JP4912522B2 - セラミック・タービンノズル - Google Patents
セラミック・タービンノズル Download PDFInfo
- Publication number
- JP4912522B2 JP4912522B2 JP2000220197A JP2000220197A JP4912522B2 JP 4912522 B2 JP4912522 B2 JP 4912522B2 JP 2000220197 A JP2000220197 A JP 2000220197A JP 2000220197 A JP2000220197 A JP 2000220197A JP 4912522 B2 JP4912522 B2 JP 4912522B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- band
- rear portion
- bands
- blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/146—Shape, i.e. outer, aerodynamic form of blades with tandem configuration, split blades or slotted blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/284—Selection of ceramic materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/041—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
【発明の属する技術分野】
本発明は概してガスタービンエンジンに関し、より具体的にはそのタービンノズルに関する。
【0002】
【従来の技術】
ガスタービンエンジンでは、空気がコンプレッサーで加圧され、燃焼器で燃料と混合されそして点火されて高温の燃焼ガスを発生し、この高温の燃焼ガスが下流のタービン中に流れ込み、タービンでガスからエネルギーを抽出する。タービンは、一体の外側及び内側バンドにより支持された複数の円周方向に離れて配置されたノズル羽根を有するタービンノズルを含む。高圧タービンノズルは最初に、最も高温の燃焼ガスを燃焼器から受け、支持ディスクから半径方向外方に延びる複数の円周方向に離れて配置された動翼を有するタービンロータにそれらのガスを流す。
【0003】
全体的なエンジン効率は燃焼ガスの温度に直接関係し、燃焼ガスの温度はガスによって熱せられる様々なタービン構成部品を保護するために制限されなければならない。高圧タービンノズルは、適当な耐用寿命を考えて燃焼器からの高温燃焼ガスに耐えなければならない。これは一般に高温で強度を保持する超合金材料を用いることと、コンプレッサの空気の一部をタービンノズルにおける冷却媒体として使用する目的で分流することとによって実現される。
【0004】
超合金の強度には限度があり、分流されるコンプレッサの空気はエンジンの全体的な効率を減ずる。従って、エンジンの効率は、適当な超合金の利用可能性及びタービンノズルを冷却するためにコンプレッサの空気を分流する必要性により事実上制限される。
【0005】
タービンノズルの温度性能をさらに増し、タービンノズルのために分流される冷却空気の使用を削減するようにタービンノズルを改善するために、セラミック系材料が考えられている。しかしながら、この目的のために利用可能な従来のセラミック材料は、延性がほとんどなくその耐用年数を制限するその破損損傷を防ぐためには特別な取り付け構造を必要とする。
【0006】
ノズルは、三次元の空力荷重及びそれを通しての温度勾配の影響下にある羽根の環状の組立体であるため、タービンノズルの設計はさらに複雑になっている。タービンノズルは、運転中に膨張したり収縮したりし、その結果熱応力を生じる。
【0007】
モノリシック・セラミックは簡単に成形できるが、その一体的な接合点で比較的に脆弱である。セラミック母材の複合材(CMC)は、機械的強度を増大させる意図でセラミック母材にセラミック繊維を採り入れる。繊維は結合母材に強度を与える。しかしながら、セラミック繊維はほとんど延性を有しないため、曲げたりまたタービンノズルのような複雑な三次元構成部品において要求される移行に対応するには不十分な能力しか備わっていない。
【0008】
従って、ガスタービンエンジンの厳しい環境に耐えるためにセラミックから形成される改良されたタービンノズルを供給することが望まれる。
【0009】
【発明の開示】
タービンノズルはセラミックの外側及び内側バンドを含み、セラミック羽根前部分がそれに一体的に結合されている。セラミック羽根後部分は両端でバンドの相補的ソケットに嵌合して(とじ込められて)いる。
【0010】
【発明の実施の形態】
好ましいかつ例示的な実施形態に従って、本発明を、そのさらなる目的と利点とともに、添付の図面に関連してなされる以下の詳細な記述により具体的に説明する。
【0011】
図1に示されるのは、ガスタービンエンジン用の環状の高圧タービンノズル10の1部であり、高温の燃焼ガス12をノズルに排出するガスタービンエンジンの燃焼器の下流に位置している。ノズルはセラミックのアーチ形になった外側及び内側バンド14,16を含む。バンドはリングのセグメントであってもよいしあるいは要求があれば連続したリングであってもよい。
【0012】
円周方向に離れて配置された複数のセラミック羽根18が外側及び内側バンドの間に取り付けられるが、図1には、例示的なノズルセグメントを示すために2枚の羽根が図示されている。それぞれの羽根は図2により詳細に示されるような適当な翼形状を有し、軸方向に対向する前縁18a及び後縁18bを含み、それらが円周方向即ち横方向に対向する正圧側面18c及び負圧側面18dを互いに結合する。従来の慣行に従って燃焼ガスの向きを変える必要から、正圧側面18cは普通凹状であり負圧側面18dは普通凸状である。
【0013】
実際に役立つセラミック・タービンノズルを構成するためには、それぞれの羽根18が1組の相補的な羽根部分によって画成される。羽根前部20は、構造的強度を備えるために単体のすなわち一体型の組立体として半径方向の両端でバンド14,16のうちの対応するバンドと一体的に結合される。羽根後部22は、バンド14,16のうちそれぞれのバンドにある相補的ソケット24に嵌合される対向する半径方向外側及び内側端22aを有する。
【0014】
この構成では、羽根部20,22は両方とも、低い延性のセラミックが用いられているにもかかわらず、運転中に適当な強度を実現するようにタービンノズルに必要な複雑な三次元構成においてセラミックで形成され得る。
【0015】
図1及び図2に示される好ましい実施形態においては、各羽根前部分20は、環状のタービンノズルが調整された方向性強度を有し、そして一体型のバンド14,16と強力に結合するために従来のセラミック母材の複合材(CMC)を用いて形成され得る。これらの図に概略的に示されるように、前部分20は適当なセラミック母材20b中にセラミック繊維編組20aを含むのが望ましい。従来のセラミック母材の複合材が利用可能であるが、炭化ケイ素母材(SiC)中に炭化ケイ素繊維(SiC)を含むものとすることができる。その繊維と母材は、最初は、一般的に柔軟性がある素地の状態の適当な母材に含まれており、処理されつまり硬化して最終的なセラミック状態になる。
【0016】
図3に示される好ましい実施形態においては、セラミック繊維編組20aは最初は途切れることのない管状の連続した繊維の形状をしている。その管は羽根前部分の所望の輪郭を有する適当な工具類を用いて簡単に成形される。外側及び内側バンド14,16は、強度を増大するため前部分編組20aと共に適当に積層され得るCMC積層体14a,16aの形状であることが望ましい。
【0017】
もっと具体的に言えば、図3に示される編組管20aは、バンド積層体と共に積層するための一体的移行部を備えた張り広げられたつまりキノコ状をした両端20cの形状にスリットを入れられた長手方向両端を有することが望ましい。前部20及びバンド14,16は両方とも、望ましくは同一のセラミック母材に同一のセラミック繊維を用いたCMCで形成されることが望ましい。
【0018】
編組管20aは、バンド間に必要な半径方向の広がりをもって完成した翼形部の前縁部を形成するように構成され、そして、張り広げられた端20cは部分的にそれらのバンドを形成するように対応するバンドに沿って向け直され得る。円周方向に隣接する前部分の張り広げられた端は、バンドの周囲に沿ってお互いに隣接し、バンドはその他は必要なバンドの形状になるようにCMCテープまたは織物積層体を用いて完成される。処理されすなわち硬化すると、素地の前部分及びバンドはその最終セラミック状態で堅まり、これらの構成部品の一体構造組立体となる。
【0019】
この組立体の特別な利点は、羽根前部分20がそれの織り合わされた繊維により最高の強度性能を有する編組管で形成されることである。それらの繊維はセラミックであるので、ほとんど延性を有しないがそれでも張り広げられた端20cのあるなしにかかわらずバンドと一体的に形成され得る。
【0020】
図3に示されるように、編組20a中のセラミック繊維は、前部分とバンドの間に形成される最終のコーナー丸み部分にわたって羽根前部分から対向する外側及び内側バンドへ傾斜角度Aで移行するのが望ましい。比較的に剛性のあるセラミック繊維による羽根とバンドの交差部での結果として生じる丸みを最小にするためには、好ましい実施形態では傾斜角度は約45°までならよい。
【0021】
従って、張り広げられた編組端20cは、そこに積層される外側及び内側バンド14,16との一体構造を提供し、タービンノズルに対して主たる強度を提供する。編組端はバンド積層体とクロスステッチにするかまたはバンド積層体と重ね合せにすることができる。羽根前部分及びバンド中のセラミック繊維は、運転中に受ける三次元の荷重及び温度差に対して要求される方向でのノズル強度を最大にする方向に優先的に向けることができる。
【0022】
図2で初めに示されるように、それぞれの羽根18は、比較的に大きい半径の前縁18a及び比較的に薄い半径の後縁18bを備える空気力学的な三日月形の輪郭を有する。後縁の半径は、ノズルの空力性能を最大にするために必要な一般に約10ミルである。そのような薄い後縁は、セラミック構造に固有の制約を考慮すると複合材のタービンノズルの設計をさらに複雑なものにする。セラミック繊維はほとんど延性を備えていないので、それらの繊維を薄い後縁に必要な小さな半径の周りに曲げるのは一般的に不可能である。さらに、CMC複合材の層の厚さもまた一般的には薄い羽根後縁の厚さよりは大きい。
【0023】
羽根は燃焼ガスを流すように構成されるていので、羽根は運転中にガス圧によって高い負荷を受け、またガスの高温に曝され温度差による熱膨張及び収縮を引き起こす。そして、羽根後縁は比較的に薄いので、それの冷却を行える空間を設ける余地はほとんどない。
【0024】
従って、図1から図3までに示される好ましい実施形態においては、各羽根後部分22はその中に強化セラミック繊維のないモノリシック・セラミックから成る。モノリシック・セラミックは窒化ケイ素(Si3N4)のような従来型のものである。羽根後部分22は高靭性モノリシック・セラミックで形成されるのが望ましいけれども、それらは一般に前部分20に見られる向きとは異なる向きにその中の強化セラミック繊維を備えたセラミック複合材で形成してもよい。
【0025】
例えば、前部分20中の繊維は傾斜方向の角度Aに向いているのが望ましいのに対して、後部分22に用いられる繊維は、後縁の半径方向の強度を増すために後部分の両端の間で半径方向に延びるていのが望ましいであろう。後部分における繊維の好適な半径方向の向きを考慮すると、或いは後部分の他の態様のモノリシック構造を考慮すると、後部分の外側及び内側バンドへの特別な取付けがノズル組立体及びその強度を補っている。
【0026】
上記のように、羽根後部分22は一体になった前部分及びバンドから分離し異なるものであることが望ましい。前部分及びバンドにより画成される構造枠を用いて、個々の後部分をそれらが対応する前部分に隣接する位置に機械的に嵌合し、個々の空力羽根を完成するのが有利である。
【0027】
図1及び図3に示されるように、各後部分の半径方向の外側及び内側両端22aには、後部分から延び出る軸方向に細長い支持キーを形成するのが望ましい。その支持キー22aは、対応する外側及び内側バンドに形成される相補的な座すなわちソケット24に簡単に嵌合され、それぞれの後部分を外側及び内側バンドの間に保持し羽根にかかるトルクをバンドに搬送する。この構造では、後部分は、それらが嵌合される外側及び内側バンドに対して半径方向に膨張したり収縮したりすることが可能である。そして、後部分にかかる空力トルク負荷は、支持キー22aを介して対応するバンドで担持される。
【0028】
このようにして、CMC羽根前部分20は、セラミック繊維で強化された外側及び内側バンドと共に構造枠を構成する。また、薄い羽根後部分は空力性能を最大にするために特別の輪郭形状とすることができ、嵌合によってバンドの間に保持することができる。したがって、他の実施形態では、後部分は実行可能なら繊維で強化しているが、モノリシック・セラミックは後部分に選択的に有利に用いることができる。
【0029】
例えば図2に示される2部分からなる構造においては、望ましくは羽根後部分22は羽根前部分20から間隔を置いて配置され、それらの間に小さな間隙26を設けている。羽根部分20,22のどちらか一方又は両方はコンプレッサの抽気空気等の冷却媒体28をその中に流すために、半径方向に中空にすることができる。各部分はまた間隙内に隠された列になった吐出孔30を含むこともでき、運転中に間隙の中へ冷却媒体を吐出する。このようにして、冷却媒体がなんらかの適当な方法でその内部冷却するために各羽根部分を貫通して流され、その後冷却媒体は間隙26の中へ吐出され後部分の外側表面を覆うように下流に流れるにつれて、冷却空気の膜を形成する。
【0030】
差圧が運転中に各羽根の両側面18cと18dとの間に生じるので、各羽根は図2に示すように間隙26内で羽根前部分20と後部分22の間に配置されるシール32を含み、そこを流れる流体をシールするのが望ましい。シール32は、間隙26を画成する面の相補的な凹陥に嵌装されたセラミックロープのシールのようなどのような適当な構成をしていてもよい。シールは高温の燃焼ガスが間隙26を介して流れるのを阻止する一方、シールの両横方向側面上を間隙26を介して冷却媒体28が吐出するのを可能にしている。
【0031】
図3は、図1及び図2に示されるセラミック・タービンノズル10の好ましい製造法の概略を示す。各羽根後部分22は、例えばモノリシック材料を後部分の所望の構成に成形する等どのような適当な方法ででも予備成形されることが望ましい。
【0032】
個々のセラミック繊維管20aは、その素地の状態で羽根前部分の所望の形状に形成され、対応する後部分22を補完し、両者によって個々の羽根18を構成する。各前部分の張り広げられた端20cはその後素地の状態で外側及び内側バンドのセラミック織物と積層される。
【0033】
このようにして、前部分及びバンドのセラミック構成要素は適当な工具または型枠を使って要求される形に形成されるかモールドされ、個々の予備成形された後部分22がそれに組み合わされる。したがって、後部分は組立工程においてバンドの間であって対応する前部分の後方に嵌合される。
【0034】
次ぎに、素地のバンドと前部分は従来の方法で処理されるかまたは硬化され、後部分がその中に機械的に嵌合された硬化したセラミックノズルを形成する。
【0035】
この好ましい構成では、羽根後部分22は、強化セラミック繊維をもたないモノリシック・セラミックのような前もって硬化処理されたセラミックであることが望ましい。そして、羽根前部分20及びバンド14,16は、その中に強化セラミック繊維を有するセラミック母材の複合材構造であり、構造的に一体のものとなりまた組立体全体に強度を与える。
【0036】
この構造では、管編組20aの強度上の利点が羽根前部分をバンドと一体化するために用いられ、羽根後部分22はバンドに機械的に保持されるか又は嵌合される。後部分は軸方向及び円周方向にバンドに保持されるが、支持ソケット24内でバンド間で半径方向に自由に膨張したり収縮したりする。
【0037】
セラミック母材の複合材及びモノリシック・セラミックのそれぞれの利点を選択的に用いて、タービンノズルをその一体性と耐久性を最大にするように構成する。羽根前部分及び後部分20、22の相対的な大きさは、CMC及びモノリシック・セラミック材料の製造能力の要求に合わせて調整することができる。
【0038】
本明細書では本発明の好ましい例示的な実施形態と思料するものについて説明してきたが、本発明のその他の形態は本明細書の教示内容から当業者には自明であり、本発明の技術的思想及び技術的範囲に属するかかる形態すべてが特許請求の範囲で保護されることを望むものである。
【0039】
従って、特許による保護を望むのは、請求項に規定され特徴付けられた発明である。
【図面の簡単な説明】
【図1】 本発明の例示的な実施形態による環状のセラミック・タービンノズルのセグメントの等角図。
【図2】 図1に示されたセラミック羽根の1つを線2−2に沿って見た半径方向断面図。
【図3】 図1及び図2に示されたセラミック・タービンノズルの例示的な製造法のフローチャート図。
Claims (6)
- セラミックの外側及び内側バンド(14,16)と、
両端で前記バンドと一体に結合されたセラミック羽根前部分(20)と、
前記バンドの相補的ソケット(24)に嵌合される両端(22a)を有するセラミック羽根後部分(22)と
を備え、
前記羽根前部分(20)がセラミック母材の複合材からなり、前記羽根前部分がセラミック母材(20b)中にセラミック繊維編組(20a)を含み、
前記編組(20a)が、前記バンドに積層された張り広げられた両端(20c)を有する管からなる
ことを特徴とする、タービンノズル(10)。 - セラミックの外側及び内側バンドと(14,16)、両端で前記バンドに一体に結合されたセラミック母材の複合材の羽根前部分(20)と、前記バンドの相補的ソケット(24)に嵌合される両端(22a)を有するモノリシック・セラミック羽根後部分(22)とを備え、
前記羽根前部分が、セラミック母材(20b)中に前記バンドに積層される張り広げられた両端(20c)を有するセラミック繊維管状編組(20a)をさらに備えてなることを特徴とする、タービンノズル(10)。 - 前記羽根後部分が、前記相補的ソケットに嵌合されるその両端の支持キーを含み、前記羽根後部分を前記バンド間に保持し、羽根にかかるトルクをバンドに搬送する請求項2に記載のノズル。
- セラミック母材の複合材の素地からなる外側及び内側バンド(14,16)を用意することと、
前記バンドの相補的ソケット(24)に嵌合される両端(22a)を有するセラミック羽根後部分(22)を形成することと、
前記後部分(22)と相補的な関係にある羽根前部分(20)を、セラミック繊維編組(20a)を含むセラミック母材(20b)の複合材の素地から形成することと、
前記素地の前部分を前記素地の外側及び内側バンド(14,16)と積層することと、
前記後部分を前記バンドの間で前記前部分の後側に嵌合することと、
前記素地のバンド及び前記素地の前部分を硬化させ、そこに嵌合される前記後部分とで前記セラミックノズルを形成することと
を含むセラミック・タービンノズル(10)を製造する方法。 - 前記後部分が前もって硬化処理されたセラミックである請求項4に記載の方法。
- 前記後部分がモノリシック・セラミックである請求項5に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/405,529 US6200092B1 (en) | 1999-09-24 | 1999-09-24 | Ceramic turbine nozzle |
US09/405529 | 1999-09-24 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001090505A JP2001090505A (ja) | 2001-04-03 |
JP2001090505A5 JP2001090505A5 (ja) | 2007-09-06 |
JP4912522B2 true JP4912522B2 (ja) | 2012-04-11 |
Family
ID=23604080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000220197A Expired - Lifetime JP4912522B2 (ja) | 1999-09-24 | 2000-07-21 | セラミック・タービンノズル |
Country Status (4)
Country | Link |
---|---|
US (1) | US6200092B1 (ja) |
EP (1) | EP1087103B1 (ja) |
JP (1) | JP4912522B2 (ja) |
DE (1) | DE60023625T2 (ja) |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6543996B2 (en) | 2001-06-28 | 2003-04-08 | General Electric Company | Hybrid turbine nozzle |
US6499938B1 (en) | 2001-10-11 | 2002-12-31 | General Electric Company | Method for enhancing part life in a gas stream |
US6648597B1 (en) | 2002-05-31 | 2003-11-18 | Siemens Westinghouse Power Corporation | Ceramic matrix composite turbine vane |
US6709230B2 (en) | 2002-05-31 | 2004-03-23 | Siemens Westinghouse Power Corporation | Ceramic matrix composite gas turbine vane |
US9068464B2 (en) * | 2002-09-17 | 2015-06-30 | Siemens Energy, Inc. | Method of joining ceramic parts and articles so formed |
US7093359B2 (en) | 2002-09-17 | 2006-08-22 | Siemens Westinghouse Power Corporation | Composite structure formed by CMC-on-insulation process |
GB2411440B (en) * | 2004-02-24 | 2006-08-16 | Rolls Royce Plc | Gas turbine nozzle guide vane |
US6997676B2 (en) * | 2004-03-10 | 2006-02-14 | General Electric Company | Bifurcated outlet guide vanes |
US7066717B2 (en) * | 2004-04-22 | 2006-06-27 | Siemens Power Generation, Inc. | Ceramic matrix composite airfoil trailing edge arrangement |
US7052234B2 (en) | 2004-06-23 | 2006-05-30 | General Electric Company | Turbine vane collar seal |
US7435058B2 (en) * | 2005-01-18 | 2008-10-14 | Siemens Power Generation, Inc. | Ceramic matrix composite vane with chordwise stiffener |
US7316539B2 (en) * | 2005-04-07 | 2008-01-08 | Siemens Power Generation, Inc. | Vane assembly with metal trailing edge segment |
US7452182B2 (en) * | 2005-04-07 | 2008-11-18 | Siemens Energy, Inc. | Multi-piece turbine vane assembly |
US7393183B2 (en) * | 2005-06-17 | 2008-07-01 | Siemens Power Generation, Inc. | Trailing edge attachment for composite airfoil |
US7563071B2 (en) * | 2005-08-04 | 2009-07-21 | Siemens Energy, Inc. | Pin-loaded mounting apparatus for a refractory component in a combustion turbine engine |
US20070122266A1 (en) * | 2005-10-14 | 2007-05-31 | General Electric Company | Assembly for controlling thermal stresses in ceramic matrix composite articles |
US7762076B2 (en) * | 2005-10-20 | 2010-07-27 | United Technologies Corporation | Attachment of a ceramic combustor can |
US7762761B2 (en) * | 2005-11-30 | 2010-07-27 | General Electric Company | Methods and apparatus for assembling turbine nozzles |
US7600970B2 (en) * | 2005-12-08 | 2009-10-13 | General Electric Company | Ceramic matrix composite vane seals |
US7648336B2 (en) * | 2006-01-03 | 2010-01-19 | General Electric Company | Apparatus and method for assembling a gas turbine stator |
US7997860B2 (en) * | 2006-01-13 | 2011-08-16 | General Electric Company | Welded nozzle assembly for a steam turbine and related assembly fixtures |
US7950234B2 (en) * | 2006-10-13 | 2011-05-31 | Siemens Energy, Inc. | Ceramic matrix composite turbine engine components with unitary stiffening frame |
US7762768B2 (en) * | 2006-11-13 | 2010-07-27 | United Technologies Corporation | Mechanical support of a ceramic gas turbine vane ring |
US20080159856A1 (en) * | 2006-12-29 | 2008-07-03 | Thomas Ory Moniz | Guide vane and method of fabricating the same |
US7722317B2 (en) * | 2007-01-25 | 2010-05-25 | Siemens Energy, Inc. | CMC to metal attachment mechanism |
US7887300B2 (en) * | 2007-02-27 | 2011-02-15 | Siemens Energy, Inc. | CMC airfoil with thin trailing edge |
US7824152B2 (en) * | 2007-05-09 | 2010-11-02 | Siemens Energy, Inc. | Multivane segment mounting arrangement for a gas turbine |
EP2209588B1 (en) * | 2007-10-11 | 2012-06-06 | Volvo Aero Corporation | A method for producing a vane, such a vane and a stator component comprising the vane |
JP5088196B2 (ja) * | 2008-03-24 | 2012-12-05 | 株式会社Ihi | タービンノズルセグメント |
US8292580B2 (en) * | 2008-09-18 | 2012-10-23 | Siemens Energy, Inc. | CMC vane assembly apparatus and method |
US8167573B2 (en) * | 2008-09-19 | 2012-05-01 | Siemens Energy, Inc. | Gas turbine airfoil |
US8251651B2 (en) | 2009-01-28 | 2012-08-28 | United Technologies Corporation | Segmented ceramic matrix composite turbine airfoil component |
JP5163559B2 (ja) * | 2009-03-13 | 2013-03-13 | 株式会社Ihi | タービン翼の製造方法及びタービン翼 |
JP5062212B2 (ja) * | 2009-03-30 | 2012-10-31 | 株式会社Ihi | フランジ部を備える中空構造物の製造方法、フランジ部を備える中空構造物、及びタービン翼 |
US8236409B2 (en) * | 2009-04-29 | 2012-08-07 | Siemens Energy, Inc. | Gussets for strengthening CMC fillet radii |
FR2946999B1 (fr) | 2009-06-18 | 2019-08-09 | Safran Aircraft Engines | Element de distributeur de turbine en cmc, procede pour sa fabrication, et distributeur et turbine a gaz l'incorporant. |
US8226361B2 (en) * | 2009-07-08 | 2012-07-24 | General Electric Company | Composite article and support frame assembly |
US8206096B2 (en) * | 2009-07-08 | 2012-06-26 | General Electric Company | Composite turbine nozzle |
US8763400B2 (en) * | 2009-08-04 | 2014-07-01 | General Electric Company | Aerodynamic pylon fuel injector system for combustors |
US8256088B2 (en) * | 2009-08-24 | 2012-09-04 | Siemens Energy, Inc. | Joining mechanism with stem tension and interlocked compression ring |
US8850823B2 (en) * | 2009-12-29 | 2014-10-07 | Rolls-Royce North American Technologies, Inc. | Integrated aero-engine flowpath structure |
FR2956876B1 (fr) * | 2010-02-26 | 2012-10-19 | Snecma | Module structural et aerodynamique d'un carter de turbomachine et structure de carter comportant une pluralite d'un tel module |
US8616801B2 (en) | 2010-04-29 | 2013-12-31 | Siemens Energy, Inc. | Gusset with fibers oriented to strengthen a CMC wall intersection anisotropically |
US8770930B2 (en) | 2011-02-09 | 2014-07-08 | Siemens Energy, Inc. | Joining mechanism and method for interlocking modular turbine engine component with a split ring |
US8790067B2 (en) | 2011-04-27 | 2014-07-29 | United Technologies Corporation | Blade clearance control using high-CTE and low-CTE ring members |
US9334743B2 (en) | 2011-05-26 | 2016-05-10 | United Technologies Corporation | Ceramic matrix composite airfoil for a gas turbine engine |
US8770931B2 (en) * | 2011-05-26 | 2014-07-08 | United Technologies Corporation | Hybrid Ceramic Matrix Composite vane structures for a gas turbine engine |
US8905711B2 (en) | 2011-05-26 | 2014-12-09 | United Technologies Corporation | Ceramic matrix composite vane structures for a gas turbine engine turbine |
US9011085B2 (en) | 2011-05-26 | 2015-04-21 | United Technologies Corporation | Ceramic matrix composite continuous “I”-shaped fiber geometry airfoil for a gas turbine engine |
US8864492B2 (en) | 2011-06-23 | 2014-10-21 | United Technologies Corporation | Reverse flow combustor duct attachment |
US8739547B2 (en) | 2011-06-23 | 2014-06-03 | United Technologies Corporation | Gas turbine engine joint having a metallic member, a CMC member, and a ceramic key |
US8939728B2 (en) * | 2011-06-30 | 2015-01-27 | United Technologies Corporation | Hybrid part made from monolithic ceramic skin and CMC core |
US9335051B2 (en) | 2011-07-13 | 2016-05-10 | United Technologies Corporation | Ceramic matrix composite combustor vane ring assembly |
US8920127B2 (en) | 2011-07-18 | 2014-12-30 | United Technologies Corporation | Turbine rotor non-metallic blade attachment |
US9062559B2 (en) * | 2011-08-02 | 2015-06-23 | Siemens Energy, Inc. | Movable strut cover for exhaust diffuser |
US20130089431A1 (en) * | 2011-10-07 | 2013-04-11 | General Electric Company | Airfoil for turbine system |
US8967974B2 (en) * | 2012-01-03 | 2015-03-03 | General Electric Company | Composite airfoil assembly |
US9527262B2 (en) | 2012-09-28 | 2016-12-27 | General Electric Company | Layered arrangement, hot-gas path component, and process of producing a layered arrangement |
US20140212284A1 (en) * | 2012-12-21 | 2014-07-31 | General Electric Company | Hybrid turbine nozzle |
WO2014158278A2 (en) * | 2013-03-04 | 2014-10-02 | Rolls-Royce North American Technologies, Inc. | Compartmentalization of cooling flow in a structure comprising a cmc component |
US9410438B2 (en) * | 2013-03-08 | 2016-08-09 | Pratt & Whitney Canada Corp. | Dual rotor blades having a metal leading airfoil and a trailing airfoil of a composite material for gas turbine engines |
US20160069199A1 (en) * | 2013-04-12 | 2016-03-10 | United Technologies Corporation | Stator vane platform with flanges |
US9488191B2 (en) | 2013-10-30 | 2016-11-08 | Siemens Aktiengesellschaft | Gas turbine diffuser strut including coanda flow injection |
WO2015130425A2 (en) * | 2014-02-03 | 2015-09-03 | United Technologies Corporation | Gas turbine engine cooling fluid composite tube |
US10072516B2 (en) * | 2014-09-24 | 2018-09-11 | United Technologies Corporation | Clamped vane arc segment having load-transmitting features |
US10196910B2 (en) | 2015-01-30 | 2019-02-05 | Rolls-Royce Corporation | Turbine vane with load shield |
US10060272B2 (en) | 2015-01-30 | 2018-08-28 | Rolls-Royce Corporation | Turbine vane with load shield |
US10655482B2 (en) * | 2015-02-05 | 2020-05-19 | Rolls-Royce Corporation | Vane assemblies for gas turbine engines |
US9845692B2 (en) * | 2015-05-05 | 2017-12-19 | General Electric Company | Turbine component connection with thermally stress-free fastener |
US11230935B2 (en) | 2015-09-18 | 2022-01-25 | General Electric Company | Stator component cooling |
US10161266B2 (en) | 2015-09-23 | 2018-12-25 | General Electric Company | Nozzle and nozzle assembly for gas turbine engine |
DE102016217320A1 (de) * | 2016-09-12 | 2018-03-15 | Siemens Aktiengesellschaft | Gasturbine mit getrennter Kühlung für Turbine und Abgasgehäuse |
US10577942B2 (en) * | 2016-11-17 | 2020-03-03 | General Electric Company | Double impingement slot cap assembly |
US20180135427A1 (en) * | 2016-11-17 | 2018-05-17 | United Technologies Corporation | Airfoil with leading end hollow panel |
US10662782B2 (en) * | 2016-11-17 | 2020-05-26 | Raytheon Technologies Corporation | Airfoil with airfoil piece having axial seal |
US10408082B2 (en) * | 2016-11-17 | 2019-09-10 | United Technologies Corporation | Airfoil with retention pocket holding airfoil piece |
US10605088B2 (en) * | 2016-11-17 | 2020-03-31 | United Technologies Corporation | Airfoil endwall with partial integral airfoil wall |
US10677079B2 (en) | 2016-11-17 | 2020-06-09 | Raytheon Technologies Corporation | Airfoil with ceramic airfoil piece having internal cooling circuit |
US10767502B2 (en) * | 2016-12-23 | 2020-09-08 | Rolls-Royce Corporation | Composite turbine vane with three-dimensional fiber reinforcements |
US10393381B2 (en) | 2017-01-27 | 2019-08-27 | General Electric Company | Unitary flow path structure |
US10253643B2 (en) | 2017-02-07 | 2019-04-09 | General Electric Company | Airfoil fluid curtain to mitigate or prevent flow path leakage |
US10370990B2 (en) | 2017-02-23 | 2019-08-06 | General Electric Company | Flow path assembly with pin supported nozzle airfoils |
US10385709B2 (en) | 2017-02-23 | 2019-08-20 | General Electric Company | Methods and features for positioning a flow path assembly within a gas turbine engine |
US10247019B2 (en) | 2017-02-23 | 2019-04-02 | General Electric Company | Methods and features for positioning a flow path inner boundary within a flow path assembly |
US10385776B2 (en) | 2017-02-23 | 2019-08-20 | General Electric Company | Methods for assembling a unitary flow path structure |
US10253641B2 (en) | 2017-02-23 | 2019-04-09 | General Electric Company | Methods and assemblies for attaching airfoils within a flow path |
US10378373B2 (en) | 2017-02-23 | 2019-08-13 | General Electric Company | Flow path assembly with airfoils inserted through flow path boundary |
US10301953B2 (en) * | 2017-04-13 | 2019-05-28 | General Electric Company | Turbine nozzle with CMC aft Band |
US10385731B2 (en) | 2017-06-12 | 2019-08-20 | General Electric Company | CTE matching hanger support for CMC structures |
US20190024513A1 (en) * | 2017-07-19 | 2019-01-24 | General Electric Company | Shield for a turbine engine airfoil |
US10934850B2 (en) * | 2017-08-25 | 2021-03-02 | DOOSAN Heavy Industries Construction Co., LTD | Turbine blade having an additive manufacturing trailing edge |
US10746035B2 (en) | 2017-08-30 | 2020-08-18 | General Electric Company | Flow path assemblies for gas turbine engines and assembly methods therefore |
US10605103B2 (en) | 2018-08-24 | 2020-03-31 | Rolls-Royce Corporation | CMC airfoil assembly |
US10767497B2 (en) | 2018-09-07 | 2020-09-08 | Rolls-Royce Corporation | Turbine vane assembly with ceramic matrix composite components |
US10934870B2 (en) | 2018-09-17 | 2021-03-02 | Rolls Royce Plc | Turbine vane assembly with reinforced end wall joints |
FR3097264B1 (fr) * | 2019-06-12 | 2021-05-28 | Safran Aircraft Engines | Turbine de turbomachine à distributeur en CMC avec reprise d’effort |
US11242762B2 (en) * | 2019-11-21 | 2022-02-08 | Raytheon Technologies Corporation | Vane with collar |
US11162372B2 (en) | 2019-12-04 | 2021-11-02 | Rolls-Royce Plc | Turbine vane doublet with ceramic matrix composite material construction |
US11268394B2 (en) | 2020-03-13 | 2022-03-08 | General Electric Company | Nozzle assembly with alternating inserted vanes for a turbine engine |
US11286783B2 (en) * | 2020-04-27 | 2022-03-29 | Raytheon Technologies Corporation | Airfoil with CMC liner and multi-piece monolithic ceramic shell |
US11719130B2 (en) | 2021-05-06 | 2023-08-08 | Raytheon Technologies Corporation | Vane system with continuous support ring |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3619077A (en) * | 1966-09-30 | 1971-11-09 | Gen Electric | High-temperature airfoil |
US4786234A (en) * | 1982-06-21 | 1988-11-22 | Teledyne Industries, Inc. | Turbine airfoil |
US4643636A (en) * | 1985-07-22 | 1987-02-17 | Avco Corporation | Ceramic nozzle assembly for gas turbine engine |
US4861229A (en) * | 1987-11-16 | 1989-08-29 | Williams International Corporation | Ceramic-matrix composite nozzle assembly for a turbine engine |
DE3821005A1 (de) * | 1988-06-22 | 1989-12-28 | Mtu Muenchen Gmbh | Metall-keramik-verbundschaufel |
FR2647502B1 (fr) * | 1989-05-23 | 1991-09-13 | Europ Propulsion | Distributeur de turbine pour turbo-reacteur et son procede de fabrication |
US5358379A (en) * | 1993-10-27 | 1994-10-25 | Westinghouse Electric Corporation | Gas turbine vane |
US5630700A (en) * | 1996-04-26 | 1997-05-20 | General Electric Company | Floating vane turbine nozzle |
DE19617556A1 (de) * | 1996-05-02 | 1997-11-06 | Asea Brown Boveri | Thermisch belastete Schaufel für eine Strömungsmaschine |
-
1999
- 1999-09-24 US US09/405,529 patent/US6200092B1/en not_active Expired - Lifetime
-
2000
- 2000-07-21 JP JP2000220197A patent/JP4912522B2/ja not_active Expired - Lifetime
- 2000-07-24 DE DE60023625T patent/DE60023625T2/de not_active Expired - Lifetime
- 2000-07-24 EP EP00306309A patent/EP1087103B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1087103A3 (en) | 2004-02-11 |
DE60023625D1 (de) | 2005-12-08 |
EP1087103A2 (en) | 2001-03-28 |
DE60023625T2 (de) | 2006-07-27 |
US6200092B1 (en) | 2001-03-13 |
JP2001090505A (ja) | 2001-04-03 |
EP1087103B1 (en) | 2005-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4912522B2 (ja) | セラミック・タービンノズル | |
EP2599959B1 (en) | Ceramic matrix composite airfoil structure with trailing edge support for a gas turbine engine | |
US8118546B2 (en) | Grid ceramic matrix composite structure for gas turbine shroud ring segment | |
EP2562360B1 (en) | Ceramic matrix composite vane structure with overwrap for a gas turbine engine | |
US7534086B2 (en) | Multi-layer ring seal | |
CN110273713B (zh) | 具有单独的翼型件、内带和外带的复合翼型组件 | |
US6709230B2 (en) | Ceramic matrix composite gas turbine vane | |
US8206096B2 (en) | Composite turbine nozzle | |
JP6240672B2 (ja) | セラミックセンターボディ及び製造方法 | |
EP3617450B1 (en) | Cmc component including directionally controllable cmc insert and method of fabrication | |
EP2570611B1 (en) | Ceramic matrix composite airfoil for a gas turbine engine and corresponding method of forming | |
US20220090509A1 (en) | Double box composite seal assembly with insert for gas turbine engine | |
EP3517282B1 (en) | Composite component having t or l-joints and method for forming same | |
EP3835553B1 (en) | Non-metallic side plate seal assembly for a gas turbine engine | |
US10519779B2 (en) | Radial CMC wall thickness variation for stress response | |
US20240183278A1 (en) | Turbine engine with composite airfoil having a non-metallic leading edge protective wrap | |
WO2020209847A1 (en) | Three dimensional ceramic matrix composite wall structures fabricated by using pin weaving techniques | |
US10018054B2 (en) | Fabrication of gas turbine engine components using multiple processing steps | |
US20220275728A1 (en) | Three-dimensional ceramic matrix composite t-joint for airfoils via pin-weaving |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070719 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070719 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090828 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110819 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111220 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4912522 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150127 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |