed in the rated voltage application test of the electrolytic capacitor in 105 ° C. atmosphere using is reduced In comparison with the electrolytic capacitor using the conventional electrolytic solution (samples A and L), it was confirmed that the stability at high temperature was excellent.

それ故、本発明を適用した電解液を用いた電解コンデンサによれば、周囲の部品が発熱するような状況下での使用においても、長期間にわたって防爆弁の膨張などの外観不良の発生を防止することができ、かつ、従来の電解液を用いた場合と比較して同等以上の電気特性を得ることができる。   Therefore, according to the electrolytic capacitor using the electrolytic solution to which the present invention is applied, it is possible to prevent the appearance failure such as the expansion of the explosion-proof valve over a long period of time even when the surrounding parts generate heat. In addition, it is possible to obtain electrical characteristics equal to or higher than those obtained when a conventional electrolytic solution is used.

また、各実施例を比較すると分かるように、酵素の種類についてはキシラナーゼを用いた場合に防爆弁の弁膨張率を低減できる効果が大きい。また、酵素の濃度については、電解液全体に対して0.1wt%で防爆弁の弁膨張率を低減する効果が認められ、その効果は配合量を増すほど大きくなる傾向にある。
ここで、酵素の配合量は0.1wt%未満では効果が小さい一方(比較例1−1)、配合量が10.0wt%を超えると電解液の比抵抗が上昇する傾向にある(比較例1−6)。それ故、酵素の配合量については、電解液全体に対して0.1〜10.0wt%の範囲が好ましい。なお、含浸温度については、20℃、40℃、60℃を比較すると、40℃および60℃では防爆弁の弁膨張率が比較的小さい傾向にあった。
Further, as can be seen from a comparison of the respective examples, the effect of reducing the valve expansion rate of the explosion-proof valve is great when xylanase is used for the type of enzyme. Moreover, about the density | concentration of an enzyme, the effect which reduces the valve expansion rate of an explosion-proof valve is recognized by 0.1 wt% with respect to the whole electrolyte solution, The effect tends to become so large that the compounding quantity increases.
Here, when the compounding amount of the enzyme is less than 0.1 wt%, the effect is small ( Comparative Example 1-1), whereas when the compounding amount exceeds 10.0 wt%, the specific resistance of the electrolyte tends to increase ( Comparative Example). 1-6). Therefore, the amount of the enzyme is preferably in the range of 0.1 to 10.0 wt% with respect to the entire electrolyte solution. As for the impregnation temperature, comparing 20 ° C., 40 ° C., and 60 ° C., the expansion coefficient of the explosion-proof valve tended to be relatively small at 40 ° C. and 60 ° C.

Claims (1)

溶媒中に溶質と共に、キシラナーゼ、リグニンペルオキシターゼ、セルラーゼから選ばれる少なくとも1種の酵素を配合し、前記酵素の配合量が電解液全体に対して0.1〜10.0wt%の範囲である駆動用電解液と、
複数枚の電極箔が電解紙を介して巻回または積層されるとともに、前記駆動用電解液が含浸されたコンデンサ素子と、
前記コンデンサ素子を収納するケースと
を備え、
前記コンデンサ素子および前記駆動用電解液の少なくとも一方が20〜60℃に加温された状態で、前記コンデンサ素子に前記駆動用電解液が含浸されていることを特徴とする電解コンデンサ。
For driving in which at least one enzyme selected from xylanase, lignin peroxidase and cellulase is blended with a solute in a solvent, and the blending amount of the enzyme is in a range of 0.1 to 10.0 wt% with respect to the entire electrolyte. An electrolyte,
A plurality of electrode foils are wound or laminated via electrolytic paper, and a capacitor element impregnated with the driving electrolyte, and
A case for housing the capacitor element;
With
An electrolytic capacitor, wherein the capacitor element is impregnated with the driving electrolyte in a state where at least one of the capacitor element and the driving electrolyte is heated to 20 to 60 ° C.
JP2007256934A 2007-09-29 2007-09-29 Electrolytic capacitor Expired - Fee Related JP4913699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256934A JP4913699B2 (en) 2007-09-29 2007-09-29 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256934A JP4913699B2 (en) 2007-09-29 2007-09-29 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009088295A JP2009088295A (en) 2009-04-23
JP4913699B2 true JP4913699B2 (en) 2012-04-11

Family

ID=40661310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256934A Expired - Fee Related JP4913699B2 (en) 2007-09-29 2007-09-29 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4913699B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069409A (en) 2015-09-30 2017-04-06 ニッポン高度紙工業株式会社 Separator for electrochemical device and electrochemical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853864B2 (en) * 1996-01-30 2006-12-06 大福製紙株式会社 Electrolytic paper for aluminum electrolytic capacitors
JP2002008948A (en) * 2000-06-19 2002-01-11 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
JP4448865B2 (en) * 2007-03-19 2010-04-14 ニチコン株式会社 Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2009088295A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4862602B2 (en) Aluminum electrolytic capacitor
JP4900456B2 (en) Aluminum electrolytic capacitor
JP4863626B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor
JP4379156B2 (en) Aluminum electrolytic capacitor
JP4964449B2 (en) Electrolytic capacitor
KR102165432B1 (en) Electrolytic solution for electrolytic capacitor, and electrolytic capacitor
JP4913699B2 (en) Electrolytic capacitor
JP4780812B2 (en) Aluminum electrolytic capacitor
JP2007235105A (en) Electrolytic capacitor
JP4548553B2 (en) Aluminum electrolytic capacitor
JP5040567B2 (en) Electrolytic capacitor
JP2011071238A (en) Electrolytic capacitor
JP2009064958A (en) Aluminum electrolytic capacitor
JP4745471B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4834207B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4632271B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4849701B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4082404B2 (en) Aluminum electrolytic capacitor
JP2000294463A (en) Electrolytic capacitor
JP4458209B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4752707B2 (en) Electrolytic solution for electrolytic capacitors
JP2008159739A (en) Aluminum electrolytic capacitor
JP4458208B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2000286160A (en) Electrolytic capacitor
JP4082405B2 (en) Aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees