JP4912522B2 - Ceramic turbine nozzle - Google Patents

Ceramic turbine nozzle Download PDF

Info

Publication number
JP4912522B2
JP4912522B2 JP2000220197A JP2000220197A JP4912522B2 JP 4912522 B2 JP4912522 B2 JP 4912522B2 JP 2000220197 A JP2000220197 A JP 2000220197A JP 2000220197 A JP2000220197 A JP 2000220197A JP 4912522 B2 JP4912522 B2 JP 4912522B2
Authority
JP
Japan
Prior art keywords
ceramic
band
rear portion
bands
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000220197A
Other languages
Japanese (ja)
Other versions
JP2001090505A5 (en
JP2001090505A (en
Inventor
アンジェロ・ファン・コスチャー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2001090505A publication Critical patent/JP2001090505A/en
Publication of JP2001090505A5 publication Critical patent/JP2001090505A5/ja
Application granted granted Critical
Publication of JP4912522B2 publication Critical patent/JP4912522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/146Shape, i.e. outer, aerodynamic form of blades with tandem configuration, split blades or slotted blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は概してガスタービンエンジンに関し、より具体的にはそのタービンノズルに関する。
【0002】
【従来の技術】
ガスタービンエンジンでは、空気がコンプレッサーで加圧され、燃焼器で燃料と混合されそして点火されて高温の燃焼ガスを発生し、この高温の燃焼ガスが下流のタービン中に流れ込み、タービンでガスからエネルギーを抽出する。タービンは、一体の外側及び内側バンドにより支持された複数の円周方向に離れて配置されたノズル羽根を有するタービンノズルを含む。高圧タービンノズルは最初に、最も高温の燃焼ガスを燃焼器から受け、支持ディスクから半径方向外方に延びる複数の円周方向に離れて配置された動翼を有するタービンロータにそれらのガスを流す。
【0003】
全体的なエンジン効率は燃焼ガスの温度に直接関係し、燃焼ガスの温度はガスによって熱せられる様々なタービン構成部品を保護するために制限されなければならない。高圧タービンノズルは、適当な耐用寿命を考えて燃焼器からの高温燃焼ガスに耐えなければならない。これは一般に高温で強度を保持する超合金材料を用いることと、コンプレッサの空気の一部をタービンノズルにおける冷却媒体として使用する目的で分流することとによって実現される。
【0004】
超合金の強度には限度があり、分流されるコンプレッサの空気はエンジンの全体的な効率を減ずる。従って、エンジンの効率は、適当な超合金の利用可能性及びタービンノズルを冷却するためにコンプレッサの空気を分流する必要性により事実上制限される。
【0005】
タービンノズルの温度性能をさらに増し、タービンノズルのために分流される冷却空気の使用を削減するようにタービンノズルを改善するために、セラミック系材料が考えられている。しかしながら、この目的のために利用可能な従来のセラミック材料は、延性がほとんどなくその耐用年数を制限するその破損損傷を防ぐためには特別な取り付け構造を必要とする。
【0006】
ノズルは、三次元の空力荷重及びそれを通しての温度勾配の影響下にある羽根の環状の組立体であるため、タービンノズルの設計はさらに複雑になっている。タービンノズルは、運転中に膨張したり収縮したりし、その結果熱応力を生じる。
【0007】
モノリシック・セラミックは簡単に成形できるが、その一体的な接合点で比較的に脆弱である。セラミック母材の複合材(CMC)は、機械的強度を増大させる意図でセラミック母材にセラミック繊維を採り入れる。繊維は結合母材に強度を与える。しかしながら、セラミック繊維はほとんど延性を有しないため、曲げたりまたタービンノズルのような複雑な三次元構成部品において要求される移行に対応するには不十分な能力しか備わっていない。
【0008】
従って、ガスタービンエンジンの厳しい環境に耐えるためにセラミックから形成される改良されたタービンノズルを供給することが望まれる。
【0009】
【発明の開示】
タービンノズルはセラミックの外側及び内側バンドを含み、セラミック羽根前部分がそれに一体的に結合されている。セラミック羽根後部分は両端でバンドの相補的ソケットに嵌合して(とじ込められて)いる。
【0010】
【発明の実施の形態】
好ましいかつ例示的な実施形態に従って、本発明を、そのさらなる目的と利点とともに、添付の図面に関連してなされる以下の詳細な記述により具体的に説明する。
【0011】
図1に示されるのは、ガスタービンエンジン用の環状の高圧タービンノズル10の1部であり、高温の燃焼ガス12をノズルに排出するガスタービンエンジンの燃焼器の下流に位置している。ノズルはセラミックのアーチ形になった外側及び内側バンド14,16を含む。バンドはリングのセグメントであってもよいしあるいは要求があれば連続したリングであってもよい。
【0012】
円周方向に離れて配置された複数のセラミック羽根18が外側及び内側バンドの間に取り付けられるが、図1には、例示的なノズルセグメントを示すために2枚の羽根が図示されている。それぞれの羽根は図2により詳細に示されるような適当な翼形状を有し、軸方向に対向する前縁18a及び後縁18bを含み、それらが円周方向即ち横方向に対向する正圧側面18c及び負圧側面18dを互いに結合する。従来の慣行に従って燃焼ガスの向きを変える必要から、正圧側面18cは普通凹状であり負圧側面18dは普通凸状である。
【0013】
実際に役立つセラミック・タービンノズルを構成するためには、それぞれの羽根18が1組の相補的な羽根部分によって画成される。羽根前部20は、構造的強度を備えるために単体のすなわち一体型の組立体として半径方向の両端でバンド14,16のうちの対応するバンドと一体的に結合される。羽根後部22は、バンド14,16のうちそれぞれのバンドにある相補的ソケット24に嵌合される対向する半径方向外側及び内側端22aを有する。
【0014】
この構成では、羽根部20,22は両方とも、低い延性のセラミックが用いられているにもかかわらず、運転中に適当な強度を実現するようにタービンノズルに必要な複雑な三次元構成においてセラミックで形成され得る。
【0015】
図1及び図2に示される好ましい実施形態においては、各羽根前部分20は、環状のタービンノズルが調整された方向性強度を有し、そして一体型のバンド14,16と強力に結合するために従来のセラミック母材の複合材(CMC)を用いて形成され得る。これらの図に概略的に示されるように、前部分20は適当なセラミック母材20b中にセラミック繊維編組20aを含むのが望ましい。従来のセラミック母材の複合材が利用可能であるが、炭化ケイ素母材(SiC)中に炭化ケイ素繊維(SiC)を含むものとすることができる。その繊維と母材は、最初は、一般的に柔軟性がある素地の状態の適当な母材に含まれており、処理されつまり硬化して最終的なセラミック状態になる。
【0016】
図3に示される好ましい実施形態においては、セラミック繊維編組20aは最初は途切れることのない管状の連続した繊維の形状をしている。その管は羽根前部分の所望の輪郭を有する適当な工具類を用いて簡単に成形される。外側及び内側バンド14,16は、強度を増大するため前部分編組20aと共に適当に積層され得るCMC積層体14a,16aの形状であることが望ましい。
【0017】
もっと具体的に言えば、図3に示される編組管20aは、バンド積層体と共に積層するための一体的移行部を備えた張り広げられたつまりキノコ状をした両端20cの形状にスリットを入れられた長手方向両端を有することが望ましい。前部20及びバンド14,16は両方とも、望ましくは同一のセラミック母材に同一のセラミック繊維を用いたCMCで形成されることが望ましい。
【0018】
編組管20aは、バンド間に必要な半径方向の広がりをもって完成した翼形部の前縁部を形成するように構成され、そして、張り広げられた端20cは部分的にそれらのバンドを形成するように対応するバンドに沿って向け直され得る。円周方向に隣接する前部分の張り広げられた端は、バンドの周囲に沿ってお互いに隣接し、バンドはその他は必要なバンドの形状になるようにCMCテープまたは織物積層体を用いて完成される。処理されすなわち硬化すると、素地の前部分及びバンドはその最終セラミック状態で堅まり、これらの構成部品の一体構造組立体となる。
【0019】
この組立体の特別な利点は、羽根前部分20がそれの織り合わされた繊維により最高の強度性能を有する編組管で形成されることである。それらの繊維はセラミックであるので、ほとんど延性を有しないがそれでも張り広げられた端20cのあるなしにかかわらずバンドと一体的に形成され得る。
【0020】
図3に示されるように、編組20a中のセラミック繊維は、前部分とバンドの間に形成される最終のコーナー丸み部分にわたって羽根前部分から対向する外側及び内側バンドへ傾斜角度Aで移行するのが望ましい。比較的に剛性のあるセラミック繊維による羽根とバンドの交差部での結果として生じる丸みを最小にするためには、好ましい実施形態では傾斜角度は約45°までならよい。
【0021】
従って、張り広げられた編組端20cは、そこに積層される外側及び内側バンド14,16との一体構造を提供し、タービンノズルに対して主たる強度を提供する。編組端はバンド積層体とクロスステッチにするかまたはバンド積層体と重ね合せにすることができる。羽根前部分及びバンド中のセラミック繊維は、運転中に受ける三次元の荷重及び温度差に対して要求される方向でのノズル強度を最大にする方向に優先的に向けることができる。
【0022】
図2で初めに示されるように、それぞれの羽根18は、比較的に大きい半径の前縁18a及び比較的に薄い半径の後縁18bを備える空気力学的な三日月形の輪郭を有する。後縁の半径は、ノズルの空力性能を最大にするために必要な一般に約10ミルである。そのような薄い後縁は、セラミック構造に固有の制約を考慮すると複合材のタービンノズルの設計をさらに複雑なものにする。セラミック繊維はほとんど延性を備えていないので、それらの繊維を薄い後縁に必要な小さな半径の周りに曲げるのは一般的に不可能である。さらに、CMC複合材の層の厚さもまた一般的には薄い羽根後縁の厚さよりは大きい。
【0023】
羽根は燃焼ガスを流すように構成されるていので、羽根は運転中にガス圧によって高い負荷を受け、またガスの高温に曝され温度差による熱膨張及び収縮を引き起こす。そして、羽根後縁は比較的に薄いので、それの冷却を行える空間を設ける余地はほとんどない。
【0024】
従って、図1から図3までに示される好ましい実施形態においては、各羽根後部分22はその中に強化セラミック繊維のないモノリシック・セラミックから成る。モノリシック・セラミックは窒化ケイ素(Si34)のような従来型のものである。羽根後部分22は高靭性モノリシック・セラミックで形成されるのが望ましいけれども、それらは一般に前部分20に見られる向きとは異なる向きにその中の強化セラミック繊維を備えたセラミック複合材で形成してもよい。
【0025】
例えば、前部分20中の繊維は傾斜方向の角度Aに向いているのが望ましいのに対して、後部分22に用いられる繊維は、後縁の半径方向の強度を増すために後部分の両端の間で半径方向に延びるていのが望ましいであろう。後部分における繊維の好適な半径方向の向きを考慮すると、或いは後部分の他の態様のモノリシック構造を考慮すると、後部分の外側及び内側バンドへの特別な取付けがノズル組立体及びその強度を補っている。
【0026】
上記のように、羽根後部分22は一体になった前部分及びバンドから分離し異なるものであることが望ましい。前部分及びバンドにより画成される構造枠を用いて、個々の後部分をそれらが対応する前部分に隣接する位置に機械的に嵌合し、個々の空力羽根を完成するのが有利である。
【0027】
図1及び図3に示されるように、各後部分の半径方向の外側及び内側両端22aには、後部分から延び出る軸方向に細長い支持キーを形成するのが望ましい。その支持キー22aは、対応する外側及び内側バンドに形成される相補的な座すなわちソケット24に簡単に嵌合され、それぞれの後部分を外側及び内側バンドの間に保持し羽根にかかるトルクをバンドに搬送する。この構造では、後部分は、それらが嵌合される外側及び内側バンドに対して半径方向に膨張したり収縮したりすることが可能である。そして、後部分にかかる空力トルク負荷は、支持キー22aを介して対応するバンドで担持される。
【0028】
このようにして、CMC羽根前部分20は、セラミック繊維で強化された外側及び内側バンドと共に構造枠を構成する。また、薄い羽根後部分は空力性能を最大にするために特別の輪郭形状とすることができ、嵌合によってバンドの間に保持することができる。したがって、他の実施形態では、後部分は実行可能なら繊維で強化しているが、モノリシック・セラミックは後部分に選択的に有利に用いることができる。
【0029】
例えば図2に示される2部分からなる構造においては、望ましくは羽根後部分22は羽根前部分20から間隔を置いて配置され、それらの間に小さな間隙26を設けている。羽根部分20,22のどちらか一方又は両方はコンプレッサの抽気空気等の冷却媒体28をその中に流すために、半径方向に中空にすることができる。各部分はまた間隙内に隠された列になった吐出孔30を含むこともでき、運転中に間隙の中へ冷却媒体を吐出する。このようにして、冷却媒体がなんらかの適当な方法でその内部冷却するために各羽根部分を貫通して流され、その後冷却媒体は間隙26の中へ吐出され後部分の外側表面を覆うように下流に流れるにつれて、冷却空気の膜を形成する。
【0030】
差圧が運転中に各羽根の両側面18cと18dとの間に生じるので、各羽根は図2に示すように間隙26内で羽根前部分20と後部分22の間に配置されるシール32を含み、そこを流れる流体をシールするのが望ましい。シール32は、間隙26を画成する面の相補的な凹陥に嵌装されたセラミックロープのシールのようなどのような適当な構成をしていてもよい。シールは高温の燃焼ガスが間隙26を介して流れるのを阻止する一方、シールの両横方向側面上を間隙26を介して冷却媒体28が吐出するのを可能にしている。
【0031】
図3は、図1及び図2に示されるセラミック・タービンノズル10の好ましい製造法の概略を示す。各羽根後部分22は、例えばモノリシック材料を後部分の所望の構成に成形する等どのような適当な方法ででも予備成形されることが望ましい。
【0032】
個々のセラミック繊維管20aは、その素地の状態で羽根前部分の所望の形状に形成され、対応する後部分22を補完し、両者によって個々の羽根18を構成する。各前部分の張り広げられた端20cはその後素地の状態で外側及び内側バンドのセラミック織物と積層される。
【0033】
このようにして、前部分及びバンドのセラミック構成要素は適当な工具または型枠を使って要求される形に形成されるかモールドされ、個々の予備成形された後部分22がそれに組み合わされる。したがって、後部分は組立工程においてバンドの間であって対応する前部分の後方に嵌合される。
【0034】
次ぎに、素地のバンドと前部分は従来の方法で処理されるかまたは硬化され、後部分がその中に機械的に嵌合された硬化したセラミックノズルを形成する。
【0035】
この好ましい構成では、羽根後部分22は、強化セラミック繊維をもたないモノリシック・セラミックのような前もって硬化処理されたセラミックであることが望ましい。そして、羽根前部分20及びバンド14,16は、その中に強化セラミック繊維を有するセラミック母材の複合材構造であり、構造的に一体のものとなりまた組立体全体に強度を与える。
【0036】
この構造では、管編組20aの強度上の利点が羽根前部分をバンドと一体化するために用いられ、羽根後部分22はバンドに機械的に保持されるか又は嵌合される。後部分は軸方向及び円周方向にバンドに保持されるが、支持ソケット24内でバンド間で半径方向に自由に膨張したり収縮したりする。
【0037】
セラミック母材の複合材及びモノリシック・セラミックのそれぞれの利点を選択的に用いて、タービンノズルをその一体性と耐久性を最大にするように構成する。羽根前部分及び後部分20、22の相対的な大きさは、CMC及びモノリシック・セラミック材料の製造能力の要求に合わせて調整することができる。
【0038】
本明細書では本発明の好ましい例示的な実施形態と思料するものについて説明してきたが、本発明のその他の形態は本明細書の教示内容から当業者には自明であり、本発明の技術的思想及び技術的範囲に属するかかる形態すべてが特許請求の範囲で保護されることを望むものである。
【0039】
従って、特許による保護を望むのは、請求項に規定され特徴付けられた発明である。
【図面の簡単な説明】
【図1】 本発明の例示的な実施形態による環状のセラミック・タービンノズルのセグメントの等角図。
【図2】 図1に示されたセラミック羽根の1つを線2−2に沿って見た半径方向断面図。
【図3】 図1及び図2に示されたセラミック・タービンノズルの例示的な製造法のフローチャート図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates generally to gas turbine engines, and more specifically to the turbine nozzle.
[0002]
[Prior art]
In a gas turbine engine, air is pressurized with a compressor, mixed with fuel in a combustor and ignited to generate hot combustion gases that flow into the downstream turbine, where the energy from the gases is absorbed by the turbine. To extract. The turbine includes a turbine nozzle having a plurality of circumferentially spaced nozzle vanes supported by integral outer and inner bands. The high pressure turbine nozzle initially receives the hottest combustion gases from the combustor and flows them through a turbine rotor having a plurality of circumferentially spaced blades extending radially outward from the support disk. .
[0003]
Overall engine efficiency is directly related to the temperature of the combustion gas, which must be limited to protect the various turbine components that are heated by the gas. The high pressure turbine nozzle must withstand the high temperature combustion gases from the combustor for an appropriate service life. This is generally achieved by using a superalloy material that retains strength at high temperatures and diverting a portion of the compressor air for the purpose of use as a cooling medium in the turbine nozzle.
[0004]
Superalloy strength is limited, and the shunting compressor air reduces the overall efficiency of the engine. Thus, engine efficiency is effectively limited by the availability of suitable superalloys and the need to divert compressor air to cool the turbine nozzle.
[0005]
Ceramic-based materials are being considered to improve the turbine nozzle to further increase the temperature performance of the turbine nozzle and reduce the use of cooling air diverted for the turbine nozzle. However, the conventional ceramic materials available for this purpose require special mounting structures to prevent their breakage damage, which has little ductility and limits its useful life.
[0006]
Turbine nozzle design is further complicated because the nozzle is an annular assembly of blades that is subject to three-dimensional aerodynamic loads and temperature gradients therethrough. Turbine nozzles expand and contract during operation, resulting in thermal stress.
[0007]
Monolithic ceramics can be easily formed, but are relatively fragile at their integral joints. Ceramic matrix composites (CMC) incorporate ceramic fibers into the ceramic matrix with the intention of increasing mechanical strength. The fiber provides strength to the bond matrix. However, because ceramic fibers have little ductility, they have insufficient capacity to bend and accommodate the transitions required in complex three-dimensional components such as turbine nozzles.
[0008]
Accordingly, it would be desirable to provide an improved turbine nozzle formed from ceramic to withstand the harsh environment of a gas turbine engine.
[0009]
DISCLOSURE OF THE INVENTION
The turbine nozzle includes ceramic outer and inner bands with a ceramic blade front portion integrally coupled thereto. The rear part of the ceramic blade is fitted (captured) into the complementary socket of the band at both ends.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In accordance with the preferred and exemplary embodiments, the invention, together with further objects and advantages thereof, will be specifically described by the following detailed description taken in conjunction with the accompanying drawings.
[0011]
Illustrated in FIG. 1 is a portion of an annular high pressure turbine nozzle 10 for a gas turbine engine, located downstream of a combustor of a gas turbine engine that discharges hot combustion gas 12 to the nozzle. The nozzle includes ceramic arched outer and inner bands 14,16. The band may be a segment of the ring or a continuous ring if required.
[0012]
Although a plurality of circumferentially spaced ceramic blades 18 are mounted between the outer and inner bands, two blades are shown in FIG. 1 to illustrate an exemplary nozzle segment. Each vane has a suitable airfoil shape as shown in more detail in FIG. 2 and includes an axially opposed leading edge 18a and a trailing edge 18b, which are circumferentially or laterally opposed pressure sides. 18c and suction side 18d are coupled together. The pressure side 18c is normally concave and the suction side 18d is normally convex because it is necessary to change the direction of the combustion gas in accordance with conventional practice.
[0013]
In order to construct a practical ceramic turbine nozzle, each blade 18 is defined by a set of complementary blade portions. The vane front portion 20 is integrally joined with the corresponding one of the bands 14, 16 at both radial ends as a unitary or unitary assembly to provide structural strength. The vane rear portion 22 has opposing radially outer and inner ends 22a that fit into complementary sockets 24 in each of the bands 14,16.
[0014]
In this configuration, both vanes 20 and 22 are ceramic in the complex three-dimensional configuration required for the turbine nozzle to provide adequate strength during operation, despite the use of low ductility ceramic. Can be formed.
[0015]
In the preferred embodiment shown in FIGS. 1 and 2, each vane front portion 20 has an annular turbine nozzle with adjusted directional strength and a strong coupling with the integral bands 14,16. Or a conventional ceramic matrix composite (CMC). As schematically shown in these figures, the front portion 20 preferably includes a ceramic fiber braid 20a in a suitable ceramic matrix 20b. Conventional ceramic matrix composites can be used, but silicon carbide fibers (SiC) can be included in the silicon carbide matrix (SiC). The fibers and matrix are initially contained in a suitable matrix in a generally flexible substrate state and are processed or cured to a final ceramic state.
[0016]
In the preferred embodiment shown in FIG. 3, the ceramic fiber braid 20a is initially in the form of an unbroken tubular continuous fiber. The tube is simply formed using suitable tools having the desired contour of the vane front portion. The outer and inner bands 14, 16 are preferably in the form of CMC laminates 14a, 16a that can be suitably laminated with the front braid 20a to increase strength.
[0017]
More specifically, the braided tube 20a shown in FIG. 3 is slit into the shape of the stretched or mushroomed ends 20c with integral transitions for lamination with the band laminate. It is desirable to have both longitudinal ends. Both the front portion 20 and the bands 14 and 16 are preferably formed of CMC using the same ceramic fiber in the same ceramic base material.
[0018]
The braided tube 20a is configured to form the leading edge of the completed airfoil with the required radial extent between the bands, and the stretched end 20c partially forms those bands. Can be redirected along the corresponding band. The stretched edges of the circumferentially adjacent front part are adjacent to each other along the circumference of the band, and the band is completed with CMC tape or woven laminate so that the others are in the required band shape Is done. When processed or hardened, the front part of the substrate and the band are hardened in their final ceramic state, resulting in a unitary assembly of these components.
[0019]
A particular advantage of this assembly is that the vane front portion 20 is formed of a braided tube having the highest strength performance due to its interwoven fibers. Since these fibers are ceramic, they have little ductility but can still be integrally formed with the band with or without stretched ends 20c.
[0020]
As shown in FIG. 3, the ceramic fibers in the braid 20a transition at an inclination angle A from the blade front portion to the opposite outer and inner bands over the final corner rounded portion formed between the front portion and the band. Is desirable. In order to minimize the resulting roundness at the blade-band intersection due to the relatively stiff ceramic fibers, in preferred embodiments the tilt angle may be up to about 45 °.
[0021]
Thus, the stretched braid end 20c provides a unitary structure with the outer and inner bands 14, 16 laminated thereon and provides the main strength to the turbine nozzle. The braided end can be cross-stitched with the band laminate or can be overlapped with the band laminate. The ceramic fibers in the vane front part and the band can be preferentially directed in a direction that maximizes the nozzle strength in the direction required for the three-dimensional loads and temperature differences experienced during operation.
[0022]
As initially shown in FIG. 2, each vane 18 has an aerodynamic crescent profile with a relatively large radius leading edge 18a and a relatively thin radius trailing edge 18b. The trailing edge radius is typically about 10 mils required to maximize the aerodynamic performance of the nozzle. Such a thin trailing edge further complicates the design of a composite turbine nozzle in view of the limitations inherent in ceramic structures. Because ceramic fibers have little ductility, it is generally impossible to bend them around the small radius required for a thin trailing edge. Furthermore, the thickness of the CMC composite layer is also generally greater than the thickness of the thin blade trailing edge.
[0023]
Since the vanes are configured to flow combustion gas, the vanes are subjected to high loads due to gas pressure during operation, and are exposed to high gas temperatures, causing thermal expansion and contraction due to temperature differences. Since the trailing edge of the blade is relatively thin, there is little room for providing a space for cooling the blade.
[0024]
Accordingly, in the preferred embodiment shown in FIGS. 1-3, each vane rear portion 22 is comprised of a monolithic ceramic without reinforced ceramic fibers therein. Monolithic ceramics are conventional, such as silicon nitride (Si 3 N 4 ). Although the back vane portion 22 is preferably formed of a high toughness monolithic ceramic, they are generally formed of a ceramic composite with reinforcing ceramic fibers therein in a different orientation than that found in the front portion 20. Also good.
[0025]
For example, it is desirable for the fibers in the front portion 20 to be oriented at an angle A in the tilt direction, whereas the fibers used in the rear portion 22 are both ends of the rear portion to increase the radial strength of the trailing edge. It would be desirable to extend radially between the two. Considering the preferred radial orientation of the fibers in the rear part, or considering other aspects of the monolithic structure of the rear part, special attachments to the outer and inner bands of the rear part supplement the nozzle assembly and its strength. ing.
