WO2001047055A1 - Polymer solid electrolyte lithium ion secondary cell - Google Patents

Polymer solid electrolyte lithium ion secondary cell Download PDF

Info

Publication number
WO2001047055A1
WO2001047055A1 PCT/JP2000/008973 JP0008973W WO0147055A1 WO 2001047055 A1 WO2001047055 A1 WO 2001047055A1 JP 0008973 W JP0008973 W JP 0008973W WO 0147055 A1 WO0147055 A1 WO 0147055A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
polymer
ion secondary
secondary battery
lithium ion
Prior art date
Application number
PCT/JP2000/008973
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Yamamichi
Hitoshi Moriiizumi
Toshiharu Takabatake
Satoshi Nishikawa
Shinji Bessho
Katsumi Tanino
Satoshi Fujiki
Masahiro Kadosaki
Takashi Terasawa
Original Assignee
Sunstar Giken Kabushiki Kaisha
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP36088899A external-priority patent/JP4597294B2/en
Priority claimed from JP2000303703A external-priority patent/JP4911813B2/en
Application filed by Sunstar Giken Kabushiki Kaisha, Toyama Prefecture filed Critical Sunstar Giken Kabushiki Kaisha
Publication of WO2001047055A1 publication Critical patent/WO2001047055A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymer solid electrolyte lithium ion secondary battery, and more particularly, to a rechargeable secondary battery having a cylindrical, square, or sheet-like shape, wherein a liquid electrolyte is formed by a polymer.
  • Lithium-ion rechargeable batteries are small and lightweight rechargeable batteries that have a large storage capacity per unit volume or unit weight, so they can be used in portable electronic devices, mobile phones, notebook computers, personal computers, personal digital assistants (PDAs), It is used in portable MD devices, video cameras, digital cameras, etc., and is an indispensable power source for various portable devices that are small, lightweight and have relatively high power consumption.
  • PDAs personal digital assistants
  • the electrolyte is a liquid electrolyte in which a lithium electrolyte salt is dissolved in a solvent mainly composed of propylene carbonate, ethylene carbonate, etc., that is, an electrolyte (an organic solvent-based electrolyte using an organic solvent as a medium is an organic electrolyte or non-aqueous solution).
  • electrolytes which are simply called “electrolytes” here.
  • batteries using such electrolytes are subject to the danger of electrolyte leakage and heat generation during use / charge / discharge of the electrolyte itself; misuse (short-circuit or use of multiple batteries and partial Heat generation due to exposure to high temperatures in the operating environment; or internal pressure rise due to temperature rise caused by soldering etc. when assembling the device (vapor pressure due to the solvent in the electrolyte or There is a safety problem such as liquid leakage, rupture, and danger of ignition caused by gas generation due to decomposition. Solidification of the electrolyte, that is, development of solid electrolyte is being actively conducted.
  • polymer materials are used for solid electrolytes.
  • Various polymer materials have been studied, including polymer materials having a styrene chain, but the ion conductivity, which is the most basic property of these materials, is significantly inferior to that of liquid electrolytes, and has reached a practical level. Not.
  • batteries using liquid electrolytes are produced by a simple operation of simply injecting the electrolyte solution in the final step into a sealed container for batteries in which all parts such as electrodes have been assembled.
  • a new process of forming a polymer solid electrolyte must be incorporated into the existing production line, and investment for new equipment, securing of installation locations, and There are many problems such as maintenance of production, and it is very difficult to change liquid electrolyte (electrolyte) to solid electrolyte.
  • a specific polymer that swells without dissolving in the electrolytic solution is applied to this electrode surface or a separator or nonwoven fabric inserted between the positive and negative electrodes by any method, such as a solvent or
  • the liquefied material is formed by forming a solution, emulsion, and powder purgin using a dispersion medium, or by heating and melting, and then dried or solidified. Not only by drying, but also by forming a film in which the polymer particles are integrated) and then swelling by immersion in an electrolyte consisting of an electrolyte salt and an electrolyte solvent to form a gel How to make it;
  • An electrolyte containing a cross-linkable monomer or oligomer is applied to the electrode surface or a separator or non-woven fabric inserted between the positive electrode and the negative electrode, and the polymer is cross-linked by heating or radiation such as ultraviolet rays.
  • any method requires dedicated equipment for each process such as application, solidification, bonding, and swelling.
  • the polymer used in the method (1) swells with the electrolytic solution, but must not be dissolved in the electrolytic solution. It is necessary to use a solvent to form a solution, emulsion, disposable, or heat and melt) to make it liquid, and to do so, it must be a non-crosslinked polymer. Therefore, the polymers that can be used at present are limited to polytetrafluorovinylidene-based polymers and polyacrylonitrile-based polymers. It is difficult to keep the quality constant, the amount of polymer forming the gel increases, and it is difficult to obtain good ionic conductivity.
  • the electrolyte is not sufficiently distributed to the entire polymer, and the swelling is incomplete. It has many problems, such as being prone to swelling and taking a long time to swell.
  • the application is a method in which an electrolyte containing low-molecular monomers, oligomers, etc. is used, and the entire components containing the electrolyte are gelled at a time by crosslinking.
  • any means such as natural swelling, so it looks ideal at first glance.
  • the solution containing the electrolyte solvent is applied, the electrolyte solvent is liable to volatilize during coating and crosslinking, and a low boiling electrolyte solvent cannot be used.
  • Low-boiling-point electrolyte solvents are important solvents for obtaining good ionic conductivity, especially at low temperatures, and are used in conventional batteries such as cylindrical and square batteries that use liquid electrolytes.
  • low-boiling electrolyte solvents such as dimethyl carbonate, methylethyl carbonate, getyl carbonate, and propion Methyl acid, dimethoxetane and the like are appropriately used.
  • the sheet-type battery manufactured by the method (2) has a serious problem that these low-boiling-point electrolyte solvents cannot be used, and it is difficult to obtain good characteristics.
  • ethylene carbonate and propylene carbonate must be mainly used as the electrolyte solvent.
  • ethylene carbonate has a high melting point (36 ° C) and cannot be used alone, but propylene carbonate (melting point: 149 ° C) must be used alone or as a mixture with ethylene carbonate. Les ,.
  • propylene carbonate When propylene carbonate is used, propylene carbonate decomposes graphite, so that graphite-based carbon materials cannot be used for the negative electrode, and usable carbon materials are amorphous carbon such as hard carbon. Limited to materials.
  • the graphitic carbon material has an excellent property that the voltage at the time of discharge is easily maintained at a constant value, but cannot be used in the battery according to the method (2).
  • the present inventors have made it possible to manufacture a polymer solid electrolyte lithium-ion secondary battery by the same process as that for manufacturing a battery using a conventional electrolytic solution without requiring special new equipment, and to achieve safety and characteristics.
  • the company has developed a solid electrolyte with a high level of performance, and has been conducting intensive research to produce a polymer solid electrolyte lithium-ion secondary battery that reaches a practical level.
  • a liquid cross-linkable composition containing a cross-linkable material for a solid electrolyte is used, and this is used as a sealable container or case for an existing lithium-ion secondary battery using a liquid electrolyte (hereinafter referred to as “ It is found that if the above-mentioned cross-linkable material is cross-linked and the above-mentioned cross-linkable material is cross-linked, gelation of the system occurs due to formation of a polymer solid, and a desired polymer solid electrolyte can be obtained, leading to the completion of the present invention. Was.
  • the present invention relates to a polymer solid electrolyte lithium ion secondary battery comprising a positive electrode and a negative electrode for a lithium ion secondary battery, a separator disposed between the two electrodes, and a polymer solid electrolyte, Polymer solid electrolytes
  • a liquid cross-linkable composition for a solid electrolyte (hereinafter referred to as a “liquid composition”) in which the amount of the cross-linkable material (1) is 10% by weight or less based on the total amount of the fibrous material;
  • a lithium ion secondary battery which is a polymer solid electrolyte which is a polymer solid electrolyte that is injected into a sealable battery container incorporating a unit including a separator and is gelled by crosslinking.
  • the crosslinkable material (1) in the present invention may be any crosslinkable material as long as it can form a polymer solid, and specific examples include the following five combinations (a to e). .
  • Epoxy resin and its crosslinking agent (Epoxy combination)
  • (meth) acryl means acryl or methacryl
  • (meth) acrylate means acrylate or methacrylate
  • the epoxy resin used here preferably has the formula [1]:
  • a is a number of 2-5 and b is 1-4, provided that a + b is Ru 3-6 der; and R t is the molecular weight of 250 having three to six hydroxyl groups in the molecule Is the residue obtained by removing all hydroxyl groups from less than
  • the cyanoethylated epoxy resin [1] has the formula [2]:
  • polyol compound [2] examples include glycerin, erythritol, pentaerythritol, xylitol, sorbitol, diglycerin, triglycerin, Examples include inositol and mannitol.
  • a polyol compound having 3 to 6 hydroxyl groups is used as the polyol compound [2] serving as the skeleton of the cyanoethylated epoxy resin [1].
  • the concentration of cyanoethyl groups and epoxy groups can be increased, and it is easy to increase the crosslink density with a high dielectric constant, which is advantageous in terms of ionic conductivity.
  • the viscosity of the liquid composition containing the same increases, and the infiltration between the electrode and the separator during injection into a closed container decreases.
  • the number of hydroxyl groups is less than 3, the gelling property will decrease due to the decrease in crosslink density, and the amount of the polymer component must be increased in order to form the gel.
  • the crosslinking agent used with the epoxy resin is preferably of the formula [3]:
  • a polyethylene polyamine represented by, for example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc., and a formula [4]:
  • R 2 , R 3 , R 4 , R 5 and R 6 are each H or _CH 2 CH 2 CN; d, e, g and h are each a number from 0 to 2, and d + e is 2 , G + h
  • R 2 to R 6 are H and at least one is one CH 2 CH 2 CN)
  • the partially cyanoethylated polyethylene polyamine [4] can be produced by subjecting the polyethylene polyamine [3] to an addition reaction of a predetermined mole of acrylonitrile.
  • the addition reaction is usually carried out in a non-reactive solvent, if necessary, in the absence of a catalyst at room temperature to 8 It can be easily performed at a temperature of about 0 ° C.
  • f the molecular weight of polyethylene polyamine
  • the viscosity of the liquid composition increases, and An excessive increase in the cyanone conversion rate leads to an improvement in ion conductivity due to an increase in the dielectric constant. In some cases may lead to a decrease in performance. Therefore, it is preferable that the cross-linking agent is appropriately selected in consideration of the balance with the type of the epoxy resin, the gelling property, the ionic conductivity, and the like.
  • the mixing ratio of the cyanoethylated epoxy resin to the crosslinking agent is 1: 0.about.1 centered on the value calculated from the equivalent of the cyanoethylated epoxy resin and the active hydrogen equivalent of the crosslinking agent.
  • polyisocyanate compound used in this combination examples include 2,4- or 2,6-tolylene diisocyanate or a mixture thereof, 4,4'-diphenylmethanediisocyanate, isophorone Diisocyanate, 1,6-hexamethylene diisocyanate, 2,4,6-trimethyl / lehexamethylene diisocyanate, xylylene diisocyanate, and crude diphenyl methane diisocyanate At least one polyisocyanate selected from the group consisting of:
  • This is a urethane prepolymer containing an isocyanate group, which is obtained by reacting a cyanate (which is appropriately selected from the above polyisocyanate compounds).
  • the molecular weight of the polyol is 400 or more, the gelling property tends to decrease.
  • polyol examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, trimethyi monopropane, glycerin, polyglycerin and the like, and ethylene oxide or propylene oxide adducts thereof.
  • the reaction between the polyol and the polyisocyanate can be carried out in the absence of a catalyst or in the presence of a small amount of a catalyst (for example, metal salts such as Sn, Bi, Fe, Pb, or dibutyltin dilaurate) in the absence of a solvent or as necessary.
  • a catalyst for example, metal salts such as Sn, Bi, Fe, Pb, or dibutyltin dilaurate
  • the reaction can be carried out in a non-reactive dehydrating solvent at a temperature from room temperature to about 100 ° C.
  • polyisocyanate compound is used alone without using such a urethane prepolymer, some of the polyisocyanate compounds have a relatively high vapor pressure, which may be unfavorable for environmental health. However, in this case, it is desirable to use urethane prepolymer as described above.
  • crosslinking agent used in the isocyanate combination examples include the following. i) A polyol compound having a molecular weight of less than 400 and a hydroxyl value of 400 or more.
  • polyol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, diglycerin, triglycerin, 1,1,1-trimethylolpropane, erythritol, pentaerythritol, and dipentaerythritol. And xylitol, mannitol, inositol, sorbitol and the like.
  • the above addition reaction may be carried out in the presence of an alkali catalyst while heating or pressurizing while partially or completely adding ethylene oxide or propylene oxide.
  • an alkali catalyst while heating or pressurizing while partially or completely adding ethylene oxide or propylene oxide.
  • the desired polyoxyalkylene polyol is produced.
  • Many varieties of polyoxyalkylene polyols are commercially available.
  • Examples of the active hydrogen atom-containing compound include polyalkylene polyamines such as ethylenediamine, dimethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine; 1,3-propanediamine, 1,4-butanediamine, 6 - to Arukanjiami emissions such as Kisanjiamin; Monomechiruamin, Monoechiruamin, monoisopropyl ⁇ Min, mono n
  • Monoalkylamines such as butylamine; polyethyleneimines.
  • the above addition reaction may be carried out usually at normal pressure to under pressure, at normal temperature or under heating, using no catalyst or a small amount of an alkali catalyst.
  • poly N-hydroxyalkylated compound examples include N, N′-tetrahydroxyxethylethylenediamine, N, N′-tetrahydroxyisopropene pinoleethylenediamine, ⁇ , ⁇ ′, N "1-pentahydroxyisopropinolegetylenetriamine, N, N,, N", ⁇ '"-Hexahydroxyxenotinoletrietylenetetramine, triethanolamine, triisopropanololamine, polydimethylamine Droxyisopropyl polyethyleneimine and the like, and some of these are commercially available.
  • Ethylene oxide and Z or propylene oxide with at least one active hydrogen atom remaining in an active hydrogen-containing compound or ammonia containing three or more amine amino and Z or imino groups in the molecule.
  • Examples of the active hydrogen atom-containing compound include ethylenediamine, methylethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexamethylenediamine, and polyethyleneimine.
  • the above-mentioned N-hydroxyalkylation is usually carried out at normal pressure to pressure and at normal temperature to heating using a catalyst or a trace amount of an alkali catalyst, and the above-mentioned cyanoethylation is usually carried out without a catalyst and without solvent. If necessary, the reaction may be carried out in a non-reactive solvent at a temperature from room temperature to about 60 ° C. The order of the N-hydroxyalkylation and the cyanoethylation may be reversed.
  • V) A partially cyanoethylated poly (N-hydroxyalkylated compound) obtained by partially dehydrating the hydroxyl groups of the poly (N-hydroxyalkylated compound) obtained in (iii) above with acrylonitrile.
  • the above-mentioned cyanoethylation may be usually carried out using an alkali catalyst in a solvent-free or non-reactive solvent at a temperature from room temperature to about 60 ° C.
  • lithium hydroxide can be used as the alkali catalyst, and when used in the lithium battery of the present invention, there is no problem in terms of contamination of the alkaline catalyst or a neutralized product thereof and residual impurities.
  • the radical polymerizable monomer having a hydroxyl group is a partial (meth) acrylate of a polyhydroxy compound in which at least one hydroxyl group remains in the molecule.
  • the polyhydroxy compound includes a high hydroxyl value polyhydroxy compound having a hydroxyl value of 400 or more having 2 to 6 hydroxyl groups in a molecule, for example, ethylene glycol, diethylene glycol, propylene glycol / di, dipropylene glycol, glycerin, Diglycerin, triglycerin, erythritol, pentaerythritol, dipentaerythritol, xylitol, recitol, or adducts of these ethylene oxides or propylene oxides.
  • the other radically polymerizable monomer is represented by the formula [5]:
  • R 7 is H or CH 3 ; and R 8 is one CN, one COOCH 3 , -COO C. H 5 , — COO (CH. CHQ O) ⁇ 3 CH 3 , one COO (CH. CH. ⁇ ) L to 3 C. H 5 , -COO (CH 2 CH (CH 3 ) 0) 1 ⁇ 3 CH 3 , -COO (CH 2 CH (CH 3 ) O) t
  • the weight ratio of the radical polymerizable monomer having a hydroxyl group to another radical polymerizable monomer is preferably from 1:10 to 1: 1.
  • Copolymerization is usually carried out using a radical polymerization initiator (eg, benzoyl peroxide, N, N'-azobisisobutyronitrile), in a solvent at a temperature of about 60 to 80 ° C. I just need.
  • a radical polymerization initiator eg, benzoyl peroxide, N, N'-azobisisobutyronitrile
  • chain transfer agents such as mercaptans and hydroxyl group-containing mercaptans can be used for controlling the molecular weight.
  • hydroxyl group-containing mercaptans for example, mercaptoethanol
  • the hydroxyl group of the copolymerized polymer can be improved. It is also a source of base introduction.
  • the crosslinking agents (i) to (vi) can be used.
  • the polyoxyalkylene polyol (ii) those having a molecular weight of less than 800 and less than 2 hydroxyl groups, or a molecular weight of less than 2 If the number is 800 or more, the gelling property is low, and if the number of hydroxyl groups exceeds 6, the viscosity increases and the penetration between the electrode Z separators decreases.
  • the reactivity of the polyisocyanate compound or urethane prepolymer (hereinafter referred to as “isocyanate component”) with NCO is relatively low. It may be necessary to increase the temperature or extend the time, but this can be dealt with to some extent by adding or increasing the amount of the urethane crosslinking catalyst separately. On the other hand, for the following reasons, the use of the crosslinking agents iii), iv) and v) is preferred.
  • the amount of the crosslinkable material (constituting the polymer component) of the isocyanate-based combination (b) is reduced (10% by weight or less), NCO of the isocyanate component and OH of the crosslinking agent are reduced.
  • the lithium electrolyte salt acts as a negative catalyst in the cross-linking reaction with water, and it tends to be difficult to gel with a simple hydroxyl group such as polyoxyalkylene polyol (ii), whereas the cross-linking of (iii) to (V) In the agent, the hydroxyl group due to the N-hydroxyalkyl group and NCO exhibit excellent crosslinking reactivity, that is, great effectiveness.
  • the mono- or poly-N-cyanoethylated poly-N-hydroxyalkylated compound of (iv) can be obtained by leaving the hydroxyl group by N-hydroxyalkylation in the poly-N-hydroxyalkylated compound (iii). It has a cyanoethyl group and improves ionic conductivity due to higher dielectric constant compared to poly N-hydroxyalkylated compound (iii), and electrolyte solvent and lithium electrolyte salt (actually, lithium electrolyte salt This improves the retention of the electrolyte dissolved in the solvent (electrolyte), and has the effect of preventing the separation of the electrolyte from the gel and bleeding.
  • the cyanoethyl group is non-reactive with NCO, the crosslink density decreases and the gelling property decreases accordingly, so the necessity of the cyanoethyl group and its content are determined in consideration of the overall balance.
  • the hydroxyl group-containing radical copolymer (vi) when used, although the viscosity slightly increases, a good gel can be formed even at a lower polymer concentration, which is advantageous in this respect.
  • the polymerization ratio of the radical polymerizable monomer having a hydroxyl group is larger than the above range, the gelling property is improved accordingly, but the viscosity is increased, and conversely, when the polymerization ratio is less, the gelling property is reduced.
  • the mixing ratio of the isocyanate component to the crosslinking agent is 0.8 to 1.2: 1 equivalent centering on the value calculated from the NCO equivalent of the isocyanate component and the hydroxyl group equivalent of the crosslinking agent. It should be in the range of the ratio.
  • the (meth) acrylic monomer used in this combination has the formula [6]:
  • R 9 is H or CH 3 ; and is an alkyl having 1 to 4 carbon atoms.
  • CH 2 C— COO— (— R 13 [7] (Wherein, R lt is H or CH 3; R 12 one CH 2 CH 2 0_ or a CH 2 CH (CH 3) -O- ; R 13 is CH 3 or C 2 H 5; and i is 1 To 3), and an alkoxy mono- or polyalkyl (meth) acrylate which is represented by the formula [8]:
  • R 14 and R 16 are each H or CH 3 ; and 5 is one (CH 2 2 .
  • R 14 and R 16 are each H or CH 3 ; and 5 is one (CH 2 2 .
  • the radical polymerization initiator used in the monomer combination (c) is not particularly limited, and is usually a thermal polymerization initiator such as benzoyl peroxide, lauroyl peroxide, methyl ethyl ketone peroxide, N, N '. —Azobisisobutyronitrile (AIBN), N, N '—Azobisvaleronitrinore can be used.
  • the amount to be used may usually be selected in the range of 0.1 to 5% by weight based on the total amount of the liquid composition.
  • the epoxy group-containing radical copolymer used herein is a copolymer of a (meth) acrylic monomer having an epoxy group and another radically polymerizable monomer.
  • the above (meth) acrylic monomer having an epoxy group has the formula:
  • At least one of the (meth) acrylates ie, 3,4-epoxycyclohexylmethyl (meth) acrylate or glycidyl (meth) acrylate.
  • the other radically polymerizable monomers have the formula:
  • R 19 is H or CH 3 ; and R 2 is _COOCH 3 , one C ⁇ OC 2 H 5 , one C ⁇ C 3 H 7 , one CO ⁇ C 4 H 9 , -COO (CH 2 CH 2 O) ⁇ 3 CH 3 ,
  • the weight ratio between the (meth) acrylic monomer having an epoxy group and the other radically polymerizable monomer is preferably 1:10 to 1: 1.
  • cationic polymerization initiator used in the polymer system combination
  • various Oniumu salt for the Anmoniumu, Hosuhoniumu, Anoresoniumu, Suchibo two ⁇ beam, Suruhoyuu arm, cations such as Yodoniumu one BF 4, _PF 6, one S bF 6 , A CF 3 So 3 , a C 1 O 4, etc.
  • the lithium electrolyte salt (3) hexafluorophosphate is not required.
  • lithium and Z or lithium tetrafluoroborate is advantageous in that it can act as the cationic polymerization initiator in addition to the action of the original lithium electrolyte salt.
  • cationic polymerization initiator it is also possible to use lithium fluorophosphate and z or lithium tetrafluoroborate in combination.
  • the oxetane ring-containing polymer used in this combination is a polymer having a plurality of oxetane rings in the polymer structure, and does not matter the skeletal structure of the polymer, and can be easily obtained by simple radical polymerization.
  • a radical polymerizable monomer having an oxetane ring (hereinafter, referred to as “oxetane polymerizable monomer”) and a radical polymerizable monomer having an epoxy group as needed (hereinafter, referred to as “epoxy polymerizable monomer”), It is produced by radical polymerization of another radical polymerizable monomer, and usually has a molecular weight of 1000 or more. If the molecular weight is less than 1000, the amount of polymer required to form a gel tends to be large.
  • the upper limit of the molecular weight is not particularly limited, but it is appropriate to keep the upper limit at about 100,000, preferably about 500,000 in order to maintain the liquid state (solution state) of the liquid composition described later.
  • the above radical polymerization is usually carried out by a radical polymerization initiator [eg, N, N'_azobisisobutyronitrile, dimethyl N, N, monoazobis (2-methylpropionate), benzoyl peroxide, lauroyl peroxide, etc.]
  • the polymerization can be carried out using a molecular weight modifier such as mercaptans, and the resulting polymer has a relatively large molecular weight, and the solution polymerization is carried out in a solvent at a temperature of about 60 to 80 ° C. Is preferred.
  • the solvent it is preferable to use cyclic carbonates, chain carbonates, and low molecular carboxylic esters exemplified in the electrolyte solution solvent (3) described later.
  • Examples of the oxetane polymerizable monomer include a compound represented by the formula:
  • R 2 x is H or CH 3; and R 2 2 is H or ⁇ alkyl of 1 to 6 carbon atoms
  • (Meth) acrylic monomer represented by Specific of (meth) acrylic monomer Examples are (3-oxetanyl) methyl (meth) atalylate, (3-methyl-13-oxetanyl) methyl (meth) atalylate, (3-ethyl-13-oxetaninole) methyl (meth) atalylate, (3 —Butyl-3-oxetanyl) methyl (meth) atalylate, (3-hexyl-1-oxetanyl) methyl (meth) acrylate, etc. Use at least one of these.
  • the amount used is usually selected in the range of 5 to 50%, preferably 10 to 30%, based on the total amount of the monomers when the above-mentioned epoxy polymerization monomer is not used. If it is less than 5%, the amount of polymer required for gelation increases, and if it exceeds 50%, the electrolyte tends to separate (bleed) from the gel.
  • the epoxy polymerizable monomer used as needed includes, for example, a compound represented by the formula:
  • (Meta) acrylates specifically, 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, and at least one of these is used.
  • the amount used is usually such that the proportion of the epoxy polymerizable monomer in the total amount of the oxetane polymerizable monomer is 90% or less, and the total amount of both monomers is 5 to 50%, preferably 10 to 30% in the total amount of the monomer. What is necessary is just to choose.
  • R 2 3 is H or CH 3; and R 2 4 one COOCH 3, one COOC 2 H 5, one COOC H 7, one C_ ⁇ _OC 4 H 9, one COO (CH 2 CH 2 ⁇ ⁇ 3 CH 3 , -COO (CH 2 CH 2 O) ⁇ C 2 H 5 , -COO (CH 2 CH (CH 3 ) O) ⁇ CH 3 -COO (CH 2 CH (CH 3 ) 0) 1 ⁇ C 2 H 5 , — ⁇ COCH 3 , or one OCOC 2 H 5 )
  • the electrolyte may separate (bleed) from the gel.
  • the oxetane ring-containing polymer thus produced may be used alone, or the oxetane ring-containing polymer, the above-mentioned radical polymerizable monomer having an epoxy group and another radical polymerizable monomer may be used as described above.
  • An epoxy group-containing polymer having a molecular weight of 10,000 or more obtained by radical copolymerization under the same conditions as described above may be used in combination.
  • Examples of the cationic polymerization initiator in the oxetane polymer series combination include various dominates (for example, _BF 4 , 1 PF 6 , and cations of cations such as ammonium, phosphonium, arsonium, stibodium, sulfonium, and odonium).
  • Anionic salts such as SbF 6 , —CF 3 S ⁇ 3 , and C 10 4
  • hexafluorofluoride which is a lithium electrolyte salt (3), can be used without using these hondium salts.
  • lithium phosphate and / or lithium tetrafluoroborate are advantageous in that it can act as the cationic polymerization initiator in addition to the action of the original lithium electrolyte salt.
  • the use of a cationic polymerization initiator is an extra component for the electrolyte, which leads to a decrease in ionic conductivity, and also complicates the production process and increases costs.
  • the amount of the crosslinkable material (1) is usually 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight based on the total amount of the crosslinkable composition. / 0 or less.
  • the lower limit of the amount of the crosslinkable material (1) is not limited as long as crosslinking of the crosslinkable composition is possible. Force is preferably 0.5% by weight or more.
  • the amount of the oxetane ring-containing polymer is 5% by weight based on the total amount of the crosslinkable composition. / 0 or less Is preferred.
  • Examples of the electrolyte solvent (2) in the present invention include cyclic carbonates (ethylene carbonate, propylene carbonate, butylene carbonate and the like); and chain carbonates (dimethyl carbonate, getyl carbonate, methyl ethyl ester, methyl carbonate).
  • Cyclic esters (ratatanes) ( ⁇ -butyrolactone, ⁇ -valerolatatatone, etc.); Cyclic ethers (tetrahydrofuran, methyltetrahydrofuran, etc.); small molecules Carboxylic esters (ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, butyl butyrate, etc.); linear ethers (dimethoxetane, methoxyethoxyxetane) ); A compound containing a cyanoethyl group (meth At least one selected from the group consisting of methyl-2-ethyl cyanoethyl ether, ethyl '2-cyanoethyl ether, bis-2-cyanoethyl ether, methyl carbonate-2-cyanoethyl, and propionic acid 2-cyano
  • a mixture of a cyclic carbonate and a low molecular weight carboxylic acid ester in a mixture of a cyclic carbonate and a high dielectric constant solvent of the cyclic ester, and further to use a cyclic carbonate such as ethylene carbonate and carbonate.
  • the total number of carbon atoms constituting the molecule is less than 4 in the low-molecular carboxylic acid esters described above, the boiling point of the solvent is too low, and when a battery is used, the problem that the internal pressure of the battery increases at high temperatures tends to occur.
  • the total number of carbon atoms is 7 or more, the ionic conductivity decreases. Therefore, battery characteristics tend to decrease.
  • the lithium electrolyte salt (3) in the present invention is not particularly limited, an anion (acid) having excellent solubility in the electrolyte solvent (2), high ionic conductivity and high resistance to oxidation to reduction potential is used. What is comprised by group) is preferable.
  • an anion (acid) having excellent solubility in the electrolyte solvent (2), high ionic conductivity and high resistance to oxidation to reduction potential is used. What is comprised by group) is preferable.
  • lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate and the like are used, and at least one of these is used.
  • the concentration used is usually 1 mol / dm 3 before and after is applied.
  • the polymer solid electrolyte lithium ion secondary battery according to the present invention comprises the above-mentioned crosslinkable material (1) (a combination of a to e), an electrolyte solvent (2) and a lithium electrolyte salt (3) as components. It is characterized in that a low-viscosity liquid composition obtained by mixing and dissolving is used as a crosslinkable composition for a solid electrolyte, and can be produced according to the following procedure.
  • the proportion of the crosslinkable material (1) in the total amount of the liquid composition was 10%.
  • the amount of the polymer component in the solid electrolyte to be formed is set to a value as low as possible to maintain the ion conductivity stably.
  • a unit such as an electrode and a separator for a lithium ion secondary battery is removed.
  • the temperature is from room temperature to about 100 ° C.
  • the crosslinkable material is easily gelled at room temperature or under heat at a temperature of about 100 ° C), and the desired polymer solid electrolyte lithium-ion secondary battery is obtained by forming a polymer solid electrolyte. .
  • a urethane crosslinking catalyst for example, a metal salt such as Sn, Bi, Fe, or Pb; stannous octaate, cyanide
  • the urethane cross-linking catalyst can be added to the liquid composition. Can reduce the amount of compound As a result, the bot life can be greatly extended, and after injection, the urethane cross-linking catalyst spontaneously elutes from the electrode / separator, contributing to the promotion of gelation.
  • the crosslinkable material (1) used in the present invention can be used in addition to a lithium ion secondary battery, a lithium battery, a lithium secondary battery, an electric double layer capacitor, by changing an electrolyte solvent and a lithium electrolyte salt. It can also be used as a polymer gel-type polymer solid electrolyte for chemical condensers, electoric chromic devices, and the like.
  • This urethane prepolymer A (solution) was a colorless and transparent viscous liquid, and a clear absorption spectrum of NC ⁇ group was confirmed by infrared absorption spectrum.
  • the result of quantitative analysis of the NCO group was 9.806%, which almost coincided with the calculated value of 9.887%.
  • This urethane prepolymer B (solution) was a colorless and transparent viscous liquid, and a clear absorption spectrum of NCO groups was confirmed by an infrared absorption spectrum.
  • the quantitative analysis result of the NCII group was 9.822%, which was almost in agreement with the calculated value of 9.887%.
  • CH 2 CHCOO ⁇ CH 2 CH (CH 3 ) ⁇ 2 CH 3 177.3 g, previously dehydrated with a molecular sieve, in a 1000 ml three-necked flask that has been thoroughly dried with dry nitrogen gas.
  • 59.1 g of dehydrated 3,4-epoxycyclohexylmethyl acrylate, 709.2 g of a mixed solvent of 50 parts by weight of ethylene carbonate and 50 parts by weight of propylene carbonate previously dehydrated by molecular sieve, and vacuum drying in advance Take 3.9 g of N, N'-azobisisobutyronitrile and 0.4 g of laurino remel kabutane, stir at 70 to 75 ° C while introducing dry nitrogen gas, and heat and stir for 6 hours. Subsequently, the reaction is further performed overnight at a temperature of 40 ° C. to obtain an epoxy group-containing radical copolymer B (solution).
  • This epoxy-group-containing radical copolymer (B) is a pale yellow, transparent, low-viscosity liquid.
  • a clear epoxy group absorption spectrum was confirmed.
  • the calculated value of 724 was ⁇ (straight) which is almost the same as the calculated value of 728.5.
  • Example 1 (Use crosslinkable material of epoxy combination a )
  • a sealed container (diameter: 18 mm, total length: 65 Omm, cylindrical type, commonly called type 18650) incorporating units such as electrodes for lithium ion secondary batteries and separators prepared in advance is prepared. Then, 4.86 g of the above-mentioned liquid composition was injected, impregnated in a vacuum, sealed, and heated at 70 ° C. for 10 hours to perform gelation, thereby preparing a polymer solid electrolyte lithium ion secondary battery.
  • the 18650 type used above is made of a lithium-cobalt-based material for the positive electrode, a carbon-based material for the negative electrode, and a polyolefin-based separator, and is a very common type with a capacity of 160 OmAH. .
  • a 10% getyl carbonate solution of stannous octate (Neostan U-28, manufactured by Nitto Kasei Co., Ltd.) is added and mixed to prepare a liquid composition (polymer concentration 6. Four%) .
  • Example 3 the polymer solid electrolyte lithium ion secondary ion was used under the same conditions as in Example 1. Create batteries 2 ⁇ Example 3
  • Example 1 except that the injection amount of the liquid composition was 4.96 g and the heating conditions for gelation were 70 ° C for 30 minutes, the polymer solid electrolyte lithium ion secondary ion was used under the same conditions as in Example 1. Create a battery.
  • Example 1 except that the injection amount of the liquid composition was 3.73 g and the heating conditions for gelation were 70 ° C for 1 hour, the polymer solid electrolyte lithium ion secondary ion was used under the same conditions as in Example 1. Create a battery.
  • lithium hexafluorophosphate was used as the lithium electrolytic salt, and no separate cationic polymerization initiator was used.
  • stannous otatoate (Nitto Kasei Co., Ltd. 0.1 g of a 10% solution of U-28 ”) in getyl carbonate is mixed and mixed to prepare a liquid composition (polymer concentration: 5.0%).
  • the unit of the sheet-shaped lithium ion secondary battery used above had a structure in which the positive electrode was sandwiched between the negative electrodes from both sides of the positive electrode through a nonwoven fabric, and the positive electrode was made of an active material mainly composed of lithium cobalt oxide on both sides of an aluminum foil.
  • the size of the negative electrode is 68 mm x 84 mm.
  • the negative electrode is a copper-based material coated on one side with a carbon-based material.
  • the size is 70 mm x 86 mm.
  • the nonwoven fabric is made of polyester fine fiber.
  • This unit is a 0 / m thick product, and this unit is incorporated in a bag-shaped aluminum laminate film (polyethylene inside, polypropylene outside) with a heat-sealed periphery.
  • the battery capacity is 30 OmAH .
  • Example 5 a sheet-like polymer was prepared under the same conditions as in Example 5, except that the injection amount of the liquid composition was 4.05 g and the heating conditions for gelling were 70 ° C for 1 hour. Create a solid-state lithium-ion secondary battery.
  • Example 6 hexafluorophosphoric acid was added to the lithium electrolyte salt. Lithium is used and no separate cationic polymerization initiator is used.
  • Table 1 shows the results of the charge / discharge repetitive test (3 cycles and 10 cycles) using the lithium ion secondary batteries prepared in Examples 1 to 6.
  • each cycle was fixed at 0.2 C (32 OmA in Examples 1 to 4 and 6 OmA in Examples 3 to 4) until the charge reached 4.2 V.
  • each discharge is 0.2 C (Examples 1-4 are 32 OmA, Examples 3-4 are 6 OmA ) Is constant current discharge until the voltage reaches 2.75 V.
  • the polymer first solution is a colorless transparent viscous liquid, infrared absorption spectrum results of the measurement, c Example 7 was confirmed to have a characteristic absorption clear Okisetan ring wavenumber 9 8 0 Bruno cm
  • a liquid composition A is prepared by mixing and dissolving 40 g of a mixed solvent solution of 107 10/40 (weight ratio). The polymer concentration in the liquid composition A is 3.0%.
  • This liquid yarn A was heated and crosslinked at 70 ° C., and the gelling property, the state of the gel, and the ion conductivity (lO ⁇ SZcm) were evaluated.
  • the gelation and gel state were visually observed; the ion conductivity was determined by injecting the liquid composition into a closed cell incorporating a gold-plated electrode, heating at 70 ° C for 5 hours in a closed state, and then cooling.
  • the specimen was used for measurement, and the measurement was performed using an LCZ meter at a frequency of 1 KHz and a measurement temperature of 20 ° C or 120 ° C. The results are shown in Table 2 below.
  • Example 7 10 g of the solution of the oxetane ring-containing polymer obtained in Production Example 6, and ethylene carbonate / dimethyl carbonate Z-ethyl propionate (15) in which lithium hexafluorophosphate was dissolved at a 1.3 molar concentration. 40 g of a mixed solvent solution (weight ratio: Z157770) is mixed and dissolved to prepare a liquid composition B (polymer concentration: 3.0%). As in Example 7, the liquid composition B is prepared. Next, the gelation property, gel state and ion conductivity were evaluated, and the results are shown in Table 2 below. In Table 2, in the evaluation of gelability
  • Liquid Composition C low-molecular alicyclic epoxy compound concentration 5%
  • this liquid composition C was polymerized by heating at 70 ° C., and the gelling property, the gel state, and the ionic conductivity were evaluated. The results are shown in Table 3 below.
  • a liquid composition DE was prepared in the same manner as in Comparative Example 1, except that the concentration of the low molecular weight alicyclic epoxy compound was changed to 6% (Comparative Example 2) or 8% (Comparative Example 3), respectively. Table 3 below shows the evaluation results of the chemical properties, gel state and ionic conductivity. Comparative Example 4
  • this liquid composition F was heated and polymerized at 70 ° C., and the gelling property, the gel state, and the ionic conductivity were evaluated. The results are shown in Table 3 below.
  • Example 9 (Preparation of lithium ion secondary battery A) Inject the liquid composition A of Example 7 (1.85 g) into a bag made of aluminum laminated film with a lithium ion battery electrode and a nonwoven fabric unit prepared in advance and vacuum impregnation. After sealing, heat at ⁇ 0 ° C for 19 hours to perform gelation by cross-linking, and create a thin polymer solid electrolyte lithium ion secondary battery A.
  • the unit of the thin lithium ion secondary battery used above has a structure in which a positive electrode and a negative electrode are wound via a nonwoven fabric, and the positive electrode is coated with an active material mainly composed of lithium cobalt oxide on both surfaces of an aluminum foil.
  • the size is 50 x 8 Omm
  • the negative electrode is a copper foil coated with a carbon-based material
  • the size is 52 x 110 mm
  • the non-woven fabric is 20 ⁇ m made of polyester fine fiber.
  • This unit is a thick product in which a bag-like aluminum laminating film (inner surface: polyethylene, outer surface: polypropylene) is heat-sealed.
  • the capacity of the battery was 180 mAH, and six identical batteries (No .: 6) were created.
  • the conditions of the charge / discharge repetition test are as follows.
  • the charge / discharge cycle is repeated at 1 C (180 mA) for both charge and discharge, and the capacity at the initial 1 cycle and the capacity and retention after 10 cycles are shown.
  • the load characteristics at room temperature are as follows: charge: 0.2 C (36 mA), discharge: 0.2 C, 1 C, 2 C (360 mA), discharge capacity and 0.2 C discharge capacity Shows the retention.
  • the load characteristics at low temperatures were measured by measuring the 0.5 C (90 mA) discharge capacity at both 20 ° C and 0.5 C (90 mA) discharge capacity at room temperature. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

A polymer solid electrolyte lithium ion secondary cell comprising a positive electrode and a negative electrode for a lithium ion secondary cell and, arranged between the electrodes, a separator and a polymer solid electrolyte, wherein said polymer solid electrolyte is prepared by providing a liquid crosslinking composition for the solid electrolyte comprising a crosslinkable material, an electrolytic solvent and a lithium salt electrolyte and containing the crosslinkable material in an amount of 10 wt% of the composition, injecting the composition into a sealable cell container having a built-in unit comprising the electrodes and the separator, and gelating the composition through effecting a crosslinking reaction. The cell can be produced by the use of a process similar to that for the production of a cell using a conventional electrolyte, without the need for special facilities, and the polymer solid electrolyte used is excellent in safety and cell characteristics.

Description

明細書  Specification
ポリマー固体電解質リチウムイオン 2次電池 発明の分野  FIELD OF THE INVENTION Field of the Invention
本発明は、 ポリマー固体電解質リチウムイオン 2次電池に関し、 更に詳しくは、 円筒型、 角型、 シート状等の形状を有する充電可能な 2次電池であって、 液状電 解質をポリマ一により固体化して電解液の漏洩を解消すると共に、 電流負荷特性、 特に低温時の電流負荷特性を改善したポリマー固体電解質を使用したリチウムィ オン 2次電池、 およびその製造法並びに上記固体電解質用の液状架橋性組成物に 関する。  The present invention relates to a polymer solid electrolyte lithium ion secondary battery, and more particularly, to a rechargeable secondary battery having a cylindrical, square, or sheet-like shape, wherein a liquid electrolyte is formed by a polymer. Lithium ion secondary battery using a polymer solid electrolyte with improved current load characteristics, especially current load characteristics at low temperatures, and a method for producing the same, and liquid crosslinkability for the above solid electrolyte Related to the composition.
従来の技術  Conventional technology
リチウムイオン 2次電池は、 小型軽量の充電可能な電池で、 単位容積または単 位重量当り蓄電容量が大きいので、 携帯型電子機器、 携帯電話、 ノートパソコン、 携帯パソコン、 携帯情報端末 (P D A) 、 携帯 MD装置、 ビデオカメラ、 デジタ ルカメラ等に利用されており、 小型軽量で比較的電力消費の大きな各種携帯型機 器には必要欠くべからざる電源となっている。  Lithium-ion rechargeable batteries are small and lightweight rechargeable batteries that have a large storage capacity per unit volume or unit weight, so they can be used in portable electronic devices, mobile phones, notebook computers, personal computers, personal digital assistants (PDAs), It is used in portable MD devices, video cameras, digital cameras, etc., and is an indispensable power source for various portable devices that are small, lightweight and have relatively high power consumption.
ところで、 現状のリチウムイオン 2次電池において、 その!^質として、 炭酸 プロピレン、 炭酸エチレン等を主とした溶媒にリチウム電解質塩を溶解した液状 の電解質、 すなわち電解液 (有機溶媒を媒体とした有機溶媒系電解液は、 有機電 解液あるいは非水電解液と称されるが、 ここでは、 単に 「電解液」 と云う) を使 用しているものが殆どである。  By the way, in the current lithium ion secondary battery, The electrolyte is a liquid electrolyte in which a lithium electrolyte salt is dissolved in a solvent mainly composed of propylene carbonate, ethylene carbonate, etc., that is, an electrolyte (an organic solvent-based electrolyte using an organic solvent as a medium is an organic electrolyte or non-aqueous solution). Most of these use electrolytes, which are simply called “electrolytes” here.
しかしながら、 このような電解液を使用した電池は、 電解液の漏洩の危険性や、 使用時ゃ充放電時に電解液自体の発熱;誤使用 (短絡または複数個の電池を使用 しその一部を正負逆挿入して使用) による発熱;使用環境 の高温への暴露;あ るいはデバイスの組み込み時のハンダ付け等により起こる温度上昇による内圧上 昇 (電解液中の溶媒による蒸気圧や電解液の分解に伴うガス発生等が起因) によ る漏液、 破裂、 発火の危険といった安全性の問題を抱えており、 電解液の固体化、 すなわち固体電解質の開発が活発に行われている。  However, batteries using such electrolytes are subject to the danger of electrolyte leakage and heat generation during use / charge / discharge of the electrolyte itself; misuse (short-circuit or use of multiple batteries and partial Heat generation due to exposure to high temperatures in the operating environment; or internal pressure rise due to temperature rise caused by soldering etc. when assembling the device (vapor pressure due to the solvent in the electrolyte or There is a safety problem such as liquid leakage, rupture, and danger of ignition caused by gas generation due to decomposition. Solidification of the electrolyte, that is, development of solid electrolyte is being actively conducted.
固体電解質には、 ポリマー材料を用いるのが一般的で、 従来からポリオキシェ チレン鎖を有するポリマー材料を始め、 各種のポリマー材料が検討されてきたが、 これらの材料では最も基本的な特性であるィォン導電性が液状電解質に比べ大き く劣り、 未だ実用できるレベルに到達していない。 Generally, polymer materials are used for solid electrolytes. Various polymer materials have been studied, including polymer materials having a styrene chain, but the ion conductivity, which is the most basic property of these materials, is significantly inferior to that of liquid electrolytes, and has reached a practical level. Not.
そこで最近では、 液状電解質をポリマー材料でゲル状態としたポリマーゲル型 高分子固体電解質の開発が活 化しており、 現在のところ、 液状電解質に近いィ ォン導電性が得られているあることもあって、 一部用途では実用化されつつある。 しカゝし、 現在実用化されつつある固体電解質を使用する電池の殆どは、 近年新し く登場してきたシート状 (薄型) 電池で、 現在最も大量に生産されている円筒型 や角型の電池には、 依然として従来通り、 液状電解質が使用されている。  Therefore, recently, the development of polymer gel-type polymer solid electrolytes in which the liquid electrolyte is made of a polymer material in a gel state has been activated, and at present, ion conductivity close to that of the liquid electrolyte may be obtained. Yes, some applications are being put to practical use. However, most of the batteries that use solid electrolytes that are currently being put into practical use are sheet-shaped (thin) batteries that have recently emerged in recent years. Liquid electrolytes are still used for batteries.
その理由は、 液状電解質使用の円筒型, 角型電池の量産ラインが既に完成して おり, シート状電池に使用されているものと同じ固体電解質を使用するためには、 設備の新設、 更新、 レイアウトの変更等の設備投資が必要で、 生産コス トの上昇 を招くからである。  The reason is that a mass production line for cylindrical and prismatic batteries using liquid electrolyte has already been completed. In order to use the same solid electrolyte used for sheet batteries, new facilities must be installed, renewed, This is because capital investment such as layout change is required, which leads to an increase in production costs.
すなわち、 液状電解質を使用した電池は、 電極等すベての部品を組み終わった 電池用密閉容器に、 最終工程で電解液を単に注入するという簡便な操作で生産さ れているが、 固体電解質に変更する場合には、 現状ではポリマー固体電解質の形 成工程という新たな工程を既存の生産ライン中に組み込まなければならず、 その ための新たな設備に対する投資、 設置場所の確保、 ェ期中の生産維持等の問題点 が多く、 液状電解質 (電解液) を固体電解質に変更するのは非常に困難な状況に ある。  In other words, batteries using liquid electrolytes are produced by a simple operation of simply injecting the electrolyte solution in the final step into a sealed container for batteries in which all parts such as electrodes have been assembled. In the current case, a new process of forming a polymer solid electrolyte must be incorporated into the existing production line, and investment for new equipment, securing of installation locations, and There are many problems such as maintenance of production, and it is very difficult to change liquid electrolyte (electrolyte) to solid electrolyte.
また、 シート状の薄型電池の生産においては、 現在、 以下のような方法が採用 されている。  In the production of sheet-shaped thin batteries, the following methods are currently used.
( 1 ) 正、 負極を形成した後、 この電極面あるいは正、 負極の間に挿入される セパレータあるいは不織布等に、 電解液に溶解はせずに膨潤する特定のポリマー を何らかの方法、 例えば溶剤または分散媒を用いて溶液、 ェマルジヨン、 デイス パージヨンを形成することによりあるいは加熱溶融により、 液状化したものを塗 布し、 乾燥または固化 (加熱溶融の場合は単なる冷却で、 ェマルジヨン、 デイス パージヨンの場合は単なる乾燥だけではなくポリマー粒子が一体化する造膜によ る) した後、 電解質塩と電解液溶媒からなる電解液に浸して膨潤させゲルを形成 させる方法; (1) After forming the positive and negative electrodes, a specific polymer that swells without dissolving in the electrolytic solution is applied to this electrode surface or a separator or nonwoven fabric inserted between the positive and negative electrodes by any method, such as a solvent or The liquefied material is formed by forming a solution, emulsion, and powder purgin using a dispersion medium, or by heating and melting, and then dried or solidified. Not only by drying, but also by forming a film in which the polymer particles are integrated) and then swelling by immersion in an electrolyte consisting of an electrolyte salt and an electrolyte solvent to form a gel How to make it;
( 2 ) 架橋性のモノマー、 オリゴマー等を含んだ電解液を、 電極面あるいは正、 負極の間に挿入されるセパレータあるいは不織布等に塗布し、 加熱あるいは紫外 線等の放射線でポリマーを架橋、 ゲルを形成してセパレータあるいは不織布等を 挟み込んだ状態で正負の両電極を貼り合わせる方法、 あるいは貼り合わせた後に 加熱してポリマーを架橋、 ゲルを形成させる方法。  (2) An electrolyte containing a cross-linkable monomer or oligomer is applied to the electrode surface or a separator or non-woven fabric inserted between the positive electrode and the negative electrode, and the polymer is cross-linked by heating or radiation such as ultraviolet rays. A method in which both the positive and negative electrodes are bonded together with a separator or nonwoven fabric sandwiched between them, or a method in which, after bonding, the polymer is crosslinked by heating to form a gel.
しかしながら、 いずれの方法にしても、 塗布、 固化、 貼り合わせ、 膨潤等の各 工程に応じた専用の設備を必要とする。  However, any method requires dedicated equipment for each process such as application, solidification, bonding, and swelling.
また、 (1 ) の方法で用いるポリマ一は電解液により膨潤はするが、 電解液に 溶解してはならず、 しカゝし、 反面、 塗布するためには何らかの方法 (溶剤あるい は分散媒を用いて溶液、 ェマルジヨン、 デイスパージヨンにするあるいは加熱溶 融等) で液状とすることが必要で、 そのためには、 非架橋のポリマーであること が必要である。 それ故、 現状では使用可能なポリマーはポリフツイヒビニリデン系、 ポリアクリロニトリル系等に限定されるが、 これらのポリマーは、 電解液による 自然膨潤でゲル化するため、 膨潤が不均一、 不十分になりやすく、 品質を一定に 保つことが難しく、 ゲルを形成するポリマー量も多くなり、 良好なイオン導電性 も得難い。 さらに、 電極、 セパレータあるいは不織布を捲回あるいは積層した後 にポリマーを膨潤させるのが工程上は有利であるが、 その場合は電解液がポリマ —全体に十分に行き渡り難く、 さらに膨潤が不完全になりやすく、 また、 膨潤に 長時間を要するなど多くの問題がある。  In addition, the polymer used in the method (1) swells with the electrolytic solution, but must not be dissolved in the electrolytic solution. It is necessary to use a solvent to form a solution, emulsion, disposable, or heat and melt) to make it liquid, and to do so, it must be a non-crosslinked polymer. Therefore, the polymers that can be used at present are limited to polytetrafluorovinylidene-based polymers and polyacrylonitrile-based polymers. It is difficult to keep the quality constant, the amount of polymer forming the gel increases, and it is difficult to obtain good ionic conductivity. Further, it is advantageous in the process to swell the polymer after winding or laminating the electrode, separator or nonwoven fabric, but in this case, the electrolyte is not sufficiently distributed to the entire polymer, and the swelling is incomplete. It has many problems, such as being prone to swelling and taking a long time to swell.
一方、 (2 ) の方法において塗布は、 低分子のモノマー、 オリゴマー等を含ん だ電解液を用い、 架橋によつて電解液を含んだ成分の全体を一括してゲルとする 方法であるので、 自然膨潤といった手段を用いる必要がなく、 一見理想的と見え る。 しかし、 電解液溶媒を含んだ状態で塗布するため、 塗布および架橋時に電解 液溶媒が揮散しやすく、 低沸点の電解液溶媒は使用できない。  On the other hand, in the method (2), the application is a method in which an electrolyte containing low-molecular monomers, oligomers, etc. is used, and the entire components containing the electrolyte are gelled at a time by crosslinking. There is no need to use any means such as natural swelling, so it looks ideal at first glance. However, since the solution containing the electrolyte solvent is applied, the electrolyte solvent is liable to volatilize during coating and crosslinking, and a low boiling electrolyte solvent cannot be used.
低沸点の電解液溶媒は、 良好なイオン導電性、 特に低温時の良好なイオン導電 性を得るためには重要な溶媒であり、 液状電解質を使用した円筒型、 角型等の従 来の電池には良好な特性、 特に低温における良好な特性を得るため、 低沸点の電 解液溶媒、 例えば炭酸ジメチル、 炭酸メチルェチル、 炭酸ジェチル、 プロピオン 酸メチル、 ジメ トキシェタン等が適宜用いられる。 ところが、 上述の通り (2 ) の方法によって製造されるシート型電池では、 これら低沸点電解液溶媒が使用で きず、 良好な特性が得難いという大きな問題を有する。 Low-boiling-point electrolyte solvents are important solvents for obtaining good ionic conductivity, especially at low temperatures, and are used in conventional batteries such as cylindrical and square batteries that use liquid electrolytes. In order to obtain good properties, especially at low temperatures, low-boiling electrolyte solvents such as dimethyl carbonate, methylethyl carbonate, getyl carbonate, and propion Methyl acid, dimethoxetane and the like are appropriately used. However, as described above, the sheet-type battery manufactured by the method (2) has a serious problem that these low-boiling-point electrolyte solvents cannot be used, and it is difficult to obtain good characteristics.
従って、 電解液溶媒としては、 炭酸エチレンと炭酸プロピレンを主として使用 せざるを得ない。 ところが、 炭酸エチレンはその融点が高く (3 6 °C) 、 単独で は用いることができず、 炭酸プロピレン (融点;一 4 9 °C) を単独あるいは炭酸 エチレンに混合して用いなければならなレ、。 炭酸プロピレンを用いると、 炭酸プ ロピレンはグラフアイ トを分解するので、 負極にグラフアイ ト系の炭素材料を用 いることができず、 使用可能な炭素材料は、 ハードカーボン等の非晶性の材料に 制限される。  Therefore, ethylene carbonate and propylene carbonate must be mainly used as the electrolyte solvent. However, ethylene carbonate has a high melting point (36 ° C) and cannot be used alone, but propylene carbonate (melting point: 149 ° C) must be used alone or as a mixture with ethylene carbonate. Les ,. When propylene carbonate is used, propylene carbonate decomposes graphite, so that graphite-based carbon materials cannot be used for the negative electrode, and usable carbon materials are amorphous carbon such as hard carbon. Limited to materials.
また、 このグラフアイ ト系炭素材料は、 放電時の電圧を一定の値に維持しやす いという優れた特性を有するが、 (2 ) の方法による電池では用いることができ ない。  In addition, the graphitic carbon material has an excellent property that the voltage at the time of discharge is easily maintained at a constant value, but cannot be used in the battery according to the method (2).
加えて、 上述のポリマーゲル型固体電解質のイオン導電性は、 液状電解質のィ オン導電性に近付きつつあるとは云うものの、 依然劣っており、 ポリマーゲル型 固体電解質を用いた電池は比較的大きな放電電流が要求される用途には供し得ず、 従来の液状電解質を使用した電池の代替とするには不十分な性能しか維持できな い。  In addition, although the ionic conductivity of the polymer gel type solid electrolyte described above is approaching the ionic conductivity of the liquid electrolyte, it is still inferior, and batteries using the polymer gel type solid electrolyte are relatively large. It cannot be used for applications that require a discharge current, and can only maintain insufficient performance to replace batteries using conventional liquid electrolytes.
その主たる原因は、 ゲルを形成するためには、 イオン導電性に寄与しないポリ マーを比較的多量に含まなければならないことにある。 このポリマーゲル型固体 電解質のイオン導電性向上を目指すため、 ゲル中の高分子成分量の低減や高誘電 率ポリマーの使用など、 高分子含有量とポリマー構造の両面から検討が加えられ ているが、 未だ満足するレベルには達していない。  The main reason is that in order to form a gel, it must contain a relatively large amount of a polymer that does not contribute to ionic conductivity. In order to improve the ionic conductivity of this polymer gel-type solid electrolyte, studies have been made on both the polymer content and the polymer structure, such as reducing the amount of polymer components in the gel and using high dielectric constant polymers. However, we have not yet reached a satisfactory level.
発明の開示  Disclosure of the invention
本発明者らは、 格別の新設備を必要とせずに従来の電解液を用いた電池の生産 と同様な工程によるポリマー固体電解質リチウムイオン 2次電池の製造を可能に し、 かつ安全性および特性の優れた固体電解質を開発し、 実用レベルに達するポ リマー固体電解質リチウムイオン 2次電池を生産するために鋭意研究を進めたと ころ、 電解液溶媒とリチウム電解質塩の溶液 (電解液) に、 ポリマー固体を形成 しうる架橋性材料を含んだ液状の固体電解質用架橋性組成物を使用し、 これを液 状電解質を用いる既存のリチウムイオン 2次電池用の密閉可能な容器あるいはケ ース類 (以下、 「電池容器」 という) に注入し、 上記架橋性材料を架橋させれば、 ポリマー固体の形成によって系のゲル化が起こり、 所望のポリマー固体電解質が 得られることを見出し、 本発明を完成させるに至った。 The present inventors have made it possible to manufacture a polymer solid electrolyte lithium-ion secondary battery by the same process as that for manufacturing a battery using a conventional electrolytic solution without requiring special new equipment, and to achieve safety and characteristics. The company has developed a solid electrolyte with a high level of performance, and has been conducting intensive research to produce a polymer solid electrolyte lithium-ion secondary battery that reaches a practical level. Forms a solid A liquid cross-linkable composition containing a cross-linkable material for a solid electrolyte is used, and this is used as a sealable container or case for an existing lithium-ion secondary battery using a liquid electrolyte (hereinafter referred to as “ It is found that if the above-mentioned cross-linkable material is cross-linked and the above-mentioned cross-linkable material is cross-linked, gelation of the system occurs due to formation of a polymer solid, and a desired polymer solid electrolyte can be obtained, leading to the completion of the present invention. Was.
すなわち、 本発明は、 リチウムイオン 2次電池用の正電極および負電極、 両電 極間に配置されたセパレータならびにポリマー固体電解質を含んでなるポリマ一 固体電解質リチウムイオン 2次電池であって、 該ポリマー固体電解質は、  That is, the present invention relates to a polymer solid electrolyte lithium ion secondary battery comprising a positive electrode and a negative electrode for a lithium ion secondary battery, a separator disposed between the two electrodes, and a polymer solid electrolyte, Polymer solid electrolytes
( 1 ) 架橋性材料  (1) Crosslinkable material
( 2 ) 電解液溶媒および  (2) electrolyte solvent and
( 3 ) リチウム電解質塩  (3) Lithium electrolyte salt
から成り、 上記架橋性材料 (1 ) の量が糸且成物総量中 1 0重量%以下である液状 の固体電解質用架橋性組成物 (以下、 「液状組成物」 と称する) を、 該電極およ びセパレータを含んでなるユニットを組み込んだ密封可能な電池容器に注入し、 架橋によつてゲル化させたポリマー固体電解質であるポリマー固体電解質リチウ ムイオン 2次電池を提供する。 A liquid cross-linkable composition for a solid electrolyte (hereinafter referred to as a “liquid composition”) in which the amount of the cross-linkable material (1) is 10% by weight or less based on the total amount of the fibrous material; And a lithium ion secondary battery which is a polymer solid electrolyte which is a polymer solid electrolyte that is injected into a sealable battery container incorporating a unit including a separator and is gelled by crosslinking.
発明の詳細な説明  Detailed description of the invention
( 1 ) 架橋性材料  (1) Crosslinkable material
本発明における架橋性材料 (1 ) は、 ポリマー固体を形成しうるものであれば、 いずれの架橋材料であってもよく、 具体例としては下記に示す 5つの組合せ ( a 〜e ) が挙げられる。  The crosslinkable material (1) in the present invention may be any crosslinkable material as long as it can form a polymer solid, and specific examples include the following five combinations (a to e). .
a . エポキシ樹脂とその架橋剤 (エポキシ系組合せ)  a. Epoxy resin and its crosslinking agent (Epoxy combination)
b . ポリイソシァネート化合物およびノまたはウレタンプレボリマーとその架 橋剤 (イソシァネート系組合せ)  b. Polyisocyanate compound and poly- or urethane-prepolymer and its crosslinking agent (isocyanate-based combination)
c . (メタ) アクリル系モノマーとラジカル重合開始剤 (アクリルモノマー系 組合せ)  c. (Meth) acrylic monomer and radical polymerization initiator (acrylic monomer combination)
d . エポキシ基含有ラジカル共重合ポリマーとカチオン重合開始剤 (ポリマ一 系組合せ)  d. Epoxy group-containing radical copolymer and cationic polymerization initiator (polymer combination)
e . ォキセタン環含有ポリマーとカチオン重合開始剤の組合せ (ォキセタンボ リマー系組合せ) 。 e. Combination of oxetane ring-containing polymer and cationic polymerization initiator Limmer combination).
なお、 本明細書において、 「 (メタ) アクリル」 とは、 アクリルまたはメタク リルを意味し、 「 (メタ) ァクリレート」 とは、 アタリレートまたはメタクリレ ートを意味する。  In this specification, “(meth) acryl” means acryl or methacryl, and “(meth) acrylate” means acrylate or methacrylate.
以下、 上記架橋性材料の組合せ a〜 eの好ましい態様を詳述する。  Hereinafter, preferred embodiments of the combinations a to e of the crosslinkable materials will be described in detail.
a . エポキシ系組合せ  a. Epoxy combination
ここで用いるエポキシ樹脂は、 好ましくは、 式 [1] :  The epoxy resin used here preferably has the formula [1]:
(CH2CH-CH20)a - R1-(OCH2CH2CN)b (CH 2 CH-CH 2 0) a-R 1- (OCH 2 CH 2 CN) b
\ / [1]  \ / [1]
o (式中、 aは 2〜5および bは 1〜4の数であり、 ただし a + bは 3〜6であ る ;および Rtは分子中に 3〜6個の水酸基を有する分子量 250未満のポリオ ール化合物から全ての水酸基を除いた残基である) o (wherein, a is a number of 2-5 and b is 1-4, provided that a + b is Ru 3-6 der; and R t is the molecular weight of 250 having three to six hydroxyl groups in the molecule Is the residue obtained by removing all hydroxyl groups from less than
で示されるシァノェチル化エポキシ樹脂を包含する。 And a cyanoethylated epoxy resin represented by the formula:
シァノエチル化エポキシ樹脂 [1] は、 式 [2] :  The cyanoethylated epoxy resin [1] has the formula [2]:
一(OH)a + b [2] One (OH) a + b [2]
(式中、 R,, aおよび bは前記と同意義である)  (Wherein, R, a and b are as defined above)
で示されるポリオール化合物に、 i ) aモルのェピクロルヒ ドリンを付加反応さ せて部分グリシジルエーテル化化合物を得た後、 残りの水酸基に bモルのァクリ ロニトリルを付加反応 (シァノエチル化) させる力、 または ii) 先に bモルのァ タリロニトリルを付加反応させた後、 残りの水酸基をグリシジルエーテル化する ことにより製造することができる。 これらの付加反応は、 いずれも公知の方法に 従って行なうことができ、 たとえば必要に応じて水あるいは非反応性溶媒中、 ァ ルカリ触媒等の存在下で行なえばよい。 なお、 i) の部分グリシジルエーテル化 化合物そのものは、 一般に、 "エポキシ樹脂" として市販もされており、 これを シァノエチルイ匕して使用することも可能である。 I) a reaction of adding a mole of epichlorohydrin to the polyol compound represented by the formula (1) to obtain a partially glycidyl etherified compound, and then adding b moles of acrylonitrile to the remaining hydroxyl groups (cyanoethylation); or ii) It can be produced by first performing an addition reaction of b mole of atarilonitrile and then glycidyl etherifying the remaining hydroxyl groups. Any of these addition reactions can be carried out according to a known method. For example, the addition reaction may be carried out in water or a non-reactive solvent, if necessary, in the presence of an alkali catalyst or the like. The partially glycidyl etherified compound of i) itself is generally commercially available as an "epoxy resin" and can be used after being subjected to cyanoethylation.
上記ポリオール化合物 [2] としては、 グリセリン、 エリスリ トール、 ペンタ エリスリ トール、 キシリ トール、 ソルビトール、 ジグリセリン、 トリグリセリン、 イノシトール、 マンニトール等が例示される。 Examples of the polyol compound [2] include glycerin, erythritol, pentaerythritol, xylitol, sorbitol, diglycerin, triglycerin, Examples include inositol and mannitol.
このようにシァノエチル化エポキシ樹脂 [1] の骨格となるポリオール化合物 [2] として、 水酸基数 3〜6個のものを使用する。 ポリオール化合物の水酸基 数を 6個より多くすると、 シァノエチル基およびエポキシ基の濃度を高めること ができ、 高誘電率で高架橋密度化し易く、 イオン導電性の面で有利となる反面、 シァノェチル化エポキシ榭月旨の粘度が極度に高まり、 これを配合する液状組成物 の粘度が上昇し、 密閉容器への注入時に電極とセパレータ間への浸入性が低下す る。 逆に水酸基数が 3個未満だと、 架橋密度の低下によりゲル化性が低下し、 ゲ ル形成のためには高分子 (ポリマー) 成分量を増やさなければならず、 結果とし てィオン導電性の低下を招く。  As described above, a polyol compound having 3 to 6 hydroxyl groups is used as the polyol compound [2] serving as the skeleton of the cyanoethylated epoxy resin [1]. When the number of hydroxyl groups in the polyol compound is more than 6, the concentration of cyanoethyl groups and epoxy groups can be increased, and it is easy to increase the crosslink density with a high dielectric constant, which is advantageous in terms of ionic conductivity. The viscosity of the liquid composition containing the same increases, and the infiltration between the electrode and the separator during injection into a closed container decreases. Conversely, if the number of hydroxyl groups is less than 3, the gelling property will decrease due to the decrease in crosslink density, and the amount of the polymer component must be increased in order to form the gel. Causes a decrease in
エポキシ樹脂と共に用いる架橋剤は、 好ましくは、 式 [3] :  The crosslinking agent used with the epoxy resin is preferably of the formula [3]:
H2 N-CH2 CH2 -(NH-CH2 CH2)c-NH2 [3] H 2 N-CH 2 CH 2- (NH-CH 2 CH 2 ) c-NH 2 [3]
(式中、 cは 0~4の数である)  (Where c is a number from 0 to 4)
で示されるポリエチレンポリアミン (たとえばエチレンジァミン、 ジエチレント リアミン、 トリエチレンテトラミン、 テトラエチレンペンタミン、 ペンタエチレ ンへキサミン等) 、 および式 [4] :  A polyethylene polyamine represented by, for example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc., and a formula [4]:
(R3)e 4 (R5) & (R 3 ) e 4 (R 5 ) &
I I I [4] I I I [4]
(R2)d-N-CH2CH2-(N-CH2CH2)f-N-(R6)h (R 2 ) dN-CH 2 CH 2- (N-CH 2 CH 2 ) fN- (R 6 ) h
(式中、 R2, R3, R4, R5および R6はそれぞれ Hまたは _CH2 CH2 C N ; d, e , gおよび hはそれぞれ 0〜 2の数であり、 d + eは 2、 g + hは(Wherein R 2 , R 3 , R 4 , R 5 and R 6 are each H or _CH 2 CH 2 CN; d, e, g and h are each a number from 0 to 2, and d + e is 2 , G + h
2 ;および f は 0〜4の数である。 但し、 R2〜R6の内少なくとも 2つは Hでか つ少なくとも 1つは一 CH2 CH2 CNである) 2; and f is a number from 0 to 4. However, at least two of R 2 to R 6 are H and at least one is one CH 2 CH 2 CN)
一で示される部分シァノェチル化ポリエチレンポリアミンからなる群から選択され る少なくとも 1種の化合物である。 And at least one compound selected from the group consisting of partially cyanoethylated polyethylene polyamines represented by 1.
部分シァノエチル化ポリエチレンポリアミン [4] は、 ポリエチレンポリアミ ン [3] に所定モルのアクリロニトリルを付加反応させることにより製造するこ とができる。 付加反応は通常、 必要に応じて非反応性溶媒中、 無触媒で常温〜 8 0 °C程度の温度にて容易に行なうことができる。 The partially cyanoethylated polyethylene polyamine [4] can be produced by subjecting the polyethylene polyamine [3] to an addition reaction of a predetermined mole of acrylonitrile. The addition reaction is usually carried out in a non-reactive solvent, if necessary, in the absence of a catalyst at room temperature to 8 It can be easily performed at a temperature of about 0 ° C.
ポリエチレンポリアミン [ 3 ] の分子量 (炭素数) の高い方が、 架橋点が多い ためゲル化性が有利となる傾向にあるが、 f が 5以上では、 液状組成物の粘度上 昇を招き、 またシァノェチノレ化率の過度の増加は高誘電率化によるィオン導電性 の改良につながるが、 その分活性水素原子の減少によって、 架橋密度が低下し、 高分子成分量の増大を余儀無くされ、 イオン導電性の低下を招く場合がある。 従 つて、 当該架橋剤は、 上記エポキシ樹脂の種類、 ゲル化性、 イオン導電性等との バランスを考慮して適宜選択することが好ましい。  The higher the molecular weight (the number of carbon atoms) of polyethylene polyamine [3], the greater the number of crosslink points, which tends to be advantageous in gelling properties. However, when f is 5 or more, the viscosity of the liquid composition increases, and An excessive increase in the cyanone conversion rate leads to an improvement in ion conductivity due to an increase in the dielectric constant. In some cases may lead to a decrease in performance. Therefore, it is preferable that the cross-linking agent is appropriately selected in consideration of the balance with the type of the epoxy resin, the gelling property, the ionic conductivity, and the like.
上記シァノェチル化エポキシ樹脂と架橋剤の配合比率は、 シァノェチル化工ポ キシ樹脂の当量および架橋剤の活性水素当量から計算される値を中心に 1 : 0 . The mixing ratio of the cyanoethylated epoxy resin to the crosslinking agent is 1: 0.about.1 centered on the value calculated from the equivalent of the cyanoethylated epoxy resin and the active hydrogen equivalent of the crosslinking agent.
8〜 2 . 0程度の範囲とすることが好ましく、 この範囲外ではゲル化性が低下す る傾向にある。 It is preferred to be in the range of about 8 to 2.0, and outside this range, the gelling property tends to decrease.
b . イソシァネート系組合せ  b. Isocyanate combination
この組合せで用いるポリイソシァネート化合物としては、 たとえば 2 , 4—ま たは 2 , 6—トリレンジイソシァネートあるいはそれらの混合物、 4, 4 ' —ジ フエニルメタンジイソシァネート、 イソフォロンジイソシァネート、 1, 6—へ キサメチレンジイソシァネート、 2, 4 , 6—トリメチ /レへキサメチレンジイソ シァネート、 キシリレンジイソシァネート、 およびクルードタイプのジフエニル メタンジイソシァネー卜からなる群から選択される少なくとも 1種のポリイソシ ァネートである。  Examples of the polyisocyanate compound used in this combination include 2,4- or 2,6-tolylene diisocyanate or a mixture thereof, 4,4'-diphenylmethanediisocyanate, isophorone Diisocyanate, 1,6-hexamethylene diisocyanate, 2,4,6-trimethyl / lehexamethylene diisocyanate, xylylene diisocyanate, and crude diphenyl methane diisocyanate At least one polyisocyanate selected from the group consisting of:
また上記ポリイソシァネート化合物に代えてまたは加えて用いるウレタンプレ ポリマーは、 分子量 4 0 0未満のポリオールと当量より過剰の、 たとえば N C O /O H = 1 . 2〜 2 . 0の当量比でポリイソシァネート (上記のポリイソシァネ ―ト化合物の中から適宜選択) を反応させて得られるィソシァネート基含有ウレ タンプレポリマーである。 ここで、 ポリオールの分子量が 4 0 0以上では、 ゲル 化性が低下する傾向にある。 また、 N C O/O H当量比が 1 . 2未満では、 粘度 上昇による注入時の浸入性低下とゲル化性の低下を招き、 また 2 . 0を越えると、 未反応のポリイソシァネー卜が残存することになり、 これは上述のポリイソシァ ネート化合物と該ウレタンプレボリマーを併用する場合に相当し、 その意味がな い。 The urethane prepolymer used in place of or in addition to the above polyisocyanate compound is a polyisomers having an equivalent ratio of a polyol having a molecular weight of less than 400 and an excess of, for example, NCO / OH = 1.2 to 2.0. This is a urethane prepolymer containing an isocyanate group, which is obtained by reacting a cyanate (which is appropriately selected from the above polyisocyanate compounds). Here, when the molecular weight of the polyol is 400 or more, the gelling property tends to decrease. On the other hand, if the NCO / OH equivalent ratio is less than 1.2, a decrease in the infiltration property at the time of injection and a decrease in the gelling property due to an increase in viscosity are caused, and if it exceeds 2.0, unreacted polyisocyanate remains. This corresponds to the case where the above-mentioned polyisocyanate compound and the urethane prepolymer are used in combination, and the meaning is not significant. No.
上記ポリオールとしては、 たとえばエチレングリコール、 プロピレングリコー ノレ、 ジエチレングリ コーノレ、 ジプロピレングリ コーノレ、 ト リメチ口一ノレプロパン、 グリセリン、 ポリグリセリン等、 およびこれらのエチレンオキサイドもしくはプ ロピレンオキサイ ド付加物が挙げられ、 これらの少なくとも 1種を用いる。  Examples of the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, trimethyi monopropane, glycerin, polyglycerin and the like, and ethylene oxide or propylene oxide adducts thereof. Use at least one of
ポリオールとポリイソシァネートの反応は、 無触媒または少量の触媒 (たとえ ば S n、 B i、 F e、 P bなどの金属塩あるいはジブチル錫ジラウレート等) の 存在下、 無溶媒あるいは必要に応じ非反応性の脱水溶媒中で、 常温乃至 1 0 0 °C 程度の温度にて行なうことができる。  The reaction between the polyol and the polyisocyanate can be carried out in the absence of a catalyst or in the presence of a small amount of a catalyst (for example, metal salts such as Sn, Bi, Fe, Pb, or dibutyltin dilaurate) in the absence of a solvent or as necessary. The reaction can be carried out in a non-reactive dehydrating solvent at a temperature from room temperature to about 100 ° C.
なお、 かかるウレタンプレポリマーを用いずにポリイソシァネート化合物を単 独で用いる場合、 ポリイソシァネート化合物の中には、 比較的蒸気圧の高いもの があり、 環境衛生上好ましくない場合があるが、 この場合、 上述の如くウレタン プレポリマー化して使用することが望まれる。  If the polyisocyanate compound is used alone without using such a urethane prepolymer, some of the polyisocyanate compounds have a relatively high vapor pressure, which may be unfavorable for environmental health. However, in this case, it is desirable to use urethane prepolymer as described above.
ィソシァネート系組合せで用いる架橋剤としては、 下記のものが例示される。 i) 上記分子量 4 0 0未満のポリオールでしかも水酸基価 4 0 0以上のポリオ ール化合物。  Examples of the crosslinking agent used in the isocyanate combination include the following. i) A polyol compound having a molecular weight of less than 400 and a hydroxyl value of 400 or more.
ii) 分子中に 2〜 6個の水酸基を有するポリオールにエチレンォキサイドもし くはプロピレンォキサイドを付加して得られる分子量 8 0 0未満のポリオキシェ チレンポリオールもしくはポリオキシプロピレンポリオール。  ii) Polyoxyethylene polyol or polyoxypropylene polyol having a molecular weight of less than 800, obtained by adding ethylene oxide or propylene oxide to a polyol having 2 to 6 hydroxyl groups in the molecule.
上記ポリオールとしては、 たとえばエチレングリコール、 ジエチレングリコー ノレ、 プロピレングリコール、 ジプロピレングリコール、 グリセリン、 ジグリセリ ン、 トリグリセリン、 1, 1, 1 _トリメチロールプロパン、 エリスリ トール、 ペンタエリスリ ト一ノレ、 ジペンタエリスリ ト一ノレ、 キシリ ト一ノレ、 マンニ トーノレ、 イノシトール、 ソルビトール等が挙げられる。  Examples of the polyol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, diglycerin, triglycerin, 1,1,1-trimethylolpropane, erythritol, pentaerythritol, and dipentaerythritol. And xylitol, mannitol, inositol, sorbitol and the like.
上記の付加反応は通常、 アルカリ触媒の存在下、 加熱加圧しながらエチレンォ キサイドもしくはプロピレンォキサイ ドを部分的あるいは完全に付加して行なえ ばよい。 このようにして目的のポリオキシアルキレンポリオ一ルが製造される。 多くの品種のポリォキシアルキレンポリオールが市販されている。  Usually, the above addition reaction may be carried out in the presence of an alkali catalyst while heating or pressurizing while partially or completely adding ethylene oxide or propylene oxide. Thus, the desired polyoxyalkylene polyol is produced. Many varieties of polyoxyalkylene polyols are commercially available.
i i i) 分子中に 2個以上の、 アミン性ァミノ基および Zまたはイミノ基による 活性水素原子含有化合物またはアンモニアに、 エチレンォキサイドおよび Zまた はプロピレンォキサイドを付加して得られるポリ N—ヒ ドロキシアルキル化化合 物。 iii) by two or more amine-like amino groups and Z or imino groups in the molecule A poly N-hydroxyalkylated compound obtained by adding ethylene oxide and Z or propylene oxide to a compound containing active hydrogen atoms or ammonia.
上記活性水素原子含有化合物としては、 たとえばエチレンジァミン、 ジェチレ ントリアミン、 トリエチレンテトラミン、 テトラエチレンペンタミン、 ペンタエ チレンへキサミンなどのポリアルキレンポリアミン類; 1 , 3—プロパンジアミ ン、 1 , 4—ブタンジァミン、 1 , 6 —へキサンジァミンなどのアルカンジアミ ン類;モノメチルァミン、 モノェチルァミン、 モノイソプロピルァミン、 モノ n Examples of the active hydrogen atom-containing compound include polyalkylene polyamines such as ethylenediamine, dimethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine; 1,3-propanediamine, 1,4-butanediamine, 6 - to Arukanjiami emissions such as Kisanjiamin; Monomechiruamin, Monoechiruamin, monoisopropyl § Min, mono n
—プチルァミンなどのモノアルキルアミン類 ;ポリエチレンィミン類が挙げられ る。 — Monoalkylamines such as butylamine; polyethyleneimines.
上記の付加反応は通常、 無触媒または微量のアルカリ触媒を使用して、 常圧〜 加圧下、 常温乃至加熱下で行なってよい。  The above addition reaction may be carried out usually at normal pressure to under pressure, at normal temperature or under heating, using no catalyst or a small amount of an alkali catalyst.
得られるポリ N—ヒ ドロキシアルキル化化合物の具体例としては、 N , N ' ― テトラヒ ドロキシェチルエチレンジァミン、 N, N ' ーテトラヒ ドロキシイソプ 口ピノレエチレンジァミン、 Ν, Ν ' , N" 一ペンタヒ ドロキシイソプロピノレジェ チレントリアミン、 N, N, , N" , Ν' " —へキサヒ ドロキシェチノレトリェチ レンテトラミン、 トリエタノールァミン、 トリイソプロパノ—ルァミン、 ポリ Ν —ヒ ドロキシイソプロピルポリエチレンィミン等が挙げられ、 これらの一部の品 種は市販されている。  Specific examples of the obtained poly N-hydroxyalkylated compound include N, N′-tetrahydroxyxethylethylenediamine, N, N′-tetrahydroxyisopropene pinoleethylenediamine, Ν, Ν ′, N "1-pentahydroxyisopropinolegetylenetriamine, N, N,, N", Ν '"-Hexahydroxyxenotinoletrietylenetetramine, triethanolamine, triisopropanololamine, polydimethylamine Droxyisopropyl polyethyleneimine and the like, and some of these are commercially available.
iv) 分子中に 3個以上の、 アミン性ァミノ基および Zまたはイミノ基による活 性水素含有化合物またはアンモニアに、 少なくとも 1個の活性水素原子を残して エチレンォキサイドおよび Zまたはプロピレンォキサイドを付加して N—ヒ ドロ キシアルキル化し、 次いで残存する活性水素原子をァクリロ二トリルでシァノエ チル化して得られるモノまたはポリ N—シァノエチル化ポリ N—ヒ ドロキシアル キル化化合物。  iv) Ethylene oxide and Z or propylene oxide, with at least one active hydrogen atom remaining in an active hydrogen-containing compound or ammonia containing three or more amine amino and Z or imino groups in the molecule. To obtain a mono- or poly-N-cyanoethylated poly (N-hydroxyalkylated) compound obtained by subjecting the remaining active hydrogen atoms to cyanoethylation with acrylonitrile.
上記活十生水素原子含有化合物としては、 たとえばエチレンジァミン、 ジェチレ ントリアミン、 トリエチレンテトラミン、 テトラエチレンペンタミン、 ペンタエ チレンへキサミン、 へキサメチレンジァミン、 ポリエチレンィミン等が挙げられ る。 上記の N—ヒ ドロキシアルキル化は通常、 無触媒または微量のアルカリ触媒を 使用して、 常圧〜加圧下常温乃至加熱下で行い、 そして上記のシァノエチル化は 通常、 無触媒で無溶媒あるいは必要に応じて非反応性溶媒中、 常温乃至 6 0°C程 度の温度にて行なえばよい。 なお、 N—ヒ ドロキシアルキル化とシァノエチル化 の反応順序を逆にしてもよい。 Examples of the active hydrogen atom-containing compound include ethylenediamine, methylethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexamethylenediamine, and polyethyleneimine. The above-mentioned N-hydroxyalkylation is usually carried out at normal pressure to pressure and at normal temperature to heating using a catalyst or a trace amount of an alkali catalyst, and the above-mentioned cyanoethylation is usually carried out without a catalyst and without solvent. If necessary, the reaction may be carried out in a non-reactive solvent at a temperature from room temperature to about 60 ° C. The order of the N-hydroxyalkylation and the cyanoethylation may be reversed.
V) 上記 iii) で得たポリ N—ヒ ドロキシアルキル化化合物の水酸基の一部をァ クリロニトリルでシァノエチルイ匕して得られる部分シァノエチル化ポリ N—ヒ ド ロキシアルキル化化合物。  V) A partially cyanoethylated poly (N-hydroxyalkylated compound) obtained by partially dehydrating the hydroxyl groups of the poly (N-hydroxyalkylated compound) obtained in (iii) above with acrylonitrile.
上記のシァノエチル化は通常、 アルカリ触媒を用いて無溶媒あるいは非反応性 溶媒中、 常温乃至 6 0°C程度の温度で行なえばよい。 なお、 アルカリ触媒として 水酸化リチウムも使用でき、 これは本発明対象のリチウム電池に用いた場合、 ァ ルカリ触媒あるいはその中和物のコンタミや残留不純物の面での問題がない。  The above-mentioned cyanoethylation may be usually carried out using an alkali catalyst in a solvent-free or non-reactive solvent at a temperature from room temperature to about 60 ° C. In addition, lithium hydroxide can be used as the alkali catalyst, and when used in the lithium battery of the present invention, there is no problem in terms of contamination of the alkaline catalyst or a neutralized product thereof and residual impurities.
vi) 水酸基を有するラジカル重合性モノマーと他のラジカル重合性モノマーの 共重合で得られる水酸基含有ラジカル共重合ポリマー。  vi) A hydroxyl-containing radical copolymer obtained by copolymerizing a radical-polymerizable monomer having a hydroxyl group with another radical-polymerizable monomer.
上記水酸基を有するラジカル重合性モノマーは、 分子中少なくとも 1個の水酸 基を残存させた、 ポリヒドロキシ化合物の部分 (メタ) ァクリレートである。 上記ポリヒドロキシ化合物は、 分子中に 2〜 6個の水酸基を有する水酸基価 4 00以上の高水酸基価ポリヒ ドロキシ化合物、 たとえばエチレングリコール、 ジ エチレングリコール、 プロピレングリコー/レ、 ジプロピレングリコール、 グリセ リン、 ジグリセリン、 トリグリセリン、 エリスリ トール、 ペンタエリスリ トール、 ジペンタエリスリ トール、 キシリ トール、 ソノレビトール、 またはこれらのェチレ ンォキサイドもしくはプロピレンォキサイドの付加物である。  The radical polymerizable monomer having a hydroxyl group is a partial (meth) acrylate of a polyhydroxy compound in which at least one hydroxyl group remains in the molecule. The polyhydroxy compound includes a high hydroxyl value polyhydroxy compound having a hydroxyl value of 400 or more having 2 to 6 hydroxyl groups in a molecule, for example, ethylene glycol, diethylene glycol, propylene glycol / di, dipropylene glycol, glycerin, Diglycerin, triglycerin, erythritol, pentaerythritol, dipentaerythritol, xylitol, sonoreitol, or adducts of these ethylene oxides or propylene oxides.
上記他のラジカル重合性モノマーは、 式 [5] :  The other radically polymerizable monomer is represented by the formula [5]:
CH2 = C-R8 [ 5] CH 2 = CR 8 [5]
(式中、 R7は Hまたは CH3 ;および R8は一 CN、 一 COOCH3、 -COO C。 H5、 — COO(CH。 CHQ O)^ 3 CH3、 一 C O O ( C H。 C H。〇) L3 C。 H 5、 -COO(CH2 CH(CH3)0)1^ 3 CH3, - C O O (C H2 C H ( C H3 ) O) t (Wherein R 7 is H or CH 3 ; and R 8 is one CN, one COOCH 3 , -COO C. H 5 , — COO (CH. CHQ O) ^ 3 CH 3 , one COO (CH. CH. 〇) L to 3 C. H 5 , -COO (CH 2 CH (CH 3 ) 0) 1 ^ 3 CH 3 , -COO (CH 2 CH (CH 3 ) O) t
3C2H5、 一 OC〇CH3、 または _OCOC2 H5である) ~ 3 C 2 H 5, one OC_〇_CH 3, or _OCOC 2 H 5)
で示されるビュル系もしくは (メタ) アクリル系モノマーである。 A bull or (meth) acrylic monomer represented by
上記水酸基を有するラジカル重合性モノマ一と他のラジカル重合性モノマーの 重量比は、 好ましくは 1 : 10〜1 : 1である。  The weight ratio of the radical polymerizable monomer having a hydroxyl group to another radical polymerizable monomer is preferably from 1:10 to 1: 1.
共重合は通常、 ラジカル重合開始剤 (たとえばベンゾィルパーオキサイド、 N, N' —ァゾビスィソブチロニトリノレ等) を用い、 溶媒中, 60〜80°C程度の温 度にて行なえばよい。 この際、 分子量調節用としてメルカブタン類、 水酸基含有 メルカブタン類などの連鎖移動剤を用いることができ、 特に水酸基含有メルカプ タン類 (たとえばメルカプトエタノール) を使用すれば、 共重合ポリマ一^■の水 酸基導入源にもなる。  Copolymerization is usually carried out using a radical polymerization initiator (eg, benzoyl peroxide, N, N'-azobisisobutyronitrile), in a solvent at a temperature of about 60 to 80 ° C. I just need. At this time, chain transfer agents such as mercaptans and hydroxyl group-containing mercaptans can be used for controlling the molecular weight. Particularly, when hydroxyl group-containing mercaptans (for example, mercaptoethanol) are used, the hydroxyl group of the copolymerized polymer can be improved. It is also a source of base introduction.
このようにイソシァネート系組合せ (b) において、 (i) 〜 (vi) の架橋剤 が使用できるが、 特にポリオキシアルキレンポリオール (ii) において、 分子量 800未満でかつ水酸基数 2未満のもの、 あるいは分子量 800以上のものでは、 ゲル化性が低く、 また水酸基数 6を越えるものでは、 粘度が高くなり、 電極 Zセ パレ一タ間の浸入性が低下する。  Thus, in the isocyanate-based combination (b), the crosslinking agents (i) to (vi) can be used. Particularly, in the polyoxyalkylene polyol (ii), those having a molecular weight of less than 800 and less than 2 hydroxyl groups, or a molecular weight of less than 2 If the number is 800 or more, the gelling property is low, and if the number of hydroxyl groups exceeds 6, the viscosity increases and the penetration between the electrode Z separators decreases.
さらに、 このポリオキシアルキレンポリオール (ii) を使用する場合、 ポリイ ソシァネート化合物やウレタンプレポリマ一 (以下、 「イソシァネート成分」 と 称す) の NCOとの反応性が比較的に低いため、 ゲル化に際して、 温度アップや 時間延長が必要となる場合があるが、 別途ゥレタン架橋触媒の添加もしくは増量 によってもある程度対処できる。 これに対し、 以下の理由から、 iii) 、 iv) 、 v) の架橋剤の使用が好適である。  Furthermore, when the polyoxyalkylene polyol (ii) is used, the reactivity of the polyisocyanate compound or urethane prepolymer (hereinafter referred to as “isocyanate component”) with NCO is relatively low. It may be necessary to increase the temperature or extend the time, but this can be dealt with to some extent by adding or increasing the amount of the urethane crosslinking catalyst separately. On the other hand, for the following reasons, the use of the crosslinking agents iii), iv) and v) is preferred.
後述の如く、 かかるイソシァネート系組合せ (b) の架橋性材料 (高分子成分 を構成) の配合量を少なく していることから (10重量%以下) 、 イソシァネー ト成分の N COと架橋剤の OHとの架橋反応にリチウム電解質塩が負触媒として 作用することが多いため、 ポリオキシアルキレンポリオール (ii) の如き単なる 水酸基ではゲル化し難い傾向にあるのに対し、 (iii) 〜 (V) の架橋剤では、 そ の N—ヒドロキシアルキル基による水酸基と NCOは優れた架橋反応性、 すなわ ち、 大きな有効性を示す。 (iv) のモノまたはポリ N—シァノエチル化ポリ N—ヒ ドロキシアルキル化化 合物は、 ポリ N—ヒ ドロキシアルキル化化合物 (iii) に N—ヒ ドロキシアルキ ノレ化による水酸基を残存させたままでシァノエチル基を導入したもので、 ポリ N ーヒ ドロキシアルキル化化合物 (iii) に比べ、 高誘電率化によるイオン導電性 の向上、 および電解液溶媒とリチウム電解質塩 (実際はリチウム電解質塩が電解 液溶媒に溶解した状態 =電解液) の保持性が改善され、 かつゲルからの電解液の 分離ゃブリード (にじみ出し) に対する防止効果がある。 しかし、 シァノエチル 基は N C Oに対し非反応性で、 その分架橋密度が低下しゲル化性が低下するので、 シァノェチル基の必要性とその含有量は、 全体のバランスを考慮して決定される。 一方、 (vi) の水酸基含有ラジカル共重合ポリマーを使用する場合、 多少粘度 は高くなるものの、 ポリマー濃度がより低くても良好なゲルを形成でき、 この点 で有利である。 また、 水酸基を有するラジカル重合性モノマーの重合比が前記範 囲より多くなれば、 それだけゲル化性は向上するが、 粘度上昇を起こし、 逆に少 ないと、 ゲル化性の低下を招く。 As described later, since the amount of the crosslinkable material (constituting the polymer component) of the isocyanate-based combination (b) is reduced (10% by weight or less), NCO of the isocyanate component and OH of the crosslinking agent are reduced. In many cases, the lithium electrolyte salt acts as a negative catalyst in the cross-linking reaction with water, and it tends to be difficult to gel with a simple hydroxyl group such as polyoxyalkylene polyol (ii), whereas the cross-linking of (iii) to (V) In the agent, the hydroxyl group due to the N-hydroxyalkyl group and NCO exhibit excellent crosslinking reactivity, that is, great effectiveness. The mono- or poly-N-cyanoethylated poly-N-hydroxyalkylated compound of (iv) can be obtained by leaving the hydroxyl group by N-hydroxyalkylation in the poly-N-hydroxyalkylated compound (iii). It has a cyanoethyl group and improves ionic conductivity due to higher dielectric constant compared to poly N-hydroxyalkylated compound (iii), and electrolyte solvent and lithium electrolyte salt (actually, lithium electrolyte salt This improves the retention of the electrolyte dissolved in the solvent (electrolyte), and has the effect of preventing the separation of the electrolyte from the gel and bleeding. However, since the cyanoethyl group is non-reactive with NCO, the crosslink density decreases and the gelling property decreases accordingly, so the necessity of the cyanoethyl group and its content are determined in consideration of the overall balance. On the other hand, when the hydroxyl group-containing radical copolymer (vi) is used, although the viscosity slightly increases, a good gel can be formed even at a lower polymer concentration, which is advantageous in this respect. Further, when the polymerization ratio of the radical polymerizable monomer having a hydroxyl group is larger than the above range, the gelling property is improved accordingly, but the viscosity is increased, and conversely, when the polymerization ratio is less, the gelling property is reduced.
かかるイソシァネート系組合せ (b) において、 イソシァネート成分と架橋剤 の配合比率は、 ィソシァネート成分の N CO当量および架橋剤の水酸基当量から 計算される値を中心に 0. 8〜1. 2 : 1の当量比程度の範囲とする。  In such an isocyanate-based combination (b), the mixing ratio of the isocyanate component to the crosslinking agent is 0.8 to 1.2: 1 equivalent centering on the value calculated from the NCO equivalent of the isocyanate component and the hydroxyl group equivalent of the crosslinking agent. It should be in the range of the ratio.
c . モノマー系組合せ  c. Monomer combination
この組合せで用いる (メタ) アクリル系モノマーは、 式 [6] :  The (meth) acrylic monomer used in this combination has the formula [6]:
9 9
CH2 = C-COOR10 [6] CH 2 = C-COOR 10 [6]
(式中、 R9は Hまたは CH3 ;および 。は炭素数 1〜4のアルキルである) で示されるアルキル (メタ) アタリレートおよび/または式 [7] : (Wherein R 9 is H or CH 3 ; and is an alkyl having 1 to 4 carbon atoms). An alkyl (meth) acrylate and / or a formula [7]:
CH2 = C— COO— ( — R13 [7] (式中、 Rl tは Hまたは CH3 ; R12は一 CH2 CH20_または一 CH2 CH (CH3) -O-; R13は CH3または C2H5 ;および iは 1〜3である) で示されるアルコキシモノまたはポリアルキル (メタ) アタリレートと、 式 [8] : CH 2 = C— COO— (— R 13 [7] (Wherein, R lt is H or CH 3; R 12 one CH 2 CH 2 0_ or a CH 2 CH (CH 3) -O- ; R 13 is CH 3 or C 2 H 5; and i is 1 To 3), and an alkoxy mono- or polyalkyl (meth) acrylate which is represented by the formula [8]:
CH2 = C-COO-R15-OOC-C = CH2 [8] CH 2 = C-COO-R 15 -OOC-C = CH 2 [8]
(式中、 R14および R16はそれぞれ Hまたは CH3 ;および 5は、 一(CH2
Figure imgf000016_0001
2。一である)
Wherein R 14 and R 16 are each H or CH 3 ; and 5 is one (CH 2
Figure imgf000016_0001
2 . One)
で示されるモノまたはポリオキシアルキレンジ (メタ) アタリレートとを必須成 分とする。 And mono- or polyoxyalkylene di (meth) acrylates as essential components.
モノマー系組合せ (c) で用いるラジカル重合開始剤としては、 特に限定され ず、 通常の熱重合開始剤、 たとえばベンゾィルパーオキサイ ド、 ラウロイルパ一 オキサイド、 メチルェチルケトンパーオキサイド、 N, N' —ァゾビスイソブチ ロニ ト リノレ (A I BN) 、 N, N' —ァゾビスバレロ二 ト リノレ等が使用できる。 使用量は通常、 液状組成物全量中 0. 1〜5重量%の範囲で選定すればよい。  The radical polymerization initiator used in the monomer combination (c) is not particularly limited, and is usually a thermal polymerization initiator such as benzoyl peroxide, lauroyl peroxide, methyl ethyl ketone peroxide, N, N '. —Azobisisobutyronitrile (AIBN), N, N '—Azobisvaleronitrinore can be used. The amount to be used may usually be selected in the range of 0.1 to 5% by weight based on the total amount of the liquid composition.
d. ポリマー系組合せ  d. Polymer combination
ここで用いるェポキシ基含有ラジカル共重合ポリマーは、 エポキシ基を有する (メタ) ァクリルモノマーと他のラジカル重合性モノマーの共重合ポリマーであ る。  The epoxy group-containing radical copolymer used herein is a copolymer of a (meth) acrylic monomer having an epoxy group and another radically polymerizable monomer.
上記エポキシ基を有する (メタ) アクリルモノマーは式:  The above (meth) acrylic monomer having an epoxy group has the formula:
R17 R 17
CH2 = C- COOR18 CH 2 = C- COOR 18
(式中、 R17は Hまたは CH3 ;および R18 H2 (Wherein R 17 is H or CH 3 ; and R 18 H 2
Figure imgf000017_0001
である)
Figure imgf000017_0001
Is)
で示される (メタ) アタリレート [すなわち、 3, 4一エポキシシクロへキシル メチル (メタ) アタリレートまたはグリシジル (メタ) アタリレート] の少なく とも 1種である。 At least one of the (meth) acrylates [ie, 3,4-epoxycyclohexylmethyl (meth) acrylate or glycidyl (meth) acrylate].
上記他のラジカル重合性モノマーは式:  The other radically polymerizable monomers have the formula:
k 19 k 19
H2 = 一: R20 H 2 = one: R 20
(式中、 R19は Hまたは CH3 ;および R2。は _COOCH3、 一C〇OC2H5、 一 C〇〇C3H7、 一 CO〇C4H9、 -COO (CH2 CH2 O) ^ 3 CH3, (Where R 19 is H or CH 3 ; and R 2 is _COOCH 3 , one C〇OC 2 H 5 , one C〇〇C 3 H 7 , one CO〇C 4 H 9 , -COO (CH 2 CH 2 O) ^ 3 CH 3 ,
-COO (CH2 CH20) ト 3C2H5-COO (CH 2 CH 20 ) 3 C 2 H 5 ,
-COO (CH2 CH (CH3) O) 卜 3CH3-COO (CH 2 CH (CH 3 ) O) 3 CH 3 ,
-COO (CH2 CH (CH3) O) ト ヽ -COO (CH 2 CH (CH 3 ) O)
一 OCOCH3、 または一 OCOC2 H5である) One OCOCH 3 or one OCOC 2 H 5 )
で示されるビュル系もしくは (メタ) アクリル系モノマーである。 A bull or (meth) acrylic monomer represented by
上記エポキシ基を有する (メタ) アクリルモノマーと他のラジカル重合性モノ マーの重量比は、 好ましくは 1 : 10〜1 : 1である。  The weight ratio between the (meth) acrylic monomer having an epoxy group and the other radically polymerizable monomer is preferably 1:10 to 1: 1.
ポリマー系組合せで用いるカチオン重合開始剤として、 各種のォニゥム塩 (た とえばアンモニゥム、 ホスホニゥム、 ァノレソニゥム、 スチボ二ゥム、 スルホユウ ム、 ョードニゥムなどのカチオンの、 一 BF4、 _PF6、 一 S bF6、 一 CF3 S o3、 一 C 1 o4などのァニオン塩等) が使用できるが、 本発明でこれらォニゥム 塩を使用しなくても、 リチウム電解質塩 (3) であるへキサフルォロリン酸リチ ゥムおよび Zまたはテトラフルォロホウ酸リチウムを利用すれば、 本来のリチウ ム電解質塩の作用に加え、 当該カチオン重合開始剤としても作用することができ、 好都合である。 当然、 カチオン重合開始剤の一部として、 ォニゥム塩とへキサフ ルォロリン酸リチウムおよび zまたはテトラフルォロホウ酸リチウムを併用する ことも可能である。 As the cationic polymerization initiator used in the polymer system combination, For example various Oniumu salt (for the Anmoniumu, Hosuhoniumu, Anoresoniumu, Suchibo two © beam, Suruhoyuu arm, cations such as Yodoniumu one BF 4, _PF 6, one S bF 6 , A CF 3 So 3 , a C 1 O 4, etc.) can be used. However, even if these onium salts are not used in the present invention, the lithium electrolyte salt (3) hexafluorophosphate is not required. The use of lithium and Z or lithium tetrafluoroborate is advantageous in that it can act as the cationic polymerization initiator in addition to the action of the original lithium electrolyte salt. Of course, as part of the cationic polymerization initiator, It is also possible to use lithium fluorophosphate and z or lithium tetrafluoroborate in combination.
e . ォキセタンポリマー系組合せ  e. Oxetane polymer combination
この組合せで用いるォキセタン環含有ポリマーは、 ポリマー構造内にォキセタ ン環を複数個有するポリマ一であって、 ポリマーの骨格構造を問うものではなく、 簡便なラジカル重合でも容易に得ることができる。  The oxetane ring-containing polymer used in this combination is a polymer having a plurality of oxetane rings in the polymer structure, and does not matter the skeletal structure of the polymer, and can be easily obtained by simple radical polymerization.
すなわち、 ォキセタン環を有するラジカル重合性モノマ一 (以下、 「ォキセタ ン重合モノマー」 と称す) および必要に応じてエポキシ基を有するラジカル重合 性モノマー (以下、 「エポキシ重合モノマ一」 と称す) と、 他のラジカル重合性 モノマーとをラジカル重合させることによって製造され、 通常分子量は 1 0 0 0 0以上である。 分子量が 1 0 0 0 0未満であると、 ゲルを形成するのに必要なポ リマー量が多く必要になる傾向にある。 なお、 分子量の上限には特に制限はない 、 後記液状組成物の液状 (溶液状態) を維持する上で、 上限を 1 0 0万程度、 好ましくは 5 0万程度に抑えることが適当である。  That is, a radical polymerizable monomer having an oxetane ring (hereinafter, referred to as “oxetane polymerizable monomer”) and a radical polymerizable monomer having an epoxy group as needed (hereinafter, referred to as “epoxy polymerizable monomer”), It is produced by radical polymerization of another radical polymerizable monomer, and usually has a molecular weight of 1000 or more. If the molecular weight is less than 1000, the amount of polymer required to form a gel tends to be large. The upper limit of the molecular weight is not particularly limited, but it is appropriate to keep the upper limit at about 100,000, preferably about 500,000 in order to maintain the liquid state (solution state) of the liquid composition described later.
上記ラジカル重合は通常、 ラジカル重合開始剤 [たとえば N, N'_ァゾビスィ ソブチロニトリル、 ジメチル N, N,一ァゾビス (2—メチルプロピオネート) 、 ベンゾィルパーォキシド、 ラウロイルパ一ォキシド等] および必要に応じてメル カブタン類などの分子量調整剤を用いて行なうことができ、 その際、 得られるポ リマーの分子量が比較的大きいため、 溶媒中 6 0〜8 0 °C程度の温度で行なう溶 液重合が好適である。 溶媒としては、 後記電解液溶媒 (3 ) に例示される環状炭 酸エステル類、 鎖状炭酸エステル類、 低分子カルボン酸エステル類の使用が好ま しい。  The above radical polymerization is usually carried out by a radical polymerization initiator [eg, N, N'_azobisisobutyronitrile, dimethyl N, N, monoazobis (2-methylpropionate), benzoyl peroxide, lauroyl peroxide, etc.] The polymerization can be carried out using a molecular weight modifier such as mercaptans, and the resulting polymer has a relatively large molecular weight, and the solution polymerization is carried out in a solvent at a temperature of about 60 to 80 ° C. Is preferred. As the solvent, it is preferable to use cyclic carbonates, chain carbonates, and low molecular carboxylic esters exemplified in the electrolyte solution solvent (3) described later.
上記ォキセタン重合モノマーとしては、 たとえば式:
Figure imgf000018_0001
Examples of the oxetane polymerizable monomer include a compound represented by the formula:
Figure imgf000018_0001
(式中、 R 2 x は Hまたは C H3 ;および R 2 2 は Hまたは炭素数 1〜6のァ ルキルである) (Wherein, R 2 x is H or CH 3; and R 2 2 is H or § alkyl of 1 to 6 carbon atoms)
で示される (メタ) アクリルモノマーである。 (メタ) アクリルモノマーの具体 例は、 (3—ォキセタニル) メチル (メタ) アタリレート、 (3—メチル一3— ォキセタニル) メチル (メタ) アタリレー ト、 (3—ェチル一 3—ォキセタニ ノレ) メチル (メタ) アタリレート、 (3—ブチルー 3—ォキセタニル) メチル (メタ) アタリレー ト、 (3—へキシル一 3—ォキセタニル) メチル (メタ) ァ クリレート等であり、 これらの少なくとも 1種を使用する。 (Meth) acrylic monomer represented by Specific of (meth) acrylic monomer Examples are (3-oxetanyl) methyl (meth) atalylate, (3-methyl-13-oxetanyl) methyl (meth) atalylate, (3-ethyl-13-oxetaninole) methyl (meth) atalylate, (3 —Butyl-3-oxetanyl) methyl (meth) atalylate, (3-hexyl-1-oxetanyl) methyl (meth) acrylate, etc. Use at least one of these.
使用量は通常、 上記エポキシ重合モノマーを用いない場合、 モノマー全量中 5 〜 50 %、 好ましくは 10〜 30 %の範囲で選定する。 5 %未満では、 ゲル化に 要するポリマー量の増大を招き、 また 50%を越えると、 ゲルから電解液が分離 (ブリード) する傾向にある。  The amount used is usually selected in the range of 5 to 50%, preferably 10 to 30%, based on the total amount of the monomers when the above-mentioned epoxy polymerization monomer is not used. If it is less than 5%, the amount of polymer required for gelation increases, and if it exceeds 50%, the electrolyte tends to separate (bleed) from the gel.
必要に応じて用いられるエポキシ重合モノマーとしては、 たとえば、 式: The epoxy polymerizable monomer used as needed includes, for example, a compound represented by the formula:
¾5 ¾5
CH2=C— COOR26 CH 2 = C—COOR 26
(式中、 R2 5 は Hまたは CH3 ;および R26(Where R 25 is H or CH 3 ; and R 26 is
Figure imgf000019_0001
である)
Figure imgf000019_0001
Is)
で示される (メタ) アタリレート、 具体的には、 3, 4—エポキシシクロへキシ ルメチル (メタ) アタリレート、 グリシジル (メタ) アタリレートが挙げられ、 これらの少なくとも 1種を使用する。 使用量は通常、 ォキセタン重合モノマーと の合計量中エポキシ重合モノマーの割合が 90%以下となるように、 および該両 モノマーの合計量がモノマー全量中 5〜50%、 好ましくは 10〜30%となる ように選定すればよい。 (Meta) acrylates, specifically, 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, and at least one of these is used. The amount used is usually such that the proportion of the epoxy polymerizable monomer in the total amount of the oxetane polymerizable monomer is 90% or less, and the total amount of both monomers is 5 to 50%, preferably 10 to 30% in the total amount of the monomer. What is necessary is just to choose.
上記他のラジカル重合性モノマーとしては、 式:  The other radically polymerizable monomers described above have the formula:
23 ΙΪ2—し R24  23 ΙΪ2—R24
(式中、 R2 3 は Hまたは CH3 ;および R2 4 は一 COOCH3、 一 COOC 2H5、 一 COOC H7、 一 C〇OC4H9、 一 COO (CH2 CH2の^〜 3 CH3、 -COO (CH2 CH2 O)^ C2H5, -COO(CH2 CH(CH3) O)^ CH3 -COO(CH2 CH(CH3)0)1^ C2H5, —〇COCH3、 または一 OCOC2 H5である) (Wherein, R 2 3 is H or CH 3; and R 2 4 one COOCH 3, one COOC 2 H 5, one COOC H 7, one C_〇_OC 4 H 9, one COO (CH 2 CH 2 ^ ~ 3 CH 3 , -COO (CH 2 CH 2 O) ^ C 2 H 5 , -COO (CH 2 CH (CH 3 ) O) ^ CH 3 -COO (CH 2 CH (CH 3 ) 0) 1 ^ C 2 H 5 , — 〇COCH 3 , or one OCOC 2 H 5 )
で示されるビュル系もしくは (メタ) アクリル系モノマーが好適である。 A butyl or (meth) acrylic monomer represented by
なお、 上記モノマー以外のモノマーも使用可能であるが、 使用する電解液溶媒 In addition, monomers other than the above monomers can be used, but the electrolyte solvent used
(3) との親和性が低いと、 ゲルから電解液が分離 (ブリード) する場合がある。 このようにして製造されるォキセタン環含有ポリマーは、 単独で使用してもよ いし、 あるいは該ォキセタン環含有ポリマーと、 上記エポキシ基を有するラジカ ル重合性モノマーと他のラジカル重合性モノマーとを上記と同様な条件下でラジ カル共重合させることにより得られる分子量 10000以上のエポキシ基含有ポ リマーとを併用してもよレ、。 If the affinity with (3) is low, the electrolyte may separate (bleed) from the gel. The oxetane ring-containing polymer thus produced may be used alone, or the oxetane ring-containing polymer, the above-mentioned radical polymerizable monomer having an epoxy group and another radical polymerizable monomer may be used as described above. An epoxy group-containing polymer having a molecular weight of 10,000 or more obtained by radical copolymerization under the same conditions as described above may be used in combination.
ォキセタンポリマ一系組合せにおけるカチオン重合開始剤としては、 各種のォ 二ゥム塩 (たとえばアンモユウム、 ホスホニゥム、 アルソニゥム、 スチボ二ゥム、 スルホ二ゥム、 ョードニゥムなどのカチオンの、 _BF4、 一 PF6、 一 Sb F6、 — CF3 S〇3、 一 C 104などのァニオン塩等) が使用できるが、 本発明でこれ らォニゥム塩を使用せずとも、 リチウム電解質塩 (3) であるへキサフルォロリ ン酸リチウムおよび/またはテトラフルォロホウ酸リチウムを利用すれば、 本来 のリチウム電解質塩の作用に加え、 当該カチオン重合開始剤としても作用するこ とができ、 好都合である。 カチオン重合開始剤の使用は、 電解質にとって余分な 成分であり、 その分イオン導電性の低下につながり、 その他製造工程の煩雑化、 コストの上昇等を伴なう。 Examples of the cationic polymerization initiator in the oxetane polymer series combination include various dominates (for example, _BF 4 , 1 PF 6 , and cations of cations such as ammonium, phosphonium, arsonium, stibodium, sulfonium, and odonium). Anionic salts such as SbF 6 , —CF 3 S〇 3 , and C 10 4 ) can be used. However, in the present invention, hexafluorofluoride, which is a lithium electrolyte salt (3), can be used without using these hondium salts. Use of lithium phosphate and / or lithium tetrafluoroborate is advantageous in that it can act as the cationic polymerization initiator in addition to the action of the original lithium electrolyte salt. The use of a cationic polymerization initiator is an extra component for the electrolyte, which leads to a decrease in ionic conductivity, and also complicates the production process and increases costs.
当然、 カチオン重合開始剤の一部として、 ォニゥム塩にへキサフルォロリン酸 リチウムゃテトラフルォロホウ酸リチウムを併用することも可能である。  Naturally, it is also possible to use lithium hexafluorophosphate and lithium tetrafluoroborate together with the hondium salt as a part of the cationic polymerization initiator.
本発明において、 架橋性材料 (1) の量は、 通常架橋性組成物総量中 10重 量%以下、 好ましくは 7重量%以下、 より好ましくは 5重量。 /0以下である。 架橋 性組成物の架橋が可能である限り、 架橋性材料 (1) の量の下限は限定されない 力 好ましくは 0. 5重量%以上である。 In the present invention, the amount of the crosslinkable material (1) is usually 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight based on the total amount of the crosslinkable composition. / 0 or less. The lower limit of the amount of the crosslinkable material (1) is not limited as long as crosslinking of the crosslinkable composition is possible. Force is preferably 0.5% by weight or more.
特に、 架橋性材料 (1) として、 ォキセタンポリマー系糸且合せを用いた場合、 ォキセタン環含有ポリマーの量を、 架橋性組成物総量中、 5重量。 /0以下にするの が好ましい。 In particular, when an oxetane polymer yarn is used as the crosslinkable material (1), the amount of the oxetane ring-containing polymer is 5% by weight based on the total amount of the crosslinkable composition. / 0 or less Is preferred.
( 2 ) 電解液溶媒  (2) Electrolyte solvent
本発明における電解液溶媒 (2 ) としては、 たとえば環状炭酸エステル類 (炭 酸エチレン、 炭酸プロピレン、 炭酸プチレンなど) ;鎖状炭酸エステル類 (炭酸 ジメチル、 炭酸ジェチル、 炭酸メチル .ェチル、 炭酸メチル■ n—プロピルなど の対称および非対称型を包含) ;環状エステル類 (ラタ トン類) (γ —プチロラ ク トン、 γ—バレロラタ トンなど) ;環状エーテル類 (テトラヒ ドロフラン、 メ チルテトラヒ ドロフランなど) ;低分子カルボン酸エステル類 (酢酸ェチル、 醉 酸プロピル、 酢酸ブチル、 プロピオン酸メチル、 プロピオン酸ェチル、 プロピオ ン酸プロピル、 酪酸メチル、 酪酸ブチルなど) ;鎖状エーテル類 (ジメ トキシェ タン、 メ トキシエトキシェタンなど) ; シァノエチル基含有化合物 (メチル - 2 ーシァノエチノレエーテノレ、 ェチル ' 2—シァノエチ エーテノレ、 ビス 2—シァノ ェチルエーテル、 炭酸メチル · 2—シァノエチル、 プロピオン酸 2—シァノエチ ルなど) が挙げられ、 これらの群から選ばれる少なくとも 1種を用いる。 特に、 環状炭酸エステル類、 環状エステル類の高誘電率溶媒に鎖状炭酸エステル類、 低 分子カルボン酸エステル類を混合して用いることが好ましく、 更には、 環状炭酸 エステル類である炭酸エチレン、 炭酸プロピレンと、 鎖状炭酸エステル類である 炭酸ジメチル、 炭酸ジェチル、 炭酸メチル ·ェチルと低分子カルボン酸エステル 類の内、 分子を構成する炭素の総数が 4〜 6の鎖状エステルである酢酸ェチル、 酢酸プロピル、 酢酸ブチル、 プロピオン酸メチル、 プロピオン酸ェチル、 プロピ オン酸プロピル、 酪酸メチルとの混合物を用いることが好ましく、 更に、 これら の内、 炭素総数 5の鎖状エステルである酢酸プロピル、 プロピオン酸ェチル、 酪 酸メチルの使用が好ましい。 また、 その混合比率を、 環状炭酸エステル類/鎖状 炭酸エステル類 Ζ低分子カルボン酸エステル類 = 1 0〜5 0 : 0〜5 0 : 5 0〜 9 0 (重量比) に設定し、 かつ低分子カルボン酸エステル類を溶媒全体の 5 0 % 以上に設定することが好ましい。  Examples of the electrolyte solvent (2) in the present invention include cyclic carbonates (ethylene carbonate, propylene carbonate, butylene carbonate and the like); and chain carbonates (dimethyl carbonate, getyl carbonate, methyl ethyl ester, methyl carbonate). Cyclic esters (ratatanes) (γ-butyrolactone, γ-valerolatatatone, etc.); Cyclic ethers (tetrahydrofuran, methyltetrahydrofuran, etc.); small molecules Carboxylic esters (ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, butyl butyrate, etc.); linear ethers (dimethoxetane, methoxyethoxyxetane) ); A compound containing a cyanoethyl group (meth At least one selected from the group consisting of methyl-2-ethyl cyanoethyl ether, ethyl '2-cyanoethyl ether, bis-2-cyanoethyl ether, methyl carbonate-2-cyanoethyl, and propionic acid 2-cyanoethyl. Use one type. In particular, it is preferable to use a mixture of a cyclic carbonate and a low molecular weight carboxylic acid ester in a mixture of a cyclic carbonate and a high dielectric constant solvent of the cyclic ester, and further to use a cyclic carbonate such as ethylene carbonate and carbonate. Propylene, chain carbonates such as dimethyl carbonate, getyl carbonate, methyl carbonate and methyl carboxylate, and low molecular weight carboxylate esters, among which the total number of carbon atoms constituting the molecule is ester chain ester having 4 to 6 carbon atoms, It is preferable to use a mixture of propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, and methyl butyrate. Of these, propyl acetate and propionic acid, which are chain esters having 5 carbon atoms, are preferred. The use of ethyl or methyl butyrate is preferred. In addition, the mixing ratio is set such that cyclic carbonates / chain carbonates / low molecular weight carboxylate esters = 10 to 50: 0 to 50:50 to 90 (weight ratio), and It is preferable to set the low molecular carboxylic acid ester to 50% or more of the whole solvent.
なお、 上記低分子カルボン酸エステル類にあって、 分子を構成する炭素の総数 が 4未満では、 溶媒の沸点が低すぎ、 電池にした場合、 高温時に電池内圧がアツ プするという問題が生じ易く、 また炭素総数 7以上では、 イオン導電性が低下し て電池の特性が低下する傾向にある。 If the total number of carbon atoms constituting the molecule is less than 4 in the low-molecular carboxylic acid esters described above, the boiling point of the solvent is too low, and when a battery is used, the problem that the internal pressure of the battery increases at high temperatures tends to occur. When the total number of carbon atoms is 7 or more, the ionic conductivity decreases. Therefore, battery characteristics tend to decrease.
( 3 ) リチウム電解質塩  (3) Lithium electrolyte salt
本発明におけるリチウム電解質塩 ( 3 ) は、 特に限定されるものではないが、 電解液溶媒 (2 ) への溶解性に優れ、 高イオン導電性と酸化〜還元電位に高耐性 の陰イオン (酸基) で構成されるものが好ましい。 たとえば過塩素酸リチウム、 テトラフルォロホウ酸リチウム、 へキサフルォロリン酸リチウム、 トリフルォロ メタンスルホン酸リチウム等が挙げられ、 これらの少なくとも 1種を用いる。 使 用濃度は通常、 1モル/ d m3前後が適用される。 Although the lithium electrolyte salt (3) in the present invention is not particularly limited, an anion (acid) having excellent solubility in the electrolyte solvent (2), high ionic conductivity and high resistance to oxidation to reduction potential is used. What is comprised by group) is preferable. For example, lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate and the like are used, and at least one of these is used. The concentration used is usually 1 mol / dm 3 before and after is applied.
ポリマー固体電解質リチウムイオン 2次電池  Polymer solid electrolyte lithium ion secondary battery
本発明に係るポリマー固体電解質リチウムイオン 2次電池は、 上述の架橋性材 料 (1 ) ( a〜 eの組合せ) 、 電解液溶媒 (2 ) およびリチウム電解質塩 (3 ) を成分とし、 これらを混合溶解して得られる低粘度の液状組成物を、 固体電解質 用架橋性組成物として使用することを特徴とし、 以下の手順に従って製造するこ とができる。  The polymer solid electrolyte lithium ion secondary battery according to the present invention comprises the above-mentioned crosslinkable material (1) (a combination of a to e), an electrolyte solvent (2) and a lithium electrolyte salt (3) as components. It is characterized in that a low-viscosity liquid composition obtained by mixing and dissolving is used as a crosslinkable composition for a solid electrolyte, and can be produced according to the following procedure.
先ず、 上記液状組成物総量中における架橋性材料 ( 1 ) の占める割合を 1 0 % First, the proportion of the crosslinkable material (1) in the total amount of the liquid composition was 10%.
(重量%、 以下同様) 以下に、 すなわち、 形成される固体電解質中の高分子成分 量をできるだけ低い値に設定して、 ィオン導電性の安定維持を行なう。 (% By weight, the same applies hereinafter) In other words, the amount of the polymer component in the solid electrolyte to be formed is set to a value as low as possible to maintain the ion conductivity stably.
次に、 液状組成物をそのポットライフ (液状状態の保持によって注入等の取极 いが可能である時間) の制限時間内に、 リチウムイオン 2次電池用の、 電極ゃセ パレータ等のユニットを組み込んだ密閉容器に注入し、 電極とセパレータとの間 などのギャップに浸入させた後、 常温乃至 1 0 0 °C程度 (モノマー系組合せ cの 架橋性材料を用いた場合は、 5 0〜 1 0 0 °C程度) の温度にて、 架橋性材料を常 温または加熱架橋させることによつて容易にゲル化させ、 ポリマー固体電解質の 形成により、 目的のポリマー固体電解質リチウムイオン 2次電池を得る。  Next, within the time limit of the pot life of the liquid composition (the time during which injection and the like can be performed by maintaining the liquid state), a unit such as an electrode and a separator for a lithium ion secondary battery is removed. After pouring into a sealed container and allowing it to penetrate into the gap between the electrode and the separator, the temperature is from room temperature to about 100 ° C. The crosslinkable material is easily gelled at room temperature or under heat at a temperature of about 100 ° C), and the desired polymer solid electrolyte lithium-ion secondary battery is obtained by forming a polymer solid electrolyte. .
なお、 イソシァネート系組合せ bの架橋性材料を用いる場合は、 必要に応じて ウレタン架橋触媒 (たとえば S n、 B i 、 F e、 P b等の金属塩;第 1錫ォク ト エート、 蒼鉛ォク トエート、 ジブチル錫ジラウレート等) が配合されるが、 該液 状組成物の注入に際して、 予め電極あるいはセパレータにウレタン架橋触媒を塗 布または混入しておけば、 液状組成物へのウレタン架橋触媒の配合量を削減でき ることから、 ボットライフの大巾な延長が可能になると共に、 注入後は電極ゃセ パレ一タからウレタン架橋触媒が自然溶出して、 ゲル化の促進に貢献する。 When a crosslinkable material of the isocyanate-based combination b is used, a urethane crosslinking catalyst (for example, a metal salt such as Sn, Bi, Fe, or Pb; stannous octaate, cyanide) may be used, if necessary. However, when the liquid composition is injected, if a urethane cross-linking catalyst is applied or mixed in advance to the electrode or separator, the urethane cross-linking catalyst can be added to the liquid composition. Can reduce the amount of compound As a result, the bot life can be greatly extended, and after injection, the urethane cross-linking catalyst spontaneously elutes from the electrode / separator, contributing to the promotion of gelation.
このようにして、 従来の電池生産と同様の工程で新設備も必要とせず、 特性と 安定性に優れたポリマー固体電解質リチウムイオン 2次電池を得ることができる。 従来のポリマーゲル型高分子固体電解質は、 イオン導電性に寄与しない高分子 成分をいかに低減させるかが重要なポイン卜であるが、 むやみに架橋密度を上げ ても、 電解液のゲル保持性の低下によつて電解液が分離し易く、 またゲルを構成 するポリマーの構造自体も大変重要となるが、 本発明は、 架橋性材料 (1 ) の使 用によって、 これらの諸問題を解決したものと云える。  In this way, it is possible to obtain a polymer solid electrolyte lithium ion secondary battery having excellent characteristics and stability without requiring new equipment in the same process as conventional battery production. In the conventional polymer gel-type polymer solid electrolyte, it is important to reduce the amount of polymer components that do not contribute to ionic conductivity.However, even if the crosslink density is increased unnecessarily, the gel retention of the electrolyte can be maintained. The electrolyte solution is easily separated by the decrease, and the structure of the polymer constituting the gel itself is also very important. However, the present invention solves these problems by using a crosslinkable material (1). I can say
なお、 本発明で用いる架橋性材料 (1 ) は、 電解液溶媒およびリチウム電解質 塩を変更することにより、 リチウムイオン 2次電池以外にも、 リチウム電池、 リ チウム 2次電池、 電気 2重層キャパシター、 ケミカルコンデンサー、 エレク ト口 クロミックデバイス等のポリマーゲル型高分子固体電解質として使用することも できる。  The crosslinkable material (1) used in the present invention can be used in addition to a lithium ion secondary battery, a lithium battery, a lithium secondary battery, an electric double layer capacitor, by changing an electrolyte solvent and a lithium electrolyte salt. It can also be used as a polymer gel-type polymer solid electrolyte for chemical condensers, electoric chromic devices, and the like.
実施例  Example
次に製造例および実施例を挙げて、 本発明をより具体的に説明する。  Next, the present invention will be described more specifically with reference to Production Examples and Examples.
製造例 1  Production Example 1
シァノエチル化エポキシ樹脂の製造:  Production of cyanoethylated epoxy resin:
1 0 0 O m 1の三口フラスコに、 ソ ビトーノレのポリグリシジゾレエ一テノレ (米 国社 C V Cスペシャルティ ' ケミカル I n c . 製の 「E R I S Y S G E— 6 In a 100-Om 1 three-necked flask, “EVI SY S G E—6” manufactured by Sovitonore's polyglycidizole
O J ) 3 6 0 gと 2 %N a O H水溶液 1 8 0 gを採り、 約 4 0 °Cに加熱しながら アクリロニトリル 2 1 0 gを約 2時間かけて滴下する。 この間温度を 4 0〜4 2 °Cに保持する。 滴下終了後、 同温度で 5時間加熱攪拌を続け、 シァノエチル化 反応を行なう。 その後 3 0 °C程度に水冷し、 ジクロロメタン 3 0 0 gを加え、 し ばらく攪拌を続けた後攪拌を止め、 静置する。 約 1 0〜 2 0分程度放置すれば、 2層に分離するので、 上層のみを除去する。 その後イオン交換水 3 0 O m 1を加 え、 攪拌水洗し、 攪拌を止め静置し、 上層除去の水洗工程を合計 6回以上繰返し た後、 ジクロロメタンを減圧留去し、 さらに 8 0〜1 0 0 °Cで乾燥窒素ガス導入 しながら加熱減圧下で攪拌し、 水分が除去されたシァノエチル化エポキシ樹月旨 (シァノエチル化ソルビトールポリグリシジルエーテル) を得る。 このシァノエ チル化エポキシ樹脂は、 淡黄褐色透明粘稠液を呈し、 赤外線吸収スぺク トルによ り明確な一 CN基の吸収ピークを確認した。 エポキシ当量の測定結果は 236で あった。 OJ) Take 360 g and 2% NaOH aqueous solution 180 g, and add acrylonitrile 210 g dropwise over about 2 hours while heating to about 40 ° C. During this time, the temperature is maintained at 40 to 42 ° C. After completion of the dropwise addition, the mixture is heated and stirred at the same temperature for 5 hours to carry out a cyanoethylation reaction. Then, water-cool to about 30 ° C, add 300 g of dichloromethane, continue stirring for a while, stop stirring, and allow to stand. If left for about 10 to 20 minutes, it separates into two layers, so only the upper layer is removed. Thereafter, 30 Om1 of ion-exchanged water was added, and the mixture was washed with stirring water, stirring was stopped and the mixture was allowed to stand.The water washing process of removing the upper layer was repeated at least six times in total, and dichloromethane was distilled off under reduced pressure. Stir under heating and reduced pressure while introducing dry nitrogen gas at 0 ° C, and remove the water to obtain a cyanoethylated epoxy resin. (Cyanoethylated sorbitol polyglycidyl ether) is obtained. This cyanoethylated epoxy resin exhibited a light yellow-brown transparent viscous liquid, and a clear absorption peak of a single CN group was confirmed by an infrared absorption spectrum. The measurement result of the epoxy equivalent was 236.
製造例 2  Production Example 2
ウレタンプレポリマー Aの製造:  Production of urethane prepolymer A:
予め乾燥窒素ガスで十分に乾燥した 1000m lの三口フラスコに、 トリレン ジイソシァネ一ト (2, 4—トリ レンジイソシァネート /2, 6—トリ レンジィ ソシァネート = 80 : 20の混合物) 406. 8 gと、 予めモレキュラーシ一ブ で脱水した炭酸エチレン/炭酸ジェチル ( 1 Z 1、 重量比) の混合溶媒 400 g を仕込み、 攪拌混合する。 次に、 グリセリンにプロピレンオキサイドを付加した 水酸基価 225のポリオキシプロピレンポリオールのモレキュラーシーブ乾燥品 193. 2 gを加え、 乾燥窒素ガスの導入下、 室温から徐々に 70°Cまで加熱し、 そのまま 6時間加熱攪拌を続け、 さらに温度を 40°Cに下げ一夜反応を行なって、 ウレタンプレポリマーを得る。  In a 1000 ml three-necked flask previously sufficiently dried with dry nitrogen gas, 406.8 g of tolylene diisocyanate (a mixture of 2,4-tolylene diisocyanate / 2,6-tolylene diisocyanate = 80:20) was added. Then, 400 g of a mixed solvent of ethylene carbonate / getyl carbonate (1Z1, weight ratio) previously dehydrated with a molecular sieve is charged and stirred and mixed. Next, 193.2 g of a dried molecular sieve of polyoxypropylene polyol having a hydroxyl value of 225 obtained by adding propylene oxide to glycerin was added, and the mixture was gradually heated from room temperature to 70 ° C under the introduction of dry nitrogen gas. Heating and stirring are continued for another hour, and the temperature is further reduced to 40 ° C and the reaction is performed overnight to obtain a urethane prepolymer.
このウレタンプレポリマー A (溶液) は、 無色透明粘稠液であって、 赤外線吸 収スペク トルにより、 明確な NC〇基の吸収スペク トルを確認した。 NCO基の 定量分析結果は 9. 806 %で、 計算値 9. 887 %にほぼ一致した。  This urethane prepolymer A (solution) was a colorless and transparent viscous liquid, and a clear absorption spectrum of NC〇 group was confirmed by infrared absorption spectrum. The result of quantitative analysis of the NCO group was 9.806%, which almost coincided with the calculated value of 9.887%.
製造例 3  Production Example 3
エポキシ基含有ラジカル共重合ポリマ一 Aの製造:  Production of Epoxy-Containing Radical Copolymer A:
予め乾燥窒素ガスで十分に乾燥した 1000m lの三口フラスコに、 予めモレ キュラーシーブで脱水したメチルメタクリレート 1 77. 3 g、 予めモレキユラ 一シーブで脱水した 3 , 4—エポキシシク口へキシルメチルァクリレート 59. l g、 予めモレキュラーシーブで脱水した炭酸エチレン/炭酸ジェチル (1ノ 1、 重量比) の混合溶媒 722. 1 g、 予め減圧乾燥を行ったァゾビスィソプチ口二 トリノレ 3. 9 g、 およびラウリルメルカブタン 0. 4 gを採り、 乾燥窒素ガスを 導入しながら 70〜 75 °Cで攪拌し、 そのまま 6時間加熱攪拌を続け、 さらに温 度を 40°Cに下げ一夜反応を行って、 エポキシ基含有ラジカル共重合ポリマー A (溶液) を得る。 この共重合ポリマーは、 淡黄色で透明な低粘度液であって、 赤外線吸収スぺク トルにより、 明確なエポキシ基の吸収スペク トルを確認した。 エポキシ当量を測 定したところ、 732で計算ィ直 728. 5にほぼ一致した。 177.3 g of methyl methacrylate previously dehydrated with a molecular sieve, and 3,4-epoxycyclohexyl methacrylate previously dehydrated with a molecular sieve in a 1000 ml three-necked flask previously dried sufficiently with dry nitrogen gas. 59. lg, 722.1 g of a mixed solvent of ethylene carbonate / getyl carbonate (1: 1, weight ratio) previously dehydrated with a molecular sieve, 3.9 g of azobisisosopuchi-mouthed trinole previously dried under reduced pressure, and lauryl mercaptan 0.4 g, and stirred at 70-75 ° C while introducing dry nitrogen gas.Continue heating and stirring for 6 hours, then lower the temperature to 40 ° C and react overnight to obtain epoxy group-containing radicals. Obtain copolymer A (solution). This copolymer was a pale yellow, transparent, low-viscosity liquid, and a clear absorption spectrum of an epoxy group was confirmed by an infrared absorption spectrum. When the epoxy equivalent was measured, it was found to be 732, which was almost the same as the calculated value of 728.5.
製造例 4  Production Example 4
ウレタンプレポリマー Bの製造:  Production of urethane prepolymer B:
製造例 2 (ウレタンプレボリマ一 Aの製造) に使用している 「予めモレキユラ 一シーブで脱水した炭酸エチレン/炭酸ジェチル (lZl、 重量比) の混合溶 媒」 を 「予めモレキュラーシーブで脱水した炭酸エチレン/ 「炭酸プロピレン」 The “mixed solvent of ethylene carbonate / getyl carbonate (lZl, weight ratio) previously dehydrated with a molecular sieve” used in Production Example 2 (production of urethane pre-borima-A) was replaced with “carbonate previously dehydrated with a molecular sieve. Ethylene / “propylene carbonate”
(1/1、 重量比) の混合溶媒」 に変え、 その他は製造例 2と同様にしてウレタ ンプレポリマー Bを得る。 (1/1, by weight ratio), and the other steps are the same as in Production Example 2 to obtain urethane prepolymer B.
このウレタンプレポリマー B (溶液) は無色透明の粘稠液であって、 赤外線吸 収スぺク トルにより、 明確な NCO基の吸収スペク トルを確認した。 NC〇基の 定量分析結果は 9. 822 %で計算値 9. 887 %にほぼ一致した。  This urethane prepolymer B (solution) was a colorless and transparent viscous liquid, and a clear absorption spectrum of NCO groups was confirmed by an infrared absorption spectrum. The quantitative analysis result of the NCII group was 9.822%, which was almost in agreement with the calculated value of 9.887%.
製造例 5  Production Example 5
エポキシ基含有ラジカル共重合ポリマー Bの製造:  Production of Epoxy Group-Containing Radical Copolymer B:
予め乾燥窒素ガスで十分に乾燥した 1000m lの三口フラスコに、 予めモレ キュラーシ一ブで脱水した CH2 =CHCOO {CH2 CH (CH3) 〇} 2 CH3 177. 3 g、 予めモレキュラーシーブで脱水した 3, 4—エポキシシクロへキ シルメチルアタリレート 59. 1 g、 予めモレキュラーシーブで脱水した炭酸ェ チレン 50重量部と炭酸プロピレン 50重量部の混合溶媒 709. 2 g、 予め減 圧乾燥を行った N, N' —ァゾビスイソブチロニトリル 3. 9 g、 ラウリノレメル カブタン 0. 4 gを採り、 乾燥窒素ガスを導入しながら 70〜 75 °Cで攪拌し、 そのまま 6時間加熱攪拌を続け、 更に温度を 40°Cとして一夜反応を行い、 ェポ キシ基含有ラジカル共重合ポリマー B (溶液) を得る。 CH 2 = CHCOO {CH 2 CH (CH 3 ) 〇} 2 CH 3 177.3 g, previously dehydrated with a molecular sieve, in a 1000 ml three-necked flask that has been thoroughly dried with dry nitrogen gas. 59.1 g of dehydrated 3,4-epoxycyclohexylmethyl acrylate, 709.2 g of a mixed solvent of 50 parts by weight of ethylene carbonate and 50 parts by weight of propylene carbonate previously dehydrated by molecular sieve, and vacuum drying in advance Take 3.9 g of N, N'-azobisisobutyronitrile and 0.4 g of laurino remel kabutane, stir at 70 to 75 ° C while introducing dry nitrogen gas, and heat and stir for 6 hours. Subsequently, the reaction is further performed overnight at a temperature of 40 ° C. to obtain an epoxy group-containing radical copolymer B (solution).
このエポキシ基含有ラジカル共重合ポリマー (B) は、 淡黄色で透明な低粘度 液で、 赤外線吸収スぺク トル測定の結果、 明確なエポキシ基の吸収スぺク トルが 確認され、 エポキシ当量を測定したところ、 724で計算値 728. 5と殆ど同 一の^ (直であった。  This epoxy-group-containing radical copolymer (B) is a pale yellow, transparent, low-viscosity liquid. As a result of infrared absorption spectrum measurement, a clear epoxy group absorption spectrum was confirmed. As a result of the measurement, it was found that the calculated value of 724 was ^ (straight) which is almost the same as the calculated value of 728.5.
実施例 1 (エポキシ系組合せ aの架橋性材料を使用) Example 1 (Use crosslinkable material of epoxy combination a )
乾燥窒素ガスを充満したグ口ーブボックス内で、 製造例 1で得たシァノェチル 化エポキシ樹脂 10 gと、 へキサフルォロリン酸リチウムを 1モノレ濃度に溶解し た炭酸エチレンノ炭酸ジェチル ( 1 / 1、 重量比) の混合溶媒溶液 143. 7 g を混合し、 次にペンタエチレンへキサミン 2. 5 gを加え、 混合して液状組成物 を調製する。 液状組成物中のポリマー濃度は、 [ (10 + 2. 5) /1 56. 2] X 100 = 8. 0%となる。  In a glove box filled with dry nitrogen gas, 10 g of the cyanoethylated epoxy resin obtained in Production Example 1 and ethylene glycol dicarbonate in which lithium hexafluorophosphate was dissolved in a monolayer concentration (1/1, weight ratio) 143.7 g of a mixed solvent solution of above is mixed, and then 2.5 g of pentaethylenehexamine is added and mixed to prepare a liquid composition. The polymer concentration in the liquid composition is [(10 + 2.5) /15.6.2] × 100 = 8.0%.
次に、 予め用意しておいたリチウムイオン 2次電池用の電極、 セパレ一タ等の ュニットを組込んだ密閉可能容器 (直径 1 8mm、 全長 65 Ommの円筒型、 通 称 1 8650型) に、 上記液状組成物 4. 86 gを注入し、 真空含浸を行った後 密閉し、 70°Cで 10時間加熱してゲル化を行い、 ポリマー固体電解質リチウム イオン 2次電池を作成する。  Next, a sealed container (diameter: 18 mm, total length: 65 Omm, cylindrical type, commonly called type 18650) incorporating units such as electrodes for lithium ion secondary batteries and separators prepared in advance is prepared. Then, 4.86 g of the above-mentioned liquid composition was injected, impregnated in a vacuum, sealed, and heated at 70 ° C. for 10 hours to perform gelation, thereby preparing a polymer solid electrolyte lithium ion secondary battery.
なお、 上記で用いた 1 8650型は、 正極材料がコバルト酸リチウム主体、 負 極が炭素系材料を使用し、 セパレータはポリオレフイン系で構成され、 容量 16 0 OmAHの極く一般的なものである。  The 18650 type used above is made of a lithium-cobalt-based material for the positive electrode, a carbon-based material for the negative electrode, and a polyolefin-based separator, and is a very common type with a capacity of 160 OmAH. .
実施例 2  Example 2
(ィソシァネート系組合せ bの架橋性材料を使用)  (Use cross-linkable material of isocyanate combination b)
製造例 2で得たウレタンプレボリマ一 A (60 %溶液) 5. 0 gと、 ポリ N— ヒ ドロキシプロピル化合物であるテ 卜ラ N—ヒ ドロキシプロピルエチレンジアミ ン (三洋化成 (株) 製、 「ニューポール NP— 300」 ) の炭酸エチレン/炭酸 ジェチル ( 1 Z 1、 重量比) の混合溶媒による 60。/。溶液 1. 4 g、 およびへキ サフルォロリン酸リチウムを 1モル濃度に溶解した炭酸エチレン Z炭酸ジェチル (1/1, 重量比) の混合溶媒溶液 53. 6 gを混合し、 次にウレタン架橋触媒 として第 1錫ォク トエート (日東化成 (株) 製、 「ネオスタン U— 28」 ) の 1 0 %炭酸ジェチル溶液 0. 1 gを加え、 混合して液状組成物を調製する (ポリマ 一濃度 6. 4%) 。  5.0 g of the urethane prevolima-A (60% solution) obtained in Production Example 2 and tetra-N-hydroxypropylethylenediamine, a poly-N-hydroxypropyl compound (Sanyo Chemical Co., Ltd.) ), Manufactured by "Newpole NP-300") with a mixed solvent of ethylene carbonate / getyl carbonate (1Z1, weight ratio). /. A mixture of 1.4 g of the solution and 53.6 g of a mixed solvent solution of ethylene carbonate and getyl carbonate (1/1, by weight) in which lithium hexafluorophosphate was dissolved at a molar concentration was used as a urethane crosslinking catalyst. 0.1 g of a 10% getyl carbonate solution of stannous octate (Neostan U-28, manufactured by Nitto Kasei Co., Ltd.) is added and mixed to prepare a liquid composition (polymer concentration 6. Four%) .
次に実施例 1において、 液状組成物の注入量 4. 69 gおよびゲル化のための 加熱条件 70°CX 30分とする以外は、 実施例 1と同様な条件でポリマー固体 電解質リチウムイオン 2次電池を作成する 2δ 実施例 3 Next, in Example 1, except that the injection amount of the liquid composition was 4.69 g and the heating conditions for gelation were 70 ° C for 30 minutes, the polymer solid electrolyte lithium ion secondary ion was used under the same conditions as in Example 1. Create batteries 2δ Example 3
(モノマー系組合せ cの架橋性材料を使用)  (Use crosslinkable material of monomer combination c)
2—メ トキシェチルアタリ I ト 5. 0 g、 トリオキシプロピレングリコール ジァクリ レー卜 4. 0 g、 式:  2-Methoxyxylatari I 5.0 g, trioxypropylene glycol diacrylate 4.0 g, formula:
CH2=CH— COO— (CH2 C H2 O) 9一 OC— CH = CH2 CH 2 = CH— COO— (CH 2 CH 2 O) 9 OC-CH = CH 2
で示される 9量体ポリオキシエチレングリコールのジァクリレート 1. 0 gおよ びベンゾィルパーオキサイ ド 1. O gを混合し、 次にへキサフルォロリン酸リチ ゥムを 1モル濃度に溶解した炭酸エチレン/炭酸ジェチル (1/1、 重量比) の 混合溶媒溶液 1 37. 6 gを加え、 混合して液状組成物を調製する (ポリマ一濃 度 7. 4%) 。 A mixture of 1.0 g of diacrylate of a 9-mer polyoxyethylene glycol and 1.O g of benzoyl peroxide shown in, and then ethylene carbonate obtained by dissolving lithium hexafluorophosphate to 1 molar concentration Add 137.6 g of a mixed solvent solution of dimethyl alcohol / getyl carbonate (1/1, weight ratio) and mix to prepare a liquid composition (polymer concentration: 7.4%).
次に実施例 1において、 液状組成物の注入量 4. 96 gおよびゲル化のための 加熱条件 70 °C X 30分とする以外は、 実施例 1と同様な条件でポリマー固体 電解質リチウムイオン 2次電池を作成する。  Next, in Example 1, except that the injection amount of the liquid composition was 4.96 g and the heating conditions for gelation were 70 ° C for 30 minutes, the polymer solid electrolyte lithium ion secondary ion was used under the same conditions as in Example 1. Create a battery.
実施例 4  Example 4
(ポリマー系組合せ dの架橋性材料を使用)  (Use crosslinkable material of polymer combination d)
製造例 3で得たエポキシ基含有ラジカル共重合ポリマー A 16 g、 およびへキ サフルォロリン酸リチウムを 1モル濃度に溶解した炭酸エチレン Z炭酸ジェチル (1/1, 重量比) の混合溶媒 84 gを混合して、 液状組成物を調製する (ポリ マ一濃度 4. 0%) 。  Mix 16 g of the epoxy group-containing radical copolymer A obtained in Production Example 3 and 84 g of a mixed solvent of ethylene carbonate Z getyl carbonate (1/1, by weight) in which lithium hexafluorophosphate is dissolved at a 1 molar concentration. To prepare a liquid composition (polymer concentration: 4.0%).
次に実施例 1において、 液状組成物の注入量 3. 73 gおよびゲル化のための 加熱条件 70 °C X 1時間とする以外は、 実施例 1と同様な条件でポリマー固体 電解質リチウムイオン 2次電池を作成する。  Next, in Example 1, except that the injection amount of the liquid composition was 3.73 g and the heating conditions for gelation were 70 ° C for 1 hour, the polymer solid electrolyte lithium ion secondary ion was used under the same conditions as in Example 1. Create a battery.
なお、 本例ではリチウム電角军質塩としてへキサフルォロリン酸リチウムを用い ており、 別途カチオン重合開始剤を用いていない。  In this example, lithium hexafluorophosphate was used as the lithium electrolytic salt, and no separate cationic polymerization initiator was used.
実施例 5  Example 5
(ィソシァネ一ト系組合せ bの架橋性材料を使用したシート状電池)  (Sheet-type battery using cross-linkable material of individual combination b)
乾燥窒素ガスを充満したグ口ーブボックス内で、 ポリ N—ヒ ドロキシプ口ピル 化合物であるテトラ N—ヒ ドロキシプロピルエチレンジァミン (三洋化成 (株) 製、 「ニュ一ポール NP— 300」 ) の炭酸エチレン Z炭酸プロピレン (1/1、 重量比) の混合溶媒による 6 0 %溶液 1 . 4 gに、 へキサフルォロリン酸リチウ ムを 1モル濃度に溶解した炭酸エチレン Z炭酸プロピレン (l Z l、 重量比) の 混合溶媒溶液 7 0 . 4 gを加え、 均一に混合し、 更に製造例 4で得たウレタンプ レポリマー B 5 . O gを加えて混合し、 次にウレタン架橋触媒として第 1錫オタ トエート (日東化成 (株) 製、 「ネオスタン U— 2 8」 ) の 1 0 %炭酸ジェチル 溶液 0 . 1 gをカロえ、 混合して液状組成物を調製する (ポリマ一濃度 5 . 0 %) 。 In a gas box filled with dry nitrogen gas, tetra N-hydroxypropyl ethylenediamine, a poly N-hydroxy pill compound (manufactured by Sanyo Chemical Co., Ltd., "New-Poly NP-300") Ethylene carbonate Z propylene carbonate (1/1, (Weight ratio) in a mixed solvent of 1.4 g of a 60% solution of lithium hexafluorophosphate in a molar concentration of 1.4% in a mixed solvent of ethylene carbonate and propylene carbonate (lZl, weight ratio). g, and uniformly mixed. Further, the urethane prepolymer B5.Og obtained in Production Example 4 was added and mixed. Then, stannous otatoate (Nitto Kasei Co., Ltd. 0.1 g of a 10% solution of U-28 ") in getyl carbonate is mixed and mixed to prepare a liquid composition (polymer concentration: 5.0%).
次に予め用意しておいたシート状リチウムイオン 2次電池用の電極、 不織布か らなるュニットを組み込んだアルミラミネ一トフイルム製の袋状容器に、 上記液 状組成物 4 . 1 7 gを注入し、 真空含浸を行つた後密封し、 7 0 °Cで 1時間加熱 してゲル化を行い、 シート状のポリマー固体電解質リチウムイオン電池を作成す る。  Next, 4.17 g of the above liquid composition was poured into a bag-like container made of an aluminum laminate film into which a sheet-like electrode for a lithium ion secondary battery and a unit made of a nonwoven fabric were prepared in advance. After performing vacuum impregnation, it is sealed and heated at 70 ° C. for 1 hour to perform gelation, thereby producing a sheet-shaped polymer solid electrolyte lithium ion battery.
なお、 上記で用いたシート状リチウムイオン 2次電池のュニットは正極を中心 に両側から不織布を介して負極で挟み込んだ構造で、 正極はアルミニウム箔の両 面にコバルト酸リチウム主体からなる活物質を塗布したもので、 そのサイズは 6 8 mm X 8 4 mm 負極は銅箔に炭素系材料を片面塗布したもので、 そのサイ ズは 7 0 mm X 8 6 mm, 不織布はポリエステル細繊維製の 2 0 / m厚品で、 このユニットを、 周囲を熱溶着した袋状のアルミニウムラミネートフィルム (内 面ポリエチレン、 外面ポリプロピレン) 中に組み込んだもので、 電池の容量は 3 0 O mA Hのものである。  The unit of the sheet-shaped lithium ion secondary battery used above had a structure in which the positive electrode was sandwiched between the negative electrodes from both sides of the positive electrode through a nonwoven fabric, and the positive electrode was made of an active material mainly composed of lithium cobalt oxide on both sides of an aluminum foil. The size of the negative electrode is 68 mm x 84 mm.The negative electrode is a copper-based material coated on one side with a carbon-based material.The size is 70 mm x 86 mm.The nonwoven fabric is made of polyester fine fiber. This unit is a 0 / m thick product, and this unit is incorporated in a bag-shaped aluminum laminate film (polyethylene inside, polypropylene outside) with a heat-sealed periphery. The battery capacity is 30 OmAH .
実施例 6  Example 6
(ポリマー組合せ dの架橋性材料を使用したシート状電池)  (Sheet battery using crosslinkable material of polymer combination d)
製造例 5で得たエポキシ基含有ラジカル共重合ポリマー B 1 2 . 0 g、 および へキサフルォロリン酸リチウムを 1モル濃度に溶解した炭酸エチレン/炭酸プロ ピレン ( 1 / 1、 重量比) の混合溶媒溶液 8 8 . 0 gを混合して液状組成物を調 製する (ポリマー濃度 3 . 0 %) 。  Mixed solvent solution of 12.0 g of the epoxy group-containing radical copolymer B obtained in Production Example 5 and ethylene carbonate / propylene carbonate (1/1, by weight) in which lithium hexafluorophosphate was dissolved at a 1 molar concentration. Mix 88.0 g to prepare a liquid composition (polymer concentration: 3.0%).
次に実施例 5において、 液状組成物の注入量 4 . 0 5 gおよびゲル化のための 加熱条件を 7 0 °C X 1時間とする以外は、 実施例 5と同様な条件でシート状ポ リマ一固体電 質リチウムイオン 2次電池を作成する。  Next, in Example 5, a sheet-like polymer was prepared under the same conditions as in Example 5, except that the injection amount of the liquid composition was 4.05 g and the heating conditions for gelling were 70 ° C for 1 hour. Create a solid-state lithium-ion secondary battery.
なお、 本実施例 6も実施例 4と同様リチウム電解質塩にへキサフルォロリン酸 リチウムを用いており、 別途カチオン重合開始剤を用いていない。 Note that, in Example 6, as in Example 4, hexafluorophosphoric acid was added to the lithium electrolyte salt. Lithium is used and no separate cationic polymerization initiator is used.
各実施例 1〜 6で作成したリチウムイオン 2次電池を用いた充放電繰り返し試 験 (3サイクルおよび 1 0サイクル) の結果を、 下記表 1に示す。  Table 1 below shows the results of the charge / discharge repetitive test (3 cycles and 10 cycles) using the lithium ion secondary batteries prepared in Examples 1 to 6.
なお、 各サイクルにおける充放電の条件は各サイクル共、 充電が電圧 4. 2 V に達するまで 0. 2 C (実施例 1〜4は 3 2 OmA、 実施例 3〜4は 6 OmA) で定電流充電の後、 更に 4. 2 Vに達した後同電圧で 8時間の定電圧充電、 各放 電は 0. 2 C (実施例 1〜4は 32 OmA、 実施例 3〜4は 6 OmA) で電圧が 2. 75 Vになるまでの定電流放電である。  The charge and discharge conditions in each cycle were fixed at 0.2 C (32 OmA in Examples 1 to 4 and 6 OmA in Examples 3 to 4) until the charge reached 4.2 V. After current charging, after reaching 4.2 V, constant voltage charging at the same voltage for 8 hours, each discharge is 0.2 C (Examples 1-4 are 32 OmA, Examples 3-4 are 6 OmA ) Is constant current discharge until the voltage reaches 2.75 V.
Figure imgf000029_0001
Figure imgf000029_0001
注:充電量と放電量の単位は mAHであり、 効率は放電  Note: The unit of charge and discharge is mAH, efficiency is discharge
bX 1 00 (単位:%) である。 製造例 6  bX 100 (unit:%). Production Example 6
ォキセタン環含有ポリマーの製造  Of oxetane ring-containing polymer
予め乾燥窒素ガスで十分に乾燥した 1 000m lの三口フラスコにて、 予めモ レキユラ一シ一ブで脱水したメチルメタクリ レート 1 08 g、 予めモレキュラー シーブで脱水した (3—ェチルー 3—ォキセタニル) メチルアタリ レート 3 6 g、 予めモレキュラーシーブで脱水し、 減圧蒸留した加温常態の炭酸エチレン 43 2 gの混合液に、 ジメチル N, N' —ァゾビス (2—メチルプロビオネ一ト) 0. 22 5 gを加え、 乾燥窒素ガスを導入しながら 70°Cで攪拌し、 そのまま 1 2時 間加熱攪拌を続けラジカル重合を行なう。 次に温度を 40〜50°Cに下げ、 予め モレキュラーシーブで乾燥し、 減圧蒸留したプロピオン酸ェチル 3 7 8 gを加え、 全体が均一になるまで攪拌溶解して、 ォキセタン環含有ポリマーの 1 5 %溶液を 得る。 In a 1 000 ml three-necked flask previously dried sufficiently with dry nitrogen gas, 108 g of methyl methacrylate previously dehydrated with a molecular sieve, and (3-ethyl-3-oxetanyl) methyl previously dehydrated with a molecular sieve 36 g of atalylate, previously dehydrated with a molecular sieve, and vacuum-distilled under reduced pressure to a mixture of 432 g of heated normal ethylene carbonate, mixed with dimethyl N, N'-azobis (2-methylpropionate) 0.25 g, and the mixture is stirred at 70 ° C while introducing dry nitrogen gas. Then, the mixture is heated and stirred for 12 hours to perform radical polymerization. Next, lower the temperature to 40-50 ° C, After drying with a molecular sieve and adding 378 g of ethyl propionate distilled under reduced pressure, the mixture is stirred and dissolved until the whole becomes uniform to obtain a 15% solution of the oxetane ring-containing polymer.
このポリマ一溶液は、 無色透明な粘稠液体で、 赤外線吸収スペク トル測定の結 果、 波数 9 8 0ノ c mに明確なォキセタン環の特性吸収を有することを確認した c 実施例 7 The polymer first solution is a colorless transparent viscous liquid, infrared absorption spectrum results of the measurement, c Example 7 was confirmed to have a characteristic absorption clear Okisetan ring wavenumber 9 8 0 Bruno cm
(液状組成物 Aの調製)  (Preparation of liquid composition A)
乾燥窒素ガスを充満したグ口ーブボックス内で、 製造例 6で得たォキセタン環 含有ポリマーの溶液 1 0 gと、 へキサフルォロリン酸リチウムを 1モル濃度に溶 解した炭酸エチレン/炭酸ジェチル Z炭酸ジメチル ( 1 07 1 0 / 4 0、 重量 比) の混合溶媒溶液 4 0 gを混合溶解して、 液状組成物 Aを調製する。 液状組成 物 A中のポリマー濃度は、 3 . 0 %である。  In a glove box filled with dry nitrogen gas, 10 g of the solution of the oxetane ring-containing polymer obtained in Production Example 6 and ethylene carbonate / getyl carbonate dimethyl carbonate dissolved in lithium hexafluorophosphate at a 1 molar concentration (dimethyl carbonate) A liquid composition A is prepared by mixing and dissolving 40 g of a mixed solvent solution of 107 10/40 (weight ratio). The polymer concentration in the liquid composition A is 3.0%.
この液状糸且成物 Aを 7 0 °Cで加熱架橋させ、 ゲル化性、 ゲルの状態およびィォ ン伝導度 (l O ^ SZ c m) を評価した。 ゲル化性とゲル状態は目視にて;ィォ ン伝導度は、 金メッキ電極を組み込んだ密閉セル中に該液状組成物を注入し、 密 閉状態で 7 0 °C X 5時間加熱した後冷却して測定用試験体とし、 測定は L C Z メーターを用い、 周波数 1 K H z、 測定温度 2 0 °Cまたは一 2 0 °Cで行なった。 結果を下記表 2に示す。  This liquid yarn A was heated and crosslinked at 70 ° C., and the gelling property, the state of the gel, and the ion conductivity (lO ^ SZcm) were evaluated. The gelation and gel state were visually observed; the ion conductivity was determined by injecting the liquid composition into a closed cell incorporating a gold-plated electrode, heating at 70 ° C for 5 hours in a closed state, and then cooling. The specimen was used for measurement, and the measurement was performed using an LCZ meter at a frequency of 1 KHz and a measurement temperature of 20 ° C or 120 ° C. The results are shown in Table 2 below.
実施例 8  Example 8
(液状組成物 Bの調製)  (Preparation of liquid composition B)
実施例 7と同様にして、 製造例 6で得たォキセタン環含有ポリマーの溶液 1 0 gと、 へキサフルォロリン酸リチウムを 1 . 3モル濃度に溶解した炭酸エチレン /炭酸ジメチル Zプロピオン酸ェチル ( 1 5 Z 1 57 7 0、 重量比) の混合溶媒 溶液 4 0 gを混合溶解して、 液状組成物 B (ポリマ一濃度 3 . 0 %) を調製する 実施例 7と同様に、 この液状組成物 Bにつレ、てゲル化性、 ゲル状態およびィォ ン伝導度を評価し、 結果を下記表 2に示す。 表 2中、 ゲル化性の評価において In the same manner as in Example 7, 10 g of the solution of the oxetane ring-containing polymer obtained in Production Example 6, and ethylene carbonate / dimethyl carbonate Z-ethyl propionate (15) in which lithium hexafluorophosphate was dissolved at a 1.3 molar concentration. 40 g of a mixed solvent solution (weight ratio: Z157770) is mixed and dissolved to prepare a liquid composition B (polymer concentration: 3.0%). As in Example 7, the liquid composition B is prepared. Next, the gelation property, gel state and ion conductivity were evaluated, and the results are shown in Table 2 below. In Table 2, in the evaluation of gelability
「〇」 はゲル化していることを示す。
Figure imgf000030_0001
ゲル化性 〇 〇
"〇" indicates that the gel is formed.
Figure imgf000030_0001
Gelling properties 〇 〇
透明で電解液の 透明で電解質の  Transparent and electrolyte transparent and electrolyte
ゲノレ 能 Genore Noh
ブリードなし ブリードなし  No bleed No bleed
イオン伝導度 Ionic conductivity
(10— /cm)  (10— / cm)
20°C 8.855 8.904  20 ° C 8.855 8.904
20C 3.925 3.930  20C 3.925 3.930
比較例  Comparative example
式:  Formula:
Figure imgf000031_0001
Figure imgf000031_0001
で示される低分子脂環式エポキシ化合物 (ダイセル工業 (株) 製、 「セロキサイ ド 2021 Ρ」 ) 2. 5 gを、 へキサフルォロリン酸リチウムを 1. 0モル濃度 に溶解した炭酸エチレン Z炭酸ジメチル Zプロピオン酸ェチル (1 5ノ 1 5/7 0、 重量比) の混合溶媒溶液 47. 5 gに溶解して、 液状組成物 C (低分子脂環 式エポキシ化合物濃度 5%) を調製する。 2.5 g of a low-molecular alicyclic epoxy compound represented by the following formula (“CELLOXIDE 2021 Ρ”, manufactured by Daicel Industries, Ltd.): ethylene carbonate prepared by dissolving lithium hexafluorophosphate in a 1.0 molar concentration Z dimethyl carbonate Z Dissolve it in 47.5 g of a mixed solvent solution of ethyl propionate (15 to 15/70, weight ratio) to prepare Liquid Composition C (low-molecular alicyclic epoxy compound concentration 5%).
実施例 7と同様に、 この液状組成物 Cを 70 °Cで加熱重合し、 ゲル化性、 ゲル 状態およびイオン伝導度を評価し、 結果を下記表 3に示す。  In the same manner as in Example 7, this liquid composition C was polymerized by heating at 70 ° C., and the gelling property, the gel state, and the ionic conductivity were evaluated. The results are shown in Table 3 below.
比較例 2および 3  Comparative Examples 2 and 3
比較例 1において、 低分子脂環式エポキシ化合物の濃度をそれぞれ、 6% (比 較例 2) または 8% (比較例 3) とする以外は、 同様にして液状組成物 D Eを 調製し、 ゲル化性、 ゲル状態およびイオン伝導度の評価結果を下記表 3に示す。 比較例 4  A liquid composition DE was prepared in the same manner as in Comparative Example 1, except that the concentration of the low molecular weight alicyclic epoxy compound was changed to 6% (Comparative Example 2) or 8% (Comparative Example 3), respectively. Table 3 below shows the evaluation results of the chemical properties, gel state and ionic conductivity. Comparative Example 4
式:  Formula:
Figure imgf000031_0002
Figure imgf000031_0002
で示されるォキセタン環含有化合物 (宇部興産 (株) 製、 「XDO」 ) 3 gを、 へキサフルォロリン酸リチウムを 1. 0モル濃度に溶解した炭酸エチレン/ ジメチル Zプロピオン酸ェチル (1 5/1 5/70、 重量比) の混合溶媒溶液 4 7 gに溶解して、 液状組成物 F (低分子ォキセタン環含有化合物濃度 6 %) を調 製する。 3 g of an oxetane ring-containing compound (“XDO” manufactured by Ube Industries, Ltd.) Lithium hexafluorophosphate was dissolved in 47 g of a mixed solvent solution of ethylene carbonate / dimethyl Z-ethyl propionate (15/15/70, weight ratio) dissolved in 1.0 molar concentration, and the liquid composition F ( Prepare a low-molecular-weight oxetane ring-containing compound at a concentration of 6%).
実施例 7と同様に、 この液状組成物 Fを 70 °Cで加熱重合し、 ゲル化性、 ゲル 状態およびイオン伝導度を評価し、 結果を下記表 3に示す。  In the same manner as in Example 7, this liquid composition F was heated and polymerized at 70 ° C., and the gelling property, the gel state, and the ionic conductivity were evaluated. The results are shown in Table 3 below.
比較例 5および 6  Comparative Examples 5 and 6
比較例 4において、 低分子ォキセタン環含有化合物の濃度をそれぞれ、 8% (比較例 5 ) または 1 0 % (比較例 6 ) とする以外は、 同様こして液状組成物 G , Hを調製し、 ゲル化性、 ゲル状態およびイオン伝導度の評価結果を下記表 3に示 す。 表 3中、 「X」 は液状のままでゲル化していない状態を示し、 「〇」 は ゲル化していることを示す。 表 3  In Comparative Example 4, except that the concentration of the low-molecular-weight oxetane ring-containing compound was 8% (Comparative Example 5) or 10% (Comparative Example 6), liquid compositions G and H were prepared in the same manner, Table 3 below shows the evaluation results of the gelling property, gel state, and ionic conductivity. In Table 3, “X” indicates that the liquid state is not gelled, and “〇” indicates that the gelled state. Table 3
Figure imgf000032_0001
Figure imgf000032_0001
表 3の結果から、 低分子脂環式エポキシ化合物あるいは低分子ォキセタン環含 有化合物 [モノマー] を単に重合してゲル化させた場合、 ポリマー含有量 5%程 度 (該モノマーが 1 00%ポリマーに転化したと仮定し、 モノマー含有量をポリ マー含有量とする) では、 ゲル化せず (比較例 1 , 4) 、 6%程度以上ではゲル 化するものの、 液体成分がブリードし、 良好なゲル形成ができず、 イオン伝導度 も良い結果が得られないことが分かる。  From the results in Table 3, when the low-molecular alicyclic epoxy compound or the low-molecular oxetane ring-containing compound [monomer] is simply polymerized and gelled, the polymer content is about 5% (the monomer content is 100% polymer). (The monomer content is assumed to be the polymer content), gelation does not occur (Comparative Examples 1 and 4), and gelation occurs at about 6% or more, but liquid components bleed, and It can be seen that no gel could be formed and good results could not be obtained with ionic conductivity.
実施例 9 (リチウムイオン 2次電池 Aの作成) 予め用意しておいたリチウムイオン電池用の電極、 不織布からなるュニットを 組み込んだアルミニウムラミネートフィルム製の袋状容器に、 実施例 7の液状組 成物 A 1. 8 5 gを注入し、 真空含浸を行った後密封し、 Ί 0°Cで 1 9時間加熱 して架橋によるゲル化を行レ、、 薄型のポリマー固体電解質リチウムイオン 2次電 池 Aを作成する。 Example 9 (Preparation of lithium ion secondary battery A) Inject the liquid composition A of Example 7 (1.85 g) into a bag made of aluminum laminated film with a lithium ion battery electrode and a nonwoven fabric unit prepared in advance and vacuum impregnation. After sealing, heat at Ί0 ° C for 19 hours to perform gelation by cross-linking, and create a thin polymer solid electrolyte lithium ion secondary battery A.
なお、 上記で用いた薄型リチウムイオン 2次電池のユニッ トは、 正極と負極を 不織布を介して捲回した構造を有し、 正極はアルミニウム箔の両面にコバルト酸 リチウム主体からなる活物質を塗布したもので、 そのサイズは 50 X 8 Omm で、 負極は銅箔に炭素系材料を塗布したもので、 そのサイズは 5 2 X 1 1 0m mであり、 不織布はポリエステル細繊維製の 20 μ m厚品で、 このュニットを、 周囲を熱溶着した袋状のアルミニウムラミネ一トフイルム (内面:ポリエチレン、 外面:ポリプロピレン) 中に組み込んだものである。 電池の容量は、 1 80mA Hのもので、 同じ電池を 6個 (N o. :!〜 6) 作成した。  The unit of the thin lithium ion secondary battery used above has a structure in which a positive electrode and a negative electrode are wound via a nonwoven fabric, and the positive electrode is coated with an active material mainly composed of lithium cobalt oxide on both surfaces of an aluminum foil. The size is 50 x 8 Omm, the negative electrode is a copper foil coated with a carbon-based material, the size is 52 x 110 mm, and the non-woven fabric is 20 μm made of polyester fine fiber. This unit is a thick product in which a bag-like aluminum laminating film (inner surface: polyethylene, outer surface: polypropylene) is heat-sealed. The capacity of the battery was 180 mAH, and six identical batteries (No .: 6) were created.
実施例 1 0  Example 10
(リチウムイオン 2次電池 Bの作成)  (Preparation of lithium ion secondary battery B)
実施例 9と同様に、 実施例 8の液状組成物 Bを用いて、 薄型のポリマー固体電 解質リチウムイオン 2次電池 B (6個) を作成する。  As in Example 9, using the liquid composition B of Example 8, thin polymer solid electrolyte lithium ion secondary batteries B (six) were prepared.
実施例 9および 1 0で作成した薄型ポリマ一固体電解質リチウムイオン 2次電 池 Aおよび Bを用いた、 充放電繰り返し試験と常温時の負荷特性、 低温時の負荷 特性の結果をそれぞれ、 下記表 4および 5に示す。  Using the thin polymer-solid electrolyte lithium ion secondary batteries A and B prepared in Examples 9 and 10, the results of the charge / discharge repetition test and the load characteristics at normal temperature and the load characteristics at low temperature are shown in the following table, respectively. Shown in 4 and 5.
なお、 充放電繰り返し試験の条件は、 充放電共 1 C ( 1 80mA) で充放電サ イクルを繰返し、 初期 1サイクル時の容量、 1 0サイクル後の容量と保持率を示 す。 常温時の負荷特性は、 充電はすべて 0. 2 C (3 6mA) 、 放電は 0. 2 C、 1 C、 2 C (3 60mA) 、 それぞれの放電容量および 0. 2 C放電容量に対す る保持率を示す。 低温時の負荷特性は、 一 20°Cにおける充放電共 0. 5 C (9 0 mA) 放電容量、 および常温における充放電共 0. 5 C (90mA) 放電容量 に対する容量保持率を測定したものである。  The conditions of the charge / discharge repetition test are as follows. The charge / discharge cycle is repeated at 1 C (180 mA) for both charge and discharge, and the capacity at the initial 1 cycle and the capacity and retention after 10 cycles are shown. The load characteristics at room temperature are as follows: charge: 0.2 C (36 mA), discharge: 0.2 C, 1 C, 2 C (360 mA), discharge capacity and 0.2 C discharge capacity Shows the retention. The load characteristics at low temperatures were measured by measuring the 0.5 C (90 mA) discharge capacity at both 20 ° C and 0.5 C (90 mA) discharge capacity at room temperature. It is.
すべて充電は定電流で 4. 2 Vに達するまでとし、 放電はすべて定電流で 2. 7 5 Vに達するまでとしている。 表 4 All charging is performed until the constant current reaches 4.2 V, and all discharging is performed until the constant current reaches 2.75 V. Table 4
No. No.
■、■ - -、 -、、- 1 2 3 4 5 6 允 [ί操り返し試験  ■ 、 ■--,-,,-1 2 3 4 5 6 Yu [ίReturn test
•初期 1サイクル (mAH) 182. 7 186. 3 184. 0 182. 6 182. 7 180. 0 • Initial 1 cycle (mAH) 182.7 186.3 184.0 182.6 182.7 78.0
• 10サイクル (mAH) 174. 4 179. 7 176. 3 173. 9 174. 5 170. 4 同保持率 (%) 96. 0 96. δ 95. 8 95. 2 95. δ 94. 7 常温負荷特性 • 10 cycles (mAH) 174. 4 179. 7 176. 3 173. 9 174. 5 170. 4 Same retention rate (%) 96. 0 96. δ 95. 8 95. 2 95. δ 94.7 Normal temperature load Characteristic
- 0. 2C容量 (mAH) 200. 2 199. 5 198. 7 199. 4 200. 9 -0.2C capacity (mAH) 200.2 199.5 5198.7 199.4 4200.9
- 1C容量 (mAH) 187. 6 190. 4 188. 4 188. 3 187. 7 187. 0 同保持率 (%) 96. 0 95. 1 94. 4 94. 8 94. 1 93. 1-1C capacity (mAH) 187.6 190. 4 188. 4 188. 3 187. 7 187.0 0 Retention rate (%) 96. 0 95. 1 94. 4 94. 8 94. 1 93. 1
- 2C容量 (mAH) 172 L. 4 174. 3 170. δ 168. 6 168. 5 168. 8 同保持率 (%) 88. 2 87. 1 85. 5 84. 9 84. 5 84. 0 低温負荷特性(0. 5C) -2C capacity (mAH) 172 L. 4 174. 3 170. δ 168. 6 168. 5 168. 8 Same retention (%) 88. 2 87. 1 85. 5 84. 9 84. 5 84. 0 Low temperature Load characteristics (0.5C)
-常温容量 (mAH) 190. 8 194. 1 182. 6 193. 0 193. 0 -Room temperature capacity (mAH) 190.8 194.1 182.6 6193.0 193.0
- -20°C容量 (mAH) 94. 5 97. 6 99. 6 90. 0 98. 6 97. 1 同保持率 (%) 49. 5 50. 3 51. δ 49. 3 51. 1 50. 3 つ --20 ° C capacity (mAH) 94.5 97.6 99.6 90.0 98.6.97.1 Same retention rate (%) 49.5 50.3 51.δ49.3 51.1 50. Three
、Ν。·、 , Ν. ·,
1 2 3 4 5 6 充放電繰り返し試験 Ο  1 2 3 4 5 6 Repeated charge / discharge test Ο
■初期 1サイクル (mAH) 182. 2 186. 0 183. 8 189. 1 187. 6 186. 7 ■ Initial 1 cycle (mAH) 182.2 186.0 183.8 8189.1 187.6 186.7
■ 10サイクル (mAH) 174. 2 178. 4 173. 2 184. 6 181. 0 179. 5 同保持率 (%) 95. 6 95. 9 94. 2 97. 6 96. 5 96. 1 常温負荷特性 ■ 10 cycles (mAH) 174.2 178.4 47.3 2 184.6 181.0 0 179.5 Same retention rate (%) 95.6 95.9 94.2 97.6 96.5 96.1 Normal temperature load Characteristic
■ 0. 2C容量 (mAH) 196. 7 200. 0 199. 7 200. 7 200. 3 ■ 0.2C capacity (mAH) 196.7 7200. 0 199.7 7200. 7 200.3
• 1 C容量 (mAH) 187. 7 190. 5 189. 4 191. 3 191. 6 190. 8 同保持率 (%) 95. 4 95. 3 94. 8 95. 3 95. 0 95. 3• 1 C capacity (mAH) 187.7 190. 5 189. 4 191.3 191. 6 190. 8 Retention rate (%) 95. 4 95. 3 94. 8 95. 3 95. 0 95.3
- 2C容量 (mAH) 173. 6 178. 4 173. 5 179. 8 180. 5 179. 2 同保持率 (%) 88. 3 89. 2 86. 9 89. 6 89. 5 89. 5 低温負荷特性 (0. 5C) -2C capacity (mAH) 173.6 67.8 4 173.5 5179.80 180.5 179.2 Same retention rate (%) 88.3 89.2 86.9 89.6 89.5 89.5 Low temperature load Characteristics (0.5C)
-常温容量 (mAH) 190. 4 193. 4 192. 8 194. 2 194. 4 193. 4 -Room temperature capacity (mAH) 190.4 193.4 4192.8 194.2 2194.4 193.4
- - 20°C容量 (mAH) 1 13. 7 1 18. 2 120. 9 1 19. 0 1 16. 6 1 13. 7 同保持率 (%) 59. 7 61. 1 62. 7 61. 3 60. 0 58. 8 --20 ° C capacity (mAH) 1 13. 7 1 18. 2 120. 9 1 19. 0 1 16. 6 1 13.7 Retention rate (%) 59. 7 61. 1 62. 7 61. 3 60.0 58.8

Claims

請 求 の 範 囲 The scope of the claims
1. リチウムイオン 2次電池用の正電極および負電極、 両電極間に配置された セパレータならびにポリマ一固体電解質を含んでなるポリマー固体電解質リチウ ムイオン 2次電池であって、 該ポリマー固体電解質は、  1. A polymer solid electrolyte comprising a positive electrode and a negative electrode for a lithium ion secondary battery, a separator disposed between the two electrodes, and a polymer solid electrolyte, wherein the polymer solid electrolyte comprises:
(1) 架橋性材料  (1) Crosslinkable material
(2) 電解液溶媒および  (2) electrolyte solvent and
(3) リチウム電解質塩  (3) Lithium electrolyte salt
から成り、 上記架橋性材料 (1) の量が組成物総量中 1 0重量。 /0以下である液状 の固体電解質用架橋性組成物を、 該電極およびセバレータを含んでなるュニット を組み込んだ密封可能な電池容器に注入し、 架橋によってゲル化させたポリマー 固体電解質であるポリマー固体電解質リチウムイオン 2次電池。 Wherein the amount of the crosslinkable material (1) is 10% by weight in the total amount of the composition. / 0 or less, a liquid crosslinkable composition for a solid electrolyte is injected into a sealable battery container incorporating a unit including the electrode and a separator, and gelled by crosslinking.Polymer as a solid electrolyte Electrolyte lithium ion secondary battery.
2. 架橋性材料 (1) 力  2. Crosslinkable material (1) Force
a . ェポキシ樹脂とその架橋剤の組合せ、  a. a combination of an epoxy resin and its crosslinking agent,
b . ポリイソシァネート化合物およびウレタンプレボリマーからなる群から選 択される少なくとも 1種の化合物とその架橋剤の組合せ、  b. a combination of at least one compound selected from the group consisting of a polyisocyanate compound and a urethane prepolymer, and a crosslinking agent thereof;
c . (メタ) アクリル系モノマーとラジカル重合開始剤の組合せ、  c. Combination of (meth) acrylic monomer and radical polymerization initiator,
d . エポキシ基含有ラジカル共重合ポリマーとカチオン重合開始剤の組合せ、 および  d. a combination of an epoxy group-containing radical copolymer and a cationic polymerization initiator, and
e . ォキセタン環含有ポリマーとカチオン重合開始剤の組合せ  e. Combination of oxetane ring-containing polymer and cationic polymerization initiator
からなる群から成る選択される少なくとも 1種の架橋性材料である請求項 1に記 載のポリマー固体電解質リチウムイオン 2次電池。 The polymer solid electrolyte lithium ion secondary battery according to claim 1, which is at least one kind of crosslinkable material selected from the group consisting of:
3. 架橋性材料 ( 1 ) が組合せ aから成り、 該エポキシ樹脂が、 式:  3. The crosslinkable material (1) comprises the combination a, wherein the epoxy resin has the formula:
(CH2CH-CH20)a - R x -(O C H 2 C H 2 C N) b (CH 2 CH-CH 2 0) a-R x- (OCH 2 CH 2 CN) b
O (式中、 aは 2〜5および bは 1〜4の数であり、 ただし a + bは 3〜6であ る ;および は分子中に 3〜6個の水酸基を有する分子量 250未満のポリオ —ル化合物から全ての水酸基を除レ、た残基である) で示されるシァノェチル化エポキシ樹脂を包含し、 O (where a is a number from 2 to 5 and b is a number from 1 to 4, wherein a + b is from 3 to 6; and has a molecular weight of less than 250 having 3 to 6 hydroxyl groups in the molecule. This is a residue that removes all hydroxyl groups from a polyol compound.) Including a cyanoethylated epoxy resin represented by
該架橋剤が式:  The crosslinking agent has the formula:
H2 N-CH: CH2 -(NH-CH2 CH2)c-NH2 H 2 N-CH : CH 2- (NH-CH 2 CH 2 ) c-NH 2
(式中、 cは 0〜4の数である)  (Where c is a number from 0 to 4)
で示されるポリエチレンボリアミン、 および式: And a polyethyleneboramine represented by the formula:
( 3)e R4 ( 5)g ( 3 ) e R 4 ( 5 ) g
(R2)d-N-CH2CH2-(N-CH2CH2)f-N-(R6)h (R 2 ) dN-CH 2 CH 2- (N-CH 2 CH 2 ) fN- (R 6 ) h
(式中、 R2, R;(, R4, R5および R6 (R 〜R6) はそれぞれ Hまたは—C H2CH2CN ; d, e, gおよび hはそれぞれ 0〜2で、 d + eは 2、 g + hは 2 ;および ίは 0〜4であって、 但し、 R2〜R6の内少なくとも 2つは Hでかつ 少なくとも 1つは CH2 CH2 CNである) (Wherein, R 2 , R ; ( , R 4 , R 5 and R 6 (R to R 6 ) are each H or —CH 2 CH 2 CN; d, e, g and h are each 0 to 2, d + e is 2, g + h is 2; and ί is 0 to 4, provided that at least two of R 2 to R 6 are H and at least one is CH 2 CH 2 CN.
で示される部分シァノェチル化ポリエチレンポリアミンからなる群から選択され る少なくとも 1種の化合物である請求項 2に記載のポリマー固体電解質リチウム イオン 2次電池。 3. The polymer solid electrolyte lithium ion secondary battery according to claim 2, which is at least one compound selected from the group consisting of partially cyanoethylated polyethylene polyamines represented by:
4. 架橋性材料 (1) が組合せ bから成り、 該ポリイソシァネート化合物が、 4. The crosslinkable material (1) comprises the combination b, wherein the polyisocyanate compound is
2, 4 もしくは 2, 6 トリレンジィソシァネートあるいはそれらの混合物、 4, 4'ージフエニルメタンジイソシァネート、 イソフォロンジイソシァネート、 1, 6—へキサメチレンジィソシァネ一ト、 2, 4, 6 トリメチルへキサメチレンジ イソシァネート、 キシリ レンジイソシァネート、 およびクル一ドタイプのジフエ ニルメタンジィソシァネートからなる群から選択される少なくとも 1種の化合物 である請求項 2に記載のポリマ一固体電解質リチウムイオン 2次電池。 2, 4 or 2, 6 tolylene diisocyanate or a mixture thereof, 4, 4'-diphenylmethane diisocyanate, isophorone diisocyanate, 1, 6-hexamethylene diisocyanate 3. The compound according to claim 2, wherein the compound is at least one compound selected from the group consisting of 2,4,6 trimethylhexamethylene diisocyanate, xylylene diisocyanate, and a diphenylmethane diisocyanate of the cloud type. Polymer-solid electrolyte lithium ion secondary battery.
5. 架橋性材料 (1) が組合せ bから成り、 該ウレタンプレボリマーが、 分子 量 400未満のポリオールと当量より過剰のポリイソシァネ一トを反応させて得 られるイソシァネー卜基含有ゥレタンプレボリマ一であり、  5. The crosslinkable material (1) comprises the combination b, wherein the urethane prepolymer is an isocyanate group-containing ゥ ethane prepomer obtained by reacting a polyol having a molecular weight of less than 400 with an excess of polyisocyanate in excess of the equivalent. Yes,
該架橋剤が、 上記分子量 400未満のポリオールでしかも水酸基価400以上 のポリオール化合物である請求項 2に記載のポリマ一固体電解質リチウムイオン 2次電池。 Crosslinking agents, polymer primary solids electrolyte lithium ion secondary battery of claim 2 wherein said molecule less weight 400 polyol, yet hydroxyl value 4 00 or more polyol compounds.
6. 架橋性材料 (1 ) が組合せ bから成り、 該架橋剤が、 分子中に 2〜 6個の 水酸基を有するポリオールにエチレンォキサイドもしくはプロピレンォキサイ ド を付加して得られる分子量 8 0 0未満のポリオキシエチレンポリオールもしくは ポリオキシプロピレンポリオールである請求項 2、 4および 5のいずれか 1つに 記載のポリマー固体電解質リチウムイオン 2次電池。 6. The crosslinkable material (1) is composed of the combination b, and the crosslinker has 2 to 6 A polyoxyethylene polyol or a polyoxypropylene polyol having a molecular weight of less than 800, which is obtained by adding ethylene oxide or propylene oxide to a polyol having a hydroxyl group, according to any one of claims 2, 4, and 5. The polymer solid electrolyte lithium ion secondary battery described in the above.
7 . 架橋性材料 ( 1 ) が組合せ bから成り、 該架橋剤が、 分子中に少なくとも 7. The crosslinkable material (1) comprises the combination b, wherein the crosslinking agent has at least one
2個のアミン性ァミノ基および/またはィミノ基による活性水素原子を含有する 化合物またはアンモニアに、 エチレンォキサイ ドおよび Zまたはプロピレンォキ サイ ドを付加して得られるポリ N—ヒ ドロキシアルキル化化合物である請求項 2、 4および 5のレ、ずれか 1つに記載のポリマー固体電解質リチウムイオン 2次電池。 Poly N-hydroxyalkylated compound obtained by adding ethylene oxide and Z or propylene oxide to a compound containing an active hydrogen atom by two amine amino and / or imino groups or ammonia The polymer solid electrolyte lithium ion secondary battery according to any one of claims 2, 4, and 5, wherein
8 . 架橋性材料 (1 ) が組合せ bから成り、 該架橋剤が、 分子中に少なくとも 8. The crosslinkable material (1) comprises the combination b, and the crosslinking agent has at least one molecule in the molecule.
3個以上のアミン性ァミノ基および Zまたはィミノ基による活性水素原子含有化 合物またはアンモニアに、 少なくとも 1個の活性水素原子を残してエチレンォキ サイ ドおよび Zまたはプロピレンォキサイドを付加して N—ヒ ドロキシアルキル 化し、 次いで残存する活性水素原子をシァノエチル化して得られるモノまたはポ リ N—シァノエチル化ポリ N—ヒドロキシアルキル化化合物である請求項 2、 4 および 5のいずれか 1つに記載のポリマー固体電解質リチウムイオン 2次電池。 Compounds containing three or more amine-based amino and / or Z or imino groups containing an active hydrogen atom or ammonia and adding ethylene oxide and Z or propylene oxide to N to leave at least one active hydrogen atom 6. A mono- or poly-N-cyanoethylated poly-N-hydroxyalkylated compound obtained by hydroxyalkylation followed by cyanoethylation of remaining active hydrogen atoms, according to any one of claims 2, 4 and 5. Polymer solid electrolyte lithium ion secondary battery.
9 . 架橋性材料 (1 ) が組合せ bから成り、 該架橋剤が、 請求項 7に記載のポ リ N—ヒ ドロキシアルキル化化合物の水酸基の一部をシァノエチル化して得られ る部分シァノエチル化ポリ N—ヒ ドロキシアルキル化化合物である請求項 2、 4 および 5のいずれか 1つに記載のポリマー固体電解質リチウムイオン 2次電池。  9. The crosslinkable material (1) comprises the combination b, wherein the crosslinking agent is a partial cyanoethylation obtained by partially cyanoethylating a part of the hydroxyl groups of the poly (N-hydroxyalkylated compound) according to claim 7. The polymer solid electrolyte lithium ion secondary battery according to any one of claims 2, 4 and 5, wherein the lithium ion secondary battery is a poly N-hydroxyalkylated compound.
1 0 . 架橋性材料 (1 ) が組合せ bから成り、 該架橋剤が、 水酸基を有するラ ジカル重合性モノマ一と他のラジカル重合性モノマ一の共重合で得られる水酸基 含有ラジカル共重合ポリマーである請求項 2、 4および 5のいずれか 1つに記載 のポリマー固体電解質リチウムイオン 2次電池。  10. The crosslinkable material (1) is composed of the combination b, and the crosslinking agent is a hydroxyl group-containing radical copolymer obtained by copolymerizing a radical polymerizable monomer having a hydroxyl group with another radical polymerizable monomer. The polymer solid electrolyte lithium-ion secondary battery according to any one of claims 2, 4, and 5.
1 1 . 水酸基を有するラジカル重合性モノマーが、 分子中少なくとも 1個の水 酸基を残存させた、 ポリヒ ドロキシ化合物の部分 (メタ) アタリレートである請 求項 1 0に記載のポリマー固体電解質リチウムイオン 2次電池。  11. The lithium polymer solid electrolyte according to claim 10, wherein the radically polymerizable monomer having a hydroxyl group is a part (meth) acrylate of a polyhydroxy compound in which at least one hydroxyl group remains in the molecule. Ion secondary battery.
1 2 . ポリヒ ドロキシ化合物が、 分子中に 2〜 6個の水酸基を有する水酸基価 4 0 0以上の高水酸基価ポリヒ ドロキシ化合物である請求項 1 1に記載のポリマ 一固体電解質リチウムイオン 2次電池。 12. The polymer according to claim 11, wherein the polyhydroxy compound is a high hydroxyl value polyhydroxy compound having a hydroxyl value of 400 or more having 2 to 6 hydroxyl groups in a molecule. One solid electrolyte lithium ion secondary battery.
1 3. 高水酸基価ポリヒ ドロキシ化合物が、 エチレングリコール、 ジエチレン グリコール、 プロピレングリコール、 ジプロピレングリコール、 グリセリン、 ジ グリセリン、 トリグリセリン、 エリスリ トール、 ペンタエリスリ トール、 ジペン タエリスリ トール、 キシリ トールおよびソルビトールからなる群から選択される 少なくとも 1種である請求項 1 2に記載のポリマー固体電解質リチウムイオン 2 次電池。  1 3. The high hydroxyl value polyhydroxy compound is selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, diglycerin, triglycerin, erythritol, pentaerythritol, dipentaerythritol, xylitol and sorbitol. 13. The polymer solid electrolyte lithium ion secondary battery according to claim 12, which is at least one selected from the group consisting of:
14. 他のラジカル重合性モノマーが、 式:  14. Other radically polymerizable monomers have the formula:
R7 >H2 一 R 0 R 7 > H 2 1 R 0
(式中、 R7は Hまたは CH3 ;および R8は一 CN COOCHい 一 COO C2H5 — COO(CH2〇 〇 〜 3 CH3 — CO〇(CH2 CH2〇)ト C2 H 5 — COO(CH2
Figure imgf000038_0001
3 CH3 — C O◦ (C H2 C H (C H3 ) O) 3C2H5 OCOCH3、 または一 OCOC2 H5である)
(Where R 7 is H or CH 3 ; and R 8 is one of CN COOCH or COO C 2 H 5 — COO (CH 2 〇 〜 to 3 CH 3 — CO〇 (CH 2 CH 2 〇) to C 2 H 5 — COO (CH 2
Figure imgf000038_0001
3 CH 3 — CO◦ (CH 2 CH (CH 3 ) O) 3C 2 H 5 OCOCH 3 , or one OCOC 2 H 5
で示されるビュル系もしくは (メタ) アクリル系モノマーである請求項 10 1 3のレ、ずれか 1つに記載のポリマ一固体電解質リチウムイオン 2次電池。 The polymer-solid electrolyte lithium ion secondary battery according to any one of claims 10 to 13, wherein the polymer-based or (meth) acrylic monomer is represented by the following formula:
1 5. 水酸基を有するラジカル重合性モノマーと他のラジカル重合性モノ の重量比が、 1 10 1 1である請求項 10 14のいずれか 1つに記載の ポリマー固体電解質リチウムイオン 2次電池。  15. The polymer solid electrolyte lithium ion secondary battery according to any one of claims 10 to 14, wherein the weight ratio of the radical polymerizable monomer having a hydroxyl group to the other radical polymerizable mono is 11011.
1 6. 架橋性材料 (1) が組合せ bから成り、 架橋性材料は、 予め電極あるい はセパレ一タにウレタン架橋触媒を塗布または混入しておく請求項 2および 4 1 5のレ、ずれか 1つに記載のポリマー固体電解質リチウムイオン 2次電池。  1 6. The cross-linkable material (1) is composed of the combination b, and the cross-linkable material is preliminarily coated or mixed with a urethane cross-linking catalyst on an electrode or a separator. 2. The polymer solid electrolyte lithium ion secondary battery according to claim 1.
1 7. 架橋性材料 (1) が組合せ cから成り、 該 (メタ) アクリル系モノマ一 が式: R9 1 7. The crosslinkable material (1) comprises the combination c, and the (meth) acrylic monomer has the formula: R 9
CH2 = C— COOR10 CH 2 = C—COOR 10
(式中、 R9は Hまたは CH3 ;および 。は炭素数 1〜4のアルキルである) で示されるアルキル (メタ) ァクリレートおよび式: Wherein R 9 is H or CH 3 ; and is an alkyl having 1 to 4 carbon atoms, and an alkyl (meth) acrylate represented by the formula:
R】 ] R]]
I I
CH2 = C— COO—(R , 2)i— R , 3 CH 2 = C—COO— (R, 2 ) i—R, 3
(式中、 は Hまたは CH3 ; R12は一CH2 CH2〇一または一 CH2 CH (CH3)-0- ; R13は CH3または C2 H5 ;および iは 1〜3である) で示されるアルコキシモノまたはポリアルキル (メタ) アタリレートからなる群 から選択される少なくも 1種の (メタ) アタリレートと、 式: (Wherein is H or CH 3 ; R 12 is one CH 2 CH 2 〇 one or one CH 2 CH (CH 3 ) -0-; R 13 is CH 3 or C 2 H 5 ; and i is 1-3. At least one (meth) acrylate which is selected from the group consisting of alkoxy mono- or polyalkyl (meth) acrylates represented by the formula:
^ 1 4 | 6 ^ 1 4 | 6
CH2 = C-COO-R15-OOC-C = CH2 CH 2 = C-COO-R 15 -OOC-C = CH 2
(式中、 R14および R16はそれぞれ Hまたは CH3 ;および R15Wherein R 14 and R 16 are each H or CH 3 ; and R 15 is
- (CH2 CH20)1 ^ 20 - または 一 {CH2 CHiCH O}^ 2。一 である) -(CH 2 CH 2 0) 1 ^ 20 -or one {CH 2 CHiCH O} ^ 2 . One)
で示されるモノまたはポリオキシアルキレンジ (メタ) アタリレートとを必須成 分とする請求項 2に記載のポリマー固体電解質リチウムイオン 2次電池。 3. The polymer solid electrolyte lithium ion secondary battery according to claim 2, wherein the mono- or polyoxyalkylene di (meth) acrylate is represented by the following formula:
1 8. 架橋性材料 (1) が組合せ dから成り、 該エポキシ基含有ラジカル共重 合ポリマーが、 エポキシ基を有する (メタ) アクリルモノマーと他のラジカル重 合性モノマーの共重合ポリマ一であって、  1 8. The crosslinkable material (1) is composed of the combination d, and the epoxy group-containing radical copolymer is a copolymer of an epoxy group-containing (meth) acrylic monomer and another radical polymerizable monomer. hand,
上記エポキシ基を有する (メタ) アクリルモノマーは式: R 1 7 The above (meth) acrylic monomer having an epoxy group has the formula: R 1 7
CH2 = C COORls CH 2 = C COOR ls
(式中、 R17は Hまたは CH3 ;および R18は H2 Wherein R 17 is H or CH 3 ; and R 18 is H 2
Figure imgf000040_0001
である)
Figure imgf000040_0001
Is)
で示される (メタ) アタリレートの少なくとも 1種である請求項 2に記載のポリ マー固体電解質リチウムイオン 2次電池。 3. The polymer solid electrolyte lithium ion secondary battery according to claim 2, which is at least one kind of (meth) acrylate which is represented by the following formula.
1 9. 他のラジカル重合性モノマーが式:  1 9. Other radically polymerizable monomers have the formula:
H2— 一 Iv20 H 2 — One Iv 20
(式中、 R19は Hまたは CH3 ;および R2。は _COOCH3 _COOC2H5 一 CO〇C3H7 COOC4H9 COO(CH2 CH20)ト 3 CH3 CO O CF^CF^O)^ 3C2H5 COO(CH2 CH CH O)^ 3 CH3 C 00(CH2 CH(CH3)0)1^ 3C2H5 —OCOCH3、 または一 OCOC2H5 である) (Wherein, R 19 is H or CH 3;. And R 2 _COOCH 3 _COOC 2 H 5 one CO_〇_C 3 H 7 COOC 4 H 9 COO (CH 2 CH 2 0) DOO 3 CH 3 CO O CF ^ CF ^ O) ^ 3 C 2 H 5 COO (CH 2 CH CH O) ^ 3 CH 3 C 00 (CH 2 CH (CH 3 ) 0) 1 ^ 3 C 2 H 5 —OCOCH 3 , or one OCOC 2 H 5 )
で示されるビュル系もしくは (メタ) アクリル系モノマーである請求項 18に記 載のポリマ一固体電解質リチウムイオン 2次電池。 19. The polymer-solid electrolyte lithium ion secondary battery according to claim 18, which is a bullet-based or (meth) acrylic-based monomer represented by:
20. エポキシ基を有する (メタ) アクリルモノマーと他のラジカル重合性モ ノマーの重量比が、 1 : 10 1 : 1である請求項 18または 1 9に記載のポリ マー固体電 質リチウムイオン 2次電池。  20. The polymer solid electrolyte lithium ion secondary battery according to claim 18 or 19, wherein the weight ratio between the (meth) acrylic monomer having an epoxy group and the other radically polymerizable monomer is 1: 101: 1. battery.
2 1. 架橋性材料 (1) が組合せ dから成り、 該カチオン重合開始剤がォニゥ ム塩である請求項 2および 18 20の L、ずれか 1つに記載のポリマ一固体電解 質リチウムイオン 2次電池。 2 1. The polymer-solid electrolyte lithium ion 2 according to claim 2, wherein the crosslinkable material (1) comprises a combination d, and the cationic polymerization initiator is an ionic salt. Next battery.
2 2 . カチオン重合開始剤の一部あるいは全部に、 リチウム電解質塩 ( 3 ) と して用いるへキサフルォロリン酸リチウムおよび Zまたはテトラフルォロホウ酸 リチウムを利用する請求項 2および 1 8〜2 0のいずれか 1つに記載のポリマー 固体電^ 質リチウムイオン 2次電池。 22. Claims 2 and 18 to 20 wherein lithium hexafluorophosphate and Z or lithium tetrafluoroborate used as the lithium electrolyte salt (3) are used as part or all of the cationic polymerization initiator. The polymer solid electrolyte lithium ion secondary battery according to any one of the above.
2 3 . 架橋性材料 ( 1 ) が組合せ eカゝらなり、 該ォキセタン環含有ポリマーの 量が,組成物総量中 5重量%以下である請求項 2に記載のポリマ一固体電解質リチ ゥムイオン 2次電池。  23. The polymer-solid electrolyte lithium ion secondary ion according to claim 2, wherein the crosslinkable material (1) is a combination of e-carbon and the amount of the oxetane ring-containing polymer is 5% by weight or less based on the total amount of the composition. battery.
2 4 . ォキセタン環含有ポリマーが、 ォキセタン環を有するラジカル重合性モ ノマ一と他のラジカル重合性モノマーとのラジカル共重合で得られる分子量 1 0 0 0 0以上のポリマ一である請求項 2 3に記載のポリマー固体電解質リチウムィ オン 2次電池。  24. The oxetane ring-containing polymer is a polymer having a molecular weight of 1000 or more obtained by radical copolymerization of a radical polymerizable monomer having an oxetane ring with another radical polymerizable monomer. 2. The polymer solid electrolyte lithium ion secondary battery according to 1.
2 5 . ォキセタン環を有するラジカル重合性モノマーの量が、 モノマー全量中 5〜5 0重量%である請求項 2 4に記載のポリマー固体電解質リチウムイオン 2 次電池。  25. The polymer solid electrolyte lithium ion secondary battery according to claim 24, wherein the amount of the radical polymerizable monomer having an oxetane ring is 5 to 50% by weight based on the total amount of the monomer.
2 6 . ォキセタン環含有ポリマーが、 ォキセタン環を有するラジカル重合性モ ノマーおよびエポキシ基を有するラジカル重合性モノマーと他のラジカル重合性 モノマーとのラジカル共重合で得られる分子量 1 0 0 0 0以上のポリマーである 請求項 2 3に記載のポリマー固体電解質リチウムイオン 2次電池。  26. The oxetane ring-containing polymer has a molecular weight of 1000 or more obtained by radical copolymerization of a radical polymerizable monomer having an oxetane ring and a radical polymerizable monomer having an epoxy group with another radical polymerizable monomer. 24. The polymer solid electrolyte lithium ion secondary battery according to claim 23, which is a polymer.
2 7 . ォキセタン環を有するラジカル重合性モノマーとエポキシ基を有するラ ジカル重合性モノマーとの合計量中エポキシ基を有するラジカル重合性モノマー の割合が 9 0重量%以下で、 該両モノマーの合計量が、 モノマ一全量中 5〜5 0 重量。/。である請求項 2 6に記載のポリマー固体電解質リチウムイオン 2次電池。  27. The proportion of the radical polymerizable monomer having an epoxy group in the total amount of the radical polymerizable monomer having an oxetane ring and the radical polymerizable monomer having an epoxy group is 90% by weight or less, and the total amount of both monomers is However, the total weight of the monomer is 5 to 50 weight. /. 27. The polymer solid electrolyte lithium ion secondary battery according to claim 26, wherein
2 8 . ォキセタン環含有ポリマーに、 エポキシ基を有するラジカル重合性モノ マーと他のラジカル重合性モノマーとのラジカル共重合で得られる分子量 1 0 0 0 0以上のエポキシ基含有ポリマーを併用する請求項 2 3〜2 7のいずれか 1つ 28. An epoxy group-containing polymer having a molecular weight of 1000 or more obtained by radical copolymerization of a radical polymerizable monomer having an epoxy group with another radical polymerizable monomer, in combination with the oxetane ring-containing polymer. One of 2 3 to 2 7
(こ記載のポリマ一固体電解質リチウムイオン 2次電池。 (The polymer-solid electrolyte lithium ion secondary battery of this description.
2 9 . ォキセタン環を有するラジカル重合性モノマーが、 式:
Figure imgf000042_0001
29. The radical polymerizable monomer having an oxetane ring has the formula:
Figure imgf000042_0001
(式中、 R2 は Hまたは CH3 ;および R2 2 は Hまたは炭素数 1〜6のァ ルキルである) (Wherein, R 2 is H or CH 3; and R 2 2 is H or § alkyl of 1 to 6 carbon atoms)
で示される (メタ) アクリルモノマ一である請求項 24〜 27のいずれか 1つに 記載のポリマー固体電解質リチウムイオン 2次電池。 The polymer solid electrolyte lithium ion secondary battery according to any one of claims 24 to 27, which is a (meth) acrylic monomer represented by the following formula:
30. 他のラジカル重合性モノマ一が、 式:  30. Other radically polymerizable monomers have the formula:
I I
し 一し R24 Shi Roshi R24
(式中、 R2 は Hまたは CH3 ;および R2 4 は—COOCH3、 一 COOC 2H5、 一 COOC3H7、 一 CO〇C4H9、 -COO(CH2 CH2 O)^ (Wherein, R 2 is H or CH 3; and R 2 4 is -COOCH 3, one COOC 2 H 5, one COOC 3 H 7, one CO_〇_C 4 H 9, -COO (CH 2 CH 2 O) ^
— COO(CH2 CH20)卜 3 C2 H5、 一 COO(CH2
Figure imgf000042_0002
3 CH3、 — COO(CH2 CH(CH3)〇)13 C2H5、 _OCOCH3、 または一 OCOC2 Hsである)
— COO (CH 2 CH 2 0) 3 C 2 H 5 , COO (CH 2
Figure imgf000042_0002
3 CH 3, - COO (CH 2 CH (CH 3) 〇) 1 ~ 3 C 2 H 5 , _OCOCH 3, or an OCOC 2 H s)
で示されるビュル系もしくは (メタ) アクリル系モノマーである請求項 24〜 2 9のいずれか 1つに記載のポリマ一固体電解質リチウムイオン 2次電池。 The polymer-solid electrolyte lithium ion secondary battery according to any one of claims 24 to 29, which is a bullet-based or (meth) acrylic-based monomer represented by the following formula:
3 1. エポキシ基を有するラジカル重合性モノマーが、 式:  3 1. A radical polymerizable monomer having an epoxy group has the formula:
¾5  ¾5
CH2=C— COOR26 CH 2 = C—COOR 26
(式中、 R7 - は Hまたは CH ;および R は Wherein R 7 -is H or CH; and R is
Figure imgf000042_0003
である)
Figure imgf000042_0003
Is)
で示される (メタ) ァクリレートである請求項 26〜30のいずれか 1つに記載 のポリマー固体電解質リチウムイオン 2次電池。 The polymer solid electrolyte lithium ion secondary battery according to any one of claims 26 to 30, which is a (meth) acrylate represented by the following formula:
32. カチオン重合開始剤がォニゥム塩である請求項 23〜31のいずれか 1 つに記載のポリマー固体電解質リチウムイオン 2次電池。 32. The method according to any one of claims 23 to 31, wherein the cationic polymerization initiator is an onium salt. 4. The polymer solid electrolyte lithium ion secondary battery according to any one of the above.
33. 電解液溶媒が、 環状炭酸エステル類、 鎖状炭酸エステル類および環状力 ルボン酸エステル類からなる群から選択される少なくとも 1種と、 低分子鎖状力 ルボン酸エステル類との混合物である請求項 23〜32のいずれか 1つに記載の ボリマ一固体電解質リチウムイオン 2次電池。  33. The electrolytic solution solvent is a mixture of at least one selected from the group consisting of cyclic carbonates, chain carbonates and cyclic carboxylic acid esters, and low molecular chain carboxylic acid esters. The volima solid electrolyte lithium ion secondary battery according to any one of claims 23 to 32.
34. カチオン重合開始剤の一部あるいは全部に、 リチウム電解質塩 (3) と して用いるへキサフルォロリン酸リチウムおよび/またはテトラフルォロホウ酸 リチウムを利用する請求項 23〜33のいずれか 1つに記載のポリマ一固体電解 質リチウムイオン 2次電池。  34. Any one of claims 23 to 33, wherein lithium hexafluorophosphate and / or lithium tetrafluoroborate used as a lithium electrolyte salt (3) is used for part or all of the cationic polymerization initiator. The polymer-solid electrolyte lithium-ion secondary battery according to 1.
35. 液状の固体電^^質用架橋性組成物が、  35. Crosslinkable composition for liquid solid electrolyte is
ォキセタン環含有ポリマー、  Oxetane ring-containing polymer,
電解液溶媒、 並びに  Electrolyte solvent, and
へキサフルォロリン酸リチウムおよびテトラフルォロホウ酸リチウムからなる 群から選択される少なくとも 1種のリチウム電解質塩  At least one lithium electrolyte salt selected from the group consisting of lithium hexafluorophosphate and lithium tetrafluoroborate
力 ら成る請求項 34に記載のポリマー固体電解質リチウムイオン 2次電池。 35. The polymer solid electrolyte lithium ion secondary battery according to claim 34, comprising a power.
36. (1) ォキセタン環含有ポリマー、  36. (1) Oxetane ring-containing polymer,
(2) カチオン重合開始剤、  (2) a cationic polymerization initiator,
(3) 電解液溶媒、 および  (3) electrolyte solvent, and
(4) リチウム電解質塩  (4) Lithium electrolyte salt
から成り、 上記ォキセタン環含有ポリマー (1) の量が組成物総量中 5重量%以 下である液状の固体電解質用架橋性組成物。 A liquid crosslinkable composition for a solid electrolyte, wherein the amount of the oxetane ring-containing polymer (1) is 5% by weight or less based on the total amount of the composition.
37. ォキセタン環含有ポリマー、  37. Oxetane ring-containing polymers,
電解液溶媒、 並びに  Electrolyte solvent, and
へキサフルォロリン酸リチウムおよびテトラフルォロホウ酸リチウムからなる 群から選択される少なくとも 1種のリチウム電解質塩  At least one lithium electrolyte salt selected from the group consisting of lithium hexafluorophosphate and lithium tetrafluoroborate
から成り、 上記ォキセタン環含有ポリマーの量が組成物総量中 5重量%以下であ る液状の固体電解質用架橋性組成物。 A liquid crosslinkable composition for a solid electrolyte, wherein the amount of the oxetane ring-containing polymer is 5% by weight or less based on the total amount of the composition.
38. (1) ォキセタン環含有ポリマ一、 - (2) カチオン重合開始剤、 ( 3 ) 電解液溶媒、 および 38. (1) Oxetane ring-containing polymer,-(2) Cationic polymerization initiator, (3) electrolyte solvent, and
( 4 ) リチウム電解質塩  (4) Lithium electrolyte salt
から成り、 上記ォキセタン環含有ポリマー (1 ) の量が組成物総量中 5重量%以 下である液状の固体電解質用架橋性組成物を、 リチウムイオン 2次電池用の正電 極および負電極並びに両電極間に配置されたセパレ一タを含んでなるユニッ トを 組み込んだ密封可能な電池容器に注入し、 架橋によってゲル化させてポリマー固 体電解質化することを特徴とするポリマ一固体電解質リチウムイオン 2次電池の 製造法。 A liquid cross-linkable composition for a solid electrolyte in which the amount of the oxetane ring-containing polymer (1) is 5% by weight or less based on the total amount of the composition; A polymer-solid electrolyte lithium, which is injected into a sealable battery container incorporating a unit including a separator disposed between both electrodes, and gelled by crosslinking to form a polymer solid electrolyte. Manufacturing method for ion secondary batteries.
PCT/JP2000/008973 1999-12-20 2000-12-19 Polymer solid electrolyte lithium ion secondary cell WO2001047055A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/360888 1999-12-20
JP36088899A JP4597294B2 (en) 1999-12-20 1999-12-20 Polymer solid electrolyte lithium ion secondary battery
JP2000/303703 2000-10-03
JP2000303703A JP4911813B2 (en) 2000-10-03 2000-10-03 Crosslinkable composition for solid electrolyte, polymer solid electrolyte lithium ion secondary battery, and method for producing polymer solid electrolyte lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2001047055A1 true WO2001047055A1 (en) 2001-06-28

Family

ID=26581166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008973 WO2001047055A1 (en) 1999-12-20 2000-12-19 Polymer solid electrolyte lithium ion secondary cell

Country Status (1)

Country Link
WO (1) WO2001047055A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500975A4 (en) * 2009-11-13 2013-08-07 Nec Energy Devices Ltd Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising same
CN112701348A (en) * 2020-12-28 2021-04-23 南方科技大学 Polymer solid electrolyte, all-solid-state lithium battery and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278840A (en) * 1996-04-10 1997-10-28 Showa Highpolymer Co Ltd Composition capable of forming solid electrolyte
EP0822608A2 (en) * 1996-07-30 1998-02-04 Samsung Electronics Co., Ltd. Polymeric solid electrolyte and lithium secondary cell adopting the same
JPH10134635A (en) * 1996-11-05 1998-05-22 Daiwa Kagaku Kogyo Kk Organic solid electrolyte
JPH11121036A (en) * 1997-10-15 1999-04-30 Toyama Pref Gov Epoxy composition for solid electrolyte of lithium ion secondary battery
US5958997A (en) * 1996-08-19 1999-09-28 Korea Research Institute Of Chemical Technology Composition for and a method for producing a polymeric ion conductive membrane
JP2001035250A (en) * 1999-07-21 2001-02-09 Hitachi Chem Co Ltd High-polymer solid electrolyte, manufacture of high- polymer solid electrolyte, and electrochemical device
JP2001035251A (en) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The High polymer solid electrolyte and electrochemical element using the same
JP2001043896A (en) * 1999-07-29 2001-02-16 Hitachi Chem Co Ltd Manufacture of polymeric solid electrolyte, polymeric solid electrolyte, and electrochemical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278840A (en) * 1996-04-10 1997-10-28 Showa Highpolymer Co Ltd Composition capable of forming solid electrolyte
EP0822608A2 (en) * 1996-07-30 1998-02-04 Samsung Electronics Co., Ltd. Polymeric solid electrolyte and lithium secondary cell adopting the same
US5958997A (en) * 1996-08-19 1999-09-28 Korea Research Institute Of Chemical Technology Composition for and a method for producing a polymeric ion conductive membrane
JPH10134635A (en) * 1996-11-05 1998-05-22 Daiwa Kagaku Kogyo Kk Organic solid electrolyte
JPH11121036A (en) * 1997-10-15 1999-04-30 Toyama Pref Gov Epoxy composition for solid electrolyte of lithium ion secondary battery
JP2001035250A (en) * 1999-07-21 2001-02-09 Hitachi Chem Co Ltd High-polymer solid electrolyte, manufacture of high- polymer solid electrolyte, and electrochemical device
JP2001035251A (en) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The High polymer solid electrolyte and electrochemical element using the same
JP2001043896A (en) * 1999-07-29 2001-02-16 Hitachi Chem Co Ltd Manufacture of polymeric solid electrolyte, polymeric solid electrolyte, and electrochemical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500975A4 (en) * 2009-11-13 2013-08-07 Nec Energy Devices Ltd Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising same
CN112701348A (en) * 2020-12-28 2021-04-23 南方科技大学 Polymer solid electrolyte, all-solid-state lithium battery and preparation method thereof
CN112701348B (en) * 2020-12-28 2024-01-12 南方科技大学 Polymer solid electrolyte, all-solid lithium battery and preparation method thereof

Similar Documents

Publication Publication Date Title
US6316563B2 (en) Thermopolymerizable composition and use thereof
JP4597294B2 (en) Polymer solid electrolyte lithium ion secondary battery
US8142929B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
US6190805B1 (en) Polymerizable compound, solid polymer electrolyte using the same and use thereof
CN110914940A (en) Polymeric in situ hybrid solid state ionically conductive compositions
EP2341510A1 (en) Blockcopolymer solid electrolyte, ion-conductive membrane and process for producing the blockcopolymer
KR19990082380A (en) Polyether copolymer and polymer solid electrolyte
WO2002093679A1 (en) Nonaqueous electrolytic solution, composition for polymer gel electrolyte, polymer gel electrolyte, secondary cell, and electric double-layer capacitor
JP2000086711A (en) Thermally polymerizable composition and its use
KR100699134B1 (en) Electrolyte compositions, electrolyte film, capacitor, ?co?polymer, process for the production of ?co?polymer, oligomer, process for the production of oligomer
CA2333312A1 (en) Electrolyte composition for electric double layer capacitor, solid polymer electrolyte, composition for polarizable electrode, polarizable electrode, and electric double layer capacitor
CN110071328B (en) Cross-linked modified polyethyleneimine solid electrolyte and application thereof
TW318288B (en)
JPH10294015A (en) Polymeric solid electrolyte and usage thereof
JP3685296B2 (en) Electrode for lithium secondary battery, polarizable electrode for electric double layer capacitor, and binder for these electrodes
JPH0973907A (en) Polymer solid electrolyte, battery and solid electrical double later capacitor using the same, and manufacture of them
WO2001047055A1 (en) Polymer solid electrolyte lithium ion secondary cell
JP4017091B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JPH11171910A (en) Electrochemically polymerizable composition and use thereof
JPH10116513A (en) Polymeric solid electrolyte for combining eletrode and its usage
CN115020804A (en) Flexible energy storage device based on gel polymer electrolyte and preparation method thereof
JPH107759A (en) Monomer compound for solid polyelectrolyte, solid polyelectrolyte, and their use
JPH11171912A (en) Polymerizable composition and use thereof
JPH1036657A (en) Polymerizable monomer, solid polyelectrolyte comprising the same, and its use
JP3614658B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase