JP2010065255A - Alloy plating method and alloy plating apparatus - Google Patents

Alloy plating method and alloy plating apparatus Download PDF

Info

Publication number
JP2010065255A
JP2010065255A JP2008231277A JP2008231277A JP2010065255A JP 2010065255 A JP2010065255 A JP 2010065255A JP 2008231277 A JP2008231277 A JP 2008231277A JP 2008231277 A JP2008231277 A JP 2008231277A JP 2010065255 A JP2010065255 A JP 2010065255A
Authority
JP
Japan
Prior art keywords
plating
alloy
tank
soluble solid
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008231277A
Other languages
Japanese (ja)
Inventor
Takaharu Ide
敬治 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008231277A priority Critical patent/JP2010065255A/en
Publication of JP2010065255A publication Critical patent/JP2010065255A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy plating method and an alloy plating apparatus, by which alloy plating such as lead-free solder can be carried out without requiring a large-sized complicated apparatus or bringing about an increase in management cost, and by which measures against a substitution problem peculiar to alloy plating can be taken. <P>SOLUTION: In the alloy plating method for plating an object to be plated with an alloy by electroplating, tanks the number of which is equal to the number of the kinds of metal elements constituting the alloy are arranged; soluble solid anodes made of the respective metal elements are put in plating solutions in the respective tanks; a cathode made of the object to be plated is put in the plating solution in one of the tanks or in a plating solution in a tank disposed in addition; each of the soluble solid anodes is electrically connected to the cathode through a rectifier; and an electric current is supplied to each of the soluble solid anodes in accordance with the alloy composition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、合金めっき方法及び合金めっき装置に関し、特に、標準電極電位が異なる複数の金属元素からなる合金をめっきする合金めっき方法及び合金めっき装置に関する。   The present invention relates to an alloy plating method and an alloy plating apparatus, and more particularly to an alloy plating method and an alloy plating apparatus for plating an alloy composed of a plurality of metal elements having different standard electrode potentials.

近年、地球環境保全への関心の高まりに伴い、電子部品の表面処理に従来使用されてきたSn−Pbはんだめっきは今後廃止される傾向にあり、これに代わって、Sn−Zn、Sn−Ag、Sn−Cu、Sn−Ag−Cu合金などの鉛フリーはんだめっきが主流となってきている。   In recent years, Sn-Pb solder plating, which has been conventionally used for surface treatment of electronic components, has been abolished in the future due to increasing interest in global environmental conservation. Instead, Sn-Zn, Sn-Ag Lead-free solder plating such as Sn-Cu and Sn-Ag-Cu alloys has become the mainstream.

ここで、従来のSn−Pb(はんだ)めっきの場合、Sn、Pbの標準電極電位がほぼ等しいため、所定の組成比に調合した合金自体を可溶性固体陽極として電解めっきを行う方法(第1の従来例)にて合金めっきが可能である。   Here, in the case of conventional Sn-Pb (solder) plating, since the standard electrode potentials of Sn and Pb are substantially equal, a method of performing electroplating using the alloy itself prepared in a predetermined composition ratio as a soluble solid anode (first method) Alloy plating is possible in the conventional example).

しかしながら、鉛フリーはんだめっきをはじめ殆どの合金において、合金を構成する金属それぞれの標準電極電位は異なっており、その結果、上記のような方法では標準電極電位が卑な金属が優先的にめっき液中に溶解し、標準電極電位が貴な金属は殆ど溶出しないため、被めっき材に対して目的とする組成で合金を析出させることができないという問題が発生する。   However, in most alloys including lead-free solder plating, the standard electrode potential of each metal constituting the alloy is different, and as a result, in the above method, a metal having a low standard electrode potential is preferentially plated. Since a metal having a standard electrode potential that is dissolved in the metal is hardly eluted, there arises a problem that the alloy cannot be deposited with a target composition on the material to be plated.

すなわち、第1の従来例の方法では、可溶性固体陽極を使用していない標準電極電位が貴な金属のイオンは陽極の溶出により自動的に補給されることがないため、めっきにより金属イオンが消費されるとめっき液中の濃度が減少してしまう。このため、標準電極電位が貴な金属のイオンの薬液を用意しておき、めっき品質を一定に保つため、金属イオン濃度を監視して頻繁に標準電極電位が貴な金属のイオンを補給して溶液の濃度管理を行う必要があり、管理コストが増大してしまうという問題が発生する。   That is, in the method of the first conventional example, metal ions having a standard electrode potential that is not using a soluble solid anode are not automatically replenished by elution of the anode, so that metal ions are consumed by plating. If it does, the density | concentration in a plating solution will reduce. Therefore, in order to keep the plating quality constant by preparing a chemical solution of metal ions with a standard electrode potential noble, monitor the metal ion concentration and replenish metal ions with a standard electrode potential frequently. It is necessary to manage the concentration of the solution, which causes a problem that the management cost increases.

この問題に対して、下記特許文献1には、標準電極電位が貴である(標準電極電位が高い)金属は電解槽において純金属の陽極にて供給し、標準電極電位が卑である金属は別に設けられた電解槽ないし溶解槽において純金属にて供給し、それぞれの槽にて生成された溶液を混合して作製されためっき液を用いる方法(第2の従来例)が開示されている。   In order to solve this problem, in Patent Document 1 below, a metal having a standard electrode potential noble (a standard electrode potential is high) is supplied from a pure metal anode in an electrolytic cell, and a metal having a standard electrode potential is a base. A method (second conventional example) is disclosed in which a plating solution prepared by supplying pure metal in a separate electrolytic tank or dissolution tank and mixing the solutions generated in the respective tanks is used. .

また、下記特許文献2には、合金を構成する全ての金属元素を個別の可溶性固体陽極として同一のめっき槽内に配置し、それぞれの可溶性固体陽極に間欠的に交互に電流を供給する合金めっき方法(第3の従来例)が開示されている。   Further, in Patent Document 2 below, alloy metal plating in which all metal elements constituting an alloy are arranged as individual soluble solid anodes in the same plating tank, and current is intermittently and alternately supplied to each soluble solid anode. A method (third conventional example) is disclosed.

特開2003−055798号公報JP 2003-055598 A 特開2006−257492号公報JP 2006-257492 A

しかしながら、第2の従来例では、複数の電解槽にそれぞれ陰極と陽極および整流器を配置し、更にイオン選択性の隔膜を槽内に配置するなど、電極数の増加・システムの複雑化を伴い、装置が高価なものになってしまう。   However, in the second conventional example, a cathode, an anode and a rectifier are arranged in a plurality of electrolytic cells, respectively, and an ion-selective diaphragm is arranged in the vessel. The device becomes expensive.

また、第3の従来例では、合金を構成する各々の可溶性固体陽極に同時に電流を供給すると、各可溶性固体陽極間に電位差が生じ、可溶性固体陽極間で電流が流れてめっきが行われてしまうため、本来の被めっき物に対して目的とする組成のめっき皮膜を形成することができない。そのため、各々の可溶性固体陽極に交互に電流を供給する必要があるが、各々の可溶性固体陽極への電流の供給においては、スイッチングまたはパルス電流による同期が必要となり、給電システムが複雑化してしまう。更に、標準電極電位が卑な金属の可溶性固体陽極に電流が流れていない時間帯においては、標準電極電位が貴な金属との置換が進み、液濃度の変動やスラッジの発生を招くという問題も発生する。   In the third conventional example, if a current is simultaneously supplied to each soluble solid anode constituting the alloy, a potential difference is generated between the soluble solid anodes, and current flows between the soluble solid anodes to perform plating. Therefore, it is not possible to form a plating film having a desired composition on the original object to be plated. Therefore, it is necessary to alternately supply current to each soluble solid anode. However, in supplying current to each soluble solid anode, synchronization by switching or pulse current is required, and the power feeding system becomes complicated. Furthermore, in the time zone when the current does not flow through the soluble solid anode of the metal having a low standard electrode potential, the replacement with the metal having the standard electrode potential advances, leading to fluctuations in liquid concentration and sludge generation. appear.

本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、鉛フリーはんだ等の合金めっきを、大規模で複雑な装置を必要とすることなく、かつ、管理コストの増大を招くことなく行うことができ、更には合金めっき特有の置換問題への対策を行うことができる合金めっき方法及び合金めっき装置を提供することにある。   The present invention has been made in view of the above problems, and its main purpose is to increase the management cost without requiring a large-scale and complicated apparatus for plating an alloy such as lead-free solder. It is an object of the present invention to provide an alloy plating method and an alloy plating apparatus which can be carried out without incurring, and further, can take measures against substitution problems peculiar to alloy plating.

上記の目的を達成するため、本発明は、電解めっき法にて被めっき対象に合金をめっきする合金めっき方法において、合金を構成する金属元素の種類と同数の槽を設け、各々の槽内のめっき液中に、各々の金属元素からなる可溶性固体陽極を配置し、いずれか一つの槽内若しくは別に設けた槽内のめっき液中に、前記被めっき対象からなる陰極を配置し、各々の前記可溶性固体陽極と前記陰極とを整流器を介して電気的に接続し、各々の前記可溶性固体陽極に、合金組成に応じた電流を供給するものである。   In order to achieve the above object, the present invention provides an alloy plating method in which an alloy is plated on an object to be plated by an electrolytic plating method, and the same number of tanks as the types of metal elements constituting the alloy are provided. In the plating solution, a soluble solid anode made of each metal element is arranged, and in the plating solution in any one of the tanks or in a separately provided tank, the cathode made of the object to be plated is arranged, and each of the above-mentioned The soluble solid anode and the cathode are electrically connected via a rectifier, and a current corresponding to the alloy composition is supplied to each of the soluble solid anodes.

また、本発明は、電解めっき法にて被めっき対象に合金をめっきする合金めっき装置において、合金を構成する金属元素の種類と同数の槽を備え、各々の槽内のめっき液中に、各々の金属元素からなる可溶性固体陽極が配置され、いずれか一つの槽内若しくは別に設けた槽内のめっき液中に、前記被めっき対象からなる陰極が配置され、各々の前記可溶性固体陽極と前記陰極とが整流器を介して電気的に接続され、各々の前記可溶性固体陽極に、合金組成に応じた電流が供給されるものである。   Further, the present invention is an alloy plating apparatus for plating an alloy on an object to be plated by an electrolytic plating method, and has the same number of tanks as the types of metal elements constituting the alloy, and each of the plating solutions in each tank includes A soluble solid anode made of the metal element is arranged, and a cathode made of the object to be plated is arranged in a plating solution in any one of the tanks or in a separately provided tank, and each of the soluble solid anode and the cathode Are electrically connected through a rectifier, and a current corresponding to the alloy composition is supplied to each of the soluble solid anodes.

本発明によれば、合金を構成する全ての金属元素をそれぞれの純物質からなる可溶性固体陽極から供給することにより、合金めっき皮膜生成に消費された金属イオンは可溶性固体陽極の溶出により補われる。これにより、化合物の溶液として補給せずともめっき液中の金属イオン濃度はほぼ一定に保たれるため、めっき液管理は格段に容易になる。このため、薬液の濃度管理コストを大幅に削減できるという効果が得られる。   According to the present invention, by supplying all the metal elements constituting the alloy from the soluble solid anode made of the respective pure substances, the metal ions consumed for forming the alloy plating film are supplemented by the elution of the soluble solid anode. Thereby, since the metal ion concentration in the plating solution is kept substantially constant without being replenished as a compound solution, the management of the plating solution becomes much easier. For this reason, the effect that the density | concentration management cost of a chemical | medical solution can be reduced significantly is acquired.

また、本発明によれば、合金を構成する全ての金属元素を個別の可溶性固体陽極として別々の槽内に配置し、そのうちのいずれか1槽若しくはそれらとは別に設けた槽に被めっき物からなる陰極が配置され他の槽には陰極を配置せず、すべての可溶性固体陽極が被めっき物からなる陰極に整流器を介して電気的な配線にて接続されている。これにより、第2の従来例のように、各槽内に個別に陰極を配置したり、イオン選択性の隔膜を槽内に配置するなどの必要がなく、電極数の削減・めっき槽構成の簡易化が可能となり、合金めっき装置のローコスト化が実現できるという効果が得られる。   Moreover, according to this invention, all the metal elements which comprise an alloy are arrange | positioned in a separate tank as an individual soluble solid anode, and it is from a to-be-plated object to the tank provided in any one tank or those separately. The cathode is arranged and no cathode is arranged in the other tank, and all the soluble solid anodes are connected to the cathode made of the object to be plated by electrical wiring through a rectifier. As a result, unlike the second conventional example, there is no need to dispose a cathode individually in each tank or an ion-selective diaphragm in the tank. Simplification is possible, and the effect that the cost reduction of an alloy plating apparatus is realizable is acquired.

また、本発明によれば、合金を構成する全ての金属元素を個別の可溶性固体陽極として別々の槽内に配置することにより、可溶性固体陽極間の電流の回りこみを防ぐことができる。これにより、めっき皮膜組成の安定化が可能となり、かつ、各々の可溶性固体陽極に対し合金組成に応じた電流を同時に供給可能なため、標準電極電位が貴な金属と卑な金属の置換反応が起こらず、めっき液組成の変動やスラッジの発生を抑制できるという効果が得られる。   Further, according to the present invention, it is possible to prevent current from flowing between the soluble solid anodes by arranging all the metal elements constituting the alloy as separate soluble solid anodes in separate tanks. This makes it possible to stabilize the plating film composition and simultaneously supply a current corresponding to the alloy composition to each soluble solid anode, so that the substitution reaction between a noble metal and a base metal with a standard electrode potential is possible. The effect that the fluctuation | variation of a plating solution composition and generation | occurrence | production of sludge can be suppressed is not produced.

本発明は、標準電極電位が異なる複数の金属からなる合金めっきにおいて、合金を構成する全ての金属元素を個別の可溶性固体陽極として別々の槽内に配置し、そのうちのいずれか1槽若しくはそれらとは別に設けた槽に被めっき物からなる陰極を配置し、すべての可溶性固体陽極を被めっき物からなる陰極に整流器を介して電気的な配線にて接続する。また、各槽内のめっき液を電気的に絶縁しつつ、各槽内のめっき液を循環・混合可能にして同一の組成に保ち、各々の可溶性固体陽極に対して合金組成に応じた電流を同時に供給可能にする。   In the present invention, in an alloy plating composed of a plurality of metals having different standard electrode potentials, all the metal elements constituting the alloy are arranged in separate tanks as individual soluble solid anodes, and one of them or any of them Alternatively, a cathode made of an object to be plated is placed in a separate tank, and all the soluble solid anodes are connected to the cathode made of the object to be plated by electrical wiring via a rectifier. In addition, while electrically insulating the plating solution in each tank, the plating solution in each tank can be circulated and mixed to maintain the same composition, and a current corresponding to the alloy composition is applied to each soluble solid anode. It can be supplied at the same time.

これにより、めっき液濃度を安定化することによる管理コストの削減を実現すると同時に、各合金構成元素のイオン抽出のための給電システム単純化によるめっき槽のローコスト化、および置換問題の解決を実現することができる。   As a result, the management cost can be reduced by stabilizing the plating solution concentration, and at the same time, the cost of the plating tank can be reduced by simplifying the power supply system for ion extraction of each alloy constituent element, and the replacement problem can be solved. be able to.

上記した本発明の実施の形態についてさらに詳細に説明すべく、本発明の第1の実施例に係る合金めっき方法及び合金めっき装置について、図1乃至図3を参照して説明する。図1は、本発明の第1の実施例の合金めっき装置の概略構成を模式的に示す図である。また、図2は、本実施例の合金めっき装置における可溶性固体陽極に流れる電流のプロファイルであり、図3は、従来の合金めっき装置における可溶性固体陽極に流れる電流のプロファイルである。   In order to describe the above-described embodiment of the present invention in more detail, an alloy plating method and an alloy plating apparatus according to a first example of the present invention will be described with reference to FIGS. FIG. 1 is a diagram schematically showing a schematic configuration of an alloy plating apparatus according to a first embodiment of the present invention. FIG. 2 is a profile of current flowing through the soluble solid anode in the alloy plating apparatus of the present embodiment, and FIG. 3 is a profile of current flowing through the soluble solid anode in the conventional alloy plating apparatus.

なお、本実施例は、二元合金のめっき装置に係るものである。説明に先立ち、目的とする合金を構成する金属をM、Nとし、構成金属Mの方が、構成金属Nよりも標準電極電位が貴であるものとする。   The present example relates to a binary alloy plating apparatus. Prior to the description, it is assumed that metals constituting the target alloy are M and N, and the standard electrode potential of the constituent metal M is higher than that of the constituent metal N.

図1に示すように、本実施例の合金めっき装置はめっき槽1および電解槽2により構成され、各槽内には、目的とするめっき合金に対応しためっき液3、めっき液4(その組成や液量は特に限定されない。)が満たされている。めっき液3の中には、被めっき材からなる陰極5および合金を構成する金属のうちいずれかの一方の金属の純物質からなる可溶性固体陽極6が浸漬されている。また、めっき液4の中には、合金を構成するもう一方の金属の純物質からなる可溶性固体陽極7が浸漬されている。そして、陰極5と可溶性固体陽極6、および陰極5と可溶性固体陽極7の間には、それぞれ独立して整流器a1、整流器a2が配置されている。   As shown in FIG. 1, the alloy plating apparatus of the present embodiment is composed of a plating tank 1 and an electrolytic tank 2, and in each tank, a plating solution 3 and a plating solution 4 (composition thereof) corresponding to the target plating alloy. And the amount of liquid is not particularly limited.) In the plating solution 3, a cathode 5 made of a material to be plated and a soluble solid anode 6 made of a pure substance of one of the metals constituting the alloy are immersed. Further, a soluble solid anode 7 made of the pure material of the other metal constituting the alloy is immersed in the plating solution 4. A rectifier a1 and a rectifier a2 are arranged independently between the cathode 5 and the soluble solid anode 6, and between the cathode 5 and the soluble solid anode 7, respectively.

また、めっき液3およびめっき液4はオーバーフロー8やポンプ9により循環・混合され、常に同じ組成に保たれている。ただし、めっき液の循環・混合の方法はオーバーフロー8やポンプ9を用いる方法に限らず、常にめっき液3およびめっき液4の組成が同一に保たれさえすれば良い。また、めっき液の循環流量はめっき電流等に応じて適宜設定可能であり、めっき液3およびめっき液4をほぼ同じ組成に保つことができる流量であればよい。   The plating solution 3 and the plating solution 4 are circulated and mixed by the overflow 8 and the pump 9 and are always kept in the same composition. However, the method of circulating / mixing the plating solution is not limited to the method using the overflow 8 or the pump 9, and it is sufficient that the compositions of the plating solution 3 and the plating solution 4 are always kept the same. Further, the circulating flow rate of the plating solution can be appropriately set according to the plating current or the like, and any flow rate may be used as long as the plating solution 3 and the plating solution 4 can be maintained at substantially the same composition.

尚、めっき液3およびめっき液4は、めっき槽1および電解槽2の間を循環しながらも互いに絶縁された関係にあるものとする。これを実現するための手段の一例として、図1に示すように、オーバーフロー8やポンプ9の出口においては薬液が連続的に槽内に注がれることなく、滴状となって注がれるような機能を備えるなどの方法があるが、めっき液3およびめっき液4を絶縁する目的が達成されればいかなる方法を用いても良い。   It is assumed that the plating solution 3 and the plating solution 4 are insulated from each other while circulating between the plating tank 1 and the electrolytic tank 2. As an example of means for realizing this, as shown in FIG. 1, at the outlet of the overflow 8 or the pump 9, the chemical solution is poured continuously without being poured into the tank. However, any method may be used as long as the purpose of insulating the plating solution 3 and the plating solution 4 is achieved.

上記構成の合金めっき装置において、可溶性固体陽極6と可溶性固体陽極7に流れる電流のプロファイルは図2に示すようになり、可溶性固体陽極間での電流の回り込みがなくなったため、各々の可溶性固体陽極に対し合金組成に応じた一定の電流を印加することが可能となる。   In the alloy plating apparatus having the above configuration, the profiles of currents flowing through the soluble solid anode 6 and the soluble solid anode 7 are as shown in FIG. 2, and no current wraps between the soluble solid anodes. On the other hand, a constant current according to the alloy composition can be applied.

一方、第3の従来例において、各可溶性固体陽極に流れる電流のプロファイルは図3に示すようになる。この方法においては各可溶性固体陽極を同一のめっき槽内に配置しているため、それぞれの可溶性固体陽極に同時に電流をかけることができず、間欠的に交互に電流を供給する必要がある。   On the other hand, in the third conventional example, the profile of the current flowing through each soluble solid anode is as shown in FIG. In this method, since each soluble solid anode is arranged in the same plating tank, it is not possible to simultaneously apply current to each soluble solid anode, and it is necessary to supply current alternately and intermittently.

図2と図3を比較すると、本実施例における電流の印加方法は各可溶性固体陽極に交互に電流を印加する必要がなく電流供給のシステムを簡易化することが可能となる。   Comparing FIG. 2 and FIG. 3, the current application method in this embodiment does not need to alternately apply current to each soluble solid anode, and the current supply system can be simplified.

このように、本実施例では、合金を構成する全ての金属元素をそれぞれの純物質からなる可溶性固体陽極6、7から供給することにより、合金めっき皮膜生成に消費された金属イオンは可溶性固体陽極6、7の溶出により補われ、化合物の溶液として補給せずともめっき液中の金属イオン濃度をほぼ一定に保つことが可能となる。   As described above, in this embodiment, by supplying all the metal elements constituting the alloy from the soluble solid anodes 6 and 7 made of pure substances, the metal ions consumed for forming the alloy plating film are soluble solid anodes. It is compensated by the elution of 6 and 7, and the metal ion concentration in the plating solution can be kept almost constant without being replenished as a compound solution.

また、本実施例では、めっき槽1のみに被めっき物からなる陰極5が配置され、第2の従来例のように他の槽には金属イオンを抽出するための陰極を配置したり、イオン選択性の隔膜を配置する必要がないため、電極数の削減・めっき槽構成の簡易化が可能となる。   Further, in this embodiment, the cathode 5 made of an object to be plated is disposed only in the plating tank 1, and the cathode for extracting metal ions is disposed in another tank as in the second conventional example, Since it is not necessary to dispose a selective diaphragm, the number of electrodes can be reduced and the plating tank configuration can be simplified.

また、本実施例では、めっき液3およびめっき液4が絶縁されているため、可溶性固体陽極6と可溶性固体陽極7の間で電流の回り込みがなくなり、被めっき材からなる陰極5へのめっき皮膜組成を安定させることが可能となる。また、各々の可溶性固体陽極6、7に対して合金組成に応じた電流を同時に供給可能なため、標準電極電位が貴な金属と卑な金属の置換反応が起こらず、めっき液組成の変動やスラッジの発生を抑制することができる。   Further, in this embodiment, since the plating solution 3 and the plating solution 4 are insulated, there is no current wraparound between the soluble solid anode 6 and the soluble solid anode 7, and the plating film on the cathode 5 made of the material to be plated. It becomes possible to stabilize the composition. In addition, since a current corresponding to the alloy composition can be simultaneously supplied to each of the soluble solid anodes 6 and 7, the standard electrode potential does not undergo a substitution reaction between a noble metal and a base metal, The generation of sludge can be suppressed.

次に、本発明の第2の実施例に係る合金めっき方法及び合金めっき装置について、図4及び図5を参照して説明する。図4及び図5は、本発明の第2の実施例の合金めっき装置の概略構成を模式的に示す図である。   Next, an alloy plating method and an alloy plating apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5 are diagrams schematically showing a schematic configuration of the alloy plating apparatus according to the second embodiment of the present invention.

前記した第1の実施例では、めっき槽1のめっき液3をポンプ9により電解槽2に注ぎ、電解槽2のめっき液4をオーバーフロー8によりめっき槽1に注ぐことによって、めっき液3およびめっき液4を循環・混合したが、本実施例では、めっき液を循環・混合する他の方法を提案する。   In the first embodiment described above, the plating solution 3 and the plating solution are poured by pouring the plating solution 3 of the plating bath 1 into the electrolytic bath 2 by the pump 9 and the plating solution 4 of the electrolytic bath 2 into the plating bath 1 by the overflow 8. Although the solution 4 is circulated and mixed, this embodiment proposes another method for circulating and mixing the plating solution.

例えば、図4に示すように、めっき槽1、電解槽2に混合槽10を追加し、めっき槽1のめっき液3および電解槽2のめっき液4をオーバーフロー8により混合槽10に注ぎ、混合槽10で混合されためっき液11をポンプ9によりめっき槽1、電解槽2に注ぐ構成とすることができる。   For example, as shown in FIG. 4, a mixing tank 10 is added to the plating tank 1 and the electrolytic tank 2, and the plating solution 3 of the plating tank 1 and the plating solution 4 of the electrolytic tank 2 are poured into the mixing tank 10 by the overflow 8 and mixed. The plating solution 11 mixed in the tank 10 can be poured into the plating tank 1 and the electrolytic tank 2 by the pump 9.

また、めっき槽1のめっき液3および電解槽2のめっき液4を確実に絶縁するために、図5に示すように、混合槽10で混合されためっき液11が滴状となってめっき槽1、電解槽2に注がれるような構成とすることもできる。   Further, in order to reliably insulate the plating solution 3 in the plating tank 1 and the plating solution 4 in the electrolytic tank 2, as shown in FIG. 1. It can also be set as the structure poured into the electrolytic cell 2. FIG.

これにより、めっき槽1、電解槽2の構造を単純化することができる。また、混合槽10で各槽のめっき液を十分に混合できるため、めっき液組成の均一化を効率よく行うことができる。   Thereby, the structure of the plating tank 1 and the electrolytic cell 2 can be simplified. In addition, since the plating solution in each vessel can be sufficiently mixed in the mixing vessel 10, the plating solution composition can be made uniform efficiently.

次に、本発明の第3の実施例に係る合金めっき方法及び合金めっき装置について、図6を参照して説明する。図6は、本発明の第3の実施例の合金めっき装置の概略構成を模式的に示す図である。   Next, an alloy plating method and an alloy plating apparatus according to a third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram schematically showing a schematic configuration of an alloy plating apparatus according to a third embodiment of the present invention.

前記した第1及び第2の実施例では、二元合金のめっき装置について記載したが、3元以上の合金のめっき装置に対しても同様に適用することができる。   In the first and second embodiments, the binary alloy plating apparatus has been described. However, the present invention can be similarly applied to a ternary or higher alloy plating apparatus.

例えば、図6に示すように、図4の構成のめっき槽1、電解槽2および混合槽10に電解槽12を追加し、電解槽12に浸漬した可溶性固体陽極と陰極5とを整流器a3で接続し、めっき槽1のめっき液3、電解槽2のめっき液4および電解槽12のめっき液13をオーバーフロー8により混合槽10に注ぎ、混合槽10で混合されためっき液11をポンプ9によりめっき槽1、電解槽2、電解槽12に注ぐ構成とすることができる。   For example, as shown in FIG. 6, an electrolytic bath 12 is added to the plating bath 1, the electrolytic bath 2 and the mixing bath 10 having the configuration shown in FIG. 4, and a soluble solid anode and a cathode 5 immersed in the electrolytic bath 12 are connected by a rectifier a3. The plating solution 3 in the plating tank 1, the plating solution 4 in the electrolytic tank 2, and the plating solution 13 in the electrolytic tank 12 are poured into the mixing tank 10 by the overflow 8, and the plating solution 11 mixed in the mixing tank 10 is pumped by the pump 9. It can be set as the structure poured into the plating tank 1, the electrolytic cell 2, and the electrolytic cell 12. FIG.

このように、本実施例では混合槽10で各槽のめっき液を同時に混合できるため、めっき液組成の均一化を効率よく行うことができる。   As described above, in this embodiment, since the plating solutions in the respective tanks can be simultaneously mixed in the mixing vessel 10, the plating solution composition can be made uniform efficiently.

なお、図6では、図4の構成の合金めっき装置を3元以上の合金に適用する場合について記載したが、図1や図5の構成の合金めっき装置を3元以上の合金に適用することも可能である。   In FIG. 6, the case where the alloy plating apparatus having the configuration of FIG. 4 is applied to a ternary or higher alloy is described. However, the alloy plating apparatus having the configuration of FIG. 1 or 5 is applied to a ternary or higher alloy. Is also possible.

次に、本発明の第4の実施例に係る合金めっき方法及び合金めっき装置について、図7を参照して説明する。図7は、本発明の第4の実施例の合金めっき装置の概略構成を模式的に示す図である。   Next, an alloy plating method and an alloy plating apparatus according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a diagram schematically showing a schematic configuration of an alloy plating apparatus according to a fourth embodiment of the present invention.

前記した第1乃至第3の実施例では、合金を構成するいずれかの金属の純物質からなる可溶性固体陽極と陰極5とを同じ槽内に配置したが、陰極5は可溶性固体陽極とは別の槽に配置することもできる。   In the first to third embodiments described above, the soluble solid anode and the cathode 5 made of a pure substance of any metal constituting the alloy are arranged in the same vessel, but the cathode 5 is different from the soluble solid anode. It can also be arranged in the tank.

例えば、図7に示すように、めっき槽1に陰極5のみを配置し、電解槽2に可溶性固体陽極6を、電解槽12に可溶性固体陽極7を配置し、可溶性固体陽極6、7の各々と陰極5とを整流器a1、a2で接続し、めっき槽1のめっき液3、電解槽2のめっき液4および電解槽12のめっき液13をオーバーフロー8により混合槽10に注ぎ、混合槽10で混合されためっき液11をポンプ9によりめっき槽1、電解槽2、電解槽12に注ぐ構成とすることができる。   For example, as shown in FIG. 7, only the cathode 5 is disposed in the plating tank 1, the soluble solid anode 6 is disposed in the electrolytic cell 2, the soluble solid anode 7 is disposed in the electrolytic cell 12, and each of the soluble solid anodes 6 and 7 is disposed. And the cathode 5 are connected by rectifiers a 1 and a 2, and the plating solution 3 in the plating tank 1, the plating solution 4 in the electrolytic tank 2, and the plating solution 13 in the electrolytic tank 12 are poured into the mixing tank 10 by the overflow 8. The mixed plating solution 11 can be poured into the plating tank 1, the electrolytic tank 2, and the electrolytic tank 12 by the pump 9.

このように、陰極5と可溶性固体陽極とを別々の槽に配置することによっても、第1乃至第3の実施例と同様の効果を得ることができる。   As described above, the same effects as those of the first to third embodiments can be obtained by disposing the cathode 5 and the soluble solid anode in separate tanks.

なお、図7では、図4の構成のめっき装置に対してめっき槽1に陰極5のみを配置する構成としたが、図1や図5、図6の構成の合金めっき装置に対しても同様に適用することが可能である。   In FIG. 7, only the cathode 5 is arranged in the plating tank 1 with respect to the plating apparatus having the configuration of FIG. 4, but the same applies to the alloy plating apparatus having the configurations of FIGS. 1, 5, and 6. It is possible to apply to.

また、上記各実施例では、本発明の合金めっき装置の基本的な構造を示したが、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいてその構成は適宜変更可能である。例えば、本発明では各槽を独立させているため、各槽にヒータなどの加熱手段を配置し、各槽のめっき液の温度を個別に設定して、各金属元素のめっき反応を制御することもできる。   In each of the above embodiments, the basic structure of the alloy plating apparatus of the present invention is shown. However, the present invention is not limited to the above embodiment, and the configuration thereof is not deviated from the gist of the present invention. It can be changed as appropriate. For example, since each tank is made independent in the present invention, heating means such as a heater is arranged in each tank, and the temperature of the plating solution in each tank is individually set to control the plating reaction of each metal element. You can also.

本発明の活用例として、一般の金属部品へのめっき、半導体リードフレーム外装めっき、プリント基板等の電子回路部品へのめっきや半導体ウェハ上へのバンプめっき等、電解合金めっき処理全般に使用される装置が挙げられる。   As an application example of the present invention, it is used in general electrolytic alloy plating processes such as plating on general metal parts, plating on semiconductor lead frames, plating on electronic circuit parts such as printed boards and bump plating on semiconductor wafers. Apparatus.

本発明の第1の実施例に係る合金めっき装置の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of the alloy plating apparatus which concerns on the 1st Example of this invention. 本発明の第1の実施例に係る合金めっき装置における可溶性固体陽極に流れる電流のプロファイルを示す図である。It is a figure which shows the profile of the electric current which flows into the soluble solid anode in the alloy plating apparatus which concerns on the 1st Example of this invention. 従来の合金めっき装置における可溶性固体陽極に流れる電流のプロファイルを示す図である。It is a figure which shows the profile of the electric current which flows into the soluble solid anode in the conventional alloy plating apparatus. 本発明の第2の実施例に係る合金めっき装置の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of the alloy plating apparatus which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る合金めっき装置の他の概略構成を模式的に示す図である。It is a figure which shows typically other schematic structure of the alloy plating apparatus which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係る合金めっき装置の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of the alloy plating apparatus which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係る合金めっき装置の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of the alloy plating apparatus which concerns on the 4th Example of this invention.

符号の説明Explanation of symbols

1 めっき槽
2 電解槽
3 めっき液
4 めっき液
5 陰極
6 可溶性固体陽極
7 可溶性固体陽極
8 オーバーフロー
9 ポンプ
10 混合槽
11 めっき液
12 電解槽
13 めっき液
a1、a2、a3 整流器
DESCRIPTION OF SYMBOLS 1 Plating tank 2 Electrolytic tank 3 Plating liquid 4 Plating liquid 5 Cathode 6 Soluble solid anode 7 Soluble solid anode 8 Overflow 9 Pump 10 Mixing tank 11 Plating liquid 12 Electrolytic tank 13 Plating liquid a1, a2, a3 Rectifier

Claims (8)

電解めっき法にて被めっき対象に合金をめっきする合金めっき方法において、
合金を構成する金属元素の種類と同数の槽を設け、
各々の槽内のめっき液中に、各々の金属元素からなる可溶性固体陽極を配置し、
いずれか一つの槽内若しくは別に設けた槽内のめっき液中に、前記被めっき対象からなる陰極を配置し、
各々の前記可溶性固体陽極と前記陰極とを整流器を介して電気的に接続し、
各々の前記可溶性固体陽極に、合金組成に応じた電流を供給することを特徴とする合金めっき方法。
In an alloy plating method for plating an alloy to be plated by an electrolytic plating method,
There are as many tanks as the types of metal elements that make up the alloy,
In the plating solution in each tank, a soluble solid anode made of each metal element is arranged,
In the plating solution in any one of the tanks or in a separately provided tank, the cathode made of the object to be plated is disposed,
Electrically connecting each soluble solid anode and the cathode via a rectifier;
An alloy plating method, wherein a current corresponding to an alloy composition is supplied to each of the soluble solid anodes.
各々の槽内のめっき液を、電気的に絶縁した状態で循環・混合し、
各々の前記可溶性固体陽極に、合金組成に応じた電流を同時に供給することを特徴とする請求項1記載の合金めっき方法。
Circulate and mix the plating solution in each tank in an electrically insulated state.
2. The alloy plating method according to claim 1, wherein a current corresponding to the alloy composition is simultaneously supplied to each of the soluble solid anodes.
各々の槽内のめっき液を、滴状態で他の槽に注入することを特徴とする請求項2記載の合金めっき方法。   3. The alloy plating method according to claim 2, wherein the plating solution in each tank is poured into another tank in a drop state. 更に混合槽を設け、
各々の槽内のめっき液を、滴状態で前記混合槽に注入し、
前記混合槽内のめっき液を、滴状態で前記各々の槽に注入することを特徴とする請求項2記載の合金めっき方法。
Furthermore, a mixing tank is provided,
Plating solution in each tank is poured into the mixing tank in a drop state,
3. The alloy plating method according to claim 2, wherein the plating solution in the mixing tank is poured into each tank in a drop state.
電解めっき法にて被めっき対象に合金をめっきする合金めっき装置において、
合金を構成する金属元素の種類と同数の槽を備え、
各々の槽内のめっき液中に、各々の金属元素からなる可溶性固体陽極が配置され、
いずれか一つの槽内若しくは別に設けた槽内のめっき液中に、前記被めっき対象からなる陰極が配置され、
各々の前記可溶性固体陽極と前記陰極とが整流器を介して電気的に接続され、
各々の前記可溶性固体陽極に、合金組成に応じた電流が供給されることを特徴とする合金めっき装置。
In an alloy plating apparatus that plating an alloy to be plated by electrolytic plating,
It has the same number of tanks as the types of metal elements that make up the alloy,
In the plating solution in each tank, a soluble solid anode made of each metal element is disposed,
In the plating solution in any one of the tanks or in a separately provided tank, the cathode made of the object to be plated is disposed,
Each of the soluble solid anode and the cathode is electrically connected via a rectifier,
An alloy plating apparatus, wherein a current corresponding to the alloy composition is supplied to each of the soluble solid anodes.
各々の槽内のめっき液を、電気的に絶縁した状態で循環・混合する手段を備え、
各々の前記可溶性固体陽極に、合金組成に応じた電流が同時に供給されることを特徴とする請求項5記載の合金めっき装置。
A means for circulating and mixing the plating solution in each tank in an electrically insulated state,
6. The alloy plating apparatus according to claim 5, wherein a current corresponding to the alloy composition is simultaneously supplied to each of the soluble solid anodes.
前記手段は、各々の槽内のめっき液を滴状態で他の槽に注入する手段であることを特徴とする請求項6記載の合金めっき装置。   7. The alloy plating apparatus according to claim 6, wherein said means is means for injecting the plating solution in each tank into another tank in a drop state. 更に混合槽を備え、
前記手段は、各々の槽内のめっき液を滴状態で前記混合槽に注入し、前記混合槽内のめっき液を滴状態で前記各々の槽に注入する手段であることを特徴とする請求項6記載の合金めっき装置。
Furthermore, a mixing tank is provided,
The means is a means for injecting the plating solution in each tank into the mixing tank in a drop state, and injecting the plating solution in the mixing tank into each tank in a drop state. 6. The alloy plating apparatus according to 6.
JP2008231277A 2008-09-09 2008-09-09 Alloy plating method and alloy plating apparatus Withdrawn JP2010065255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231277A JP2010065255A (en) 2008-09-09 2008-09-09 Alloy plating method and alloy plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231277A JP2010065255A (en) 2008-09-09 2008-09-09 Alloy plating method and alloy plating apparatus

Publications (1)

Publication Number Publication Date
JP2010065255A true JP2010065255A (en) 2010-03-25

Family

ID=42191087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231277A Withdrawn JP2010065255A (en) 2008-09-09 2008-09-09 Alloy plating method and alloy plating apparatus

Country Status (1)

Country Link
JP (1) JP2010065255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975332A (en) * 2015-07-30 2015-10-14 江苏金曼科技有限责任公司 Method for adjusting ion concentration of plating solution
CN109097815A (en) * 2018-08-06 2018-12-28 珠海市万顺睿通科技有限公司 A kind of autocontrol method of circuit board electroplating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975332A (en) * 2015-07-30 2015-10-14 江苏金曼科技有限责任公司 Method for adjusting ion concentration of plating solution
CN109097815A (en) * 2018-08-06 2018-12-28 珠海市万顺睿通科技有限公司 A kind of autocontrol method of circuit board electroplating
CN109097815B (en) * 2018-08-06 2019-10-25 奈电软性科技电子(珠海)有限公司 A kind of autocontrol method of circuit board electroplating

Similar Documents

Publication Publication Date Title
US9637836B2 (en) Electrochemical deposition apparatus and methods for controlling the chemistry therein
JPH06235098A (en) Plating method and device
JP6022922B2 (en) Sn alloy plating apparatus and method
JP5876767B2 (en) Plating apparatus and plating solution management method
TWI798281B (en) Controlling plating electrolyte concentration on an electrochemical plating apparatus
US6899803B2 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
JP4725145B2 (en) Alloy plating method and alloy plating apparatus
US5227046A (en) Low temperature tin-bismuth electroplating system
JP2017210644A (en) Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and storage method of acidic electrolytic copper plating liquid
KR102381835B1 (en) Anode for electrolytic copper plating and electrolytic copper plating apparatus using same
JP2010065255A (en) Alloy plating method and alloy plating apparatus
KR100558129B1 (en) Method and apparatus for regulating the concentration of substances in electrolytes
JP6423320B2 (en) Plating apparatus and plating method
JP2015021154A (en) Method and apparatus for continuous product of electrolytic metal foil
JP6139379B2 (en) Sn alloy plating apparatus and Sn alloy plating method
JPH0423000B2 (en)
JP2005126753A (en) Tinning method using insoluble anode
KR20090043146A (en) Apparatus and method of removing impurities in electroless tinning solution
JP2003328199A (en) Copper plating method and apparatus therefor, method of producing copper and apparatus therefor, metal plating method and apparatus therefor, and method of producing metal and apparatus therefor
CN111936675A (en) Electroplating system with inert and active anodes
JPH04284691A (en) Electrically plating method for printed circuit board
JPH05302199A (en) Method for controlling composition of copper plating bath in copper plating using insoluble anode
Wei et al. Effects of thiourea and gelatin on the electrodeposition of Sn-Ag solder alloy
KR100374144B1 (en) Method for plating leadframe
Brown et al. Mixed Metal Oxide “MMO” Insoluble Anode System for Enhanced Operational Acid Copper Plating of Printed Wire Boards “PWB”

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206