[0026]
As mentioned above, the vane rear portion 22 is preferably separate and distinct from the integrated front portion and band. With the structural frame defined by the front part and the band, it is advantageous to mechanically fit the individual rear parts in positions adjacent to the corresponding front part to complete the individual aerodynamic blades. .
[0027]
As shown in FIGS. 1 and 3, it is desirable to form axially elongated support keys extending from the rear portion at the radially outer and inner ends 22a of each rear portion. The support key 22a is simply fitted into complementary seats or sockets 24 formed on the corresponding outer and inner bands, holding the respective rear portions between the outer and inner bands and providing torque to the vanes. Transport to. With this construction, the rear portions can expand and contract radially relative to the outer and inner bands into which they are fitted. The aerodynamic torque load applied to the rear portion is carried by the corresponding band via the support key 22a.
[0028]
In this way, the CMC vane front portion 20 constitutes a structural frame with outer and inner bands reinforced with ceramic fibers. In addition, the thin rear portion of the blade can be specially contoured to maximize aerodynamic performance and can be held between the bands by fitting. Thus, in other embodiments, the back portion is reinforced with fibers if practicable, but monolithic ceramics can be selectively used advantageously in the back portion.
[0029]
For example, in the two-part construction shown in FIG. 2, the trailing blade portion 22 is preferably spaced from the leading blade portion 20 with a small gap 26 therebetween. Either or both of the vane portions 20, 22 can be radially hollow to allow a cooling medium 28, such as compressor bleed air, to flow therethrough. Each portion may also include a row of discharge holes 30 hidden in the gap to discharge the cooling medium into the gap during operation. In this way, the cooling medium is flowed through each vane portion for internal cooling in any suitable manner, after which the cooling medium is discharged into the gap 26 and downstream so as to cover the outer surface of the rear portion. As a result, a film of cooling air is formed.
[0030]
Since differential pressure occurs between the side surfaces 18c and 18d of each blade during operation, each blade is a seal 32 disposed between the blade front portion 20 and the rear portion 22 within the gap 26 as shown in FIG. It is desirable to seal the fluid flowing therethrough. The seal 32 may be of any suitable configuration, such as a ceramic rope seal fitted into a complementary recess in the surface defining the gap 26. The seal prevents hot combustion gases from flowing through the gap 26 while allowing the cooling medium 28 to discharge through the gap 26 on both lateral sides of the seal.
[0031]
FIG. 3 outlines a preferred method of manufacturing the ceramic turbine nozzle 10 shown in FIGS. Each vane rear portion 22 is preferably preformed in any suitable manner, such as by molding a monolithic material into the desired configuration of the rear portion.
[0032]
The individual ceramic fiber tubes 20a are formed in a desired shape of the front part of the blade in the state of the base, complement the corresponding rear part 22, and the individual blade 18 is constituted by both. The stretched end 20c of each front portion is then laminated with ceramic fabric of the outer and inner bands in a green state.
[0033]
In this way, the front and band ceramic components are formed or molded into the required shape using a suitable tool or formwork and the individual preformed rear portions 22 are combined therewith. Thus, the rear part is fitted between the bands and behind the corresponding front part in the assembly process.
[0034]
The green band and front portion are then processed or cured in a conventional manner to form a hardened ceramic nozzle with the rear portion mechanically fitted therein.
[0035]
In this preferred configuration, the vane rear portion 22 is preferably a pre-cured ceramic, such as a monolithic ceramic without reinforcing ceramic fibers. The blade front portion 20 and the bands 14 and 16 have a composite structure of a ceramic base material having reinforcing ceramic fibers therein, and are structurally integrated and give strength to the entire assembly.
[0036]
In this construction, the strength advantage of the tube braid 20a is used to integrate the vane front portion with the band, and the vane rear portion 22 is mechanically held or fitted to the band. The rear portion is held by the band in the axial direction and the circumferential direction, but freely expands and contracts between the bands in the support socket 24 in the radial direction.
[0037]
The advantages of each of the ceramic matrix composite and the monolithic ceramic are selectively used to configure the turbine nozzle to maximize its integrity and durability. The relative size of the vane front and rear portions 20,22 can be tailored to meet the production capacity requirements of CMC and monolithic ceramic materials.
[0038]
While this specification has described what is considered to be a preferred exemplary embodiment of the present invention, other forms of the invention will be apparent to those skilled in the art from the teachings herein and the technical scope of the invention. All such forms belonging to the spirit and technical scope are desired to be protected by the claims.
[0039]
Accordingly, what is desired to be protected by patent is an invention as defined and characterized in the claims.
[Brief description of the drawings]
FIG. 1 is an isometric view of a segment of an annular ceramic turbine nozzle according to an exemplary embodiment of the present invention.
FIG. 2 is a radial cross-sectional view of one of the ceramic blades shown in FIG. 1 taken along line 2-2.
FIG. 3 is a flow chart diagram of an exemplary method of manufacturing the ceramic turbine nozzle shown in FIGS. 1 and 2;

Claims (6)

セラミックの外側及び内側バンド(14,16)と、
両端で前記バンドと一体に結合されたセラミック羽根前部分(20)と、
前記バンドの相補的ソケット(24)に嵌合される両端(22a)を有するセラミック羽根後部分(22)と
を備え、
前記羽根前部分(20)がセラミック母材の複合材からなり、前記羽根前部分がセラミック母材(20b)中にセラミック繊維編組(20a)を含み、
前記編組(20a)が、前記バンドに積層された張り広げられた両端(20c)を有する管からなる
ことを特徴とする、タービンノズル(10)。
Ceramic outer and inner bands (14,16);
Ceramic blade front part (20) integrally joined to the band at both ends;
A ceramic vane rear portion (22) having opposite ends (22a) fitted to the complementary sockets (24) of the band;
The vane front portion (20) is made from a composite material of ceramic matrix, seen including a ceramic fiber braid (20a) said blade leading portion in ceramic matrix (20b),
The turbine nozzle (10), wherein the braid (20a) comprises a tube having stretched ends (20c) laminated to the band .
セラミックの外側及び内側バンドと(14,16)、両端で前記バンドに一体に結合されたセラミック母材の複合材の羽根前部分(20)と、前記バンドの相補的ソケット(24)に嵌合される両端(22a)を有するモノリシック・セラミック羽根後部分(22)とを備え、
前記羽根前部分が、セラミック母材(20b)中に前記バンドに積層される張り広げられた両端(20c)を有するセラミック繊維管状編組(20a)をさらに備えてなることを特徴とする、タービンノズル(10)。
Mates with ceramic outer and inner bands (14, 16), ceramic base composite vane front part (20) integrally bonded to the band at both ends, and complementary socket (24) of the band A monolithic ceramic blade rear portion (22) having both ends (22a) to be
A turbine nozzle, wherein the blade front portion further comprises a ceramic fiber tubular braid (20a) having stretched ends (20c) laminated to the band in a ceramic base material (20b) (Ten).
前記羽根後部分が、前記相補的ソケットに嵌合されるその両端の支持キーを含み、前記羽根後部分を前記バンド間に保持し、羽根にかかるトルクをバンドに搬送する請求項に記載のノズル。 3. The wing rear portion includes support keys at both ends thereof fitted to the complementary socket, holds the wing rear portion between the bands, and transfers torque applied to the wing to the band. nozzle. セラミック母材の複合材の素地からなる外側及び内側バンド(14,16)を用意することと、
前記バンドの相補的ソケット(24)に嵌合される両端(22a)を有するセラミック羽根後部分(22)を形成することと、
前記後部分(22)と相補的な関係にある羽根前部分(20)を、セラミック繊維編組(20a)を含むセラミック母材(20b)の複合材の素地から形成することと、
前記素地の前部分を前記素地の外側及び内側バンド(14,16)と積層することと、
前記後部分を前記バンドの間で前記前部分の後側に嵌合することと、
前記素地のバンド及び前記素地の前部分を硬化させ、そこに嵌合される前記後部分とで前記セラミックノズルを形成することと
を含むセラミック・タービンノズル(10)を製造する方法。
Providing outer and inner bands (14, 16) made of a composite body of ceramic matrix;
Forming a ceramic vane rear portion (22) having opposite ends (22a) mated to complementary bands (24) of the band;
Forming a front blade portion (20) in a complementary relationship with the rear portion (22) from a composite matrix of a ceramic matrix (20b) comprising a ceramic fiber braid (20a);
Laminating the front portion of the substrate with the outer and inner bands (14, 16) of the substrate;
Fitting the rear portion between the bands to the rear side of the front portion;
A method of manufacturing a ceramic turbine nozzle (10) comprising: curing the base band and a front portion of the base and forming the ceramic nozzle with the rear portion fitted therein.
前記後部分が前もって硬化処理されたセラミックである請求項に記載の方法。The method of claim 4 , wherein the rear portion is a pre-cured ceramic. 前記後部分がモノリシック・セラミックである請求項に記載の方法。The method of claim 5 , wherein the rear portion is a monolithic ceramic.
JP2000220197A 1999-09-24 2000-07-21 Ceramic turbine nozzle Expired - Lifetime JP4912522B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/405529 1999-09-24
US09/405,529 US6200092B1 (en) 1999-09-24 1999-09-24 Ceramic turbine nozzle

Publications (3)

Publication Number Publication Date
JP2001090505A JP2001090505A (en) 2001-04-03
JP2001090505A5 JP2001090505A5 (en) 2007-09-06
JP4912522B2 true JP4912522B2 (en) 2012-04-11

Family

ID=23604080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220197A Expired - Lifetime JP4912522B2 (en) 1999-09-24 2000-07-21 Ceramic turbine nozzle

Country Status (4)

Country Link
US (1) US6200092B1 (en)
EP (1) EP1087103B1 (en)
JP (1) JP4912522B2 (en)
DE (1) DE60023625T2 (en)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543996B2 (en) 2001-06-28 2003-04-08 General Electric Company Hybrid turbine nozzle
US6499938B1 (en) 2001-10-11 2002-12-31 General Electric Company Method for enhancing part life in a gas stream
US6709230B2 (en) * 2002-05-31 2004-03-23 Siemens Westinghouse Power Corporation Ceramic matrix composite gas turbine vane
US6648597B1 (en) 2002-05-31 2003-11-18 Siemens Westinghouse Power Corporation Ceramic matrix composite turbine vane
US7093359B2 (en) 2002-09-17 2006-08-22 Siemens Westinghouse Power Corporation Composite structure formed by CMC-on-insulation process
US9068464B2 (en) * 2002-09-17 2015-06-30 Siemens Energy, Inc. Method of joining ceramic parts and articles so formed
GB2411440B (en) * 2004-02-24 2006-08-16 Rolls Royce Plc Gas turbine nozzle guide vane
US6997676B2 (en) * 2004-03-10 2006-02-14 General Electric Company Bifurcated outlet guide vanes
US7066717B2 (en) * 2004-04-22 2006-06-27 Siemens Power Generation, Inc. Ceramic matrix composite airfoil trailing edge arrangement
US7052234B2 (en) 2004-06-23 2006-05-30 General Electric Company Turbine vane collar seal
US7435058B2 (en) * 2005-01-18 2008-10-14 Siemens Power Generation, Inc. Ceramic matrix composite vane with chordwise stiffener
US7452182B2 (en) * 2005-04-07 2008-11-18 Siemens Energy, Inc. Multi-piece turbine vane assembly
US7316539B2 (en) * 2005-04-07 2008-01-08 Siemens Power Generation, Inc. Vane assembly with metal trailing edge segment
US7393183B2 (en) * 2005-06-17 2008-07-01 Siemens Power Generation, Inc. Trailing edge attachment for composite airfoil
US7563071B2 (en) * 2005-08-04 2009-07-21 Siemens Energy, Inc. Pin-loaded mounting apparatus for a refractory component in a combustion turbine engine
US20070122266A1 (en) * 2005-10-14 2007-05-31 General Electric Company Assembly for controlling thermal stresses in ceramic matrix composite articles
US7762076B2 (en) * 2005-10-20 2010-07-27 United Technologies Corporation Attachment of a ceramic combustor can
US7762761B2 (en) * 2005-11-30 2010-07-27 General Electric Company Methods and apparatus for assembling turbine nozzles
US7600970B2 (en) * 2005-12-08 2009-10-13 General Electric Company Ceramic matrix composite vane seals
US7648336B2 (en) * 2006-01-03 2010-01-19 General Electric Company Apparatus and method for assembling a gas turbine stator
US7997860B2 (en) * 2006-01-13 2011-08-16 General Electric Company Welded nozzle assembly for a steam turbine and related assembly fixtures
US7950234B2 (en) * 2006-10-13 2011-05-31 Siemens Energy, Inc. Ceramic matrix composite turbine engine components with unitary stiffening frame
US7762768B2 (en) * 2006-11-13 2010-07-27 United Technologies Corporation Mechanical support of a ceramic gas turbine vane ring
US20080159856A1 (en) * 2006-12-29 2008-07-03 Thomas Ory Moniz Guide vane and method of fabricating the same
US7722317B2 (en) * 2007-01-25 2010-05-25 Siemens Energy, Inc. CMC to metal attachment mechanism
US7887300B2 (en) * 2007-02-27 2011-02-15 Siemens Energy, Inc. CMC airfoil with thin trailing edge
US7824152B2 (en) * 2007-05-09 2010-11-02 Siemens Energy, Inc. Multivane segment mounting arrangement for a gas turbine
US8888451B2 (en) * 2007-10-11 2014-11-18 Volvo Aero Corporation Method for producing a vane, such a vane and a stator component comprising the vane
JP5088196B2 (en) * 2008-03-24 2012-12-05 株式会社Ihi Turbine nozzle segment
US8292580B2 (en) * 2008-09-18 2012-10-23 Siemens Energy, Inc. CMC vane assembly apparatus and method
US8167573B2 (en) * 2008-09-19 2012-05-01 Siemens Energy, Inc. Gas turbine airfoil
US8251651B2 (en) * 2009-01-28 2012-08-28 United Technologies Corporation Segmented ceramic matrix composite turbine airfoil component
JP5163559B2 (en) * 2009-03-13 2013-03-13 株式会社Ihi Turbine blade manufacturing method and turbine blade
JP5062212B2 (en) * 2009-03-30 2012-10-31 株式会社Ihi Method for manufacturing hollow structure including flange, hollow structure including flange, and turbine blade
US8236409B2 (en) * 2009-04-29 2012-08-07 Siemens Energy, Inc. Gussets for strengthening CMC fillet radii
FR2946999B1 (en) 2009-06-18 2019-08-09 Safran Aircraft Engines CMC TURBINE DISPENSER ELEMENT, PROCESS FOR MANUFACTURING SAME, AND DISPENSER AND GAS TURBINE INCORPORATING SAME.
US8226361B2 (en) * 2009-07-08 2012-07-24 General Electric Company Composite article and support frame assembly
US8206096B2 (en) * 2009-07-08 2012-06-26 General Electric Company Composite turbine nozzle
US8763400B2 (en) * 2009-08-04 2014-07-01 General Electric Company Aerodynamic pylon fuel injector system for combustors
US8256088B2 (en) * 2009-08-24 2012-09-04 Siemens Energy, Inc. Joining mechanism with stem tension and interlocked compression ring
US8850823B2 (en) * 2009-12-29 2014-10-07 Rolls-Royce North American Technologies, Inc. Integrated aero-engine flowpath structure
FR2956876B1 (en) * 2010-02-26 2012-10-19 Snecma STRUCTURAL AND AERODYNAMIC MODULE OF A TURBOMACHINE CASING AND CARTER STRUCTURE COMPRISING A PLURALITY OF SUCH A MODULE
US8616801B2 (en) 2010-04-29 2013-12-31 Siemens Energy, Inc. Gusset with fibers oriented to strengthen a CMC wall intersection anisotropically
US8770930B2 (en) 2011-02-09 2014-07-08 Siemens Energy, Inc. Joining mechanism and method for interlocking modular turbine engine component with a split ring
US8790067B2 (en) 2011-04-27 2014-07-29 United Technologies Corporation Blade clearance control using high-CTE and low-CTE ring members
US8905711B2 (en) 2011-05-26 2014-12-09 United Technologies Corporation Ceramic matrix composite vane structures for a gas turbine engine turbine
US8770931B2 (en) * 2011-05-26 2014-07-08 United Technologies Corporation Hybrid Ceramic Matrix Composite vane structures for a gas turbine engine
US9011085B2 (en) 2011-05-26 2015-04-21 United Technologies Corporation Ceramic matrix composite continuous “I”-shaped fiber geometry airfoil for a gas turbine engine
US9334743B2 (en) 2011-05-26 2016-05-10 United Technologies Corporation Ceramic matrix composite airfoil for a gas turbine engine
US8739547B2 (en) 2011-06-23 2014-06-03 United Technologies Corporation Gas turbine engine joint having a metallic member, a CMC member, and a ceramic key
US8864492B2 (en) 2011-06-23 2014-10-21 United Technologies Corporation Reverse flow combustor duct attachment
US8939728B2 (en) 2011-06-30 2015-01-27 United Technologies Corporation Hybrid part made from monolithic ceramic skin and CMC core
US9335051B2 (en) 2011-07-13 2016-05-10 United Technologies Corporation Ceramic matrix composite combustor vane ring assembly
US8920127B2 (en) 2011-07-18 2014-12-30 United Technologies Corporation Turbine rotor non-metallic blade attachment
US9062559B2 (en) * 2011-08-02 2015-06-23 Siemens Energy, Inc. Movable strut cover for exhaust diffuser
US20130089431A1 (en) * 2011-10-07 2013-04-11 General Electric Company Airfoil for turbine system
US8967974B2 (en) * 2012-01-03 2015-03-03 General Electric Company Composite airfoil assembly
US9527262B2 (en) 2012-09-28 2016-12-27 General Electric Company Layered arrangement, hot-gas path component, and process of producing a layered arrangement
US20140212284A1 (en) * 2012-12-21 2014-07-31 General Electric Company Hybrid turbine nozzle
WO2014158278A2 (en) * 2013-03-04 2014-10-02 Rolls-Royce North American Technologies, Inc. Compartmentalization of cooling flow in a structure comprising a cmc component
US9410438B2 (en) * 2013-03-08 2016-08-09 Pratt & Whitney Canada Corp. Dual rotor blades having a metal leading airfoil and a trailing airfoil of a composite material for gas turbine engines
WO2015023324A2 (en) * 2013-04-12 2015-02-19 United Technologies Corporation Stator vane platform with flanges
US9488191B2 (en) 2013-10-30 2016-11-08 Siemens Aktiengesellschaft Gas turbine diffuser strut including coanda flow injection
US10662792B2 (en) * 2014-02-03 2020-05-26 Raytheon Technologies Corporation Gas turbine engine cooling fluid composite tube
US10072516B2 (en) * 2014-09-24 2018-09-11 United Technologies Corporation Clamped vane arc segment having load-transmitting features
US10196910B2 (en) 2015-01-30 2019-02-05 Rolls-Royce Corporation Turbine vane with load shield
US10060272B2 (en) 2015-01-30 2018-08-28 Rolls-Royce Corporation Turbine vane with load shield
US10655482B2 (en) * 2015-02-05 2020-05-19 Rolls-Royce Corporation Vane assemblies for gas turbine engines
US9845692B2 (en) * 2015-05-05 2017-12-19 General Electric Company Turbine component connection with thermally stress-free fastener
US11230935B2 (en) 2015-09-18 2022-01-25 General Electric Company Stator component cooling
US10161266B2 (en) 2015-09-23 2018-12-25 General Electric Company Nozzle and nozzle assembly for gas turbine engine
DE102016217320A1 (en) * 2016-09-12 2018-03-15 Siemens Aktiengesellschaft Gas turbine with separate cooling for turbine and exhaust housing
US10408082B2 (en) * 2016-11-17 2019-09-10 United Technologies Corporation Airfoil with retention pocket holding airfoil piece
US20180135427A1 (en) * 2016-11-17 2018-05-17 United Technologies Corporation Airfoil with leading end hollow panel
US10677079B2 (en) 2016-11-17 2020-06-09 Raytheon Technologies Corporation Airfoil with ceramic airfoil piece having internal cooling circuit
US10577942B2 (en) * 2016-11-17 2020-03-03 General Electric Company Double impingement slot cap assembly
US10662782B2 (en) * 2016-11-17 2020-05-26 Raytheon Technologies Corporation Airfoil with airfoil piece having axial seal
US10605088B2 (en) * 2016-11-17 2020-03-31 United Technologies Corporation Airfoil endwall with partial integral airfoil wall
US10767502B2 (en) * 2016-12-23 2020-09-08 Rolls-Royce Corporation Composite turbine vane with three-dimensional fiber reinforcements
US10393381B2 (en) 2017-01-27 2019-08-27 General Electric Company Unitary flow path structure
US10253643B2 (en) 2017-02-07 2019-04-09 General Electric Company Airfoil fluid curtain to mitigate or prevent flow path leakage
US10370990B2 (en) 2017-02-23 2019-08-06 General Electric Company Flow path assembly with pin supported nozzle airfoils
US10385776B2 (en) 2017-02-23 2019-08-20 General Electric Company Methods for assembling a unitary flow path structure
US10253641B2 (en) 2017-02-23 2019-04-09 General Electric Company Methods and assemblies for attaching airfoils within a flow path
US10385709B2 (en) 2017-02-23 2019-08-20 General Electric Company Methods and features for positioning a flow path assembly within a gas turbine engine
US10247019B2 (en) 2017-02-23 2019-04-02 General Electric Company Methods and features for positioning a flow path inner boundary within a flow path assembly
US10378373B2 (en) 2017-02-23 2019-08-13 General Electric Company Flow path assembly with airfoils inserted through flow path boundary
US10301953B2 (en) * 2017-04-13 2019-05-28 General Electric Company Turbine nozzle with CMC aft Band
US10385731B2 (en) 2017-06-12 2019-08-20 General Electric Company CTE matching hanger support for CMC structures
US20190024513A1 (en) * 2017-07-19 2019-01-24 General Electric Company Shield for a turbine engine airfoil
US10934850B2 (en) * 2017-08-25 2021-03-02 DOOSAN Heavy Industries Construction Co., LTD Turbine blade having an additive manufacturing trailing edge
US10746035B2 (en) 2017-08-30 2020-08-18 General Electric Company Flow path assemblies for gas turbine engines and assembly methods therefore
US10605103B2 (en) 2018-08-24 2020-03-31 Rolls-Royce Corporation CMC airfoil assembly
US10767497B2 (en) 2018-09-07 2020-09-08 Rolls-Royce Corporation Turbine vane assembly with ceramic matrix composite components
US10934870B2 (en) * 2018-09-17 2021-03-02 Rolls Royce Plc Turbine vane assembly with reinforced end wall joints
FR3097264B1 (en) * 2019-06-12 2021-05-28 Safran Aircraft Engines Turbomachine turbine with CMC distributor with load recovery
US11242762B2 (en) * 2019-11-21 2022-02-08 Raytheon Technologies Corporation Vane with collar
US11162372B2 (en) 2019-12-04 2021-11-02 Rolls-Royce Plc Turbine vane doublet with ceramic matrix composite material construction
US11268394B2 (en) 2020-03-13 2022-03-08 General Electric Company Nozzle assembly with alternating inserted vanes for a turbine engine
US11286783B2 (en) * 2020-04-27 2022-03-29 Raytheon Technologies Corporation Airfoil with CMC liner and multi-piece monolithic ceramic shell
US11719130B2 (en) 2021-05-06 2023-08-08 Raytheon Technologies Corporation Vane system with continuous support ring

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619077A (en) * 1966-09-30 1971-11-09 Gen Electric High-temperature airfoil
US4786234A (en) * 1982-06-21 1988-11-22 Teledyne Industries, Inc. Turbine airfoil
US4643636A (en) * 1985-07-22 1987-02-17 Avco Corporation Ceramic nozzle assembly for gas turbine engine
US4861229A (en) * 1987-11-16 1989-08-29 Williams International Corporation Ceramic-matrix composite nozzle assembly for a turbine engine
DE3821005A1 (en) * 1988-06-22 1989-12-28 Mtu Muenchen Gmbh Metal/ceramic composite blade
FR2647502B1 (en) * 1989-05-23 1991-09-13 Europ Propulsion TURBINE DISTRIBUTOR FOR TURBO-REACTOR AND MANUFACTURING METHOD THEREOF
US5358379A (en) * 1993-10-27 1994-10-25 Westinghouse Electric Corporation Gas turbine vane
US5630700A (en) * 1996-04-26 1997-05-20 General Electric Company Floating vane turbine nozzle
DE19617556A1 (en) * 1996-05-02 1997-11-06 Asea Brown Boveri Thermally loaded blade for a turbomachine

Also Published As

Publication number Publication date
EP1087103B1 (en) 2005-11-02
EP1087103A3 (en) 2004-02-11
DE60023625T2 (en) 2006-07-27
DE60023625D1 (en) 2005-12-08
US6200092B1 (en) 2001-03-13
EP1087103A2 (en) 2001-03-28
JP2001090505A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP4912522B2 (en) Ceramic turbine nozzle
EP2599959B1 (en) Ceramic matrix composite airfoil structure with trailing edge support for a gas turbine engine
US8118546B2 (en) Grid ceramic matrix composite structure for gas turbine shroud ring segment
EP2562360B1 (en) Ceramic matrix composite vane structure with overwrap for a gas turbine engine
CN110273713B (en) Composite airfoil assembly having separate airfoils, inner band and outer band
US6709230B2 (en) Ceramic matrix composite gas turbine vane
US8206096B2 (en) Composite turbine nozzle
JP6240672B2 (en) Ceramic center body and manufacturing method
US20070258809A1 (en) Multi-layer ring seal
WO2010110325A1 (en) Cmc turbine stator vane
EP3617450B1 (en) Cmc component including directionally controllable cmc insert and method of fabrication
EP2570611B1 (en) Ceramic matrix composite airfoil for a gas turbine engine and corresponding method of forming
US20220090509A1 (en) Double box composite seal assembly with insert for gas turbine engine
EP3517282B1 (en) Composite component having t or l-joints and method for forming same
EP3835553B1 (en) Non-metallic side plate seal assembly for a gas turbine engine
US10519779B2 (en) Radial CMC wall thickness variation for stress response
US20240183278A1 (en) Turbine engine with composite airfoil having a non-metallic leading edge protective wrap
WO2020209847A1 (en) Three dimensional ceramic matrix composite wall structures fabricated by using pin weaving techniques
US10018054B2 (en) Fabrication of gas turbine engine components using multiple processing steps
US20220275728A1 (en) Three-dimensional ceramic matrix composite t-joint for airfoils via pin-weaving

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090828

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110819

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4912522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term