JP2011071238A - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP2011071238A
JP2011071238A JP2009219694A JP2009219694A JP2011071238A JP 2011071238 A JP2011071238 A JP 2011071238A JP 2009219694 A JP2009219694 A JP 2009219694A JP 2009219694 A JP2009219694 A JP 2009219694A JP 2011071238 A JP2011071238 A JP 2011071238A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic capacitor
salt
capacitor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009219694A
Other languages
Japanese (ja)
Other versions
JP5472603B2 (en
Inventor
Hisatomi Ito
久富 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2009219694A priority Critical patent/JP5472603B2/en
Publication of JP2011071238A publication Critical patent/JP2011071238A/en
Application granted granted Critical
Publication of JP5472603B2 publication Critical patent/JP5472603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic capacitor having low impedance characteristics, suppressed in the characteristic change of an electrostatic capacity or the like even after the lapse of 10,000 hours in a load test at a high temperature of 105°C, and having a long lifetime. <P>SOLUTION: A capacitor element is configured by winding an anode including an oxide film on a surface and composed of a valve metal and a cathode composed of the valve metal via a separator. The capacitor element is impregnated with an electrolyte, and housed in a sealed case, thus configuring the electrolytic capacitor. The electrolyte is obtained by dissolving a salt of an azelaic acid and secondary amine having a hydrophobic substitutional group to a solvent containing water and ethylene glycol, and the content of the salt is kept within a range of 14 to 22 mass% of the whole electrolyte. Since a large quantity of an azelaic acid salt having a large electrode deterioration-restraining effect is contained in the electrolyte and the secondary amine is further adsorbed on the surface of the anode and forms a hydrophobic layer, the hydration deterioration of an electrode is hardly caused, and the capacitor having excellent high-temperature lifetime characteristics is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低インピーダンス特性を有し且つ寿命の長い電解コンデンサに関する。   The present invention relates to an electrolytic capacitor having low impedance characteristics and a long life.

電解コンデンサは、表面に酸化皮膜を有する弁金属からなる陽極と、弁金属からなる陰極と、陽極と陰極との間に配置された電解液を保持したセパレータとが密封ケース内に収容された構造を有しており、巻回型、積層型等の形状のものが広く使用されている。そして、電解コンデンサに使用される電解液として、エチレングリコールを主溶媒とし、アジピン酸、安息香酸などのカルボン酸又はそのアンモニウム塩などを電解質とした電解液が知られており、電解コンデンサに対する低インピーダンス特性への要求に対応するため、上記電解液の水含有量を増加させる検討が行われてきた。   The electrolytic capacitor has a structure in which an anode made of a valve metal having an oxide film on its surface, a cathode made of a valve metal, and a separator holding an electrolytic solution disposed between the anode and the cathode are contained in a sealed case. The shape of a winding type, a lamination type, etc. is widely used. As an electrolytic solution used for an electrolytic capacitor, an electrolytic solution using ethylene glycol as a main solvent and a carboxylic acid such as adipic acid or benzoic acid or an ammonium salt thereof as an electrolyte is known, and has a low impedance to the electrolytic capacitor. In order to meet the demand for characteristics, studies have been made to increase the water content of the electrolytic solution.

しかし、電解液中の水や電解質のカルボン酸は電極にとっては化学的に活性な物質である。例えば、アルミニウム電解コンデンサの場合には、電極表面の酸化アルミニウム皮膜がカルボン酸アニオンとの反応により溶解し、アルミニウムのカルボン酸錯体が生成する。また、水が電極の酸化アルミニウム皮膜を通してアルミニウムに達すると、アルミニウムが溶解して水酸化物が生成し、この反応と同時に水素ガスが発生する。そのため、電解液の水含有量を増加させると、電極箔が劣化し、漏れ電流が増加し、コンデンサの短寿命化を招くという問題があった。この電極劣化の問題は、特に中高圧用(180WV級以上)のコンデンサにおいてより深刻であり、また上記反応が急速に起こる高温領域でのコンデンサの使用においてより深刻である。   However, the water in the electrolyte and the carboxylic acid in the electrolyte are chemically active substances for the electrode. For example, in the case of an aluminum electrolytic capacitor, an aluminum oxide film on the electrode surface is dissolved by reaction with a carboxylic acid anion to form an aluminum carboxylic acid complex. Further, when water reaches aluminum through the aluminum oxide film of the electrode, the aluminum dissolves to produce a hydroxide, and hydrogen gas is generated simultaneously with this reaction. Therefore, when the water content of the electrolytic solution is increased, the electrode foil is deteriorated, the leakage current is increased, and there is a problem that the life of the capacitor is shortened. This problem of electrode deterioration is particularly serious in a medium-high voltage capacitor (180 WV class or higher) and more serious in the use of a capacitor in a high temperature region where the above reaction occurs rapidly.

この問題に対し、電解液における電解質として、電極の水和劣化を好適に抑制可能なアゼライン酸又はそのアンモニウム塩の使用が提案されている。アゼライン酸又はそのアンモニウム塩を含む電解液は、火花電圧が高いため、特に中高圧用の電解コンデンサのために有用である。しかしながら、水とエチレングリコールとを含む溶媒に対するアゼライン酸又はそのアンモニウム塩の溶解性が低いため、十分な電極劣化抑制効果が得られず、電解液の比抵抗値の低下も満足のいくものではなかった。   To solve this problem, the use of azelaic acid or an ammonium salt thereof that can suitably suppress hydration deterioration of the electrode has been proposed as an electrolyte in the electrolytic solution. An electrolytic solution containing azelaic acid or an ammonium salt thereof is particularly useful for an electrolytic capacitor for medium to high voltage because of its high spark voltage. However, since the solubility of azelaic acid or its ammonium salt in a solvent containing water and ethylene glycol is low, a sufficient electrode deterioration suppressing effect cannot be obtained, and the decrease in the specific resistance value of the electrolytic solution is not satisfactory. It was.

これに対し、特許文献1(特開2004−128076号公報)は、水とエチレングリコールとを含む溶媒にアゼライン酸を溶解させ、さらにアンモニアにより電解液のpHを特定の範囲に調整することにより、アゼライン酸の溶解量を増加させる方法を開示している。アンモニアにより電解液のpHを6.5〜7.5の範囲に調整することにより、アゼライン酸の溶解量を電解液全体の8〜12質量%まで増加させることができ、比抵抗値が低く且つ電極劣化防止効果に優れた電解液を得ている。   On the other hand, Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-128076) dissolves azelaic acid in a solvent containing water and ethylene glycol, and further adjusts the pH of the electrolyte to a specific range with ammonia. A method for increasing the amount of azelaic acid dissolved is disclosed. By adjusting the pH of the electrolyte with ammonia in the range of 6.5 to 7.5, the amount of azelaic acid dissolved can be increased to 8 to 12% by mass of the total electrolyte, and the specific resistance value is low. An electrolytic solution excellent in the electrode deterioration preventing effect is obtained.

特開2004−128076号公報JP 2004-128076 A

ところで、近年のプラズマディスプレイパネル等の用途において、220WV或いは250WVの中高圧で使用することができ、且つ、低インピーダンスで耐リップル特性が良好であり、さらに105℃の高温での負荷試験において10000時間経過後でも静電容量等の特性変化が少なく長寿命特性を有する電解コンデンサが要求されている。   By the way, in a recent application such as a plasma display panel, it can be used at a medium or high pressure of 220 WV or 250 WV, and has a low impedance and good ripple resistance, and further, 10,000 hours in a load test at a high temperature of 105 ° C. There has been a demand for an electrolytic capacitor having a long life characteristic with little change in characteristics such as capacitance even after the passage.

特許文献1の電解液は、低インピーダンスで耐リップル特性が良好な中高圧用コンデンサのために使用することができるものの、高温寿命特性が上述の要求を満たすには不十分であった。   Although the electrolytic solution of Patent Document 1 can be used for a medium- and high-voltage capacitor having low impedance and good ripple resistance characteristics, the high-temperature life characteristics are insufficient to satisfy the above-described requirements.

そこで、本発明の目的は、低インピーダンス特性を有し、且つ105℃の高温での負荷試験において10000時間経過後でも静電容量等の特性変化が少ない長寿命な電解コンデンサであって、中高圧用として使用可能な電解コンデンサを提供することである。   Accordingly, an object of the present invention is a long-life electrolytic capacitor having low impedance characteristics and having little change in characteristics such as capacitance even after a lapse of 10,000 hours in a load test at a high temperature of 105 ° C. It is providing the electrolytic capacitor which can be used as a use.

発明者らは、鋭意検討した結果、表面に酸化皮膜を有する弁金属からなる陽極と、弁金属からなる陰極と、陰極と陽極との間に配置された電解液を保持したセパレータとを備えた電解コンデンサにおいて、電解質としてアゼライン酸と疎水性置換基を有する第二級アミンとの塩を使用すると、この塩を水とエチレングリコールとを含む溶媒に多量に溶解させることができるため、低インピーダンスで耐リップル特性が良好で且つ電極の水和劣化が生じにくいコンデンサを得ることができ、さらに、上記第二級アミンが陽極の酸化皮膜表面に化学吸着し、疎水性層が酸化皮膜表面上に形成されるため、電解液の水含有量を増加させても陽極の水和劣化が抑制され、その結果、高温寿命特性の良好なコンデンサが得られることを発見した。   As a result of intensive studies, the inventors have provided an anode made of a valve metal having an oxide film on the surface, a cathode made of a valve metal, and a separator holding an electrolytic solution disposed between the cathode and the anode. In an electrolytic capacitor, when a salt of azelaic acid and a secondary amine having a hydrophobic substituent is used as an electrolyte, a large amount of this salt can be dissolved in a solvent containing water and ethylene glycol. Capacitors with good ripple resistance and resistance to electrode hydration degradation can be obtained. Furthermore, the secondary amine is chemically adsorbed on the surface of the anode oxide film, and a hydrophobic layer is formed on the surface of the oxide film. Therefore, it has been found that even when the water content of the electrolytic solution is increased, hydration deterioration of the anode is suppressed, and as a result, a capacitor having good high-temperature life characteristics can be obtained.

したがって、本発明の電解コンデンサは、表面に酸化皮膜を有する弁金属からなる陽極と、弁金属からなる陰極と、陰極と陽極との間に配置された電解液を保持したセパレータとを備えた電解コンデンサであって、上記電解液が、水とエチレングリコールとを含む溶媒と、電解液全体の14〜22質量%のアゼライン酸と疎水性置換基を有する第二級アミンとの塩とを含有し、上記陽極の表面に、上記第二級アミンが結合して形成された疎水性層を有することを特徴とする。   Therefore, the electrolytic capacitor of the present invention is an electrolysis comprising an anode made of a valve metal having an oxide film on its surface, a cathode made of a valve metal, and a separator holding an electrolytic solution disposed between the cathode and the anode. It is a capacitor | condenser, Comprising: The said electrolyte solution contains the salt of the solvent containing water and ethylene glycol, and the secondary amine which has 14-22 mass% of azelaic acid and a hydrophobic substituent of the whole electrolyte solution. The surface of the anode has a hydrophobic layer formed by bonding the secondary amine.

本発明の電解コンデンサは、好適にはアルミニウム電解コンデンサである。また、本発明の電解コンデンサは、電解液の火花電圧が大きく且つ電極の水和劣化が好適に抑制されるため、特に中高圧用コンデンサとして好適である。   The electrolytic capacitor of the present invention is preferably an aluminum electrolytic capacitor. The electrolytic capacitor of the present invention is particularly suitable as a medium-high voltage capacitor because the spark voltage of the electrolytic solution is large and hydration deterioration of the electrode is suitably suppressed.

