JP4908380B2 - Electroplating anode and electroplating equipment - Google Patents

Electroplating anode and electroplating equipment Download PDF

Info

Publication number
JP4908380B2
JP4908380B2 JP2007280580A JP2007280580A JP4908380B2 JP 4908380 B2 JP4908380 B2 JP 4908380B2 JP 2007280580 A JP2007280580 A JP 2007280580A JP 2007280580 A JP2007280580 A JP 2007280580A JP 4908380 B2 JP4908380 B2 JP 4908380B2
Authority
JP
Japan
Prior art keywords
anode
insoluble
substrate
plating
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007280580A
Other languages
Japanese (ja)
Other versions
JP2009108360A (en
Inventor
健司 上村
信利 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007280580A priority Critical patent/JP4908380B2/en
Publication of JP2009108360A publication Critical patent/JP2009108360A/en
Application granted granted Critical
Publication of JP4908380B2 publication Critical patent/JP4908380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基板の表面(被めっき面)に電気めっきを施す電気めっき装置、特に半導体ウェーハ等の基板の表面に設けられた微細な配線パターン内に埋込む導電体(配線材料)や、パッケージの電極等と電気的に接続するバンプ等を形成する電気めっき装置に使用されるアノード、及び該アノードを有する電気めっき装置に関する。   The present invention relates to an electroplating apparatus for performing electroplating on the surface (surface to be plated) of a substrate, in particular, a conductor (wiring material) embedded in a fine wiring pattern provided on the surface of a substrate such as a semiconductor wafer, and a package The present invention relates to an anode used in an electroplating apparatus for forming bumps and the like that are electrically connected to the electrodes and the like, and an electroplating apparatus having the anode.

従来、基板の表面(被めっき面)に電気めっきによって成膜されるめっき膜の膜厚は、基板の中心部が薄く、基板の外周部に行くに従って徐々に厚くなる傾向がある。これは、(1)アノードから出た電位線がカソードとなる基板の外周部に回り込むため、及び、(2)基板表面のシード層等の通電層に接触して該通電層をカソードとするカソード接点は、一般に基板外周部に配置されているため、基板中心においては、特にめっき開始直後に通電層のシート抵抗を受けて電流値が低くなってしまうためである。   Conventionally, the thickness of a plating film formed by electroplating on the surface (surface to be plated) of a substrate tends to be gradually thicker toward the outer peripheral portion of the substrate, with the central portion of the substrate being thin. This is because (1) the potential line coming out from the anode goes around the outer periphery of the substrate serving as the cathode, and (2) the cathode using the current-carrying layer as the cathode in contact with the current-carrying layer such as the seed layer on the substrate surface. This is because the contact is generally disposed on the outer peripheral portion of the substrate, and therefore, at the center of the substrate, the current value is lowered due to the sheet resistance of the conductive layer immediately after the start of plating.

基板表面に成膜されるめっき膜の膜厚のばらつきを補正するため、アノードとカソード(基板)との間に遮蔽板を入れて電場を変形させることが広く行われている。しかし、遮蔽板を用いても、電位線が基板の外周部に回り込む現象は根本的に解消しておらず、しかも、例えば、電気めっきで成膜されるめっき膜の材質(金属)を鉛から鉛フリーに移行する為には、めっき膜の膜厚の面内均一性を更に向上させる必要がある。   In order to correct variations in the thickness of the plating film formed on the substrate surface, it is widely performed to insert a shielding plate between the anode and the cathode (substrate) to deform the electric field. However, even if a shielding plate is used, the phenomenon that the potential line wraps around the outer periphery of the substrate has not been completely eliminated, and for example, the material (metal) of the plating film formed by electroplating is made of lead. In order to shift to lead-free, it is necessary to further improve the in-plane uniformity of the plating film thickness.

基板の表面に成膜されるめっき膜の膜厚の面内均一性を向上させるため、出願人は、アノードを複数の分割アノードから構成し、これらの各分割アノードを個別にめっき電源に接続するようにしたものを提案した(特許文献1参照)。また、特殊な構成のアノードを使用した電気めっき装置として、めっき液中に、金属組成が異なり且つそれぞれ電流を流せるようにした複数個の溶解性アノードを浸漬させて、基板表面に合金成分の均一なめっき膜を形成できるようにしたものを提案した(特許文献2参照)。更に、アノードを板状の溶解性アノードと不溶性アノードとを重ね合わせて構成して、溶解性アノードが溶解しても、常に正常な電場が形成できるようにしたものを提案した(特許文献3参照)。   In order to improve the in-plane uniformity of the thickness of the plating film formed on the surface of the substrate, the applicant configures the anode from a plurality of divided anodes, and individually connects each of these divided anodes to a plating power source. What was made was proposed (refer patent document 1). In addition, as an electroplating apparatus using an anode with a special configuration, a plurality of soluble anodes having different metal compositions and capable of flowing currents are immersed in the plating solution so that the alloy components are uniformly distributed on the substrate surface. Proposed a method capable of forming an appropriate plating film (see Patent Document 2). Furthermore, an anode is proposed in which a plate-like soluble anode and an insoluble anode are superposed so that a normal electric field can always be formed even when the soluble anode is dissolved (see Patent Document 3). ).

特開2002−129383号公報JP 2002-129383 A 特開平11−209900号公報Japanese Patent Laid-Open No. 11-209900 特開平11−209898号公報JP-A-11-209898

しかしながら、特許文献1に記載の発明のように、アノードを複数の分割アノードから構成し、各分割アノードに個別にめっき電源を接続すると、装置が複雑化し、装置の大型化に繋がばかりでなく、コストアップの要因となる。なお、特許文献2、3に記載の発明は、基板の表面(被めっき面)に成膜されるめっき膜の面内均一性を向上させるようにしたものではない。 However, as in the invention described in Patent Document 1, when the anode is composed of a plurality of divided anodes and a plating power source is individually connected to each divided anode, the apparatus becomes complicated, leading to an increase in the size of the apparatus, This will increase costs. Incidentally, patented invention described in Documents 2 and 3 do not have to improve in-plane uniformity of a plated film formed on the surface of the base plate (surface to be plated).

本発明は上記事情に鑑みて為されたもので、比較的簡単な構成で、しかも、めっき電源の数を増やすことなく内部を流れる電流を制御して、アノードと対向して配置される基板の表面(被めっき面)に膜厚の面内均一性を向上させためっき膜を成膜できるようにした電気めっき用アノード、及び該アノードを有する電気めっき装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a relatively simple configuration, and controls the current flowing through the inside without increasing the number of plating power sources. An object of the present invention is to provide an anode for electroplating capable of forming a plating film with improved in-plane uniformity of film thickness on the surface (surface to be plated), and an electroplating apparatus having the anode.

請求項1に記載の発明は、被めっき面の周縁部をカソード接点に接触させめっき液中に浸漬させて鉛直に配置される基板と対向する位置に、めっき液に浸漬させて鉛直に配置され、前記カソード接点との間に電圧を印加して基板の被めっき面に電気めっきを行う電気めっき用アノードであって、第1の不溶性材料から構成される第1の不溶性アノードと、前記第1の不溶性材料より酸素発生過電圧が高い第2の不溶性材料から構成される第2の不溶性アノードとを、互いに導通させつつ、前記第1の不溶性アノードの周囲を前記第2の不溶性アノードで同心状に包囲させて平面状に配置したことを特徴とする電気めっき用アノードである。 According to the first aspect of the present invention, the peripheral portion of the surface to be plated is brought into contact with the cathode contact so as to be immersed in the plating solution and opposed to the substrate disposed vertically, and is immersed vertically in the plating solution. An anode for electroplating, in which a voltage is applied between the cathode contact and the surface to be plated to perform electroplating, the first insoluble anode made of a first insoluble material, and the first The second insoluble anode is concentrically surrounded by the second insoluble anode while the second insoluble anode composed of the second insoluble material having a higher oxygen generation overvoltage than the insoluble material is electrically connected to each other. An anode for electroplating characterized in that it is surrounded and arranged in a plane.

酸素発生過電圧が低い不溶性材料から構成される不溶性アノードは、酸素発生過電圧が高い不溶性材料から構成される不溶性アノードよりも抵抗が小さい。このため、酸素発生過電圧が異なる不溶性材料からなる不溶性アノードを組合せて1つのアノードを構成することで、1つのめっき電源に接続されるアノード中に異なる値の電流が流れるようにすることができる。   An insoluble anode composed of an insoluble material having a low oxygen generation overvoltage has a lower resistance than an insoluble anode composed of an insoluble material having a high oxygen generation overvoltage. For this reason, by combining insoluble anodes made of insoluble materials having different oxygen generation overvoltages to form one anode, different values of current can flow through the anode connected to one plating power source.

記第1の不溶性アノードと前記第2の不溶性アノード、前記第1の不溶性アノードの周囲を前記第2の不溶性アノードが包囲する同心状に配置することにより、アノード中を流れる電流を同心状に制御することできる。同心形状は、円状であっても、矩形状であってもよい。 The pre-Symbol first insoluble anode and the second insoluble anodes, the more that the first of the surrounding insoluble anodes second insoluble anode is arranged concentrically surrounding, concentric current flowing in the anode Can be controlled. The concentric shape may be circular or rectangular.

記第1の不溶性アノードを構成する第1の不溶性材料は、前記第2の不溶性アノードを構成する第2の不溶性材料より酸素発生過電圧が低いことにより、単一材料で構成されるアノードと比較して、アノードと対向して配置される基板の中心部に流れる電流値を大きくすることができる。 The first insoluble material constituting the front Symbol first insoluble anode, compared by oxygen overvoltage than the second insoluble material forming the second insoluble anode is low, the anode consists of a single material Thus, it is possible to increase the value of the current flowing through the central portion of the substrate disposed facing the anode.

請求項2に記載の発明は、前記第1の不溶性アノードは、酸化イリジウムまたは酸化ルテニウムからなり、前記第2の不溶性アノードは、白金からなることを特徴とする請求項1記載の電気めっき用アノードである。
請求項3に記載の発明は、基板の被めっき面に対向してめっき液中に配置される電気めっき用アノードにおいて、酸化イリジウムまたは酸化ルテニウムから構成される第1の不溶性アノードと、白金から構成される第2の不溶性アノードとを、互いに導通させつつ、前記第1の不溶性アノードの周囲を前記第2の不溶性アノードで同心状に包囲させて平面状に配置したことを特徴とする電気めっき用アノードである。
請求項4に記載の発明は、基板の被めっき面の形状に相似形に形成されていることを特徴とする請求項1乃至3のいずれかに記載の電気めっき用アノードである。
これにより、アノード形状を、被めっき面の形状(パターン)に合わせて最適化することができる。
The invention according to claim 2 is characterized in that the first insoluble anode is made of iridium oxide or ruthenium oxide, and the second insoluble anode is made of platinum. It is.
According to a third aspect of the present invention, there is provided an anode for electroplating disposed in a plating solution facing a surface to be plated of a substrate, comprising a first insoluble anode composed of iridium oxide or ruthenium oxide, and platinum. The second insoluble anode is electrically connected to each other, and the periphery of the first insoluble anode is concentrically surrounded by the second insoluble anode and arranged in a plane. The anode.
The invention according to claim 4 is the anode for electroplating according to any one of claims 1 to 3, wherein the anode is formed in a shape similar to the shape of the surface to be plated of the substrate.
Thereby, the anode shape can be optimized in accordance with the shape (pattern) of the surface to be plated.

請求項に記載の発明は、めっき液を保持するめっき槽と、基板を保持して基板の被めっき面を前記めっき槽内のめっき液に接触させる基板ホルダと、前記めっき槽内のめっき液中に前記基板ホルダで保持した基板の被めっき面に対向して配置される、請求項1乃至4のいずれかに記載のアノードと、前記基板と前記アノードとの間に電圧を印加するめっき電源とを有することを特徴とする電気めっき装置である。 The invention according to claim 5 is a plating bath for holding a plating solution, a substrate holder for holding a substrate and bringing a surface to be plated into contact with the plating solution in the plating bath, and a plating solution in the plating bath. A plating power source for applying a voltage between the anode according to any one of claims 1 to 4 and the substrate and the anode, which is disposed opposite to a surface to be plated of the substrate held by the substrate holder. And an electroplating apparatus.

本発明の電気めっき用アノードによれば、比較的簡単な構成で、しかも、めっき電源の数を増やすことなく内部を流れる電流を制御して、アノードと対向して配置される基板の表面(被めっき面)に膜厚の面内均一性を向上させためっき膜を成膜することができる。   According to the electroplating anode of the present invention, the surface of the substrate (covered) is arranged with a relatively simple configuration and controls the current flowing inside without increasing the number of plating power sources. A plating film with improved in-plane uniformity of film thickness can be formed on the plating surface.

以下、本発明の実施の形態の図面を参照して説明する。なお、以下の例において、同一または相当する部材に同一符号を付して重複した説明を省略する。
図1は、本発明の実施の形態の電気めっき装置を示す。この電気めっき装置は、いわゆるカップ式の電気めっき装置で、表面(被めっき面)を下向きにして基板Wを着脱自在に保持する上下動自在な基板ホルダ10と、基板ホルダ10の下方に配置されるめっき槽12を有している。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention are described with reference to the drawings. In the following examples, the same or corresponding members are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 shows an electroplating apparatus according to an embodiment of the present invention. This electroplating apparatus is a so-called cup-type electroplating apparatus, and is disposed below the substrate holder 10 and a substrate holder 10 that can be moved up and down to detachably hold the substrate W with its surface (surface to be plated) facing downward. The plating tank 12 is provided.

基板ホルダ10は、モータ14の回転に伴って回転する回転軸16の下端に連結されており、基板Wの下面周縁部に圧接して該周縁部下面をシールするシールリング18と、このシールリング18の外方に位置し、基板Wの表面に形成されたシード層等の通電層に接触して該通電層に給電するカソード接点20を有している。   The substrate holder 10 is connected to the lower end of the rotating shaft 16 that rotates as the motor 14 rotates, and a seal ring 18 that presses against the lower peripheral edge of the substrate W to seal the lower peripheral surface, and the seal ring. The cathode contact 20 is located outside the contact 18 and contacts a current-carrying layer such as a seed layer formed on the surface of the substrate W to feed power to the current-carrying layer.

めっき槽12は、めっき液Qを循環させながら内部に保持し、基板ホルダ10で保持した基板Wの表面(下面)をめっき液Qに接触させてめっきを行うもので、外周部にオーバフロー槽22を有し、このオーバフロー槽22の底部に循環配管24の一端が連結され、循環配管24の他端は、めっき槽12の側部に連結されている。循環配管24には、循環ポンプ26、温調器28及びフィルタ30がオーバフロー槽22側から順に配置されている。これによって、めっき槽12内のめっき液Qは、循環ポンプ26の駆動に伴って、温調器28及びフィルタ30を順に通過しめっき槽12に戻って循環する。   The plating tank 12 is held inside while circulating the plating solution Q, and plating is performed by bringing the surface (lower surface) of the substrate W held by the substrate holder 10 into contact with the plating solution Q. One end of the circulation pipe 24 is connected to the bottom of the overflow tank 22, and the other end of the circulation pipe 24 is connected to the side of the plating tank 12. In the circulation pipe 24, a circulation pump 26, a temperature controller 28, and a filter 30 are sequentially arranged from the overflow tank 22 side. As a result, the plating solution Q in the plating tank 12 sequentially passes through the temperature controller 28 and the filter 30 and returns to the plating tank 12 and circulates as the circulation pump 26 is driven.

めっき槽12の内部のめっき液Qに浸漬される位置には、基板Wの形状に沿った円板状のアノード32が、アノードホルダ34に保持されて、水平に配置されている。アノード32は、図2に詳細に示すように、この例では、酸素発生過電圧が(第2の不溶性材料よりも)低い第1の不溶性材料で構成された円形の第1の不溶性アノード36と、酸素発生過電圧が(第1の不溶性材料よりも)高い第2の不溶性材料で構成された平板リング状の第2の不溶性アノード38を有している。そして、第1の不溶性アノード36と第2の不溶性アノード38は、第1の不溶性アノード36の周りを第2の不溶性アノード38が包囲する同心状に配置され、第1の不溶性アノード36の外周端面と第2の不溶性アノード38の外周端面とが接触して、ここで導通が取れるように平面状に配置されて、アノードホルダ34内に収納されている。   At a position immersed in the plating solution Q inside the plating tank 12, a disc-shaped anode 32 along the shape of the substrate W is held by the anode holder 34 and arranged horizontally. As shown in detail in FIG. 2, the anode 32 in this example is a circular first insoluble anode 36 composed of a first insoluble material having a lower oxygen generation overvoltage (than the second insoluble material); It has a second insoluble anode 38 in the form of a flat ring made of a second insoluble material having a higher oxygen generation overpotential (than that of the first insoluble material). The first insoluble anode 36 and the second insoluble anode 38 are arranged concentrically around the first insoluble anode 36 and surrounded by the second insoluble anode 38, and the outer peripheral end face of the first insoluble anode 36. And the outer peripheral end face of the second insoluble anode 38 come into contact with each other and are arranged in a planar shape so as to be conductive, and are housed in the anode holder 34.

酸素発生過電圧が(第2の不溶性材料よりも)低い第1の不溶性材料としては、例えば酸化イリジウムや酸化ルテニウムが挙げられる。酸素発生過電圧が(第1の不溶性材料よりも)高い第2の不溶性材料としては、例えば白金が挙げられる。
なお、この例では、アノードホルダ34を備えた例を示しているが、第2の不溶性アノード38の内部に第1の不溶性アノード36を焼ばめにより嵌合して、アノードホルダ34を備えることなく、第1の不溶性アノード36と第2の不溶性アノード38の導通を取るようにしてもよい。このことは、以下同様である。
Examples of the first insoluble material whose oxygen generation overvoltage is lower (than the second insoluble material) include iridium oxide and ruthenium oxide. An example of the second insoluble material having a higher oxygen generation overvoltage (than the first insoluble material) is platinum.
In this example, the anode holder 34 is provided. However, the anode holder 34 is provided by fitting the first insoluble anode 36 into the second insoluble anode 38 by shrink fitting. Instead, the first insoluble anode 36 and the second insoluble anode 38 may be electrically connected. The same applies to the following.

めっきに際して、カソード接点20は、めっき電源としての整流器40の陰極に接続され、アノード32は、整流器(めっき電源)40の陽極に接続される。そして、周縁部下面をシールリング18でシールし、表面のシード層等の通電層にカソード接点20を接触させて基板Wを保持した基板ホルダ10を下降させて、カソード接点20を整流器(めっき電源)40の陰極に、アノード32を整流器(めっき電源)40の陽極にそれぞれ接続されながら、基板Wの表面の通電層をめっき槽12内のめっき液Qに接触させることで、カソード接点と接触してカソードとなる通電層の表面にめっき膜が成膜される。   During plating, the cathode contact 20 is connected to the cathode of a rectifier 40 as a plating power source, and the anode 32 is connected to the anode of a rectifier (plating power source) 40. Then, the lower surface of the peripheral portion is sealed with a seal ring 18, the cathode contact 20 is brought into contact with a current-carrying layer such as a seed layer on the surface, the substrate holder 10 holding the substrate W is lowered, and the cathode contact 20 is rectified (plating power source). ) The anode 32 is connected to the anode of the rectifier (plating power source) 40 while the anode 32 is connected to the anode of the rectifier (plating power source) 40, and the contact layer is brought into contact with the cathode contact by bringing the conductive layer on the surface of the substrate W into contact with the plating solution Q in the plating tank 12 Then, a plating film is formed on the surface of the current-carrying layer that becomes the cathode.

めっき装置において、アノード電位、カソード電位及びめっき液電位の合計電位は、どの経路においても等しくなる。カソード電位はシード層等のカソード接点と接触してカソードとなる通電層の抵抗(シート抵抗)が、アノード電位はアノードの抵抗が、めっき液電位はめっき液の抵抗が関係する。   In the plating apparatus, the total potential of the anode potential, the cathode potential, and the plating solution potential is equal in any path. The cathode potential is related to the resistance (sheet resistance) of the current-carrying layer that is in contact with the cathode contact such as the seed layer, the anode potential is related to the anode resistance, and the plating solution potential is related to the plating solution resistance.

この例のように、基板の周縁部で通電層にカソード接点を接触させて通電層をカソードとする場合、基板の外周部から中心部に向かうにつれて、通電層の抵抗(シート抵抗)が徐々に高くなり、通電層を流れる電流値は徐々に小さくなる。これらの関係より、通電層(カソード)の中心部では電流値が低く、周辺部では電流値が高くなり、この結果、通電層(カソード)の表面に成膜されるめっき膜の膜厚は、基板の中心部で薄く、外周部に向かうに従って徐々に厚くなる。   As in this example, when a cathode contact is brought into contact with the current-carrying layer at the peripheral edge of the substrate to make the current-carrying layer a cathode, the resistance (sheet resistance) of the current-carrying layer gradually increases from the outer periphery to the center of the substrate. The current value flowing through the current-carrying layer gradually decreases. From these relationships, the current value is low in the central portion of the energization layer (cathode), and the current value is high in the peripheral portion. As a result, the thickness of the plating film formed on the surface of the energization layer (cathode) is It is thin at the center of the substrate and gradually increases toward the outer periphery.

酸素発生過電圧が低い不溶性物からなる不溶性アノードは、酸素発生過電圧が高い不溶性物からなる不溶性アノードよりも抵抗が低く、酸素発生過電圧が高い不溶性物からなる不溶性アノードは、酸素発生過電圧が低い不溶性物からなる不溶性アノードよりも抵抗が高い。このため、この例のように、酸素発生過電圧が(第2の不溶性材料よりも)低い第1の不溶性材料からなる第1の不溶性アノード36と、酸素発生過電圧が(第1の不溶性材料よりも)高い第2の不溶性材料からなる第2の不溶性アノード38とを、第1の不溶性アノード36の周りを第2の不溶性アノード38が包囲する同心状に配置してアノード32を構成すると、アノード32の第1の不溶性アノード36に対応する中心部でのアノード電位は低く、第2の不溶性アノード38に対応する周辺部のアノード電位は高くなる。これらより、アノード32内におけるアノード電位が異なるので、対向する通電膜(カソード)内においてもカソード電位に電位差が生じ、導電膜(カソード)の周辺部ではカソード電位が低く、中心部ではカソード電位が高くなる。   An insoluble anode made of an insoluble material having a low oxygen generation overvoltage has a lower resistance than an insoluble anode made of an insoluble material having a high oxygen generation overvoltage, and an insoluble anode made of an insoluble material having a high oxygen generation overvoltage is an insoluble material having a low oxygen generation overvoltage. It has a higher resistance than an insoluble anode made of Therefore, as in this example, the first insoluble anode 36 made of the first insoluble material having a lower oxygen generation overvoltage (than the second insoluble material) and the oxygen generation overvoltage (in comparison with the first insoluble material). When the anode 32 is configured by concentrically arranging the second insoluble anode 38 made of a high second insoluble material and surrounding the first insoluble anode 36 by the second insoluble anode 38, the anode 32 The anode potential at the central portion corresponding to the first insoluble anode 36 is low, and the anode potential at the peripheral portion corresponding to the second insoluble anode 38 is high. Accordingly, since the anode potential in the anode 32 is different, a potential difference occurs in the cathode potential even in the opposite conductive film (cathode), the cathode potential is low in the periphery of the conductive film (cathode), and the cathode potential is in the center. Get higher.

上記のように、単一材料からなるアノードを使用すると、カソード内の電流分布は、周辺部が高く中心部が低くなる傾向になるが、この例のように、酸素発生過電圧が異なる不溶性材料からなる不溶性アノード36,38を組合せて1つのアノード34を構成することで、カソード内の電流分布のばらつきを抑えて、カソード(通電膜)の表面に面内均一性を高めためっき膜を成膜することが可能となる。   As described above, when an anode made of a single material is used, the current distribution in the cathode tends to be higher in the peripheral part and lower in the central part. By forming a single anode 34 by combining the insoluble anodes 36 and 38, a plating film with reduced in-plane uniformity is formed on the surface of the cathode (current-carrying film) while suppressing variations in current distribution in the cathode. It becomes possible to do.

なお、上記の例では、第1の不溶性アノード36と第2の不溶性アノード38を互いに導通させたアノード32に、1つの整流器(めっき電源)40の陽極を接続するようにしているが、図3に示すように、第1の不溶性アノード36と第2の不溶性アノード38に、別々の整流器(めっき電源)40a,40bの陽極を接続するようにしてもよい。これにより、アノード32内を流れる電流値の微調整を行うことによって、酸素発生電位の差以上にアノード電位の差を得ることができる。   In the above example, the anode of one rectifier (plating power source) 40 is connected to the anode 32 in which the first insoluble anode 36 and the second insoluble anode 38 are electrically connected to each other. As shown, the anodes of the separate rectifiers (plating power supplies) 40a and 40b may be connected to the first insoluble anode 36 and the second insoluble anode 38. Thereby, by performing fine adjustment of the value of the current flowing through the anode 32, the difference in anode potential can be obtained more than the difference in oxygen generation potential.

また、図4に示すように、整流器(めっき電源)40と第1の不溶性アノード36を繋ぐ導線内に可変抵抗器42aを、整流器(めっき電源)40と第2の不溶性アノード38を繋ぐ導線内に可変抵抗器42bをそれぞれ介装して、一つの整流器(めっき電源)401で、第1の不溶性アノード36と第2の不溶性アノード38の電流値を制御するようにしてもよい。これによって、酸素発生電位の差以上にアノード電位の差を得ることができる。   In addition, as shown in FIG. 4, the variable resistor 42a is provided in the lead connecting the rectifier (plating power source) 40 and the first insoluble anode 36, and the variable resistor 42a is provided in the lead connecting the rectifier (plating power source) 40 and the second insoluble anode 38. Further, the variable resistors 42b may be interposed, and the current values of the first insoluble anode 36 and the second insoluble anode 38 may be controlled by one rectifier (plating power source) 401. Thereby, the difference in anode potential can be obtained more than the difference in oxygen generation potential.

更に、図5及び図6に示すように、中央部に位置する第1の可溶性アノード36に、アノード32と基板Wとを互いに対向させて配置した時に基板Wに向けて円錐状に突出する膨出部36aを設けてもよい。これにより、基板Wの表面に近い第1の可溶性アノード36の中心部での電位線本数が最大となり、基板Wの表面の、カソードとなるシード層等の通電膜への電位線も、カソード(通電膜)の中心部で最大となる。通常めっき時では、カソードの外周部に電位線が集中して該外周部に成膜されるめっき膜の膜厚が他の部分より厚くなる傾向にあるが、このように、カソード(通電膜)の中心部で電位線が最大となるようにすることで、アノード中心部に成膜されるめっき膜の膜厚を厚くして、膜厚の面内均一性を向上させることができる。   Further, as shown in FIGS. 5 and 6, when the anode 32 and the substrate W are disposed opposite to each other on the first soluble anode 36 located in the center, the bulge protrudes conically toward the substrate W. A protruding portion 36a may be provided. As a result, the number of potential lines at the center of the first soluble anode 36 close to the surface of the substrate W is maximized, and the potential lines to the energization film such as the seed layer serving as the cathode on the surface of the substrate W are also connected to the cathode ( It becomes the maximum at the center of the conductive film. During normal plating, potential lines concentrate on the outer periphery of the cathode, and the thickness of the plating film formed on the outer periphery tends to be thicker than other parts. By making the potential line maximum at the center of the film, the thickness of the plating film formed at the center of the anode can be increased and the in-plane uniformity of the film thickness can be improved.

なお、図7に示すように、中央部に位置する第1の可溶性アノード36に、アノード32と基板Wとを互いに対向させて配置した時に基板Wに向けて円柱状の突出する膨出部36bを設けるようにしてもよい。   As shown in FIG. 7, when the anode 32 and the substrate W are disposed opposite to each other on the first soluble anode 36 located in the center, a bulging portion 36b that protrudes in a columnar shape toward the substrate W is provided. May be provided.

上記の各例では、酸素発生過電圧が異なる不溶性材料からなる不溶性アノードを組合せて1つのアノードを構成しているが、溶解性アノードと不溶性アノードを組合せて1つのアノードを構成するようにしてもよい。これは、溶解性アノードにおける金属の溶解電位が不溶性アノードにおける酸素発生過電圧より小さく、溶解性アノードは不溶性アノードよりアノード電位が低くなるためである。例えば、溶解性アノードに錫(Sn)を用いた場合、錫の溶解電位は、Sn→Sn2+:−0.14Vで、不溶性アノードに白金(Pt)を用いた場合、白金の酸素発生過電圧は+0.6Vである。 In each of the above examples, one anode is configured by combining insoluble anodes made of insoluble materials having different oxygen generation overpotentials. However, one anode may be configured by combining a soluble anode and an insoluble anode. . This is because the dissolution potential of the metal in the soluble anode is smaller than the oxygen generation overvoltage in the insoluble anode, and the soluble anode has a lower anode potential than the insoluble anode. For example, when tin (Sn) is used for the soluble anode, the dissolution potential of tin is Sn → Sn 2+ : −0.14 V, and when platinum (Pt) is used for the insoluble anode, the oxygen generation overvoltage of platinum is + 0.6V.

このため、例えば図1乃至図6に示すカソード32おいて、第1の不溶性アノード36の代わりに溶解性アノードを、第2の不溶性アノード38の代わりに任意の不溶性アノードをそれぞれ使用してもよく、これによっても、前述と同様に、カソード内の電流分布のばらつきを抑えて、カソード(通電膜)の表面に面内均一性を高めためっき膜を成膜することが可能となる。   For this reason, for example, in the cathode 32 shown in FIGS. 1 to 6, a soluble anode may be used instead of the first insoluble anode 36, and any insoluble anode may be used instead of the second insoluble anode 38. This also makes it possible to form a plating film with improved in-plane uniformity on the surface of the cathode (current-carrying film) while suppressing variations in the current distribution in the cathode, as described above.

図8は、他のアノード32aを示す。この例のアノード32aは、酸素発生過電圧がそれぞれ異なる不溶性材料からなる第1の不溶性アノード44a、第2の不溶性アノード44b及び第3の不溶性アノード44cを、互いに導通させつつ、平面状、かつ同心状に配置して構成されている。この中心に位置する第1の不溶性アノード44aは、酸素発生過電圧が最も低い不溶性材料で、外周に位置する第3の不溶性アノード44cは、酸素発生過電圧が最も高い不溶性材料で、中間に中心に位置する第2の不溶性アノード44bは、酸素発生過電圧が中間の不溶性材料で構成されている。   FIG. 8 shows another anode 32a. In this example, the anode 32a is planar and concentric with the first insoluble anode 44a, the second insoluble anode 44b and the third insoluble anode 44c made of insoluble materials having different oxygen generation overvoltages being connected to each other. It is arranged and arranged. The first insoluble anode 44a located at the center is an insoluble material having the lowest oxygen generation overvoltage, and the third insoluble anode 44c located at the outer periphery is an insoluble material having the highest oxygen generation overvoltage and is located at the center. The second insoluble anode 44b is made of an insoluble material having an intermediate oxygen generation overvoltage.

この例によれば、アノード32aの第1の不溶性アノード44aに対応する中心部でのアノード電位が最も低く、第3の不溶性アノード44cに対応する外周部のアノード電位が最も高くなって、第2の不溶性アノード44bに対応する中間部でのアノード電位は中間の値となる。これによって、このアノード32aと対向して配置されるカソード内の電流分布のばらつきを抑えて、カソード(通電膜)の表面に面内均一性を更に高めためっき膜を成膜することが可能となる。   According to this example, the anode potential at the center corresponding to the first insoluble anode 44a of the anode 32a is the lowest, the anode potential at the outer periphery corresponding to the third insoluble anode 44c is the highest, and the second The anode potential at the intermediate portion corresponding to the insoluble anode 44b becomes an intermediate value. As a result, it is possible to form a plating film that further improves in-plane uniformity on the surface of the cathode (current-carrying film) while suppressing variations in the current distribution in the cathode disposed opposite to the anode 32a. Become.

図9は、更に他のアノード32bを示す。この例のアノード32bは、中心部に位置する、酸素発生過電圧の低い不溶性材料からなる円形の第1の不溶性アノード46aの周囲に、酸素発生過電圧の高い不溶性材料からなる第2の不溶性アノード46bを配置し、更に、第2の不溶性アノード46bの周縁部に、酸素発生過電圧の低い不溶性材料からなる小径の多数の第1の不溶性アノード46aを円周方向に沿った等間隔で配置して構成されている。この第1の不溶性アノード46aと第3の不溶性アノード46cは、同じ材料で構成されていても、異なる材料で構成されていてもよい。   FIG. 9 shows still another anode 32b. In the anode 32b of this example, a second insoluble anode 46b made of an insoluble material having a high oxygen generation overvoltage is arranged around a circular first insoluble anode 46a made of an insoluble material having a low oxygen generation overvoltage. Furthermore, a large number of first insoluble anodes 46a having a small diameter made of an insoluble material having a low oxygen generation overvoltage are arranged at equal intervals along the circumferential direction at the peripheral edge of the second insoluble anode 46b. ing. The first insoluble anode 46a and the third insoluble anode 46c may be made of the same material or different materials.

この例によれば、第3の不溶性アノード46cと対面して基板の周縁部に成膜されるめっき膜の膜厚を、他の部分より厚くすることができる。これによって、例えば基板内のパターン配置によって、同一パターン以外に、基板の周縁部に成膜されるめっき膜の膜厚を厚くしたい場合に対処することができる。   According to this example, the plating film formed on the peripheral edge of the substrate facing the third insoluble anode 46c can be made thicker than other parts. Thus, for example, it is possible to cope with a case where it is desired to increase the thickness of the plating film formed on the peripheral edge of the substrate in addition to the same pattern due to the pattern arrangement in the substrate.

図10は、更に他のアノード32cを示す。このアノード32aは、基板Wの表面の被めっき面のパターンに、密領域48aと粗領域48bがある場合に、アノード32aの密領域48aに対向する領域に酸素発生過電圧の低い不溶性材料からなる第1の不溶性アノード50aを、アノード32aの粗領域48bに対向する領域に酸素発生過電圧の高い不溶性材料からなる第2の不溶性アノード50bを、それぞれ配置して構成されている。   FIG. 10 shows still another anode 32c. The anode 32a is made of an insoluble material having a low oxygen overvoltage in a region facing the dense region 48a of the anode 32a when the pattern of the surface to be plated on the surface of the substrate W includes the dense region 48a and the rough region 48b. One insoluble anode 50a and a second insoluble anode 50b made of an insoluble material having a high oxygen generation overvoltage are arranged in a region facing the rough region 48b of the anode 32a.

この例によれば、例えば被めっき面のパターンに粗密が合った場合に、そのパターンの粗密に応じてアノードの構成を変えることで、被めっき面のパターンに粗密によることなく、膜厚の面内均一性を高めためっき膜を被めっき面の表面に成膜することができる。
この例にあっても、第1の不溶性アノード50aの代わりに溶解性アノードを、第2の不溶性アノード50bの代わりに任意の不溶性アノードをそれぞれ使用するようにしてもよい。
According to this example, for example, when the pattern of the surface to be plated is dense and dense, by changing the configuration of the anode according to the density of the pattern, the surface of the film thickness is not affected by the density of the pattern of the surface to be plated. A plating film with improved internal uniformity can be formed on the surface of the surface to be plated.
Even in this example, a soluble anode may be used instead of the first insoluble anode 50a, and any insoluble anode may be used instead of the second insoluble anode 50b.

上記の各例においては、半導体ウェーハ等の円形の基板表面(被めっき面)にめっき膜を成膜するようにしており、そのため、アノードとして、円形のものを使用している。例えば、例えばガラス基板等の矩形状の基板表面にめっきを行う場合には、図11に示すように、矩形状のアノードを使用してもよい。   In each of the above examples, a plating film is formed on the surface of a circular substrate (surface to be plated) such as a semiconductor wafer. Therefore, a circular one is used as the anode. For example, when plating is performed on a rectangular substrate surface such as a glass substrate, a rectangular anode may be used as shown in FIG.

すなわち、図11(a)に示すアノード52は、矩形状で、中心部に位置する酸素発生過電圧の低い不溶性材料からなる第1の不溶性アノード54aの周囲に、酸素発生過電圧の高い不溶性材料からなる矩形枠状の第2の不溶性アノード54bを配置して構成されている。図11(b)に示すアノード52aは、矩形状で、中心部に位置する酸素発生過電圧の最も低い不溶性材料からなる第1の不溶性アノード56aの周囲に、酸素発生過電圧が中間の不溶性材料からなる矩形枠状の第2の不溶性アノード56bを配置し、更に、第2の不溶性アノード56bの周囲に、酸素発生過電圧が最も高い不溶性材料からなる矩形枠状の第3の不溶性アノード56cを配置して構成されている。図11(c)に示すアノード52bは、矩形状で、中心部に位置する酸素発生過電圧の低い不溶性材料からなる第1の不溶性アノード58aの周囲に、酸素発生過電圧の高い不溶性材料からなる矩形枠状の第2の不溶性アノード58bを配置し、更に第2の不溶性アノード58bの周縁部に、酸素発生過電圧の低い不溶性材料からなる多数の矩形状の第3の不溶性アノード58cを配置して構成されている。   That is, the anode 52 shown in FIG. 11A has a rectangular shape and is made of an insoluble material having a high oxygen generation overvoltage around the first insoluble anode 54a made of an insoluble material having a low oxygen generation overvoltage located in the center. A rectangular frame-shaped second insoluble anode 54b is arranged. The anode 52a shown in FIG. 11 (b) has a rectangular shape and is made of an insoluble material having an intermediate oxygen generation overvoltage around the first insoluble anode 56a made of an insoluble material having the lowest oxygen generation overvoltage located in the center. A rectangular frame-shaped second insoluble anode 56b is arranged, and a rectangular frame-shaped third insoluble anode 56c made of an insoluble material having the highest oxygen generation overvoltage is arranged around the second insoluble anode 56b. It is configured. The anode 52b shown in FIG. 11 (c) has a rectangular shape and a rectangular frame made of an insoluble material having a high oxygen generation overvoltage around the first insoluble anode 58a made of an insoluble material having a low oxygen generation overvoltage located in the center. A second insoluble anode 58b having a rectangular shape is disposed, and a plurality of rectangular third insoluble anodes 58c made of an insoluble material having a low oxygen generation overvoltage are disposed at the periphery of the second insoluble anode 58b. ing.

図12は、本発明の他の実施の形態の電気めっき装置を示す。このめっき装置は、いわゆるディップ式の電気めっき装置で、基板Wを着脱自在に保持する上下動自在な基板ホルダ70と、基板ホルダ70の下方に配置されるめっき槽72とを有している。基板ホルダ70は、基板Wを鉛直方向に立てた状態で上下動して、基板Wをめっき槽72内のめっき液Q中に浸漬させるよう構成されており、図示しないが、基板Wの周縁部をシールするシールリングと、基板表面のシード層等の通電層にシールリングの外方で接触して該通電層に給電するカソード接点が備えられている。   FIG. 12 shows an electroplating apparatus according to another embodiment of the present invention. This plating apparatus is a so-called dip type electroplating apparatus, and includes a substrate holder 70 that can be moved up and down to detachably hold a substrate W, and a plating tank 72 that is disposed below the substrate holder 70. The substrate holder 70 is configured to move up and down with the substrate W standing in the vertical direction so that the substrate W is immersed in the plating solution Q in the plating tank 72. And a cathode contact for contacting the current-carrying layer such as a seed layer on the substrate surface outside the seal ring and supplying power to the current-carrying layer.

めっき槽72は、外周部にオーバフロー槽74を有し、このオーバフロー槽74の底部に循環配管76の一端が連結され、循環配管76の他端は、めっき槽74の底部に連結されている。循環配管74には、循環ポンプ78、温調器80及びフィルタ82がオーバフロー槽74側から順に配置されている。これによって、めっき槽72内のめっき液Qは、循環ポンプ78の駆動に伴って、温調器80及びフィルタ82を順に通過しめっき槽72に戻って循環する。   The plating tank 72 has an overflow tank 74 on the outer peripheral portion. One end of the circulation pipe 76 is connected to the bottom of the overflow tank 74, and the other end of the circulation pipe 76 is connected to the bottom of the plating tank 74. In the circulation pipe 74, a circulation pump 78, a temperature controller 80, and a filter 82 are sequentially arranged from the overflow tank 74 side. As a result, the plating solution Q in the plating tank 72 passes through the temperature controller 80 and the filter 82 in order as the circulation pump 78 is driven, and returns to the plating tank 72 and circulates.

めっき槽72の内部の、基板ホルダ70を下降させて、基板ホルダ70で保持した基板Wをめっき槽72内のめっき液Qに浸漬させた時に、基板Wの表面と対向するめっき液Qに浸漬される位置に、アノードホルダ84で保持されてアノード86が配置されている。そして、基板Wとアノード86との間に位置して、図14に示すように、ほぼ基板Wの外形に沿った外径で、電場を調整する開口88aを有する遮蔽板88と、基板Wと平行に移動してめっき液Qを攪拌するパドル90が配置されている。   When the substrate holder 70 is lowered in the plating tank 72 and the substrate W held by the substrate holder 70 is immersed in the plating solution Q in the plating tank 72, the substrate is immersed in the plating solution Q facing the surface of the substrate W. The anode 86 is disposed at the position where it is held by the anode holder 84. Then, as shown in FIG. 14, a shielding plate 88 having an opening 88a for adjusting the electric field, which is located between the substrate W and the anode 86 and has an outer diameter substantially along the outer shape of the substrate W, A paddle 90 that moves in parallel and stirs the plating solution Q is disposed.

アノードホルダ84は、図13に示すように、めっき槽72の外方に露出する支持棒92の端部の導通部94に接続されるリング状のアノードバンド96を有している。アノード86は、図13に示すように、酸素発生過電圧が(第2の不溶性材料よりも)低い第1の不溶性材料で構成された円形の第1の不溶性アノード98と、酸素発生過電圧が(第1の不溶性材料よりも)高い第2の不溶性材料で構成された平板リング状の第2の不溶性アノード100を有している。そして、第1の不溶性アノード98と第2の不溶性アノード100は、第1の不溶性アノード98の周りを第2の不溶性アノード100が包囲する同心状に配置され、第1の不溶性アノード98の外周端面と第2の不溶性アノード100の外周端面とが接触して、ここで導通が取れるように平面上に配置されて、アノードバンド96で保持されている。   As shown in FIG. 13, the anode holder 84 has a ring-shaped anode band 96 connected to the conduction portion 94 at the end of the support bar 92 exposed to the outside of the plating tank 72. As shown in FIG. 13, the anode 86 includes a circular first insoluble anode 98 made of a first insoluble material having a lower oxygen generation overvoltage (than the second insoluble material), and an oxygen generation overvoltage (first It has a second insoluble anode 100 in the form of a flat ring made of a second insoluble material that is higher (than one insoluble material). The first insoluble anode 98 and the second insoluble anode 100 are arranged concentrically around the first insoluble anode 98 so as to surround the second insoluble anode 100, and the outer peripheral end face of the first insoluble anode 98. And the outer peripheral end surface of the second insoluble anode 100 are in contact with each other and are arranged on a flat surface so as to be conductive, and are held by an anode band 96.

めっきに際して、図12に示すように、基板ホルダ70のカソード接点は、めっき電源としての整流器102の陰極に接続され、アノード86は、導通部94及びアノードバンド96を通して、整流器(めっき電源)102の陽極に接続される。そして、周縁部をシールリングでシールし、表面のシード層等の通電層にカソード接点を接触させて基板Wを保持した基板ホルダ70を鉛直状態で下降させて、基板ホルダ70のカソード接点を整流器(めっき電源)102の陰極に、アノード86を整流器(めっき電源)102の陽極にそれぞれ接続しながら、基板Wの表面をアノード86に対向させ、必要に応じて、パドル90を介して、めっき液Qを攪拌することで、カソード接点と接触してカソードとなる通電層の表面にめっき膜が成膜される。   At the time of plating, as shown in FIG. 12, the cathode contact of the substrate holder 70 is connected to the cathode of the rectifier 102 as a plating power source, and the anode 86 is connected to the rectifier (plating power source) 102 through the conduction portion 94 and the anode band 96. Connected to the anode. Then, the peripheral edge is sealed with a seal ring, the cathode contact is brought into contact with a current-carrying layer such as a seed layer on the surface and the substrate holder 70 holding the substrate W is lowered in a vertical state, and the cathode contact of the substrate holder 70 is rectified. While the anode 86 is connected to the cathode of the (plating power source) 102 and the anode 86 of the rectifier (plating power source) 102, the surface of the substrate W is opposed to the anode 86, and the plating solution is passed through the paddle 90 as necessary. By stirring Q, a plating film is formed on the surface of the conductive layer that comes into contact with the cathode contact and becomes the cathode.

この例にあっても、上記と同様に、酸素発生過電圧が異なる不溶性材料からなる不溶性アノード98,100を組合せて1つのアノード86を構成することで、カソード内の電流分布のばらつきを抑えて、カソード(通電膜)の表面に面内均一性を高めためっき膜を成膜することが可能となる。   Even in this example, similarly to the above, by forming one anode 86 by combining insoluble anodes 98 and 100 made of insoluble materials having different oxygen generation overvoltages, variation in current distribution in the cathode is suppressed, It is possible to form a plating film with improved in-plane uniformity on the surface of the cathode (conducting film).

なお、図15に示すように、第2の不溶性アノード100の周縁部における所定の領域を、平板リング状のアノードマスク104で覆って、アノード86の開口径を任意に決めるようにしてもよい。   As shown in FIG. 15, a predetermined region in the peripheral portion of the second insoluble anode 100 may be covered with a flat ring-shaped anode mask 104 to arbitrarily determine the opening diameter of the anode 86.

上記の例においては、半導体ウェーハ等の円形の基板表面(被めっき面)にめっき膜を成膜するようにしており、そのため、アノード86として、円形のものを使用している。例えば、例えばガラス基板等の矩形状の基板表面にめっきを行う場合には、図16に示すように、矩形状のアノード86aを使用してもよい。すなわち、このアノード86aは、矩形状で、中心部に位置する酸素発生過電圧の低い不溶性材料からなる第1の不溶性アノード106aの周囲に、酸素発生過電圧の高い不溶性材料からなる矩形枠状の第2の不溶性アノード106bを配置して構成されている。   In the above example, a plating film is formed on the surface of a circular substrate (surface to be plated) such as a semiconductor wafer. For this reason, a circular one is used as the anode 86. For example, when plating is performed on a rectangular substrate surface such as a glass substrate, a rectangular anode 86a may be used as shown in FIG. That is, the anode 86a has a rectangular shape and a rectangular frame-shaped second made of an insoluble material having a high oxygen generation overvoltage around the first insoluble anode 106a made of an insoluble material having a low oxygen generation overvoltage located in the center. The insoluble anode 106b is arranged.

このような矩形状のアノード86aにあっては、例えば図17に示すように、アノード86aの両側に配置される一対の側枠108を有するアノードホルダの該側枠108で左右から挟持されてアノード86aが保持され、この側枠108を通して、アノード86aとの導通が取られる。   In such a rectangular anode 86a, for example, as shown in FIG. 17, the anode 86a is sandwiched from the left and right by the side frame 108 of an anode holder having a pair of side frames 108 arranged on both sides of the anode 86a. 86a is held, and through this side frame 108, conduction with the anode 86a is established.

本発明の実施の形態の電気めっき装置の概要を示す縦断正面図である。It is a vertical front view which shows the outline | summary of the electroplating apparatus of embodiment of this invention. 図1に示す電気めっき装置のアノードの平面図である。It is a top view of the anode of the electroplating apparatus shown in FIG. 図1に示すめっき装置のアノードにおける他の導通例を示す平面図である。It is a top view which shows the other conduction example in the anode of the plating apparatus shown in FIG. 図1に示すめっき装置のアノードにおける更に他の導通例を示す平面図である。It is a top view which shows the further another example of conduction in the anode of the plating apparatus shown in FIG. 図1に示すめっき装置のアノードの変形例と示す斜視図である。It is a perspective view shown with the modification of the anode of the plating apparatus shown in FIG. 図5に示すアノードを使用して電気めっきを行う時にアノードと基板との間に発生する電位線を示す図である。It is a figure which shows the electric potential line generate | occur | produced between an anode and a board | substrate when performing electroplating using the anode shown in FIG. 図1に示すめっき装置のアノードの他の変形例と示す斜視図である。It is a perspective view shown with the other modification of the anode of the plating apparatus shown in FIG. アノードの他の例を示す平面図である。It is a top view which shows the other example of an anode. アノードの更に他の例を示す平面図である。It is a top view which shows the other example of an anode. アノードの更に他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of an anode. アノードの更に他の例を示す平面図である。It is a top view which shows the other example of an anode. 本発明の他の実施の形態の電気めっき装置の概略を縦断正面図である。It is a vertical front view of the outline of the electroplating apparatus of other embodiment of this invention. 図12に示す電気めっき装置の基板ホルダを示す正面図である。It is a front view which shows the substrate holder of the electroplating apparatus shown in FIG. 図12に示す電気めっき装置の遮蔽板を示す正面図である。It is a front view which shows the shielding board of the electroplating apparatus shown in FIG. 図12に示す電気めっき装置の基板ホルダの他の例を示す正面図である。It is a front view which shows the other example of the substrate holder of the electroplating apparatus shown in FIG. アノードの他の例を示す正面図である。It is a front view which shows the other example of an anode. 図16に示すアノードを基板ホルダの側枠で保持した状態を示す正面図である。FIG. 17 is a front view showing a state where the anode shown in FIG. 16 is held by the side frame of the substrate holder.

符号の説明Explanation of symbols

10 基板ホルダ
12 めっき槽
18 シールリング
20 カソード接点
22 オーバフロー槽
24 循環配管
32,32a,32b,32c アノード
34 アノードホルダ
36 第1の不溶性アノード
38 第2の不溶性アノード
40,40a,40b 整流器(めっき電源)
42a,42b 可変抵抗器
44a,44b,44c,46a,46b,46c,50a,50b 不溶性アノード
52,52a,52b アノード
54a,54b,56a,56b,56c,58a,58b,58c 不溶性アノード
70 基板ホルダ
72 めっき槽
74 オーバフロー槽
76 循環配管
84 アノードホルダ
86,86a アノード
88 遮蔽板
96 アノードバンド
98 第1の不溶性アノード
100 第2の不溶性アノード
102 整流器(めっき電源)
106a,106b 不溶性アノード
108 側枠(基板ホルダ)
DESCRIPTION OF SYMBOLS 10 Substrate holder 12 Plating tank 18 Seal ring 20 Cathode contact 22 Overflow tank 24 Circulation piping 32, 32a, 32b, 32c Anode 34 Anode holder 36 First insoluble anode 38 Second insoluble anode 40, 40a, 40b Rectifier )
42a, 42b Variable resistors 44a, 44b, 44c, 46a, 46b, 46c, 50a, 50b Insoluble anode 52, 52a, 52b Anode 54a, 54b, 56a, 56b, 56c, 58a, 58b, 58c Insoluble anode 70 Substrate holder 72 Plating tank 74 Overflow tank 76 Circulating piping 84 Anode holder 86, 86a Anode 88 Shield plate 96 Anode band 98 First insoluble anode 100 Second insoluble anode 102 Rectifier (plating power source)
106a, 106b Insoluble anode 108 Side frame (substrate holder)

Claims (5)

被めっき面の周縁部をカソード接点に接触させめっき液中に浸漬させて鉛直に配置される基板と対向する位置に、めっき液に浸漬させて鉛直に配置され、前記カソード接点との間に電圧を印加して基板の被めっき面に電気めっきを行う電気めっき用アノードであって、
第1の不溶性材料から構成される第1の不溶性アノードと、前記第1の不溶性材料より酸素発生過電圧が高い第2の不溶性材料から構成される第2の不溶性アノードとを、互いに導通させつつ、前記第1の不溶性アノードの周囲を前記第2の不溶性アノードで同心状に包囲させて平面状に配置したことを特徴とする電気めっき用アノード。
The peripheral edge of the surface to be plated is brought into contact with the cathode contact and immersed in the plating solution to be opposed to the substrate placed vertically. An electroplating anode that applies electroplating to the surface of the substrate to be plated,
A first insoluble anode composed of a first insoluble material and a second insoluble anode composed of a second insoluble material having a higher oxygen generation overpotential than the first insoluble material , An anode for electroplating , wherein the periphery of the first insoluble anode is concentrically surrounded by the second insoluble anode and arranged in a plane.
前記第1の不溶性アノードは、酸化イリジウムまたは酸化ルテニウムからなり、前記第2の不溶性アノードは、白金からなることを特徴とする請求項1記載の電気めっき用アノード。 2. The anode for electroplating according to claim 1, wherein the first insoluble anode is made of iridium oxide or ruthenium oxide, and the second insoluble anode is made of platinum . 基板の被めっき面に対向してめっき液中に配置される電気めっき用アノードにおいて、In the anode for electroplating disposed in the plating solution facing the surface to be plated of the substrate,
酸化イリジウムまたは酸化ルテニウムから構成される第1の不溶性アノードと、白金から構成される第2の不溶性アノードとを、互いに導通させつつ、前記第1の不溶性アノードの周囲を前記第2の不溶性アノードで同心状に包囲させて平面状に配置したことを特徴とする電気めっき用アノード。The first insoluble anode composed of iridium oxide or ruthenium oxide and the second insoluble anode composed of platinum are connected to each other, and the periphery of the first insoluble anode is surrounded by the second insoluble anode. An anode for electroplating, which is concentrically surrounded and arranged in a plane.
基板の被めっき面の形状に相似形に形成されていることを特徴とする請求項1乃至3のいずれかに記載の電気めっき用アノード。   4. The anode for electroplating according to claim 1, wherein the anode for electroplating is formed in a shape similar to the shape of the surface to be plated of the substrate. めっき液を保持するめっき槽と、
基板を保持して基板の被めっき面を前記めっき槽内のめっき液に接触させる基板ホルダと、
前記めっき槽内のめっき液中に前記基板ホルダで保持した基板の被めっき面に対向して配置される、請求項1乃至4のいずれかに記載のアノードと、
前記基板と前記アノードとの間に電圧を印加するめっき電源とを有することを特徴とする電気めっき装置。
A plating tank for holding a plating solution;
A substrate holder for holding the substrate and bringing the surface to be plated into contact with the plating solution in the plating tank;
The anode according to any one of claims 1 to 4 , which is disposed to face a surface to be plated of a substrate held by the substrate holder in a plating solution in the plating tank,
An electroplating apparatus comprising: a plating power source for applying a voltage between the substrate and the anode.
JP2007280580A 2007-10-29 2007-10-29 Electroplating anode and electroplating equipment Expired - Fee Related JP4908380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280580A JP4908380B2 (en) 2007-10-29 2007-10-29 Electroplating anode and electroplating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280580A JP4908380B2 (en) 2007-10-29 2007-10-29 Electroplating anode and electroplating equipment

Publications (2)

Publication Number Publication Date
JP2009108360A JP2009108360A (en) 2009-05-21
JP4908380B2 true JP4908380B2 (en) 2012-04-04

Family

ID=40777167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280580A Expired - Fee Related JP4908380B2 (en) 2007-10-29 2007-10-29 Electroplating anode and electroplating equipment

Country Status (1)

Country Link
JP (1) JP4908380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155229A1 (en) * 2012-04-11 2013-10-17 Tel Nexx, Inc. Method and apparatus for fluid processing a workpiece
JP6795915B2 (en) * 2016-06-10 2020-12-02 株式会社荏原製作所 Feeder and plating device that can supply power to the anode
JP2018172729A (en) * 2017-03-31 2018-11-08 株式会社ファルテック Plating apparatus
JP7183111B2 (en) * 2019-05-17 2022-12-05 株式会社荏原製作所 Plating method, insoluble anode for plating, and plating apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884150B2 (en) * 1997-11-21 2007-02-21 日本エレクトロプレイテイング・エンジニヤース株式会社 High speed plating apparatus and high speed plating method
JP3343077B2 (en) * 1998-07-14 2002-11-11 松下電器産業株式会社 Electrode for plating
JP3513657B2 (en) * 2001-03-05 2004-03-31 ダイソー株式会社 Insoluble anode
JP2003105592A (en) * 2001-09-27 2003-04-09 Fuji Photo Film Co Ltd Electrolytic treating equipment for metallic web
JP4423359B2 (en) * 2004-01-30 2010-03-03 株式会社荏原製作所 Plating method

Also Published As

Publication number Publication date
JP2009108360A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
TWI658175B (en) Anode unit and plating apparatus having such anode unit
CN103650113B (en) Electrochemical treater
US10968530B2 (en) Electroplating device
KR102179205B1 (en) Inert anode electroplating processor and replenisher with anionic membranes
JP4908380B2 (en) Electroplating anode and electroplating equipment
TWI363107B (en) Method of wafer plating
KR20190143811A (en) Plating apparatus and plating method
JP2004225129A (en) Plating method and plating device
JP2021042414A (en) Plating method, plating apparatus, and anode holder
US7507319B2 (en) Anode holder
JP4368543B2 (en) Plating method and plating apparatus
JP6933963B2 (en) Method of determining the arrangement of feeding points in an electroplating device and an electroplating device for plating a rectangular substrate
CN111032925A (en) Electroplating chuck
JP6815817B2 (en) Anode unit and plating equipment equipped with the anode unit
US7332062B1 (en) Electroplating tool for semiconductor manufacture having electric field control
US20050274604A1 (en) Plating apparatus
JP2004047788A (en) Method of manufacturing semiconductor device and apparatus for manufacturing semiconductor
KR20190128114A (en) Plating apparatus
JPH11135462A (en) Semiconductor manufacturing device
EP4006210B1 (en) Distribution system for a process fluid and an electric current for electrolytic surface treatment of a substrate
JP2010065255A (en) Alloy plating method and alloy plating apparatus
JP2006144060A (en) Electrolytic plating apparatus and electrolytic plating method
JP2003027288A (en) Plating equipment and plating method
KR100792338B1 (en) Electric chemical plating cell
JP2020198350A (en) Substrate plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees