JP4911813B2 - Crosslinkable composition for solid electrolyte, polymer solid electrolyte lithium ion secondary battery, and method for producing polymer solid electrolyte lithium ion secondary battery - Google Patents

Crosslinkable composition for solid electrolyte, polymer solid electrolyte lithium ion secondary battery, and method for producing polymer solid electrolyte lithium ion secondary battery Download PDF

Info

Publication number
JP4911813B2
JP4911813B2 JP2000303703A JP2000303703A JP4911813B2 JP 4911813 B2 JP4911813 B2 JP 4911813B2 JP 2000303703 A JP2000303703 A JP 2000303703A JP 2000303703 A JP2000303703 A JP 2000303703A JP 4911813 B2 JP4911813 B2 JP 4911813B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer
lithium
crosslinkable composition
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000303703A
Other languages
Japanese (ja)
Other versions
JP2002110245A (en
Inventor
裕司 山道
仁 森井泉
敏晴 高畠
俊 西川
信次 別所
克巳 谷野
敏史 藤城
雅博 角崎
孝志 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunstar Giken KK
Toyama Prefecture
Original Assignee
Sunstar Giken KK
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunstar Giken KK, Toyama Prefecture filed Critical Sunstar Giken KK
Priority to JP2000303703A priority Critical patent/JP4911813B2/en
Priority to PCT/JP2000/008973 priority patent/WO2001047055A1/en
Publication of JP2002110245A publication Critical patent/JP2002110245A/en
Application granted granted Critical
Publication of JP4911813B2 publication Critical patent/JP4911813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリマー固体電解質リチウムイオン2次電池、更に詳しくは、円筒型、角型、シート状等の形状を有する充電可能な2次電池であって、その中の電解液を従来の液状からポリマーを用いて固体化するもので、電解液の漏洩を解消すると共に、電流負荷特性、特に低温時の電流負荷特性を改善したポリマー固体電解質を使用したリチウムイオン2次電池およびその製造法並びに上記固体電解質用の液状架橋性組成物に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
リチウムイオン2次電池は、小型軽量の充電可能な電池で、単位容積あるいは単位重量当り蓄電容量が大きく、携帯型電子機器:携帯電話、ノートパソコン、携帯パソコン、携帯情報端末(PDA)、MDデッキ、ビデオカメラ、ディジタルカメラ等に盛んに利用され、小型軽量で比較的電力消費の大きな各種携帯型機器には必要欠くべからざる存在となっている。
ところで、現状のリチウムイオン2次電池において、その電解質として、炭酸プロピレン、炭酸エチレン等を主とした電解液溶媒にリチウム電解質塩を溶解した液状の電解質、すなわち電解液を使用しているものが殆どである。
しかしながら、このような電解液を使用した電池は、漏液や、温度上昇(使用時や充放電時に自体の発熱による場合;誤使用:短絡〜複数個の電池を使用しその一部を正負逆挿入して使用した場合;使用環境で高温に暴露される場合;あるいはデバイスの組み込み時のハンダ付け等で起こる)したときの内圧上昇(電解液中の溶媒による蒸気圧に起因し、沸点が低いほど内圧上昇は大きい)による漏液、破裂、発火の危険といった安全性の問題を抱えており、電解液の固体化、すなわち固体電解質の開発が活発に行われている。
【0003】
この固体電解質は、ポリマー材料を用いるのが一般的で、従来からポリオキシエチレン鎖を有する材料を始め、各種の材料が検討されてきたが、これらの材料では最も基本的な特性であるイオン導電性が液状電解質に比べ大きく劣り、未だ実用できるレベルに到達していない。
そこで最近では、液状電解質をポリマー材料でゲル状態としたポリマーゲル型固体電解質の開発が活発化しており、現在のところ、液状電解質に近いイオン導電性が得られつつあることもあって、一部用途では実用化されつつある。
【0004】
また、シート状の薄型電池においては、現在、(1)正、負極を形成した後、この電極面あるいは正、負極の間に挿入されるセパレータあるいは不織布等に、ポリフッ化ビニリデン系、ポリアクリロニトリル系のポリマーを溶剤あるいは分散媒を用いて溶液、エマルジョン、ディスパージョンにする等、あるいは加熱溶融して液状化して塗布し、乾燥(エマルジョン、ディスパージョンの場合は単なる乾燥ではなくポリマー粒子が一体化する:造膜も必要)した後、電解質塩と電解液溶媒からなる電解液に浸して膨潤させゲルを形成させる方法;
(2)架橋性のモノマー、オリゴマー等を含んだ電解液を、電極面あるいは正、負極の間に挿入されるセパレータあるいは不織布等に塗布し、加熱あるいは紫外線等の放射線でポリマーを架橋、ゲルを形成してセパレータあるいは不織布等を挟み込んだ状態で正負の両電極を貼り合わせる方法、あるいは貼り合わせた後に加熱してポリマーを架橋、ゲルを形成させる方法等
種々の方法が採用されているが、いずれの方法にしても、塗布、乾燥(造膜を含む)、貼り合わせ、膨潤等の各工程に応じた専用の設備を必要とする。
【0005】
また、(1)の方法で用いるポリマーは電解液に溶解してはならず(膨潤することは必要)、しかし、反面、塗布するためには何らかの方法(溶剤あるいは分散媒を用いて溶液、エマルジョン、ディスパージョンにする等)で液状とすることが必要なため非架橋のポリマーであることが必要で(架橋ポリマーでは溶液化はできず、エマルジョンあるいはディスパージョンとしても造膜ができない)、現状では使用可能なポリマーがポリフッ化ビニリデン系、ポリアクリロニトリル系等に限定され、また自然膨潤でゲルを形成するため、膨潤が不均一、不十分になりやすく、ゲルを形成するポリマー量も多くなる。さらに、電極、セパレータあるいは不織布を捲回あるいは積層した後に膨潤させるのが便利であるが、その場合は電解液が十分に行き渡り難く、さらに膨潤が不完全になりやすく、また、膨潤に長時間を要するという問題がある。
【0006】
また、(2)の方法において塗布時は、低分子のモノマー、オリゴマー等を含んだ電解液を用いて架橋により一括してゲルを形成する方法で、自然膨潤といった手段をとる必要がなく、一見理想的と見えるが、電解液溶媒を含んだ状態で塗布するため、塗布および架橋時に電解液溶媒が揮散しやすく、低沸点の電解液溶媒は使用できないという問題を有する。低沸点の電解液溶媒は、良好なイオン導電性(特に低温時のイオン導電性)を得るためには重要な溶媒(液状電解質を使用した円筒型、角型等従来の電池には良好な特性、特に低温における良好な特性を得るため、低沸点の電解液溶媒、例えば炭酸ジメチル、炭酸メチルエチル、炭酸ジエチル、ジメトキシエタン、プロピオン酸メチル、プロピオン酸エチル等が適宜用いられる)で、(2)の方法によって製造されるシート型では、これら低沸点電解液溶媒が使用できず、良好な特性が得難いという大きな問題を有する。
従って、用いることができる高沸点の炭酸エチレンと炭酸プロピレンが中心とならざるを得ないが、炭酸エチレンはその沸点が高く(36℃)、単独では用いることができず、炭酸プロピレン(融点:−49℃)を単独あるいは炭酸エチレンに混合して用いなければならない。また、炭酸プロピレンは負極にグラファイト系の炭素材料を用いることができず(炭酸プロピレンが分解する)、使用可能な炭素材料は、ハードカーボン等の非晶性の材料という制限を有する。
このグラファイト系炭素材料は、放電時の電圧を一定の値に維持しやすいという優れた特性を有するが、(2)の方法による電池では残念ながら用いることができないという欠点も併せて有している。
【0007】
加えて、上述のこれらのポリマーゲル型の固体電解質は、液状電解質に近いイオン導電性が得られつつあるとは云うものの、依然液状電解質に比べれば劣っており、比較的大きな放電電流が要求される用途には供し得ず、従来の液状電解質を使用した電池の代替には不十分な性能しか発揮できない(内部抵抗が少々高くても使用可能な小放電電流用途向けには実用化されつつあり、従来のシート型電池等はその典型的な例である)。
この最大要因は、ゲルという固体性状を得るためポリマーというイオン導電性に対して全く有害無益な成分を比較的多量に含まなければ、ゲルを形成できないことにある。このポリマーゲル型固体電解質のイオン導電性向上を目指すため、ゲル中のポリマー成分量の低減や高誘電率ポリマーの使用など、ポリマー含有量とポリマー構造の両面から検討が加えられている。
【0008】
【課題を解決するための手段】
本発明者らは、これらの問題を解決すべく鋭意研究を進めたところ、オキセタン環含有ポリマーを電解液溶媒とリチウム電解質塩の溶液(電解液)中、カチオン重合開始剤の存在下で架橋させることにより、ポリマー含有量5%(重量%、以下同様)以下の極端に少ない量でも、ゲルから電解液が分離(ブリード)しないので、良好なゲルを形成できることを見出した。また、特定のリチウム電解質塩を用いれば、カチオン重合開始剤を省略できること、および電解液溶媒として特定の組合せ、特に低分子カルボン酸エステル類の使用によって、イオン導電性が飛躍的に向上しうることも見出した。
本発明者らは、これらの知見に基づき、上記成分を含む液状の固体電解質用架橋性組成物を使用し、これを従来の液状電解質と同様な既存のリチウムイオン2次電池用に架橋させれば、ポリマー固体の形成によって系のゲル化が起こり、上述の諸問題を一挙に解決し、液状電解質を使用したリチウムイオン2次電池と比較して勝るとも劣らない優れた特性を有するポリマーゲル型の固体電解質リチウムイオン2次電池が得られることを見出し、本発明を完成させるに至った。
【0009】
なお、カチオン重合を利用したポリマー電解質に関し、既に日本特許第2925231号(平成11年7月28日発行)において、「エポキシ基を有する化合物のエポキシ同士のカチオン開環重合により形成された高分子化合物がイオン性塩(リチウム電解質塩を包含)および該イオン性塩に相溶しうる化合物(電解液溶媒を包含)を含有していることから成る高分子固体電解質」が提案されている。しかして、ここでの上記エポキシ基を有する化合物は、「重合により網状構造を有する高分子化合物となるもの」と定義付けされているが、具体的には、式:
【化5】

Figure 0004911813
の脂環式エポキシ化合物や、ビスフェノール系エポキシ化合物の2種のみが例示されているにすぎず、本発明のオキセタン環含有ラジカル共重合ポリマーとは明らかに相違する。
また、該先行特許の高分子固体電解質中のポリマー含有量は、たとえばその実施例2の配合組成から算出すると、約47%にも及び、イオン伝導度も5×10-4S/cm(25℃)とあり、実用的レベルとは云えない。これに対して、本発明ではポリマー含有量5%以下が特徴で、イオン伝導度(イオン導電性)も後記実施例に示される通り、前者の10倍乃至20倍もの値を示すことが認められる。
【0010】
すなわち、本発明は、(1)オキセタン環含有ポリマー、
(2)カチオン重合開始剤、
(3)電解液溶媒、および
(4)リチウム電解質塩
から成り、上記オキセタン環含有ポリマー(1)が総量中5%以下である液状の固体電解質用架橋性組成物(以下、液状組成物と称す)を、リチウムイオン2次電池用に架橋によってゲル化せしめポリマー固体電解質化したことを特徴とするポリマー固体電解質リチウムイオン2次電池を提供するものである。
【0011】
本発明におけるオキセタン環含有ポリマー(1)は、ポリマー構造内にオキセタン環を複数個有するポリマーであって、ポリマーの骨格構造を問うものではないが、簡便なラジカル重合でも容易に得ることができる。すなわち、オキセタン環を有するラジカル重合性モノマー(以下、オキセタン重合モノマーと称す)および必要に応じてエポキシ基を有するラジカル重合性モノマー(以下、エポキシ重合モノマーと称す)と、他のラジカル重合性モノマーとをラジカル重合させることによって製造され、通常分子量が10000以上に設定されている。分子量が10000未満であると、ゲルを形成するのに必要なポリマー量が多く必要になる傾向にある。なお、分子量の上限には特に制限はないが、後記液状組成物の液状(溶液状態)を維持する上で、上限を100万程度、好ましくは50万程度に抑えることが適当である。
【0012】
上記ラジカル重合は通常、ラジカル重合開始剤[たとえばN,N'−アゾビスイソブチロニトリル、ジメチルN,N'−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等]および必要に応じてメルカプタン類などの分子量調整剤を用いて行なうことができ、その際、得られるポリマーの分子量が比較的大きいため、溶媒中60〜80℃程度の温度で行なう溶液重合が好適である。溶媒としては、後記電解液溶媒(3)に例示される環状炭酸エステル類、鎖状炭酸エステル類、低分子カルボン酸エステル類の使用が好ましい。
【0013】
上記オキセタン重合モノマーとしては、たとえば式:
【化6】
Figure 0004911813
(式中、R1はHまたはCH3;およびR2はHまたは炭素数1〜6のアルキルである)
の(メタ)アクリルモノマー、具体的には、(3−オキセタニル)メチル(メタ)アクリレート、(3−メチル−3−オキセタニル)メチル(メタ)アクリレート、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、(3−ブチル−3−オキセタニル)メチル(メタ)アクリレート、(3−ヘキシル−3−オキセタニル)メチル(メタ)アクリレート等が挙げられ、これらの少なくとも1種を使用する。使用量は通常、上記エポキシ重合モノマーを用いない場合、モノマー全量中5〜50%、好ましくは10〜30%の範囲で選定する。5%未満では、ゲル化に要するポリマー量の増大を招き、また50%を越えると、ゲルから電解液が分離(ブリード)する傾向にある。
なお、本明細書において、「(メタ)アクリル」とは、アクリルとメタクリルを意味し、「(メタ)アクリレート」とは、アクリレートとメタクリレートを意味する。
【0014】
上記必要に応じて用いられるエポキシ重合モノマーとしては、たとえば
【化7】
Figure 0004911813
(式中、R5はHまたはCH3;およびR6
【化8】
Figure 0004911813
である)
の(メタ)アクリレート、具体的には、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレートが挙げられ、これらの少なくとも1種を使用する。使用量は通常、オキセタン重合モノマーとの合計量中エポキシ重合モノマーの割合が90%以下となるように、および該両モノマーの合計量がモノマー全量中5〜50%、好ましくは10〜30%となるように選定すればよい。
【0015】
上記他のラジカル重合性モノマーとしては、式:
【化9】
Figure 0004911813
(式中、R3はHまたはCH3;およびR4は−COOCH3、−COOC25、−COOC37、−COOC49、−COO(CH2CH2O)1 3CH3、−COO(CH2CH2O)1 325、−COO(CH2CH(CH3)O)1 3CH3、−COO(CH2CH(CH3)O)1 325、−OCOCH3、または−OCOC25である)
のビニル系もしくは(メタ)アクリル系モノマーが好適である。なお、これら以外のものも使用可能であるが、使用する電解液溶媒(3)との親和性が低いと、ゲルから電解液が分離(ブリード)する場合がある。
このようにして製造されるオキセタン環含有ポリマー(1)を単独で使用、あるいは該オキセタン環含有ポリマー(1)の一部に、上記エポキシ基を有するラジカル重合性モノマーと他のラジカル重合性モノマーとを上記と同様な条件下でラジカル共重合させることにより得られる分子量10000以上のエポキシ基含有ポリマーを併用してもよい。
【0016】
本発明におけるカチオン重合開始剤(2)としては、各種のオニウム塩(たとえばアンモニウム、ホスホニウム、アルソニウム、スチボニウム、スルホニウム、ヨードニウムなどのカチオンの、−BF4、−PF6、−SbF6、−CF3SO3、−ClO4などのアニオン塩等)が使用できるが、本発明でこれらオニウム塩を使用せずとも、リチウム電解質塩(4)であるヘキサフルオロリン酸リチウムおよび/またはテトラフルオロホウ酸リチウムを利用すれば、本来のリチウム電解質塩の作用に加え、当該カチオン重合開始剤としても作用することができ、好都合である。カチオン重合開始剤の使用は、電解質にとって余分な成分であり、その分イオン導電性の低下につながり、その他製造工程の煩雑化、コストの上昇等を伴なう。
当然、カチオン重合開始剤の一部として、オニウム塩にヘキサフルオロリン酸リチウムやテトラフルオロホウ酸リチウムを併用することも可能である。
【0017】
本発明における電解液溶媒(3)としては、たとえば環状炭酸エステル類(炭酸エチレン、炭酸プロピレン、炭酸ブチレンなど);鎖状炭酸エステル類(炭酸ジメチル、炭酸ジエチル、炭酸メチル・エチル、炭酸メチル・n−プロピルなどの対称および非対称型を包含);環状エステル類(ラクトン類)(γ−ブチロラクトン、γ−バレロラクトンなど);環状エーテル類(テトラヒドロフラン、メチルテトラヒドロフランなど);低分子カルボン酸エステル類(酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、酪酸ブチルなど);鎖状エーテル類(ジメトキシエタン、メトキシエトキシエタンなど);シアノエチル基含有化合物(メチル・2−シアノエチルエーテル、エチル・2−シアノエチルエーテル、ビス2−シアノエチルエーテル、炭酸メチル・2−シアノエチル、プロピオン酸2−シアノエチルなど)が挙げられ、これらの群から選ばれる少なくとも1種を用いる。特に、環状炭酸エステル類、環状エステル類の高誘電率溶媒に鎖状炭酸エステル類、低分子カルボン酸エステル類を混合して用いることが好ましく、更には、環状炭酸エステル類である炭酸エチレン、炭酸プロピレンと、鎖状炭酸エステル類である炭酸ジメチル、炭酸ジエチル、炭酸メチル・エチルと低分子カルボン酸エステル類の内、分子を構成する炭素の総数が4〜6の鎖状エステルである酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチルとの混合物を用いることが好ましく、更に、これらの内、炭素総数5の鎖状エステルである酢酸プロピル、プロピオン酸エチル、酪酸メチルの使用が好ましい。また、その混合比率を、環状炭酸エステル類/鎖状炭酸エステル類/低分子カルボン酸エステル類=10〜50:0〜50:50〜90(重量比)に設定し、かつ低分子カルボン酸エステル類を溶媒全体の50%以上に設定することが好ましい。
なお、上記低分子カルボン酸エステル類にあって、分子を構成する炭素の総数が4未満では、溶媒の沸点が低すぎ、電池にした場合、高温時に電池内圧がアップするという問題が生じ易く、また炭素総数7以上では、イオン導電性が低下して電池の特性が低下する傾向にある。
これら電解液溶媒(3)にあって、その種類および配合割合はイオン導電性への影響度が大きく、その結果、電池の内部抵抗、電流負荷特性、低温時の電流負荷特性等の電池の充放電特性、および溶媒の化学構造による電気化学的な安定性等の影響による電池の寿命に対して、大きな影響を与えるため、慎重に決定される。
【0018】
本発明におけるリチウム電解質塩(4)は、電解液溶媒(3)への溶解性に優れ、高イオン導電性と酸化〜還元電位に高耐性の陰イオン(酸基)で構成されるものが好ましく、特に限定されるものではないが、たとえば過塩素酸リチウム、テトラフルオロホウ酸リチウム、ヘキサフルオロリン酸リチウム、トリフルオロメタンスルホン酸リチウム等が挙げられ、これらの少なくとも1種を用いる。特に、テトラフルオロホウ酸リチウムとヘキサフルオロリン酸リチウムは、良好なイオン導電性が得られる上、オキセタン環含有ポリマー(1)を架橋する作用を併せ持つため好ましい存在である。これらリチウム電解質塩(4)の濃度は通常、1モル/dm3前後が適用されるが、特に限定するものではない。
【0019】
【発明の実施の形態】
本発明に係るポリマー固体電解質リチウムイオン2次電池は、上述のオキセタン環含有ポリマー(1)またはこれにエポキシ基含有ポリマーを併用したもの、カチオン重合開始剤(2)、電解液溶媒(3)およびリチウム電解質塩(4)を成分とし、これらを混合溶解して得られる低粘度の液状組成物を、固体電解質用架橋性組成物として使用することを特徴とし、以下の手順に従って製造することができる。
【0020】
先ず、上記液状組成物総量中におけるオキセタン環含有ポリマー(1)および必要に応じてエポキシ基含有ポリマー(これらを合せて架橋性ポリマーと称す)の占める割合を5%以下にする。すなわち、形成される固体電解質中のポリマー含有量をできるだけ低い値に設定して、イオン導電性の安定維持を行なう。
次に、液状組成物をそのポットライフ(液状状態の保持によって注入等の取扱いが可能である時間)の制限時間内に、リチウムイオン2次電池用の、電極やセパレータ等のユニットを組み込んだ密閉容器に注入し、電極とセパレータ等のギャップに浸入させた後、常温乃至100℃程度の温度にて、架橋性ポリマーを常温または加熱架橋させることによって容易にゲル化せしめ、ポリマー固体電解質の形成により、目的のポリマー固体電解質リチウムイオン2次電池を得る。
【0021】
このようにして、従来の電池生産と同様の工程で新設備も必要とせず、特性と安定性に優れたポリマー固体電解質リチウムイオン2次電池を得ることができる。
従来のポリマーゲル型高分子固体電解質は、イオン導電性にとって有害無益な高分子成分をいかに低減させるかが重要なポイントであるが、むやみに架橋密度を上げても、電解液のゲル保持性の低下によって電解液が分離し易く、またゲルを構成するポリマーの構造自体も大変重要となるが、本発明は、架橋性ポリマーの使用によって、これらの諸問題を解決したものと云える。
なお、本発明で用いる液状組成物は、電解液溶媒およびリチウム電解質塩を変更することにより、リチウムイオン2次電池以外にも、リチウム電池、リチウム2次電池、電気2重層キャパシター、ケミカルコンデンサー、エレクトロクロミックデバイス等のポリマーゲル型高分子固体電解質として使用することもできる。
【0022】
【実施例】
次に製造例、実施例および比較例を挙げて、本発明をより具体的に説明する。
製造例1(オキセタン環含有ポリマーの製造)
予め乾燥窒素ガスで十分に乾燥した1000mlの三口コルベンにて、予めモレキュラーシーブで脱水したメチルメタクリレート108g、予めモレキュラーシーブで脱水した(3−エチル−3−オキセタニル)メチルアクリレート36g、予めモレキュラーシーブで脱水し、減圧蒸留した加温常態の炭酸エチレン432gの混合液に、ジメチルN,N’−アゾビス(2−メチルプロピオネート)0.225gを加え、乾燥窒素ガスを導入しながら70℃で攪拌し、そのまま12時間加熱攪拌を続けラジカル重合を行なう。次に温度を40〜50℃に下げ、予めモレキュラーシーブで乾燥し、減圧蒸留したプロピオン酸エチル378gを加え、全体が均一になるまで攪拌溶解して、オキセタン環含有ポリマーの15%溶液を得る。
このポリマー溶液は、無色透明な粘稠液体で、赤外線吸収スペクトル測定の結果、波数980/cmに明確なオキセタン環の特性吸収を有することを確認した。
【0023】
実施例1(液状組成物Aの調製)
乾燥窒素ガスを充満したグローブボックス内で、製造例1で得たオキセタン環含有ポリマーの溶液10gと、ヘキサフルオロリン酸リチウムを1モル濃度に溶解した炭酸エチレン/炭酸ジエチル/炭酸ジメチル(10/10/40、重量比)の混合溶媒溶液40gを混合溶解して、液状組成物Aを調製する。液状組成物A中のポリマー濃度は、3.0%である。
この液状組成物Aを70℃で加熱架橋せしめ、ゲル化性、ゲルの状態およびイオン伝導度(10-3S/cm)を評価した。ゲル化性とゲル状態は目視にて;イオン伝導度は、金メッキ電極を組み込んだ密閉セル中に該液状組成物を注入し、密閉状態で70℃×5時間加熱した後冷却して測定用試験体とし、測定はLCZメーターを用い、周波数1KHz、測定温度20℃または−20℃で行なった。結果を下記表1に示す。
【0024】
実施例2(液状組成物Bの調製)
実施例1と同様にして、製造例1で得たオキセタン環含有ポリマーの溶液10gと、ヘキサフルオロリン酸リチウムを1.3モル濃度に溶解した炭酸エチレン/炭酸ジメチル/プロピオン酸エチル(15/15/70、重量比)の混合溶媒溶液40gを混合溶解して、液状組成物B(ポリマー濃度3.0%)を調製する。
実施例1と同様に、この液状組成物Bについてゲル化性、ゲル状態およびイオン伝導度を評価し、結果を下記表1に示す。
【表1】
Figure 0004911813
表1中、○はゲル化していることを示す。
【0025】
比較例1
式:
【化10】
Figure 0004911813
の低分子脂環式エポキシ化合物(ダイセル工業(株)製、「セロキサイド2021P」)2.5gを、ヘキサフルオロリン酸リチウムを1.0モル濃度に溶解した炭酸エチレン/炭酸ジメチル/プロピオン酸エチル(15/15/70、重量比)の混合溶媒溶液47.5gに溶解して、液状組成物C(低分子脂環式エポキシ化合物濃度5%)を調製する。
実施例1と同様に、この液状組成物Cを70℃で加熱重合せしめ、ゲル化性、ゲル状態およびイオン伝導度を評価し、結果を下記表2に示す。
【0026】
比較例2,3
比較例1において、低分子脂環式エポキシ化合物の濃度をそれぞれ、6%(比較例2)または8%(比較例3)とする以外は、同様にして液状組成物D,Eを調製し、ゲル化性、ゲル状態およびイオン伝導度の評価結果を下記表2に示す。
【0027】
比較例4
式:
【化11】
Figure 0004911813
の低分子オキセタン環含有化合物(宇部興産(株)製、「XDO」)3gを、ヘキサフルオロリン酸リチウムを1.0モル濃度に溶解した炭酸エチレン/炭酸ジメチル/プロピオン酸エチル(15/15/70、重量比)の混合溶媒溶液47gに溶解して、液状組成物F(低分子オキセタン環含有化合物濃度6%)を調製する。
実施例1と同様に、この液状組成物Fを70℃で加熱重合せしめ、ゲル化性、ゲル状態およびイオン伝導度を評価し、結果を下記表2に示す。
【0028】
比較例5,6
比較例4において、低分子オキセタン環含有化合物の濃度をそれぞれ、8%(比較例5)または10%(比較例6)とする以外は、同様にして液状組成物G,Hを調製し、ゲル化性、ゲル状態およびイオン伝導度の評価結果を下記表2に示す。
【0029】
【表2】
Figure 0004911813
表2中、
×は液状のままでゲル化していない状態
○はゲル化している
表2の結果から、低分子脂環式エポキシ化合物あるいは低分子オキセタン環含有化合物[モノマー]を単に重合せしめゲル化させた場合、ポリマー含有量5%程度(該モノマーが100%ポリマーに転化したと仮定し、モノマー含有量をポリマー含有量とする)では、ゲル化せず(比較例1,4)、6%程度以上ではゲル化するものの、液体成分がブリードし、良好なゲル形成ができず、イオン伝導度も良い結果が得られないことが認められる。
【0030】
実施例3(リチウムイオン2次電池Aの作成)
予め用意しておいたリチウムイオン電池用の電極、不織布からなるユニットを組み込んだアルミニウムラミネートフイルム製の袋状容器に、実施例1の液状組成物A1.85gを注入し、真空含浸を行った後密封し、70℃で19時間加熱して架橋によるゲル化を行い、薄型のポリマー固体電解質リチウムイオン2次電池Aを作成する。
なお、上記で用いた薄型リチウムイオン2次電池のユニットは、正極と負極を不織布を介して捲回した構造を有し、正極はアルミニウム箔の両面にコバルト酸リチウム主体からなる活物質を塗布したもので、そのサイズは50×80mmで、負極は銅箔に炭素系材料を塗布したもので、そのサイズは52×110mmであり、不織布はポリエステル細繊維製の20μm厚品で、このユニットを、周囲を熱溶着した袋状のアルミニウムラミネートフイルム(内面:ポリエチレン、外面:ポリプロピレン)中に組み込んだものである。電池の容量は、180mAHのもので、同じ電池を6個(No.1〜6)作成した。
【0031】
実施例4(リチウムイオン2次電池Bの作成)
実施例3と同様に、実施例2の液状組成物Bを用いて、薄型のポリマー固体電解質リチウムイオン2次電池B(6個)を作成する。
実施例3および4で作成した薄型ポリマー固体電解質リチウムイオン2次電池AおよびBを用いた、充放電繰り返し試験と常温時の負荷特性、低温時の負荷特性の結果をそれぞれ、下記表3および4に示す。
なお、充放電繰り返し試験の条件は、充放電共1C(180mA)で充放電サイクルを繰返し、初期1サイクル時の容量、10サイクル後の容量と保持率を示す。常温時の負荷特性は、充電はすべて0.2C(36mA)、放電は0.2C、1C、2C(360mA)、それぞれの放電容量および0.2C放電容量に対する保持率を示す。低温時の負荷特性は、−20℃における充放電共0.5C(90mA)放電容量、および常温における充放電共0.5C(90mA)放電容量に対する容量保持率を測定したものである。
すべて充電は定電流で4.2Vに達するまでとし、放電はすべて定電流で2.75Vに達するまでとしている。
【0032】
【表3】
Figure 0004911813
【0033】
【表4】
Figure 0004911813
【0034】
【発明の効果】
表3および4の結果から、本発明に係るポリマー固体電解質リチウムイオン2次電池は、負荷特性、特に大電流(2C特性で表される)負荷特性および低温時負荷特性において優れた特性を示しており、ポリマー固体電解質を使用したリチウムイオン2次電池の実用上の意義は非常に大きいことが認められる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer solid electrolyte lithium ion secondary battery, and more particularly, a rechargeable secondary battery having a cylindrical shape, a square shape, a sheet shape, or the like, in which the electrolytic solution is changed from a conventional liquid to a polymer. Lithium ion secondary battery using a polymer solid electrolyte that eliminates leakage of the electrolyte and improves current load characteristics, particularly current load characteristics at low temperatures, a method for producing the same, and the above solid The present invention relates to a liquid crosslinkable composition for an electrolyte.
[0002]
[Prior art and problems to be solved by the invention]
Lithium-ion rechargeable batteries are small, lightweight, rechargeable batteries with a large storage capacity per unit volume or unit weight, and portable electronic devices: mobile phones, notebook computers, portable personal computers, personal digital assistants (PDAs), MD decks It is actively used in video cameras, digital cameras, and the like, and is indispensable for various portable devices that are small, light and relatively large in power consumption.
By the way, most of the current lithium ion secondary batteries use a liquid electrolyte in which a lithium electrolyte salt is dissolved in an electrolyte solvent mainly composed of propylene carbonate, ethylene carbonate or the like, that is, an electrolyte. It is.
However, batteries using such electrolytes may leak or increase in temperature (due to heat generation during use or charging / discharging; misuse: short-circuited, using multiple batteries, some of which are reversed) When inserted and used; when exposed to high temperatures in the environment of use; or when the internal pressure rises due to soldering during device integration (due to the vapor pressure of the solvent in the electrolyte, resulting in a low boiling point As the internal pressure increases so much, there are safety problems such as leakage, rupture and risk of ignition, and solidification of the electrolyte, that is, development of a solid electrolyte is being actively carried out.
[0003]
For this solid electrolyte, a polymer material is generally used, and various materials such as a material having a polyoxyethylene chain have been studied, and the ionic conductivity that is the most basic characteristic of these materials has been studied. The properties are far inferior to liquid electrolytes and have not yet reached a practical level.
Therefore, recently, development of a polymer gel type solid electrolyte in which a liquid electrolyte is made into a gel state with a polymer material has been activated, and at present, ionic conductivity close to that of a liquid electrolyte is being obtained. It is being put to practical use in applications.
[0004]
In sheet-shaped thin batteries, (1) after forming positive and negative electrodes, a separator or non-woven fabric inserted between this electrode surface or between positive and negative electrodes is coated with polyvinylidene fluoride or polyacrylonitrile. The polymer is made into a solution, emulsion, dispersion, etc. using a solvent or dispersion medium, or is heated and melted to liquefy and applied, and dried (in the case of emulsion, dispersion, polymer particles are integrated rather than simply dried) : Film formation is also necessary) and then swelled in an electrolyte solution consisting of an electrolyte salt and an electrolyte solvent to form a gel;
(2) Applying an electrolyte containing a crosslinkable monomer or oligomer to the electrode surface or a separator or non-woven fabric inserted between the positive and negative electrodes, crosslinking the polymer with heat or radiation such as ultraviolet rays, A method in which both the positive and negative electrodes are bonded together with a separator or a nonwoven fabric sandwiched between them, or a method in which a polymer is crosslinked and heated to form a gel after bonding.
Various methods are employed, but any method requires dedicated equipment for each process such as coating, drying (including film formation), bonding, and swelling.
[0005]
In addition, the polymer used in the method (1) must not be dissolved in the electrolytic solution (it is necessary to swell), but on the other hand, in order to apply, some method (solution or emulsion using a solvent or dispersion medium) It is necessary to be a non-crosslinked polymer because it is required to be liquid (for example, a dispersion) (a crosslinked polymer cannot be used as a solution, and cannot be formed into an emulsion or dispersion). Usable polymers are limited to polyvinylidene fluoride, polyacrylonitrile, and the like, and form gels by spontaneous swelling. Therefore, swelling is likely to be uneven and insufficient, and the amount of polymer forming the gel increases. Furthermore, it is convenient to swell after winding, laminating or laminating electrodes, separators or nonwoven fabrics, but in that case, the electrolyte is difficult to spread sufficiently, and the swelling tends to be incomplete, and the swelling takes a long time. There is a problem that it takes.
[0006]
In addition, in the method (2), at the time of coating, a gel is formed in a lump by crosslinking using an electrolytic solution containing a low molecular weight monomer, oligomer, etc., and it is not necessary to take a means such as natural swelling. Although it seems to be ideal, since it is applied in a state containing an electrolyte solvent, it has a problem that the electrolyte solvent easily evaporates at the time of coating and crosslinking, and an electrolyte solvent having a low boiling point cannot be used. Low boiling point electrolyte solution is an important solvent for obtaining good ionic conductivity (especially ionic conductivity at low temperatures) (good characteristics for conventional batteries such as cylindrical and square types using liquid electrolyte) (2) In order to obtain good properties particularly at low temperatures, low-boiling electrolyte solvents such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, dimethoxyethane, methyl propionate, ethyl propionate, etc. are suitably used) In the sheet mold produced by this method, these low-boiling-point electrolyte solutions cannot be used, and there is a big problem that it is difficult to obtain good characteristics.
Therefore, high-boiling ethylene carbonate and propylene carbonate that can be used must be the center, but ethylene carbonate has a high boiling point (36 ° C.) and cannot be used alone, and propylene carbonate (melting point: − 49 ° C) alone or mixed with ethylene carbonate. Propylene carbonate cannot use a graphite-based carbon material for the negative electrode (propylene carbonate decomposes), and the usable carbon material has a limitation of an amorphous material such as hard carbon.
This graphite-based carbon material has an excellent characteristic that it is easy to maintain a voltage during discharge at a constant value, but it also has a disadvantage that it cannot be used unfortunately in a battery by the method (2). .
[0007]
In addition, these polymer gel type solid electrolytes described above are still inferior to liquid electrolytes and require a relatively large discharge current, although ionic conductivity close to that of liquid electrolytes is being obtained. It can only be used to replace batteries that use conventional liquid electrolytes. (It is being put to practical use for small discharge current applications that can be used even if the internal resistance is a little high. A conventional sheet type battery is a typical example).
The biggest factor is that a gel cannot be formed unless it contains a relatively large amount of components that are completely harmful and detrimental to the ionic conductivity of a polymer in order to obtain a solid state of gel. In order to improve the ionic conductivity of this polymer gel type solid electrolyte, studies have been made on both the polymer content and the polymer structure, such as reduction of the amount of polymer components in the gel and the use of a high dielectric constant polymer.
[0008]
[Means for Solving the Problems]
As a result of diligent research to solve these problems, the present inventors crosslink an oxetane ring-containing polymer in an electrolyte solvent and a lithium electrolyte salt solution (electrolytic solution) in the presence of a cationic polymerization initiator. As a result, it was found that even in an extremely small amount of polymer content of 5% (% by weight or less), the electrolyte solution does not separate (bleed) from the gel, so that a good gel can be formed. In addition, if a specific lithium electrolyte salt is used, the cation polymerization initiator can be omitted, and the ionic conductivity can be dramatically improved by using a specific combination as an electrolyte solvent, in particular, low molecular carboxylic acid esters. I also found.
Based on these findings, the present inventors can use a liquid cross-linkable composition for a solid electrolyte containing the above components, and cross-link it for an existing lithium ion secondary battery similar to a conventional liquid electrolyte. For example, the gelation of the system occurs due to the formation of a polymer solid, and the above-mentioned problems are solved at once, and the polymer gel type has excellent characteristics that are not inferior to those of a lithium ion secondary battery using a liquid electrolyte. The present inventors have found that a solid electrolyte lithium ion secondary battery can be obtained and have completed the present invention.
[0009]
In addition, regarding a polymer electrolyte using cationic polymerization, in Japanese Patent No. 2925231 (issued on July 28, 1999), “a polymer compound formed by cationic ring-opening polymerization of epoxies of a compound having an epoxy group” Has been proposed that contains an ionic salt (including a lithium electrolyte salt) and a compound (including an electrolyte solution solvent) that is compatible with the ionic salt. Thus, the compound having the epoxy group herein is defined as “a polymer compound having a network structure by polymerization”. Specifically, the compound represented by the formula:
[Chemical formula 5]
Figure 0004911813
Only two types of alicyclic epoxy compounds and bisphenol-based epoxy compounds are exemplified, which is clearly different from the oxetane ring-containing radical copolymer of the present invention.
The polymer content in the polymer solid electrolyte of the prior patent is, for example, about 47% when calculated from the composition of Example 2, and the ionic conductivity is 5 × 10.-FourS / cm (25 ° C.), which is not a practical level. On the other hand, the present invention is characterized by a polymer content of 5% or less, and the ionic conductivity (ionic conductivity) is recognized to be 10 to 20 times the value of the former as shown in Examples below. .
[0010]
That is, the present invention provides (1) an oxetane ring-containing polymer,
(2) a cationic polymerization initiator,
(3) electrolyte solution solvent, and
(4) Lithium electrolyte salt
A liquid crosslinkable composition for a solid electrolyte (hereinafter referred to as a liquid composition) in which the oxetane ring-containing polymer (1) is 5% or less in the total amount is gelled by crosslinking for a lithium ion secondary battery The present invention provides a polymer solid electrolyte lithium ion secondary battery characterized in that it is made into a caulking polymer solid electrolyte.
[0011]
The oxetane ring-containing polymer (1) in the present invention is a polymer having a plurality of oxetane rings in the polymer structure, and does not ask for the skeleton structure of the polymer, but can be easily obtained by simple radical polymerization. That is, a radical polymerizable monomer having an oxetane ring (hereinafter referred to as an oxetane polymerization monomer), and a radical polymerizable monomer having an epoxy group (hereinafter referred to as an epoxy polymerization monomer) if necessary, and other radical polymerizable monomers Is usually produced by radical polymerization, and the molecular weight is usually set to 10,000 or more. When the molecular weight is less than 10,000, a large amount of polymer is required to form a gel. The upper limit of the molecular weight is not particularly limited, but it is appropriate to keep the upper limit to about 1 million, preferably about 500,000 in order to maintain the liquid state (solution state) of the liquid composition described later.
[0012]
The radical polymerization is usually performed by radical polymerization initiators [for example, N, N′-azobisisobutyronitrile, dimethyl N, N′-azobis (2-methylpropionate), benzoyl peroxide, lauroyl peroxide, etc.] and If necessary, it can be carried out using a molecular weight regulator such as mercaptans. At that time, since the molecular weight of the obtained polymer is relatively large, solution polymerization carried out in a solvent at a temperature of about 60 to 80 ° C. is suitable. . As the solvent, it is preferable to use cyclic carbonates, chain carbonates, and low-molecular carboxylic acid esters exemplified in the electrolyte solution solvent (3) described later.
[0013]
Examples of the oxetane polymerization monomer include the formula:
[Chemical 6]
Figure 0004911813
(Wherein R1Is H or CHThreeAnd R2Is H or alkyl having 1 to 6 carbon atoms)
(Meth) acrylic monomers, specifically, (3-oxetanyl) methyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, (3-ethyl-3-oxetanyl) methyl (meth) ) Acrylate, (3-butyl-3-oxetanyl) methyl (meth) acrylate, (3-hexyl-3-oxetanyl) methyl (meth) acrylate, and the like, and at least one of these is used. The amount used is usually selected in the range of 5 to 50%, preferably 10 to 30%, based on the total amount of the monomer when the above epoxy polymerization monomer is not used. If it is less than 5%, the amount of polymer required for gelation increases, and if it exceeds 50%, the electrolyte tends to separate (bleed) from the gel.
In this specification, “(meth) acryl” means acryl and methacryl, and “(meth) acrylate” means acrylate and methacrylate.
[0014]
As an epoxy polymerization monomer used as necessary, for example,
[Chemical 7]
Figure 0004911813
(Wherein RFiveIs H or CHThreeAnd R6Is
[Chemical 8]
Figure 0004911813
Is)
(Meth) acrylates, specifically 3,4-epoxycyclohexylmethyl (meth) acrylate and glycidyl (meth) acrylate, and at least one of them is used. The amount used is usually such that the proportion of the epoxy polymerization monomer in the total amount with the oxetane polymerization monomer is 90% or less, and the total amount of both monomers is 5 to 50%, preferably 10 to 30% in the total amount of monomers. The selection should be such that
[0015]
Examples of the other radical polymerizable monomers include the formula:
[Chemical 9]
Figure 0004911813
(Wherein RThreeIs H or CHThreeAnd RFourIs -COOCHThree, -COOC2HFive, -COOCThreeH7, -COOCFourH9, -COO (CH2CH2O)1 ~ ThreeCHThree, -COO (CH2CH2O)1 ~ ThreeC2HFive, -COO (CH2CH (CHThree) O)1 ~ ThreeCHThree, -COO (CH2CH (CHThree) O)1 ~ ThreeC2HFive, -OCOCHThreeOr -OCOC2HFiveIs)
Of these, vinyl or (meth) acrylic monomers are preferred. In addition, although things other than these can also be used, when affinity with the electrolyte solution solvent (3) to be used is low, electrolyte solution may isolate | separate from a gel (bleed).
The oxetane ring-containing polymer (1) produced as described above is used alone, or a part of the oxetane ring-containing polymer (1) is combined with a radical polymerizable monomer having the epoxy group and another radical polymerizable monomer. An epoxy group-containing polymer having a molecular weight of 10,000 or more obtained by radical copolymerization under the same conditions as described above may be used in combination.
[0016]
As the cationic polymerization initiator (2) in the present invention, various onium salts (for example, -BF of cations such as ammonium, phosphonium, arsonium, stibonium, sulfonium, iodonium, etc.)Four, -PF6, -SbF6, -CFThreeSOThree, -ClOFourAnion salts such as the above can be used, but even if these onium salts are not used in the present invention, if lithium hexafluorophosphate and / or lithium tetrafluoroborate, which is the lithium electrolyte salt (4), is utilized, In addition to the action of the lithium electrolyte salt, it can also act as the cationic polymerization initiator, which is advantageous. The use of a cationic polymerization initiator is an extra component for the electrolyte, which leads to a decrease in ionic conductivity, and complicates the manufacturing process and increases costs.
Naturally, as part of the cationic polymerization initiator, lithium hexafluorophosphate or lithium tetrafluoroborate can be used in combination with the onium salt.
[0017]
Examples of the electrolyte solution solvent (3) in the present invention include cyclic carbonates (ethylene carbonate, propylene carbonate, butylene carbonate, etc.); chain carbonate esters (dimethyl carbonate, diethyl carbonate, methyl carbonate / ethyl carbonate, methyl carbonate / n). Including symmetric and asymmetric types such as propyl); cyclic esters (lactones) (γ-butyrolactone, γ-valerolactone, etc.); cyclic ethers (tetrahydrofuran, methyltetrahydrofuran, etc.); low molecular carboxylates (acetic acid) Ethyl, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, butyl butyrate, etc.); chain ethers (dimethoxyethane, methoxyethoxyethane, etc.); cyanoethyl group-containing compounds (methyl-2 -Cyanoethyl ether Ethyl 2-cyanoethyl ether, bis 2-cyanoethyl ether, methyl 2-cyanoethyl carbonate, 2-cyanoethyl propionate, etc.), and at least one selected from these groups is used. In particular, it is preferable to use a mixture of a chain carbonate ester and a low-molecular carboxylic acid ester in a cyclic carbonate, a high dielectric constant solvent of the cyclic ester, and further, ethylene carbonate, Propylene and chain carbonates such as dimethyl carbonate, diethyl carbonate, methyl carbonate and ethyl carbonate and low molecular weight carboxylic acid esters, ethyl acetate which is a chain ester having 4 to 6 carbon atoms constituting the molecule, It is preferable to use a mixture of propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, and among these, propyl acetate, ethyl propionate, which is a chain ester having 5 carbon atoms. The use of methyl butyrate is preferred. The mixing ratio is set to cyclic carbonates / chain carbonates / low molecular carboxylic acid esters = 10 to 50: 0 to 50:50 to 90 (weight ratio), and low molecular carboxylic acid esters. Is preferably set to 50% or more of the total solvent.
In the low molecular weight carboxylic acid esters, if the total number of carbon atoms constituting the molecule is less than 4, the boiling point of the solvent is too low, and when the battery is used, there is a problem that the internal pressure of the battery is increased at high temperatures. On the other hand, when the total number of carbons is 7 or more, the ionic conductivity tends to decrease and the battery characteristics tend to deteriorate.
In these electrolyte solvents (3), the type and blending ratio have a large influence on the ionic conductivity, and as a result, the battery charge such as the internal resistance, current load characteristics, and current load characteristics at low temperature of the battery can be improved. It is determined carefully because it has a great influence on the battery life due to the influence of the discharge characteristics and the electrochemical stability due to the chemical structure of the solvent.
[0018]
The lithium electrolyte salt (4) in the present invention is preferably composed of an anion (acid group) which is excellent in solubility in the electrolyte solvent (3) and has high ionic conductivity and high resistance to oxidation to reduction potential. Although not particularly limited, for example, lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, and the like are used, and at least one of these is used. In particular, lithium tetrafluoroborate and lithium hexafluorophosphate are preferable because they have good ionic conductivity and also have an action of crosslinking the oxetane ring-containing polymer (1). The concentration of these lithium electrolyte salts (4) is usually 1 mol / dm.ThreeBefore and after are applied, but not particularly limited.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The polymer solid electrolyte lithium ion secondary battery according to the present invention includes the above-mentioned oxetane ring-containing polymer (1) or a combination thereof with an epoxy group-containing polymer, a cationic polymerization initiator (2), an electrolyte solution solvent (3), and A low-viscosity liquid composition obtained by mixing and dissolving the lithium electrolyte salt (4) as a component is used as a crosslinkable composition for a solid electrolyte, and can be produced according to the following procedure. .
[0020]
First, the proportion of the oxetane ring-containing polymer (1) and, if necessary, the epoxy group-containing polymer (collectively referred to as a crosslinkable polymer) in the total amount of the liquid composition is adjusted to 5% or less. That is, the ionic conductivity is stably maintained by setting the polymer content in the formed solid electrolyte as low as possible.
Next, the liquid composition is hermetically sealed by incorporating a unit such as an electrode or a separator for a lithium ion secondary battery within the time limit of the pot life (a time during which the injection and the like can be handled by maintaining the liquid state). After injecting into the container and entering the gap between the electrode and the separator, the crosslinkable polymer is easily gelled by room temperature or heat crosslinking at a temperature of about room temperature to 100 ° C. By forming a polymer solid electrolyte The target polymer solid electrolyte lithium ion secondary battery is obtained.
[0021]
In this manner, a polymer solid electrolyte lithium ion secondary battery excellent in characteristics and stability can be obtained without the need for new equipment in the same process as the conventional battery production.
In conventional polymer gel type polymer solid electrolytes, the important point is how to reduce polymer components that are detrimental to ionic conductivity. However, even if the crosslink density is increased, the gel retention property of the electrolyte is not enough. The electrolyte is easily separated by the decrease, and the structure of the polymer constituting the gel is very important. However, the present invention can be said to have solved these problems by using a crosslinkable polymer.
In addition to the lithium ion secondary battery, the liquid composition used in the present invention can be replaced with a lithium battery, a lithium secondary battery, an electric double layer capacitor, a chemical capacitor, an electro It can also be used as a polymer gel type polymer solid electrolyte such as a chromic device.
[0022]
【Example】
Next, the present invention will be described more specifically with reference to production examples, examples and comparative examples.
Production Example 1 (Production of Oxetane Ring-Containing Polymer)
108 g of methyl methacrylate previously dehydrated with molecular sieves, 36 g of (3-ethyl-3-oxetanyl) methyl acrylate previously dehydrated with molecular sieves in a 1000 ml three-necked Kolben sufficiently dried with dry nitrogen gas beforehand, dehydrated with molecular sieves in advance Then, 0.225 g of dimethyl N, N′-azobis (2-methylpropionate) is added to a mixed solution of 432 g of heated normal ethylene carbonate distilled under reduced pressure and stirred at 70 ° C. while introducing dry nitrogen gas. Then, heating and stirring are continued for 12 hours, and radical polymerization is performed. Next, the temperature is lowered to 40 to 50 ° C., 378 g of ethyl propionate previously dried with molecular sieves and distilled under reduced pressure is added, and the mixture is stirred and dissolved until the whole becomes uniform to obtain a 15% solution of the oxetane ring-containing polymer.
This polymer solution was a colorless and transparent viscous liquid. As a result of infrared absorption spectrum measurement, it was confirmed that the polymer solution had a clear characteristic absorption of an oxetane ring at a wave number of 980 / cm.
[0023]
Example 1 (Preparation of liquid composition A)
In a glove box filled with dry nitrogen gas, 10 g of the oxetane ring-containing polymer solution obtained in Production Example 1 and ethylene carbonate / diethyl carbonate / dimethyl carbonate (10/10) in which lithium hexafluorophosphate was dissolved at a molar concentration. A liquid composition A is prepared by mixing and dissolving 40 g of a mixed solvent solution (40 / weight ratio). The polymer concentration in the liquid composition A is 3.0%.
This liquid composition A was heated and cross-linked at 70 ° C. to obtain gelation property, gel state and ionic conductivity (10-3S / cm) was evaluated. Gelability and gel state are visually observed; ionic conductivity is measured by injecting the liquid composition into a closed cell incorporating a gold-plated electrode, heating in a sealed state at 70 ° C. for 5 hours, and then cooling. The measurement was performed using an LCZ meter at a frequency of 1 KHz and a measurement temperature of 20 ° C or -20 ° C. The results are shown in Table 1 below.
[0024]
Example 2 (Preparation of liquid composition B)
In the same manner as in Example 1, 10 g of the oxetane ring-containing polymer solution obtained in Production Example 1 and ethylene carbonate / dimethyl carbonate / ethyl propionate (15/15) in which lithium hexafluorophosphate was dissolved at 1.3 molar concentration. / 70, weight ratio) is mixed and dissolved to prepare a liquid composition B (polymer concentration: 3.0%).
In the same manner as in Example 1, the liquid composition B was evaluated for gelation property, gel state, and ionic conductivity, and the results are shown in Table 1 below.
[Table 1]
Figure 0004911813
In Table 1, ○ indicates gelation.
[0025]
Comparative Example 1
formula:
[Chemical Formula 10]
Figure 0004911813
Of low molecular weight alicyclic epoxy compound ("Celoxide 2021P" manufactured by Daicel Industries, Ltd.), ethylene carbonate / dimethyl carbonate / ethyl propionate (lithium hexafluorophosphate dissolved in 1.0 molar concentration) 15/15/70, weight ratio) is dissolved in 47.5 g of a mixed solvent solution to prepare a liquid composition C (low molecular weight alicyclic epoxy compound concentration 5%).
In the same manner as in Example 1, this liquid composition C was polymerized by heating at 70 ° C., and the gelation property, gel state and ionic conductivity were evaluated. The results are shown in Table 2 below.
[0026]
Comparative Examples 2 and 3
In Comparative Example 1, liquid compositions D and E were prepared in the same manner except that the concentration of the low molecular weight alicyclic epoxy compound was 6% (Comparative Example 2) or 8% (Comparative Example 3), respectively. The evaluation results of gelling property, gel state and ionic conductivity are shown in Table 2 below.
[0027]
Comparative Example 4
formula:
Embedded image
Figure 0004911813
3 g of a low molecular oxetane ring-containing compound (“XDO” manufactured by Ube Industries, Ltd.), ethylene carbonate / dimethyl carbonate / ethyl propionate (15/15 / 70, weight ratio) is dissolved in 47 g of a mixed solvent solution to prepare a liquid composition F (low molecular oxetane ring-containing compound concentration 6%).
Similarly to Example 1, this liquid composition F was heated and polymerized at 70 ° C. to evaluate gelation properties, gel state and ionic conductivity, and the results are shown in Table 2 below.
[0028]
Comparative Examples 5 and 6
In Comparative Example 4, liquid compositions G and H were prepared in the same manner except that the concentration of the low molecular oxetane ring-containing compound was 8% (Comparative Example 5) or 10% (Comparative Example 6), respectively. Table 2 shows the evaluation results of the chemical properties, gel state, and ionic conductivity.
[0029]
[Table 2]
Figure 0004911813
In Table 2,
X is in a liquid state and not gelled
○ is gelled
From the results shown in Table 2, when the low molecular weight alicyclic epoxy compound or the low molecular weight oxetane ring-containing compound [monomer] is simply polymerized and gelled, the polymer content is about 5% (the monomer is converted to 100% polymer) Assuming that the monomer content is the polymer content), the gel does not gel (Comparative Examples 1 and 4) and gels at about 6% or more, but the liquid component bleeds and a good gel cannot be formed. It can be seen that the ion conductivity is not good.
[0030]
Example 3 (Preparation of lithium ion secondary battery A)
After injecting 1.85 g of the liquid composition A of Example 1 into a bag-like container made of an aluminum laminate film incorporating a unit made of a lithium ion battery electrode and a nonwoven fabric prepared in advance and vacuum impregnating Sealed and heated at 70 ° C. for 19 hours for gelation by crosslinking to produce a thin polymer solid electrolyte lithium ion secondary battery A.
In addition, the unit of the thin lithium ion secondary battery used above has a structure in which the positive electrode and the negative electrode are wound through a nonwoven fabric, and the positive electrode is coated with an active material mainly composed of lithium cobalt oxide on both surfaces of the aluminum foil. The size is 50 × 80 mm, the negative electrode is a copper foil coated with a carbon-based material, the size is 52 × 110 mm, the nonwoven fabric is a 20 μm thick product made of polyester fine fiber, and this unit is It is incorporated in a bag-like aluminum laminate film (inner surface: polyethylene, outer surface: polypropylene) with heat-welded surroundings. The capacity of the battery was 180 mAH, and six identical batteries (No. 1 to 6) were prepared.
[0031]
Example 4 (Preparation of lithium ion secondary battery B)
Similarly to Example 3, thin polymer solid electrolyte lithium ion secondary batteries B (six) are prepared using the liquid composition B of Example 2.
Tables 3 and 4 below show the results of charge / discharge repetition tests, load characteristics at normal temperature, and load characteristics at low temperature, respectively, using the thin polymer solid electrolyte lithium ion secondary batteries A and B prepared in Examples 3 and 4. Shown in
In addition, the conditions of a charging / discharging repetition test show the capacity | capacitance at the time of an initial 1 cycle, the capacity | capacitance after 10 cycles, and a retention rate, repeating a charging / discharging cycle by 1C (180mA) charge / discharge. The load characteristics at normal temperature are 0.2 C (36 mA) for all charging, 0.2 C, 1 C, 2 C (360 mA) for discharging, and the respective discharge capacities and retention rates for 0.2 C discharging capacities. The load characteristics at low temperature are obtained by measuring capacity retention ratios for both charge and discharge at −20 ° C. for 0.5 C (90 mA) discharge capacity and charge and discharge at room temperature for 0.5 C (90 mA) discharge capacity.
All charging is performed until reaching 4.2V at a constant current, and discharging is performed until reaching 2.75V at a constant current.
[0032]
[Table 3]
Figure 0004911813
[0033]
[Table 4]
Figure 0004911813
[0034]
【The invention's effect】
From the results shown in Tables 3 and 4, the polymer solid electrolyte lithium ion secondary battery according to the present invention exhibits excellent characteristics in load characteristics, particularly large current (expressed by 2C characteristics) and low temperature load characteristics. It is recognized that the practical significance of the lithium ion secondary battery using the polymer solid electrolyte is very large.

Claims (17)

(1)オキセタン環含有ポリマー、
(2)カチオン重合開始剤、
(3)電解液溶媒、および
(4)リチウム電解質塩
から成り、上記オキセタン環含有ポリマー(1)が、オキセタン環を有するラジカル重合性モノマー:
Figure 0004911813
(式中、R 1 はHまたはCH 3 ;およびR 2 はHまたは炭素数1〜6のアルキルである)
の(メタ)アクリルモノマーと、
他のラジカル重合性モノマー:
Figure 0004911813
(式中、R 3 はHまたはCH 3 ;およびR 4 は−COOCH 3 、−COOC 2 5 、−COOC 3 7 、−COOC 4 9 、−COO(CH 2 CH 2 O) 1 3 CH 3 、−COO(CH 2 CH 2 O) 1 3 2 5 、−COO(CH 2 CH(CH 3 )O) 1 3 CH 3 、−COO(CH 2 CH(CH 3 )O) 1 3 2 5 、−OCOCH 3 、または−OCOC 2 5 である)
のビニル系もしくは(メタ)アクリル系モノマー
とのラジカル共重合で得られる分子量10000以上のポリマーであり、上記オキセタン環含有ポリマー(1)が総量中5重量%以下であることを特徴とする液状の固体電解質用架橋性組成物。
(1) Oxetane ring-containing polymer,
(2) a cationic polymerization initiator,
(3) electrolyte solution solvent, and (4) a radically polymerizable monomer comprising a lithium electrolyte salt, wherein the oxetane ring-containing polymer (1) has an oxetane ring:
Figure 0004911813
(Wherein R 1 is H or CH 3 ; and R 2 is H or alkyl having 1 to 6 carbon atoms)
(Meth) acrylic monomer,
Other radical polymerizable monomers:
Figure 0004911813
Wherein R 3 is H or CH 3 ; and R 4 is —COOCH 3 , —COOC 2 H 5 , —COOC 3 H 7 , —COOC 4 H 9 , —COO (CH 2 CH 2 O) 1 to 3 CH 3, -COO (CH 2 CH 2 O) 1 ~ 3 C 2 H 5, -COO (CH 2 CH (CH 3) O) 1 ~ 3 CH 3, -COO (CH 2 CH (CH 3) O) 1 to 3 C 2 H 5 , —OCOCH 3 , or —OCOC 2 H 5 )
Vinyl or (meth) acrylic monomers
A liquid crosslinkable composition for a solid electrolyte , wherein the polymer has a molecular weight of 10,000 or more obtained by radical copolymerization with the oxetane ring-containing polymer (1) in a total amount of 5% by weight or less.
オキセタン環を有するラジカル重合性モノマーの量が、モノマー全量中5〜50重量%である請求項に記載の固体電解質用架橋性組成物The crosslinkable composition for a solid electrolyte according to claim 1 , wherein the amount of the radically polymerizable monomer having an oxetane ring is 5 to 50% by weight based on the total amount of the monomers. カチオン重合開始剤(2)がオニウム塩である請求項1または2に記載の固体電解質用架橋性組成物The crosslinkable composition for a solid electrolyte according to claim 1 or 2, wherein the cationic polymerization initiator (2) is an onium salt. 電解液溶媒(3)が、環状炭酸エステル類、鎖状炭酸エステル類、環状カルボン酸エステル類、環状エーテル類、低分子鎖状カルボン酸エステル類、低分子鎖状エーテル類およびシアノエチル基含有化合物の群から選ばれる少なくとも1種である請求項1乃至3のいずれか1つに記載の固体電解質用架橋性組成物The electrolyte solvent (3) is a cyclic carbonate, chain carbonate, cyclic carboxylic acid ester, cyclic ether, low molecular chain carboxylic acid ester, low molecular chain ether, or cyanoethyl group-containing compound. The crosslinkable composition for a solid electrolyte according to any one of claims 1 to 3 , which is at least one selected from the group. 電解液溶媒(3)が、環状炭酸エステル類および鎖状炭酸エステル類の群から選ばれる少なくとも1種である請求項1乃至3のいずれか1つに記載の固体電解質用架橋性組成物The crosslinkable composition for a solid electrolyte according to any one of claims 1 to 3, wherein the electrolyte solvent (3) is at least one selected from the group of cyclic carbonates and chain carbonates. 電解液溶媒(3)が、環状炭酸エステル類、鎖状炭酸エステル類および環状カルボン酸エステル類の群から選ばれる少なくとも1種に、低分子鎖状カルボン酸エステル類を加えたものである請求項1乃至3のいずれか1つに記載の固体電解質用架橋性組成物The electrolyte solution solvent (3) is obtained by adding low molecular chain carboxylic acid esters to at least one selected from the group consisting of cyclic carbonates, chain carbonates and cyclic carboxylic acid esters. The crosslinkable composition for a solid electrolyte according to any one of 1 to 3 . リチウム電解質塩(4)が、過塩素酸リチウム、テトラフルオロホウ酸リチウム、ヘキサフルオロリン酸リチウムおよびトリフルオロメタンスルホン酸リチウムの群から選ばれる少なくとも1種である請求項1乃至6のいずれか1つに記載の固体電解質用架橋性組成物Lithium electrolyte salt (4) is lithium perchlorate, any one of claims 1 to 6 is at least one selected lithium tetrafluoroborate, from the group of lithium hexafluorophosphate and lithium trifluoromethane sulfonate A crosslinkable composition for a solid electrolyte as described in 1. カチオン重合開始剤(2)の一部あるいは全部に、リチウム電解質塩(4)として用いるヘキサフルオロリン酸リチウムおよび/またはテトラフルオロホウ酸リチウムを利用する請求項1乃至7のいずれか1つに記載の固体電解質用架橋性組成物8. The lithium hexafluorophosphate and / or lithium tetrafluoroborate used as the lithium electrolyte salt (4) is used as part or all of the cationic polymerization initiator (2) according to claim 1. Crosslinkable composition for solid electrolyte . 請求項1乃至8のいずれか1つに記載の固体電解質用架橋性組成物組成物を、リチウムイオン2次電池用に架橋によってゲル化せしめポリマー固体電解質化したことを特徴とするポリマー固体電解質リチウムイオン2次電池。9. A polymer solid electrolyte lithium, wherein the crosslinkable composition composition for a solid electrolyte according to claim 1 is gelled by crosslinking for a lithium ion secondary battery to form a polymer solid electrolyte. Ion secondary battery. 請求項1乃至8のいずれか1つに記載の固体電解質用架橋性組成物を、リチウムイオン2次電池用の、電極やセパレータ等のユニットを組み込んだ密封可能な容器あるいはケース類に注入し、架橋によってゲル化せしめポリマー固体電解質化することを特徴とするポリマー固体電解質リチウムイオン2次電池の製造法。 The crosslinkable composition for a solid electrolyte according to any one of claims 1 to 8 is injected into a sealable container or case incorporating a unit such as an electrode or a separator for a lithium ion secondary battery, A method for producing a polymer solid electrolyte lithium ion secondary battery, wherein the polymer solid electrolyte is formed by gelation by crosslinking. オキセタン環含有ポリマー(1)
電解液溶媒(3)、および
リチウム電解質塩(4)としてヘキサフルオロリン酸リチウムおよび/またはテトラフルオロホウ酸リチウム
から成り、上記オキセタン環含有ポリマー(1)が、オキセタン環を有するラジカル重合性モノマー:
Figure 0004911813
(式中、R 1 はHまたはCH 3 ;およびR 2 はHまたは炭素数1〜6のアルキルである)
の(メタ)アクリルモノマーと、
他のラジカル重合性モノマー:
Figure 0004911813
(式中、R 3 はHまたはCH 3 ;およびR 4 は−COOCH 3 、−COOC 2 5 、−COOC 3 7 、−COOC 4 9 、−COO(CH 2 CH 2 O) 1 3 CH 3 、−COO(CH 2 CH 2 O) 1 3 2 5 、−COO(CH 2 CH(CH 3 )O) 1 3 CH 3 、−COO(CH 2 CH(CH 3 )O) 1 3 2 5 、−OCOCH 3 、または−OCOC 2 5 である)
のビニル系もしくは(メタ)アクリル系モノマー
とのラジカル共重合で得られる分子量10000以上のポリマーであり、上記オキセタン環含有ポリマー(1)が総量中5重量%以下であることを特徴とする液状の固体電解質用架橋性組成物。
Oxetane ring-containing polymer (1)
Radical polymerizable monomer comprising the electrolyte solution solvent (3) and lithium hexafluorophosphate and / or lithium tetrafluoroborate as the lithium electrolyte salt (4) , wherein the oxetane ring-containing polymer (1) has an oxetane ring:
Figure 0004911813
(Wherein R 1 is H or CH 3 ; and R 2 is H or alkyl having 1 to 6 carbon atoms)
(Meth) acrylic monomer,
Other radical polymerizable monomers:
Figure 0004911813
Wherein R 3 is H or CH 3 ; and R 4 is —COOCH 3 , —COOC 2 H 5 , —COOC 3 H 7 , —COOC 4 H 9 , —COO (CH 2 CH 2 O) 1 to 3 CH 3, -COO (CH 2 CH 2 O) 1 ~ 3 C 2 H 5, -COO (CH 2 CH (CH 3) O) 1 ~ 3 CH 3, -COO (CH 2 CH (CH 3) O) 1 to 3 C 2 H 5 , —OCOCH 3 , or —OCOC 2 H 5 )
Vinyl or (meth) acrylic monomers
A liquid crosslinkable composition for a solid electrolyte , wherein the polymer has a molecular weight of 10,000 or more obtained by radical copolymerization with the oxetane ring-containing polymer (1) in a total amount of 5% by weight or less.
オキセタン環を有するラジカル重合性モノマーの量が、モノマー全量中5〜50重量%である請求項11に記載の固体電解質用架橋性組成物。The crosslinkable composition for a solid electrolyte according to claim 11, wherein the amount of the radical polymerizable monomer having an oxetane ring is 5 to 50% by weight based on the total amount of the monomers. 電解液溶媒(3)が、環状炭酸エステル類、鎖状炭酸エステル類、環状カルボン酸エステル類、環状エーテル類、低分子鎖状カルボン酸エステル類、低分子鎖状エーテル類およびシアノエチル基含有化合物の群から選ばれる少なくとも1種である請求項11または12に記載の固体電解質用架橋性組成物。The electrolyte solvent (3) is a cyclic carbonate, chain carbonate, cyclic carboxylic acid ester, cyclic ether, low molecular chain carboxylic acid ester, low molecular chain ether, or cyanoethyl group-containing compound. The crosslinkable composition for a solid electrolyte according to claim 11 or 12, which is at least one selected from the group. 電解液溶媒(3)が、環状炭酸エステル類および鎖状炭酸エステル類の群から選ばれる少なくとも1種である請求項11または12に記載の固体電解質用架橋性組成物。The crosslinkable composition for a solid electrolyte according to claim 11 or 12, wherein the electrolyte solvent (3) is at least one selected from the group of cyclic carbonates and chain carbonates. 電解液溶媒(3)が、環状炭酸エステル類、鎖状炭酸エステル類および環状カルボン酸エステル類の群から選ばれる少なくとも1種に、低分子鎖状カルボン酸エステル類を加えたものである請求項11または12に記載の固体電解質用架橋性組成物。The electrolyte solution solvent (3) is obtained by adding low molecular chain carboxylic acid esters to at least one selected from the group consisting of cyclic carbonates, chain carbonates and cyclic carboxylic acid esters. 13. The crosslinkable composition for a solid electrolyte according to 11 or 12. 請求項11乃至15のいずれか1つに記載の固体電解質用架橋性組成物組成物を、リチウムイオン2次電池用に架橋によってゲル化せしめポリマー固体電解質化したことを特徴とするポリマー固体電解質リチウムイオン2次電池。 A solid polymer electrolyte lithium, wherein the crosslinkable composition composition for a solid electrolyte according to any one of claims 11 to 15 is gelled by crosslinking for a lithium ion secondary battery to form a polymer solid electrolyte. Ion secondary battery. 請求項11乃至15のいずれか1つに記載の固体電解質用架橋性組成物を、リチウムイオン2次電池用の、電極やセパレータ等のユニットを組み込んだ密封可能な容器あるいはケース類に注入し、架橋によってゲル化せしめポリマー固体電解質化することを特徴とするポリマー固体電解質リチウムイオン2次電池の製造法。Injecting the crosslinkable composition for a solid electrolyte according to any one of claims 11 to 15 into a sealable container or case incorporating a unit such as an electrode or a separator for a lithium ion secondary battery, A method for producing a polymer solid electrolyte lithium ion secondary battery, wherein the polymer solid electrolyte is formed by gelation by crosslinking.
JP2000303703A 1999-12-20 2000-10-03 Crosslinkable composition for solid electrolyte, polymer solid electrolyte lithium ion secondary battery, and method for producing polymer solid electrolyte lithium ion secondary battery Expired - Lifetime JP4911813B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000303703A JP4911813B2 (en) 2000-10-03 2000-10-03 Crosslinkable composition for solid electrolyte, polymer solid electrolyte lithium ion secondary battery, and method for producing polymer solid electrolyte lithium ion secondary battery
PCT/JP2000/008973 WO2001047055A1 (en) 1999-12-20 2000-12-19 Polymer solid electrolyte lithium ion secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303703A JP4911813B2 (en) 2000-10-03 2000-10-03 Crosslinkable composition for solid electrolyte, polymer solid electrolyte lithium ion secondary battery, and method for producing polymer solid electrolyte lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2002110245A JP2002110245A (en) 2002-04-12
JP4911813B2 true JP4911813B2 (en) 2012-04-04

Family

ID=18784868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303703A Expired - Lifetime JP4911813B2 (en) 1999-12-20 2000-10-03 Crosslinkable composition for solid electrolyte, polymer solid electrolyte lithium ion secondary battery, and method for producing polymer solid electrolyte lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4911813B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549621B2 (en) * 2002-12-02 2010-09-22 日東電工株式会社 Crosslinkable polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4662533B2 (en) 2003-08-26 2011-03-30 日東電工株式会社 Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4601375B2 (en) * 2004-10-01 2010-12-22 日東電工株式会社 Battery separator and battery manufacturing method using the same
JP4526352B2 (en) 2004-11-08 2010-08-18 日東電工株式会社 Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4822726B2 (en) 2005-03-30 2011-11-24 三洋電機株式会社 Polymer for lithium ion secondary battery and lithium ion secondary battery using the same
JP5105807B2 (en) * 2006-09-14 2012-12-26 Necエナジーデバイス株式会社 Lithium polymer battery
JP2009070605A (en) * 2007-09-11 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd Lithium polymer battery
CN102473966A (en) * 2009-07-09 2012-05-23 Nec能源元器件株式会社 Polymer gel electrolyte and polymer secondary battery using same
CN102668220A (en) * 2009-11-13 2012-09-12 Nec能源元器件株式会社 Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising same
EP2660921B1 (en) * 2010-12-27 2016-10-19 NEC Energy Devices, Ltd. Gel electrolyte for lithium ion secondary batteries, and lithium ion secondary battery
WO2013077211A1 (en) * 2011-11-25 2013-05-30 Jsr株式会社 Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device
JP2013194112A (en) * 2012-03-19 2013-09-30 Jsr Corp Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte and power-accumulating device
WO2015141546A1 (en) * 2014-03-17 2015-09-24 日立マクセル株式会社 Non-aqueous secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755985A (en) * 1994-09-06 1998-05-26 Hydro-Quebec LPB electrolyte compositions based on mixtures of copolymers and interpenetrated networks
JPH09278840A (en) * 1996-04-10 1997-10-28 Showa Highpolymer Co Ltd Composition capable of forming solid electrolyte
KR100261252B1 (en) * 1996-07-30 2000-07-01 윤종용 Polymer solid electrolyte and lithium secondary cell adopting the same
KR100204262B1 (en) * 1996-08-19 1999-06-15 이서봉 Polymeric ion conductive membrane and its prepatation method
JPH10134635A (en) * 1996-11-05 1998-05-22 Daiwa Kagaku Kogyo Kk Organic solid electrolyte
JPH11121036A (en) * 1997-10-15 1999-04-30 Toyama Pref Gov Epoxy composition for solid electrolyte of lithium ion secondary battery
JP2001035251A (en) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The High polymer solid electrolyte and electrochemical element using the same
JP2001035250A (en) * 1999-07-21 2001-02-09 Hitachi Chem Co Ltd High-polymer solid electrolyte, manufacture of high- polymer solid electrolyte, and electrochemical device
JP2001043896A (en) * 1999-07-29 2001-02-16 Hitachi Chem Co Ltd Manufacture of polymeric solid electrolyte, polymeric solid electrolyte, and electrochemical device

Also Published As

Publication number Publication date
JP2002110245A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP6005626B2 (en) Lithium iron phosphate secondary battery, method for producing the same, and method for producing gel electrolyte contained therein
KR100261252B1 (en) Polymer solid electrolyte and lithium secondary cell adopting the same
TW502469B (en) Gel electrolyte and nonaqueous electrolyte battery
TW543215B (en) Composition for polymer gel electrolyte, polymer gel electrolyte, and secondary battery and electric double layer capacitor each employing the electrolyte
US20230216087A1 (en) In-situ polymerized solid-state battery with multilayer electrolyte and preparation method thereof
JP4911813B2 (en) Crosslinkable composition for solid electrolyte, polymer solid electrolyte lithium ion secondary battery, and method for producing polymer solid electrolyte lithium ion secondary battery
JPWO2002093678A1 (en) Composition for polymer gel electrolyte and method for injecting non-aqueous electrolyte solution
JP5620910B2 (en) Electrolyte containing eutectic mixture and electrochemical device having the same
JP2000086711A (en) Thermally polymerizable composition and its use
JP2006278235A (en) Polymer for lithium ion secondary battery, and lithium ion secondary battery using it
US5965300A (en) Polymer solid electrolyte, method for manufacturing polymer solid electrolyte, and lithium secondary cell adopting polymer solid electrolyte
CN1479400A (en) Organic electrolyte and lithium cell using it
JP5566910B2 (en) Electrolyte containing eutectic mixture and electrochemical device having the same
JP4597294B2 (en) Polymer solid electrolyte lithium ion secondary battery
KR20110084131A (en) Electrolyte comprising amide compound and electrochemical device containing the same
WO2021011438A1 (en) Electrodes for lithium-ion batteries and other applications
JP2024533956A (en) Electrolytes containing cross-linked polymers with disordered networks
KR100465278B1 (en) Electric double layer capacitor using uv-curing gel polymer electrolyte
JP2002203604A (en) Polymer battery and manufacturing method
JP4169134B2 (en) Electrochemical element separator and its use
JP4781547B2 (en) Polymer gel electrolyte and battery
JP2005285377A (en) Polysiloxane-polyolefin complex gel electrolyte, and lithium battery using the same
JP5260074B2 (en) Battery separator and electrode / separator assembly obtained therefrom
JPH10294015A (en) Polymeric solid electrolyte and usage thereof
JPH11171910A (en) Electrochemically polymerizable composition and use thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250