本発明の電解コンデンサに使用される電解液におけるアゼライン酸と疎水性置換基を有する第二級アミンとの塩の含有量は、電解液全体の14〜22質量%の範囲である。塩の含有量が14質量%より少ないと、電極の水和劣化を抑制する効果が十分でなく、塩の含有量が22質量%より多いと、電解液の火花電圧が低下し、電解コンデンサの漏れ電流が大きくなる。   Content of the salt of azelaic acid and the secondary amine which has a hydrophobic substituent in the electrolyte solution used for the electrolytic capacitor of this invention is the range of 14-22 mass% of the whole electrolyte solution. If the salt content is less than 14% by mass, the effect of suppressing the hydration deterioration of the electrode is not sufficient. If the salt content is more than 22% by mass, the spark voltage of the electrolytic solution decreases, and the electrolytic capacitor Leakage current increases.

本発明の電解コンデンサに使用される電解液の水分含有量は、電解液全体の5〜20質量%であるのが好ましい。水の含有量が電解液全体の5質量%より少ないと、電解コンデンサのインピーダンスが上昇し、水の含有量が電解液全体の20質量%より多いと、高温での寿命が短縮する。また、上記第二級アミンは、疎水性置換基としてアルキル基を有しているのが好ましく、特にジメチルアミン及び/又はジエチルアミンであると、電解液の比抵抗値が効果的に低下するため好ましい。   The water content of the electrolytic solution used in the electrolytic capacitor of the present invention is preferably 5 to 20% by mass of the entire electrolytic solution. When the water content is less than 5% by mass of the entire electrolyte solution, the impedance of the electrolytic capacitor increases, and when the water content is more than 20% by mass of the entire electrolyte solution, the life at high temperature is shortened. Further, the secondary amine preferably has an alkyl group as a hydrophobic substituent, and particularly dimethylamine and / or diethylamine is preferable because the specific resistance value of the electrolytic solution is effectively reduced. .

本発明の電解コンデンサは、電極劣化抑制効果を有するアゼライン酸塩を多量に含む上に、陽極表面に疎水性層を有するため、低インピーダンス特性を有し、中高圧を印加して105℃の高温で負荷試験を10000時間行っても、試験前後の静電容量等の特性変化が少なく、極めて長寿命である。   The electrolytic capacitor of the present invention contains a large amount of azelaic acid salt having an effect of suppressing electrode deterioration and has a hydrophobic layer on the anode surface, so that it has low impedance characteristics and is applied at a high temperature of 105 ° C. by applying a medium-high pressure. Even when the load test is performed for 10,000 hours, the change in characteristics such as capacitance before and after the test is small and the life is extremely long.

本発明の電解コンデンサは、表面に酸化皮膜を有する弁金属からなる陽極と、弁金属からなる陰極と、陰極と陽極との間に配置された電解液を保持したセパレータとを備えた電解コンデンサであって、電解液として、水とエチレングリコールとを含む溶媒にアゼライン酸と疎水性置換基を有する第二級アミンとの塩とを溶解した液を使用している。以下、アルミニウム電解コンデンサを例として説明するが、本発明はアルミニウム電解コンデンサに限定されない。   The electrolytic capacitor of the present invention is an electrolytic capacitor comprising an anode made of a valve metal having an oxide film on its surface, a cathode made of a valve metal, and a separator holding an electrolytic solution disposed between the cathode and the anode. As the electrolytic solution, a solution in which a salt of azelaic acid and a secondary amine having a hydrophobic substituent is dissolved in a solvent containing water and ethylene glycol is used. Hereinafter, an aluminum electrolytic capacitor will be described as an example, but the present invention is not limited to the aluminum electrolytic capacitor.

アルミニウム電解コンデンサは、表面に酸化アルミニウム皮膜を有するアルミニウム箔からなる陽極と、アルミニウム箔からなる陰極と、陽極と陰極との間に配置された電解液を保持したセパレータとを備えた構成を有している。   An aluminum electrolytic capacitor has a configuration including an anode made of an aluminum foil having an aluminum oxide film on the surface, a cathode made of an aluminum foil, and a separator holding an electrolytic solution disposed between the anode and the cathode. ing.

陽極及び陰極を構成する高純度アルミニウム箔には、その表面積を増大させるため、化学的或いは電気化学的なエッチング処理が施され、次いで、陽極を構成するアルミニウム箔に対して化成処理が施され、表面に酸化アルミニウム皮膜が形成される。化成処理は、ホウ酸アンモニウム水溶液、アジピン酸アンモニウム水溶液、リン酸アンモニウム水溶液等の化成液を使用して行われる。   The high-purity aluminum foil constituting the anode and the cathode is subjected to chemical or electrochemical etching treatment in order to increase its surface area, and then subjected to chemical conversion treatment on the aluminum foil constituting the anode, An aluminum oxide film is formed on the surface. The chemical conversion treatment is performed using a chemical conversion solution such as an ammonium borate aqueous solution, an ammonium adipate aqueous solution, or an ammonium phosphate aqueous solution.

このようにして得られた陽極及び陰極間に、マニラ麻、クラフト紙等のセパレータを介在させてコンデンサ素子を形成し、このコンデンサ素子に以下に示す電解液を含浸させ、さらに密封ケース内に収容して、本発明のアルミニウム電解コンデンサを構成する。   A capacitor element is formed by interposing a separator such as manila hemp and kraft paper between the anode and the cathode thus obtained. The capacitor element is impregnated with the electrolyte solution shown below, and further accommodated in a sealed case. Thus, the aluminum electrolytic capacitor of the present invention is configured.

本発明の電解コンデンサに使用される電解液における溶媒は、水とエチレングリコールとを必須成分として含む。水とエチレングリコールとを混合した溶媒は、各種溶質の溶解度が高く、温度特性に優れる電解液を与えるため好ましい。しかしながら、本発明の効果に悪影響を及ぼさない限り、他の有機溶媒が含まれていても良い。使用可能な有機溶媒としては、プロトン性極性溶媒である一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、シクロペンタノール、ベンジルアルコール等)、多価アルコール及びオキシアルコール化合物類(プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロソルブ、1,3−ブタンジオール、メトキシプロピレングリコール等)、非プロトン性溶媒であるアミド類(N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、ヘキサメチルホスホリックアミド等)、ラクトン類、環状アミド類、カーボネート類(γ−ブチロラクトン、N−メチル−2−ピロリドン、エチレンカーボネート、プロピレンカーボネート等)、ニトリル類(アセトニトリル)、オキシド類(ジメチルスルホキシド等)などが挙げられる。これらの有機溶媒は、単独で含まれていても良く、2種以上の有機溶媒が含まれていても良い。   The solvent in the electrolytic solution used for the electrolytic capacitor of the present invention contains water and ethylene glycol as essential components. A solvent in which water and ethylene glycol are mixed is preferable because it provides an electrolyte having high solubility of various solutes and excellent temperature characteristics. However, other organic solvents may be included as long as the effects of the present invention are not adversely affected. Usable organic solvents include protic polar solvents such as monohydric alcohols (methanol, ethanol, propanol, butanol, hexanol, cyclohexanol, cyclopentanol, benzyl alcohol, etc.), polyhydric alcohols, and oxyalcohol compounds (propylene). Glycol, glycerin, methyl cellosolve, ethyl cellosolve, 1,3-butanediol, methoxypropylene glycol, etc.) and aprotic solvents amides (N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N N-diethylformamide, N-methylacetamide, hexamethylphosphoric amide, etc.), lactones, cyclic amides, carbonates (γ-butyrolactone, N-methyl-2-pyrrolidone, ethylene Boneto, propylene carbonate, etc.), nitriles (acetonitrile), oxides (dimethyl sulfoxide, etc.) and the like. These organic solvents may be contained independently and 2 or more types of organic solvents may be contained.

上記電解液における水の含有量は、電解液全体の5〜20質量%であるのが好ましい。水の含有量が電解液全体の5質量%より少ないと、電解コンデンサのインピーダンスが上昇し、水の含有量が電解液全体の20質量%より多いと、高温での寿命が短縮する。   The content of water in the electrolytic solution is preferably 5 to 20% by mass of the entire electrolytic solution. When the water content is less than 5% by mass of the entire electrolyte solution, the impedance of the electrolytic capacitor increases, and when the water content is more than 20% by mass of the entire electrolyte solution, the life at high temperature is shortened.

本発明の電解コンデンサに使用される電解液において、水とエチレングリコールとを含む溶媒には、アゼライン酸と疎水性置換基を有する第二級アミンとの塩が必須成分として溶解される。特許文献1に示されているアゼライン酸アンモニウムの使用では、アゼライン酸アンモニウムの最大溶解量が電解液全体の12質量%に過ぎなかったが、アゼライン酸と第二級アミンとの塩の使用により、電極劣化抑制効果が高いアゼライン酸塩をさらに多く溶媒に溶解させることができる。また、アゼライン酸と第二級アミンとの塩は、アンモニウム塩のような蒸散が生じないため、電解液の比抵抗を長期にわたって安定に保つことができる。さらに、アゼライン酸と第二級アミンとの塩は、アゼライン酸と第三級アミンとの塩に比較して、電解液の比抵抗値をより効果的に低下させるため、低インピーダンス特性を有する電解コンデンサのために有用である。電解コンデンサの低インピーダンス化により、リップル発熱によるコンデンサ温度の上昇とこの温度上昇に伴う電解液及び電極の劣化が効果的に抑制される。   In the electrolytic solution used in the electrolytic capacitor of the present invention, a salt of azelaic acid and a secondary amine having a hydrophobic substituent is dissolved as an essential component in a solvent containing water and ethylene glycol. In the use of ammonium azelaate shown in Patent Document 1, the maximum dissolution amount of ammonium azelate was only 12% by mass of the total electrolyte solution, but by using a salt of azelaic acid and a secondary amine, More azelaic acid salt having a high electrode deterioration suppressing effect can be dissolved in a solvent. Further, the salt of azelaic acid and secondary amine does not cause transpiration like an ammonium salt, so that the specific resistance of the electrolytic solution can be kept stable for a long time. Furthermore, since the salt of azelaic acid and secondary amine reduces the specific resistance value of the electrolyte more effectively than the salt of azelaic acid and tertiary amine, it has a low impedance characteristic. Useful for capacitors. By reducing the impedance of the electrolytic capacitor, the rise in the capacitor temperature due to the ripple heat generation and the deterioration of the electrolyte and the electrode accompanying this temperature rise are effectively suppressed.

アゼライン酸と疎水性置換基を有する第二級アミンとの塩を水とエチレングリコールとを含む溶媒に溶解し、表面に酸化アルミニウム皮膜を有するアルミニウム箔からなる陽極とアルミニウム箔からなる陰極とがセパレータを介して配置されているコンデンサ素子に含浸させると、第二級アミンが窒素原子の非共役電子対を陽極の酸化アルミニウム皮膜の表面に提供して化学吸着し、その結果、疎水性置換基が電解液側に向いた疎水性層が酸化アルミニウム皮膜の表面上に形成される。そのため、低インピーダンスで耐リップル性の良好な電解コンデンサを得る目的で電解液の水含有量を増加させても、電解液中の水分子が陽極表面に到達し難くなり、陽極の水和劣化が効果的に抑制される。   A separator composed of an aluminum foil having an aluminum oxide film on its surface and a cathode comprising an aluminum foil is prepared by dissolving a salt of azelaic acid and a secondary amine having a hydrophobic substituent in a solvent containing water and ethylene glycol. When impregnating the capacitor element disposed via the secondary amine, the secondary amine provides a non-conjugated electron pair of nitrogen atoms to the surface of the aluminum oxide film of the anode, and chemisorbs, so that the hydrophobic substituent is A hydrophobic layer facing the electrolyte side is formed on the surface of the aluminum oxide film. Therefore, even if the water content of the electrolytic solution is increased for the purpose of obtaining an electrolytic capacitor with low impedance and good ripple resistance, water molecules in the electrolytic solution are difficult to reach the anode surface, and hydration deterioration of the anode is caused. Effectively suppressed.

アゼライン酸との塩を構成する疎水性置換基を有する第二級アミンとしては、ジアルキルアミン、例えば、ジメチルアミン、N−メチルエチルアミン、ジエチルアミン、メチルn−プロピルアミン、メチルイソプロピルアミン、エチルn−プロピルアミン、エチルイソプロピルアミン、ジn−プロピルアミン、ジイソプロピルアミン、ジn−ブチルアミン、N−エチルイソブチルアミン、ジt−ブチルアミン;フェニル基含有アミン、例えば、メチルフェニルアミン、エチルフェニルアミン、ジフェニルアミン;飽和環状アミン、例えば、アジリジン、アゼチジン、ピロリジン、ピペリジンなどを挙げることができる。これらの第二級アミンとアゼライン酸との塩は、単独で使用しても良く、2種以上の塩を使用しても良い。ジアルキルアミン塩を使用するのが好ましく、特に、ジメチルアミン塩及び/又はジエチルアミン塩を使用すると、電解液の比抵抗値が効果的に低下するため好ましい。   Secondary amines having a hydrophobic substituent constituting a salt with azelaic acid include dialkylamines such as dimethylamine, N-methylethylamine, diethylamine, methyl n-propylamine, methylisopropylamine, ethyl n-propyl. Amine, ethylisopropylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, N-ethylisobutylamine, di-t-butylamine; phenyl group-containing amines such as methylphenylamine, ethylphenylamine, diphenylamine; saturated cyclic Examples include amines such as aziridine, azetidine, pyrrolidine, and piperidine. These salts of secondary amines and azelaic acid may be used alone or in combination of two or more. It is preferable to use a dialkylamine salt. In particular, the use of a dimethylamine salt and / or a diethylamine salt is preferable because the specific resistance value of the electrolytic solution is effectively reduced.

本発明の電解コンデンサにおいて使用する電解液におけるアゼライン酸と疎水性置換基を有する第二級アミンとの塩の含有量は、電解液全体の14〜22質量%の範囲である。塩の含有量が電解液全体の14質量%より少ないと、第二級アミンによる疎水性層が陽極の酸化アルミニウム皮膜の表面に十分に形成されないため、陽極の水和劣化抑制効果が十分でなく、また、電解液の比抵抗値が高くなるため、電解コンデンサの使用中にリップル発熱によりコンデンサの温度が上昇し、電極劣化が促進する。塩の含有量が電解液全体の22質量%より多いと、電解液の火花電圧が低下し、電解コンデンサの漏れ電流が大きくなり、高温負荷試験経過後には漏れ電流が顕著に増加し、電極劣化の進行が認められる。   The content of the salt of azelaic acid and the secondary amine having a hydrophobic substituent in the electrolytic solution used in the electrolytic capacitor of the present invention is in the range of 14 to 22% by mass of the entire electrolytic solution. If the salt content is less than 14% by mass of the total electrolyte, the hydrophobic layer due to the secondary amine is not sufficiently formed on the surface of the aluminum oxide film of the anode, so that the effect of suppressing hydration deterioration of the anode is not sufficient. In addition, since the specific resistance value of the electrolytic solution becomes high, the temperature of the capacitor rises due to ripple heat generation during use of the electrolytic capacitor, and the electrode deterioration is promoted. If the salt content is more than 22% by mass of the total electrolyte, the spark voltage of the electrolyte will decrease, the leakage current of the electrolytic capacitor will increase, and the leakage current will increase significantly after the high-temperature load test, resulting in electrode deterioration. Progression is recognized.

本発明の電解コンデンサに使用される電解液には、本発明の効果を損なわない範囲で、アゼライン酸と疎水性置換基を有する第二級アミンとの塩以外の溶質を使用することができる。使用可能な溶質としては、リン酸、ケイ酸、炭酸等の無機酸電解質、耐電圧を向上させるためのノニオン界面活性剤、コロイダルシリカ、ポリオキシエチレングリセリン、ホウ酸、マンニット等の糖アルコール、電解コンデンサ内部で発生しうる水素を吸収するためのp−ニトロフェノール、p−ニトロ安息香酸、パラニトロトルエン、ニトロキシレン、ニトロベンゼン、ニトロアニリンなどの芳香族ニトロ化合物、電極箔の水和劣化を防止するためのメチルリン酸エステル、ジメチルリン酸エステル、トリメチルリン酸エステル、エチルリン酸エステル、ジエチルリン酸エステル、トリエチルリン酸エステル等のリン酸エステル化合物などが挙げられる。   In the electrolytic solution used in the electrolytic capacitor of the present invention, a solute other than a salt of azelaic acid and a secondary amine having a hydrophobic substituent can be used as long as the effects of the present invention are not impaired. Solvents that can be used include inorganic acid electrolytes such as phosphoric acid, silicic acid, and carbonic acid, nonionic surfactants for improving the withstand voltage, colloidal silica, polyoxyethylene glycerin, boric acid, sugar alcohols such as mannitol, Prevents hydration degradation of aromatic nitro compounds such as p-nitrophenol, p-nitrobenzoic acid, paranitrotoluene, nitroxylene, nitrobenzene, nitroaniline, and electrode foil to absorb hydrogen that can be generated inside the electrolytic capacitor. And phosphoric acid ester compounds such as methyl phosphoric acid ester, dimethyl phosphoric acid ester, trimethyl phosphoric acid ester, ethyl phosphoric acid ester, diethyl phosphoric acid ester, and triethyl phosphoric acid ester.

以下に実施例を用いて本発明を説明するが、本発明は以下の実施例に限定されない。   The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.

1:電解液の調製
以下の表1に示されている、組成の異なる電解液を調製した。実施例1〜6は、本発明の電解コンデンサにおいて使用される、水とエチレングリコールとから成る溶媒に電解液全体の14〜22質量%のアゼライン酸ジメチルアミン又はアゼライン酸ジエチルアミンを溶解させた電解液の例であり、比較例1は、水とエチレングリコールとから成る溶媒に電解液全体の14質量%より少ないアゼライン酸ジエチルアミンを溶解させた電解液の例であり、比較例2は、水とエチレングリコールとから成る溶媒に電解液全体の22質量%より多いアゼライン酸ジエチルアミンを溶解させた電解液の例である。また、従来例は、特許文献1に開示されている、水とエチレングリコールとから成る溶媒に電解液全体の12質量%のアゼライン酸アンモニウムを溶解させた電解液の例である。このアゼライン酸アンモニウムの溶解量は、水とエチレングリコールとから成る溶媒に対する最大溶解量にあたる。
1: Preparation of Electrolytic Solution Electrolytic solutions having different compositions shown in Table 1 below were prepared. Examples 1 to 6 are electrolytes in which 14 to 22% by mass of dimethylamine azelate or diethylamine azelate was dissolved in a solvent composed of water and ethylene glycol used in the electrolytic capacitor of the present invention. Comparative Example 1 is an example of an electrolytic solution in which less than 14% by mass of diethylamine azelate is dissolved in a solvent composed of water and ethylene glycol, and Comparative Example 2 is an example of water and ethylene. This is an example of an electrolytic solution in which diethylamine azelate more than 22% by mass of the entire electrolytic solution is dissolved in a solvent composed of glycol. In addition, the conventional example is an example of an electrolytic solution disclosed in Patent Document 1 in which 12% by mass of ammonium azelate of the entire electrolytic solution is dissolved in a solvent composed of water and ethylene glycol. The amount of ammonium azelate dissolved is the maximum amount dissolved in a solvent composed of water and ethylene glycol.

2:電解液の特性評価
得られた各電解液について、火花電圧と比抵抗値とを測定した。得られた測定結果を、電解液組成と共に表1に示す。
2: Characteristic evaluation of electrolyte solution About each obtained electrolyte solution, the spark voltage and the specific resistance value were measured. The obtained measurement results are shown in Table 1 together with the electrolyte composition.

Figure 2011071238
Figure 2011071238

実施例1〜6の電解液は、従来例の電解液と同様に、中高圧用コンデンサを構成するために十分な400V以上の火花電圧を示した。実施例6のアゼライン酸ジメチルアミンを電解質として使用した電解液の比抵抗値は、従来例の電解液の比抵抗値と略同等であった。実施例1〜5のアゼライン酸ジエチルアミンを電解質として使用した電解液の比抵抗値は、従来例の電解液の比抵抗値より高い値であったが、低インピーダンスで耐リップル性の良好な電解コンデンサを構成するためには十分な比抵抗値を示した。これに対し、アゼライン酸ジエチルアミンの含有量が電解液全体の14質量%より少ない比較例1の電解液は、電解液の低比抵抗化をもたらす水の含有量が少ない実施例4の電解液と比較しても、さらに高い比抵抗値を示した。また、アゼライン酸ジエチルアミンの含有量が電解液全体の22質量%より多い比較例2の電解液は、実施例1〜6の電解液に比較して、低い火花電圧を示した。   The electrolyte solutions of Examples 1 to 6 showed a spark voltage of 400 V or more sufficient for constituting a medium-high voltage capacitor, similarly to the electrolyte solution of the conventional example. The specific resistance value of the electrolytic solution using dimethylamine azelate of Example 6 as the electrolyte was substantially equal to the specific resistance value of the electrolytic solution of the conventional example. The specific resistance value of the electrolytic solution using diethylamine azelate of Examples 1 to 5 as the electrolyte was higher than the specific resistance value of the electrolytic solution of the conventional example, but the electrolytic capacitor having low impedance and good ripple resistance The specific resistance value was sufficient to constitute On the other hand, the electrolytic solution of Comparative Example 1 in which the content of diethylamine azelate is less than 14% by mass of the entire electrolytic solution is the same as the electrolytic solution of Example 4 in which the content of water is low, which leads to a lower specific resistance of the electrolytic solution Even when compared, a higher specific resistance value was exhibited. Moreover, the electrolyte solution of the comparative example 2 with more content of diethylamine azelate than 22 mass% of the whole electrolyte solution showed the low spark voltage compared with the electrolyte solution of Examples 1-6.

3:電解コンデンサの作成
アルミニウム箔をエッチング処理して実効表面積を拡大させ、表面に陽極酸化により誘電体酸化アルミニウム皮膜を形成した陽極箔と、アルミニウム箔をエッチング処理した陰極箔とを、セパレータを介して巻回することによりコンデンサ素子を構成し、このコンデンサ素子に実施例1〜6、比較例1,2及び従来例の電解液を含浸させ、含浸後のコンデンサ素子を金属ケース内に封止して、定格電圧が220V、定格静電容量が200μFのアルミニウム電解コンデンサを製造した。
3: Preparation of electrolytic capacitor An aluminum foil was etched to increase the effective surface area, and an anode foil having a dielectric aluminum oxide film formed on the surface by anodization and a cathode foil obtained by etching the aluminum foil via a separator. To form a capacitor element, impregnating the capacitor element with the electrolytes of Examples 1 to 6, Comparative Examples 1 and 2, and the conventional example, and sealing the impregnated capacitor element in a metal case. Thus, an aluminum electrolytic capacitor having a rated voltage of 220 V and a rated capacitance of 200 μF was manufactured.

4:電解コンデンサの特性評価
得られた各電解コンデンサについて、静電容量、誘電損失(tanδ)、漏れ電流、及びインピーダンスを測定した。次いで、各電解コンデンサについて、105℃で定格電圧の220Vを10000時間印加する高温負荷試験を行い、試験後に再び静電容量、誘電損失(tanδ)、漏れ電流、及びインピーダンスを測定した。測定結果を表2に示す。
4: Characteristic evaluation of electrolytic capacitor For each of the obtained electrolytic capacitors, capacitance, dielectric loss (tan δ), leakage current, and impedance were measured. Next, each electrolytic capacitor was subjected to a high-temperature load test in which a rated voltage of 220 V was applied at 105 ° C. for 10,000 hours, and the capacitance, dielectric loss (tan δ), leakage current, and impedance were measured again after the test. The measurement results are shown in Table 2.

Figure 2011071238
Figure 2011071238

比較例1のアゼライン酸ジエチルアミンの含有量が電解液全体の14質量%より少ない電解液を用いた電解コンデンサは、実施例1〜6の電解コンデンサの値に比較して大きなtanδ値を有し、また、高温負荷試験後に、静電容量はほとんど変化していなかったものの、漏れ電流及びインピーダンスは増加していた。特に、電極劣化の程度を反映する漏れ電流の増加率は、水含有量が約2倍の電解液を使用した実施例5の電解コンデンサに比較しても、大きな値であった。これは、陽極の酸化アルミニウム皮膜上にジエチルアミンによる疎水性層が十分に形成されないため、高温負荷試験中に陽極の水和劣化が生じたためであり、また、電解液中の電極劣化抑制効果の大きいアゼライン酸塩の含有量が少ないためであると考えられる。また、上述したように、比較例1の電解コンデンサに用いた電解液の比抵抗値が高いため、リップル発熱により電解コンデンサの温度が上昇し、電極水和劣化が促進されたものと考えられる。   The electrolytic capacitor using the electrolytic solution in which the content of diethylamine azelate in Comparative Example 1 is less than 14% by mass of the entire electrolytic solution has a large tan δ value compared to the values of the electrolytic capacitors in Examples 1 to 6, In addition, after the high temperature load test, although the capacitance was hardly changed, the leakage current and the impedance were increased. In particular, the increase rate of the leakage current reflecting the degree of electrode deterioration was a large value even when compared with the electrolytic capacitor of Example 5 using an electrolytic solution having a water content of about twice. This is because the hydrophobic layer due to diethylamine was not sufficiently formed on the aluminum oxide film of the anode, so that the hydration deterioration of the anode occurred during the high temperature load test, and the effect of suppressing electrode deterioration in the electrolyte was large. This is probably because the content of azelaic acid salt is small. In addition, as described above, since the specific resistance value of the electrolytic solution used in the electrolytic capacitor of Comparative Example 1 is high, it is considered that the temperature of the electrolytic capacitor is increased due to ripple heat generation, and electrode hydration deterioration is promoted.

比較例2のアゼライン酸ジエチルアミンの含有量が電解液全体の22質量%より多い電解液を用いた電解コンデンサの漏れ電流は、高温負荷試験前においても実施例1〜6の電解コンデンサに比較して大きいが、高温負荷試験後に漏れ電流が顕著に増加していた。したがって、多すぎるアゼライン酸ジエチルアミンは悪影響を及ぼすことがわかった。   The leakage current of the electrolytic capacitor using the electrolytic solution in which the content of diethylamine azelate in Comparative Example 2 is more than 22% by mass of the entire electrolytic solution is compared with the electrolytic capacitors of Examples 1 to 6 even before the high temperature load test. Although large, the leakage current increased remarkably after the high temperature load test. Thus, too much diethylamine azelate was found to have an adverse effect.

従来例のアゼライン酸アンモニウムを含む電解液を使用した電解コンデンサは、アゼライン酸ジエチルアミン又はアゼライン酸ジメチルアミンを含む電解液を使用した場合のような疎水性層が陽極の酸化アルミニウム皮膜上に形成されず、また電極劣化抑制効果を有するアゼライン酸塩の含有量が不十分なためであると思われるが、高温負荷試験後に漏れ電流が大幅に増加し、静電容量が増加し、電極劣化が認められた。また、アンモニウム塩の蒸散によるものと考えられるが、インピーダンスが高温負荷試験後に顕著に増加していた。   In the conventional electrolytic capacitor using the electrolyte containing ammonium azelate, the hydrophobic layer is not formed on the aluminum oxide film of the anode as in the case of using the electrolyte containing diethylamine azelate or dimethylamine azelate. Also, it seems that this is because the content of azelaic acid salt that has the effect of suppressing electrode deterioration is insufficient, but the leakage current significantly increased after the high temperature load test, the capacitance increased, and electrode deterioration was observed. It was. Moreover, although it is thought to be due to transpiration of the ammonium salt, the impedance was remarkably increased after the high temperature load test.

これに対し、実施例1〜6の本発明の電解コンデンサは、初期において、低インピーダンス特性を有し、また漏れ電流の値、tanδの値とも小さかった。105℃の高温での負荷試験10000時間経過後における漏れ電流の増加が、比較例1,2及び従来例のコンデンサに比較して顕著に少なく、電極劣化が抑制されていた。また、負荷試験前後における静電容量、tanδ、及びインピーダンスの変化も小さく、本発明の電解コンデンサが良好な高温寿命特性を有していることが確認された。   On the other hand, the electrolytic capacitors of the present invention of Examples 1 to 6 had low impedance characteristics in the initial stage, and both the leakage current value and the tan δ value were small. The increase in leakage current after a 10000 hour load test at a high temperature of 105 ° C. was remarkably small as compared with the capacitors of Comparative Examples 1 and 2 and the conventional example, and electrode deterioration was suppressed. In addition, changes in capacitance, tan δ, and impedance before and after the load test were small, and it was confirmed that the electrolytic capacitor of the present invention has good high-temperature life characteristics.

本発明の電解コンデンサは、低インピーダンス特性を有し、且つ105℃の高温で中高圧を印加する負荷試験において10000時間経過後でも静電容量等の特性変化が少ない長寿命な電解コンデンサである。したがって、本発明の電解コンデンサは、プラズマディスプレイパネル等の用途に対して極めて好適である。   The electrolytic capacitor of the present invention is a long-life electrolytic capacitor having low impedance characteristics and little change in characteristics such as capacitance even after 10000 hours in a load test in which medium and high pressures are applied at a high temperature of 105 ° C. Therefore, the electrolytic capacitor of the present invention is extremely suitable for applications such as plasma display panels.

Claims (3)

表面に酸化皮膜を有する弁金属からなる陽極と、弁金属からなる陰極と、陰極と陽極との間に配置された電解液を保持したセパレータとを備えた電解コンデンサであって、
前記電解液が、水とエチレングリコールとを含む溶媒と、電解液全体の14〜22質量%のアゼライン酸と疎水性置換基を有する第二級アミンとの塩と、を含有し、
前記陽極の表面に、前記第二級アミンが結合して形成された疎水性層を有する
ことを特徴とする電解コンデンサ。
An electrolytic capacitor comprising an anode made of a valve metal having an oxide film on the surface, a cathode made of a valve metal, and a separator holding an electrolytic solution disposed between the cathode and the anode,
The electrolyte contains a solvent containing water and ethylene glycol, and a salt of 14-22% by mass of azelaic acid and a secondary amine having a hydrophobic substituent, based on the whole electrolyte,
An electrolytic capacitor comprising a hydrophobic layer formed by bonding the secondary amine on the surface of the anode.
水の含有量が電解液全体の5〜20質量%である、請求項1に記載の電解コンデンサ。   The electrolytic capacitor of Claim 1 whose content of water is 5-20 mass% of the whole electrolyte solution. 前記第二級アミンが、ジメチルアミン及びジエチルアミンの少なくとも一方である、請求項1又は2に記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein the secondary amine is at least one of dimethylamine and diethylamine.
JP2009219694A 2009-09-24 2009-09-24 Electrolytic capacitor Active JP5472603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009219694A JP5472603B2 (en) 2009-09-24 2009-09-24 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219694A JP5472603B2 (en) 2009-09-24 2009-09-24 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2011071238A true JP2011071238A (en) 2011-04-07
JP5472603B2 JP5472603B2 (en) 2014-04-16

Family

ID=44016242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219694A Active JP5472603B2 (en) 2009-09-24 2009-09-24 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5472603B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072465A (en) * 2012-09-29 2014-04-21 Nippon Chemicon Corp Electrolyte for electrolytic capacitor and electrolytic capacitor
CN109859949A (en) * 2018-01-26 2019-06-07 东莞东阳光科研发有限公司 A method of reducing medium-high pressure chemical foil leakage current
JP2019134179A (en) * 2015-03-11 2019-08-08 三洋化成工業株式会社 Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645193A (en) * 1992-03-24 1994-02-18 Philips Gloeilampenfab:Nv Electrolytic solution containing new depolarizer and electrolytic capacitor containing above electrolytic solution
JP2002299178A (en) * 2001-03-30 2002-10-11 Nichicon Corp Electrolyte for driving electrolytic capacitor
JP2003282367A (en) * 2002-03-25 2003-10-03 Rubycon Corp Electrolytic capacitor and its manufacturing method
JP2005336538A (en) * 2004-05-26 2005-12-08 Fuji Photo Film Co Ltd Fine structure and method of producing the same
JP2006080422A (en) * 2004-09-13 2006-03-23 Rubycon Corp Electrolytic capacitor and electrolyte for driving the same
JP2007134643A (en) * 2005-11-14 2007-05-31 Nichicon Corp Electrolyte for driving electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645193A (en) * 1992-03-24 1994-02-18 Philips Gloeilampenfab:Nv Electrolytic solution containing new depolarizer and electrolytic capacitor containing above electrolytic solution
JP2002299178A (en) * 2001-03-30 2002-10-11 Nichicon Corp Electrolyte for driving electrolytic capacitor
JP2003282367A (en) * 2002-03-25 2003-10-03 Rubycon Corp Electrolytic capacitor and its manufacturing method
JP2005336538A (en) * 2004-05-26 2005-12-08 Fuji Photo Film Co Ltd Fine structure and method of producing the same
JP2006080422A (en) * 2004-09-13 2006-03-23 Rubycon Corp Electrolytic capacitor and electrolyte for driving the same
JP2007134643A (en) * 2005-11-14 2007-05-31 Nichicon Corp Electrolyte for driving electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072465A (en) * 2012-09-29 2014-04-21 Nippon Chemicon Corp Electrolyte for electrolytic capacitor and electrolytic capacitor
JP2019134179A (en) * 2015-03-11 2019-08-08 三洋化成工業株式会社 Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
US10607786B2 (en) 2015-03-11 2020-03-31 Sanyo Chemical Industries, Ltd. Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using same
JP2022002341A (en) * 2015-03-11 2022-01-06 三洋化成工業株式会社 Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitors using the same
JP7181366B2 (en) 2015-03-11 2022-11-30 三洋化成工業株式会社 Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
CN109859949A (en) * 2018-01-26 2019-06-07 东莞东阳光科研发有限公司 A method of reducing medium-high pressure chemical foil leakage current
CN109859949B (en) * 2018-01-26 2021-03-26 东莞东阳光科研发有限公司 Method for reducing leakage current of medium-high voltage formed foil

Also Published As

Publication number Publication date
JP5472603B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP6260925B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP5472603B2 (en) Electrolytic capacitor
WO2011118234A1 (en) Electrolyte for electrolytic capacitor
JP5040567B2 (en) Electrolytic capacitor
JP2009088302A (en) Electrolytic capacitor
JP4096133B2 (en) Electrolytic solution for electrolytic capacitors
JP2000294463A (en) Electrolytic capacitor
JP4258586B2 (en) Electrolytic solution for electrolytic capacitors
JP5067100B2 (en) Electrolytic capacitor
JP2002110469A (en) Electrolyte for electrolytic capacitor
JP2000331886A (en) Electrolyte solution for electrolytic capacitor
JP2000286157A (en) Electrolyte solution for electrolytic capacitor
JP4576070B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2000286158A (en) Electrolytic solution for electrolytic capacitor
JP2000286156A (en) Electrolytic solution for electrolytic capacitor
JP4752707B2 (en) Electrolytic solution for electrolytic capacitors
JP2000138136A (en) Electrolyte for electrolytic capacitor
JP4344911B2 (en) Electrolytic solution for electrolytic capacitors
JP2001319833A (en) Aluminum electrolytic capacitor, electrolyte solution used therefor, and its manufacturing method
JP2000286155A (en) Electrolytic solution for electrolytic capacitor
JP4150251B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2003100563A (en) Electrolyte for driving electrolytic capacitor
JP2005294595A (en) Electrolytic capacitor
JP2002064036A (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using it
JP4041965B2 (en) Electrolytic solution for electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R150 Certificate of patent or registration of utility model

Ref document number: 5472603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150