JP4901539B2 - 立体映像表示システム - Google Patents

立体映像表示システム Download PDF

Info

Publication number
JP4901539B2
JP4901539B2 JP2007057423A JP2007057423A JP4901539B2 JP 4901539 B2 JP4901539 B2 JP 4901539B2 JP 2007057423 A JP2007057423 A JP 2007057423A JP 2007057423 A JP2007057423 A JP 2007057423A JP 4901539 B2 JP4901539 B2 JP 4901539B2
Authority
JP
Japan
Prior art keywords
real object
light
stereoscopic
unit
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007057423A
Other languages
English (en)
Other versions
JP2008219772A (ja
Inventor
理恵子 福島
馨 杉田
明 森下
雄三 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007057423A priority Critical patent/JP4901539B2/ja
Priority to US12/043,255 priority patent/US20080218515A1/en
Priority to CNA2008100837133A priority patent/CN101287141A/zh
Publication of JP2008219772A publication Critical patent/JP2008219772A/ja
Application granted granted Critical
Publication of JP4901539B2 publication Critical patent/JP4901539B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof

Description

本発明は、実物体と連動した立体映像を生成する立体映像表示システムに関する。
従来より、二次元映像や立体映像と実物体を組み合わせたミックスド・リアリティ(MR:複合現実感)やオーグメンティド・リアリティ(AR:拡張現実)と呼ばれる技術が知られており、例えば、特許文献1や非特許文献1が開示されている。また、これらの技術を用い、実空間と重ねて表示された二次元映像又は立体映像を手、または手で把持した実物体により直接操作することで、ディスプレイ面に置かれた実物体と映像とが相互作用するというインターフェース装置が提案されている。このようなインターフェース装置では、映像表示のため、眼前に直接映像を表示するヘッドマウントディスプレイ方式や、実空間上に立体映像を投影するプロジェクター方式が採用されている。そのため、観察者の目から見て実空間より手前に映像が表示されることから、実物体や操作者の手で映像が阻害されることはない。
一方、自然で見やすい3D映像として、IP方式や稠密多眼式を始めとする、運動視差を伴う裸眼立体視方式が提案されている(以下、空間像方式と呼ぶ)。この空間像方式では、画素数の多い液晶ディスプレイ(LCD)に代表される平面ディスプレイ(FPD)とレンズアレイやピンホールアレイといった光線制御子を組み合わせることで、3視点以上、理想的には9視点以上の方向から撮像取得した映像を空間的に観察位置を切り替えて表示することにより運動視差を実現することができる。輻輳のみを用いて立体視させていた従来の立体映像と異なり、裸眼で観察可能な運動視差が追加されたことで表示された立体映像は、観察位置とは独立に実空間中に座標を有する。これによって、立体映像の問題であった映像と実物体との同時干渉時の違和感が取り除かれ、観察者は立体映像を指し示したり、実物体と立体映像を同時に鑑賞したりすることが可能となっている。
特開2000−350860号公報 石井裕、「タンジブル・ビット− 情報と物理世界を融合する、新しいユーザ・インタフェース・デザイン」 情報処理、Vol.43、No.3、pp.222-229、2002
しかしながら、二次元映像と実物体を組み合わせたMRまたはARでは相互作用が表現できる領域が表示面に限定されるという制約が生じる。立体映像と実物体を組み合わせたMRまたはARでは、ディスプレイ面に固定される視点調節と、両眼視差から誘起される輻輳とが競合するため、実物体と立体映像の同時鑑賞は観察者に違和感や疲労を与えるものとなっている。そのため、映像と実空間又は実物体との相互作用は表現、融合感ともに不完全な状態にあり、臨場感や現実感を表現するのが困難である。
また、空間像方式では、表示された立体映像の解像度は上述した構造上の理由から平面ディスプレイ(FPD)の解像度の1/(視点数)に低下するという問題がある。FPDの解像度には駆動等の制約から上限があるため、空間像方式での立体映像の解像度を上げるのは容易ではなく、映像の臨場感、現実感を向上させるのが困難である。また、空間像方式では、映像を操作するための手または手で把持した実物体の後方に平面ディスプレイが配置されるため、操作者の手または実物体により立体映像が遮蔽されてしまい、実物体と立体映像との自然な融合を妨げる要因となっている。
本発明は上記に鑑みてなされたものであって、立体映像と実物体との自然な融合を実現するとともに、立体映像の臨場感、存在感を向上させることが可能な立体映像表示システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、空間像方式により表示空間内に立体映像を表示する立体映像表示装置と、当該表示空間内に配置される少なくとも一部が光透過性部分である実物体と、を含む立体映像表示システムであって、前記立体映像表示装置は、前記実物体の位置及び姿勢を示した位置姿勢情報を記憶する位置姿勢情報記憶手段と、前記実物体の光学的特性を含む属性を示した属性情報を記憶する属性情報記憶手段と、前記位置姿勢情報及び属性情報に基づいて、前記実物体を表す第1物理演算モデルを生成する第1物理演算モデル生成手段と、前記表示空間内における前記実物体の仮想的な外部環境を表す第2物理演算モデルを生成する第2物理演算モデル生成手段と、前記第1物理演算モデルと第2物理演算モデルとの相互作用を演算する演算手段と、前記相互作用演算手段による演算結果に基づいて、前記表示空間内に立体映像を表示させる表示制御手段と、を備える。
本発明によれば、表示空間内に配置された少なくとも一部に光透過性部分を有する実物体と、当該表示空間内における実物体の仮想的な外部環境との相互作用を演算し、この演算結果を立体映像として表示することができるため、実物体による立体映像の阻害を抑制して立体映像と実物体との自然な融合を実現できるとともに、立体映像の臨場感、存在感を向上させることができる。
以下に添付図面を参照して、立体映像表示システムの最良な実施形態を詳細に説明する。
[第1の実施形態]
図1は、第1の実施形態にかかる立体映像表示装置100のハードウェア構成を示すブロック図である。立体映像表示装置100は、情報処理を行うCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、数値演算コプロセッサ、物理演算プロセッサといったプロセッサ1、BIOS等を記憶した読み出し専用メモリであるROM(Read Only Memory)2、各種データを書き換え可能に記憶するRAM(Random Access Memory)3、立体映像の表示にかかる各種コンテンツを格納するとともに、立体映像の表示にかかる立体映像表示プログラムを格納するHDD(Hard Disk Drive)4、立体映像を出力・表示するインテグラルイメージング(II)方式等の空間像方式の立体映像表示部5、ユーザが本装置に対して各種指示を入力したり各種情報を表示したりするユーザインタフェース(UI)6等から構成されている。なお、後述する立体映像表示装置101〜106においても、立体映像表示装置100と同様のハードウェア構成を備えるものとする。
立体映像表示装置100のプロセッサ1は、立体映像表示プログラムに従って各種の演算処理を実行して各部を制御する。
また、HDD4は、立体映像の表示にかかる各種コンテンツとして、後述する実物体位置姿勢情報や実物体属性情報、また、後述する物理演算モデル(Model_other132)の基となる種々の情報を記憶している。
立体映像表示部5は、液晶等に代表されるフラットパネルディスプレイ(FPD)の上に、射出瞳がマトリクス状に並んだ光学素子を備えた空間像方式の立体映像表示用の表示装置である。この表示装置では、観察位置に応じて射出瞳を経由して見える画素が切り替わることにより、観察者に空間像方式の立体映像を視認させることが可能となっている。
以下、立体映像表示部5上に表示される映像の構成方法について説明する。本実施形態にかかる立体映像表示装置100の立体映像表示部5はn視差の光線を再生できるように設計されている。ここで、本実施形態では、視差数n=9として説明する。
図2は、立体映像表示部5の構造を概略的に示す斜視図である。立体映像表示部5では、図2に示すように、液晶パネル等の平面状の視差画像表示部51の表示面の前面に、光線制御素子として光学開口が垂直方向に延びるシリンドリカルレンズからなるレンチキュラー板が光線制御素子52として配置されている。光学開口が斜めや階段状でなく縦に一直線であるため、立体表示時の画素配列を正方配列にすることが容易である。
表示面には、縦横比が3:1の画素201が、横方向には直線状に1行に並び、各画素は同一行内で横方向に赤(R)、緑(G)、青(B)が交互に並ぶように配列されている。画素行の縦周期(3Pp)は、画素の横周期Ppの3倍である。
なお、カラー画像を表示するカラー画像表示装置においては、RGBの3つの画素で1実効画素、即ち、輝度と色が任意に設定できる最小単位が構成される。RGBのひとつひとつは、一般的にはサブ画素と呼ばれる。
図2に示される表示画面では、9列3行の画素で1実効画素53(黒枠で示される)が構成される。そして、光線制御素子52であるレンチキュラー板のシリンカドリルレンズは実効画素53のほぼ正面に配置される。
平行光線1次元IP方式では、表示面内に配列されたサブ画素の横周期(Pp)の9倍に等しい水平ピッチ(Ps)である各シリンドリカルレンズが直線状に延在する光線制御素子52としてレンチキュラー板により、表示面に水平に9個おきの画素からの光線が平行光線として再生される。
実際には想定する視点は、表示面から有限な距離に設定するため、立体映像表示部5の映像を構成するのに必要な同一視差方向の平行光線を構成する組の画素の画像データを集積した各視差成分画像は9枚より多くなる。この視差成分画像から実際に使用される光線が抜き出されることで、立体映像表示部5に表示する視差合成画像が生成される。
図3は、多眼方式の立体映像表示部5における各視差成分画像と表示面上の視差合成画像との関係の一例を示す模式図である。201が3次元画像表示用の画像であり、203が画像取得位置であり、202は視差画像の中心と画像取得位置の射出瞳とを結ぶ線分である。
図4は、1次元IP方式の立体映像表示部5における各視差成分画像と表示面上の視差合成画像との関係の一例を示す模式図である。301が3次元画像表示用の画像であり、303が画像取得位置であり、302は視差画像の中心と画像取得位置の射出瞳とを結ぶ線分である。
1次元IP方式の立体ディスプレイでは、表示面から特定視距離に配置した立体ディスプレイの設定視差数以上の複数台のカメラで画像の取得を行い(コンピュータグラフィックスではレンダリングを行い)、レンダリングされた画像から立体ディスプレイに必要な光線を抜き出し表示することになる。また、各視差成分画像から抜き出される光線数は立体ディスプレイの表示面のサイズ、解像度等の他、想定視距離等により決定される。
図5及び図6は、視距離が変わった場合に利用者から見える視差画像が変化している状態を示す模式図である。図5、図6において、401、501は観察位置から視認される視差画像の番号である。図5及び図6に示すように、視距離が変化した場合には、観察位置から視認される視差画像が異なることがわかる。
各視差成分画像は、垂直方向が想定視距離あるいはその近傍の視距離に対応した透視投影であり、かつ水平方向が平行投影である画像であることが標準であるが、垂直方向及び水平方向とも透視投影であってもよい。すなわち、光線再生方式に関わる立体ディスプレイ装置における映像の生成処理は再現する光線情報への変換さえできれば、必要十分な台数のカメラで撮像あるいは描画処理を行えば良いことになる。
以下の実施形態にかかる立体映像表示部5の説明では、立体映像の表示に必要かつ十分な光線の取得が可能なカメラ位置と台数の算出ができていることを前提として説明する。
図7は、第1の実施形態にかかる立体映像表示装置100の機能的構成を示したブロック図である。図7に示すように、立体映像表示装置100は、プロセッサ1が立体映像表示プログラムに従って各部を制御することにより、実物体位置姿勢情報記憶部11、実物体属性情報記憶部12、相互作用演算部13、要素画像生成部14を備えることになる。
ここで、実物体位置姿勢情報記憶部11は、立体映像表示部5による立体表示が可能な空間(以下、表示空間という)内に配置された実物体7の位置や姿勢に関する情報を実物体位置姿勢情報としてHDD4に記憶している。ここで実物体7とは、少なくとも一部分が光透過性の部材からなる実在物であって、例えば、光透過性のアクリル板やガラス板等を用いることができる。なお、実物体7の形状や素材は特に問わないものとする。
実物体位置姿勢情報としては、立体映像表示部5に対する実物体オブジェクトの現在位置を示す位置情報や、過去のある時点から現在時刻までに移動した位置や移動量、速度等を表した運動情報、実物体7の現在及び過去の姿勢(方向等)を表した姿勢情報等が挙げられる。例えば、後述する図8の例の場合、実物体7の厚み中心から、立体映像表示部5の表示面までの距離等が実物体属性情報として記憶される。
実物体属性情報記憶部12は、実物体7自体が有する固有の属性を実物体属性情報としてHDD4に記憶している。ここで、実物体属性情報としては、実物体7の形状を表す形状情報(ポリゴン情報、形状を表す数式情報(NURBS等))や、実物体7の物理的な特性を表す物理特性情報(実物体7表面の光学特性、材質、強度、厚み、屈折率等)が挙げられる。例えば、後述する図8の例の場合、実物体7の光学的特性や厚み等が実物体属性情報として記憶される。
相互作用演算部13は、実物体位置姿勢情報記憶部11及び実物体属性情報記憶部12に夫々記憶された実物体位置姿勢情報及び実物体属性情報から、実物体7を表す物理演算モデル(Model_obj)を生成する。また、HDD4に予め記憶された情報を基に、実物体7の表示空間内における仮想的な外部環境を表す物理演算モデル(Model_other)を生成し、Model_objとModel_otherとの相互作用を演算する。なお、Model_otherの生成の基となる種々の情報は、HDD4に予め記憶されているものとし、相互作用演算部13により随時読み込みが行われるようになっているものとする。
ここで、Model_objとは、実物体位置姿勢情報及び実物体属性情報に基づき、表示空間上での実物体7の全体又は一部の特性を表す情報である。例えば、後述する図8の例の場合、実物体7の厚み中心から、立体映像表示部5の表示面までの距離が「a」、実物体7の厚みが「b」であったとする。この時、立体映像表示部5の表示面の垂線方向をZ軸とすると、相互作用演算部13は、下記関係式(1)又は式(1)の算出結果を、実物体7の立体映像表示部5側の表面位置(Z1)を表すModel_objとして生成する。
Z1=a−b (1)
なお、ここでではModel_obj131を、実物体7の表面に関する条件を表すものとして説明したが、これに限らず、例えば、屈折率や強度を表す条件を表すものとしてもよいし、所定の条件下での挙動(例えば、実物体7に相当する仮想オブジェクトに他の仮想オブジェクトが衝突した際の反応)が表されていてもよい。
Model_otherとは、仮想空間上に表示させる立体映像(仮想オブジェクト)の位置情報や運動情報、形状情報、物理特性情報等を含むとともに、衝突時に仮想オブジェクトの形状を所定量変化させる等といった、所定の条件下における仮想オブジェクトの挙動等、Model_obj以外の実物体7の表示空間内における仮想的な外部環境の特性を表す情報である。なお、仮想オブジェクトの挙動は、運動方程式等の実際の自然法則に従うよう演算が行われるものとするが、仮想オブジェクトVの振る舞いが実世界と違和感なく表示できるようであれば、厳密に自然法則に従う必要はなく、簡略化した関係式等を用いて演算を行う態様としてもよい。
例えば、後述する図8の例の場合、球状の仮想オブジェクトV1の半径が「r」、上述したZ軸上における仮想オブジェクトV1の中心位置が「c」であったとする。この時、相互作用演算部13は、下記関係式(2)又はこの式(2)の算出結果を、Z軸上における仮想オブジェクトV1の実物体7側の表面位置(Z2)を表すModel_otherとして生成する。
Z2=c+r (2)
また、Model_objとModel_otherとの相互作用を演算するとは、生成したModel_objとModel_otherとを用い、所定の判定基準の下、Model_objの条件によるModel_otherの状態変化を導出することを意味する。
例えば、後述する図8の例の場合、実物体7と、球状の仮想オブジェクトV1との仮想的な衝突を判定する場合、相互作用演算部13は、実物体7を表すModel_objと、仮想オブジェクトV1を表すModel_otherとを用い、上記式(1)、(2)から、下記式(3)を導出し、この演算結果に基づいて、実物体7と仮想オブジェクトV1とが衝突したか否の判定を行う。
衝突判定=(a−b)−(c+r) (3)
なお、上記例では、Model_obj131と、Model_other132との相互作用を、両物理演算モデルが表す仮想オブジェクトの衝突、即ち、仮想オブジェクトの表面に関する条件のみ判定する態様としたが、これに限らず、他の条件について判定する態様としてもよい。
相互作用演算部13は、上記式(3)の値がゼロ(又は、ゼロ以下)の時、実物体7と仮想オブジェクトV1とが衝突したと判定し、仮想オブジェクトV1の形状を変化させたり、仮想オブジェクトV1の運動軌跡がバウンドしたように表示させるといったModel_otherへの変更を演算する。このように、相互作用を演算では、Model_objが持ち込まれた結果として、Model_otherに変更が加えられる。
要素画像生成部14は、相互作用演算部13での演算結果をModel_obj131及び/又はModel_other132に反映したうえで多視点画像をレンダリングにより生成し、これら多視点画像を並び替えて要素画像アレイを生成する。そして、生成した要素画像アレイを立体映像表示部5の表示空間内に表示させることで、仮想オブジェクトの立体表示を行う。
以下、上記の構成により立体映像表示部5に表示された立体映像について説明する。図8は、垂直に立設(縦置き)された立体映像表示部5と、当該立体映像表示部5と平行となる近傍位置に垂直に立設された光透過性の実物体7との間に、球状及びブロック状の仮想オブジェクトV(V1、V2)を表示させた状態を示している。なお、図中波線で表した線分Tは、球状の仮想オブジェクトV1の運動軌跡を表している。
図8の場合、例えば、立体映像表示部5の表示面から10cn離間した位置に、当該表示面と平行に実物体7が設定されていることを指示する情報等が実物体位置姿勢情報として実物体位置姿勢情報記憶部11に記憶されている。また、実物体7に固有の属性、例えば、アクリル板やガラス板等の材質、形状、厚み、強度、屈折率等が実物体属性情報として実物体属性情報記憶部12に記憶されている。
相互作用演算部13は、実物体位置姿勢情報及び実物体属性情報に基づいて、実物体7を表すModel_objを生成するとともに、仮想オブジェクトV(V1、V2)を表すModel_otherを生成し、両物理演算モデル間の相互作用を演算する。
また、図8の場合、相互作用時の判定基準として、実物体7と仮想オブジェクトV1とが衝突した場合等が挙げられる。この場合、相互作用演算部13は、Model_objと、Model_otherとの相互作用の結果として、実物体7に球状の仮想オブジェクトV1が跳ね返るといった演算結果を得ることできる。また、仮想オブジェクトV1と仮想オブジェクトV2との間の相互作用も同様に演算することができ、例えば、実物体7から跳ね返った仮想オブジェクトV1が、ブロック状の仮想オブジェクトV2に衝突するといった条件下のもと、仮想オブジェクトV1が仮想オブジェクトV2を破壊するといった相互作用の演算結果を得ることができる。
要素画像生成部14は、相互作用演算部13での演算結果を踏まえた多視点画像を生成し、立体映像表示部5に表示するための要素画像アレイに変換する。これによって、仮想オブジェクトVは立体映像表示部5の表示空間に立体表示される。このようなプロセスで生成・表示された仮想オブジェクトVは、光透過性の実物体7と同時に観察されることにより、観察者は、光透過性の実物体7に球状の仮想オブジェクトV1が衝突したり、また、仮想オブジェクトV1がブロック状の仮想オブジェクトV2に衝突して仮想オブジェクトV2が崩れたりするといった様子を鑑賞することができる。これら仮想的な相互作用は、解像度が不足している立体映像の存在感を著しく向上し、従来にない臨場感を実現することができる。
なお、図8の例では、仮想オブジェクトVとして球状及びブロック状のものを扱ったが、その態様は図示例に限定されないものとする。例えば、光透過性の実物体7と立体映像表示部5との間に、紙片(図9参照)やシャボン玉(図10参照)を仮想オブジェクトVとして表示させ、仮想的に発生させた対流で舞い上がらせたり、実物体7に衝突して破裂させたりといった所定の条件下での相互作用を演算する態様としてもよい。
図8〜10で示したように、立体映像表示部5の全面をガラス板等の比較的透明度の高い実物体7で覆ったような場合、実物体7自体が視認されにくいという問題がある。そのため、実物体7になんらかの図形や模様を描画しておくことで、仮想オブジェクトVとの相対的な位置関係を視認し易くすることができる。
図11は、実物体7の表面に模様Dとして格子模様を設けた状態を示した図である。なお、図中波線で表した線分Tは、球状の仮想オブジェクトVの運動軌跡を表している。ここで、実物体7に描画する模様Dは、実物体7に実際に描画したり、シール素材を貼り付けたりする態様としてもよいが、例えば、実物体7の内部に光を散乱する散乱領域を設け、実物体7の端面をLED等の光源で照射することで、該散乱部位で散乱光を発生させる態様としてもよい。なお、この場合、仮想オブジェクトVを再生するために照射する光を、実物体7の端面に照射し、散乱光を発生させる態様としてもよいし、仮想オブジェクトVの動作に応じて、実物体7の端面を照射する光の輝度を変調させる態様としてもよい。
また、立体映像表示部5と実物体7との構成は、上記した例に限らず、他の態様としてもよい。以下、図12、13−1、13−2を参照して、立体映像表示部5及び実物体7の他の構成例について説明する。
図12は、水平に設置(平置き)された立体映像表示部5上に、光透過性の半球状からなる実物体7が載置された構成を示しており、この実物体7の半球内に仮想オブジェクトV(V1、V2、V3)を表示させている。なお、図中波線で表した線分Tは仮想オブジェクトV(V1、V2、V3)の運動軌跡を表している。
図12の構成の場合、例えば、実物体7が立体映像表示部5の表示面上の特定の位置に、半球の大円側が立体映像表示部5と接するよう載置されていることを指示する情報等が実物体位置姿勢情報として実物体位置姿勢情報記憶部11に記憶されている。また、実物体属性情報記憶部12には、実物体7に固有の属性、例えば、アクリル板やガラス板等の材質や、半径10cmの半球といった形状、強度、厚み、屈折率等が実物体属性情報として実物体属性情報記憶部12に記憶されている。
相互作用演算部13は、実物体位置姿勢情報及び実物体属性情報に基づいて、実物体7を表すModel_obj131を生成するとともに、当該Model_obj131以外の仮想オブジェクトV(V1、V2、V3)等を表すModel_other132とを生成し、両物理演算モデル間の相互作用を演算する。
図12の場合、相互作用時の判定基準として、実物体7と仮想オブジェクトV1とが衝突した場合等が挙げられ、この場合、相互作用演算部13は、実物体7を表すModel_obj131と、仮想オブジェクトVを表すModel_other132との相互作用の結果として、実物体7に仮想オブジェクトV1が跳ね返るといった現象を表現することが可能である。また、衝突位置に跳ね返ったことを明示する火花を表す仮想オブジェクト(V2)を表示させたり、仮想オブジェクトV1を破裂させ、仮想的な内容物を表す仮想オブジェクト(V3)を実物体7の曲面に沿って表示させるといった現象を表現することが可能である。
要素画像生成部14は、相互作用演算部13での演算結果をModel_obj131及び/又はModel_other132に反映したうえで多視点画像をレンダリングにより生成し、これら多視点画像を並び替えて要素画像アレイを生成する。そして、生成した要素画像アレイを立体映像表示部5の表示空間内に表示させることで、仮想オブジェクトVの立体表示を行う。
このようなプロセスで生成・表示された仮想オブジェクトVを、光透過性の実物体7と同時に観察することにより、観察者は、実物体7の半球内を、球状の仮想オブジェクトV1が火花を散らして跳ね返ったり、破裂したりする様子を鑑賞することができる。
また、図13−1、図13−2は、水平面に対し45度の傾斜をつけて設置された立体映像表示部5の下端部近傍に、光透過性の板状からなる実物体7を垂直に立設した構成を示した図である。
ここで、図13−1及び図13−2の左図は、実物体7の面を正面方向(Z軸方向)から見た正面図である。また、図13−1及び図13−2の右図は、図13−1及び図13−2の図の右側面図である。ここで、立体映像表示装置100は、実物体7と立体映像表示部5との間に、球状の仮想オブジェクトV1を表示するとともに、立体映像表示部5の表示面上に穴状の仮想オブジェクトV2を表示している。なお、図中波線で表した線分Tは仮想オブジェクトV1の運動軌跡を表している。
図13−1、13−2の構成の場合、例えば、実物体7が立体映像表示部5の表示面下部から45度の角度を成して設置されていることを指示する情報が実物体位置姿勢情報として実物体位置姿勢情報記憶部11に記憶されているものとする。また、実物体属性情情報としては、上記同様、実物体7に固有の属性、例えば、ガラス板やアクリル板等の材質や、板状といった形状、強度、厚み、屈折率等が実物体属性情報記憶部12に記憶されているものとする。
相互作用演算部13は、実物体位置姿勢情報及び実物体属性情報に基づいて、実物体7を表すModel_obj131を生成するとともに、仮想オブジェクトV(V1、V2)を表すModel_otherを生成し、両物理演算モデル間の相互作用を演算する。
図13−1の場合、相互作用時の判定基準として、実物体7と仮想オブジェクトV1とが衝突した場合等が挙げられる。この場合、相互作用演算部13は、Model_objと、Model_otherとの相互作用の結果として、実物体7に球状の仮想オブジェクトV1が跳ね返るといった演算結果を得ることできる。また、相互作用時の他の判定基準として、仮想オブジェクトV1と仮想オブジェクトV2とが接触した場合も挙げられ、この場合、仮想オブジェクトV1と仮想オブジェクトV2との相互作用の結果として、仮想オブジェクトV1が、穴状の仮想オブジェクトV2に落下するといった演算結果を得ることができる。
また、図13−2の場合、相互作用時の他の判定基準として、実物体7と複数の仮想オブジェクトV1とが接触した場合等が挙げられ、この場合、相互作用演算部13は、Model_obj131と、複数の仮想オブジェクトV1を表すModel_other132との相互作用の結果として、実物体7と立体映像表示部5との間の谷部に複数の仮想オブジェクトV1が滞留するといった演算結果を得ることができる。
要素画像生成部14は、上記相互作用演算部13での演算結果をModel_obj131及び/又はModel_other132に反映したうえで多視点画像をレンダリングにより生成し、これら多視点画像を並び替えて要素画像アレイを生成する。そして、生成した要素画像アレイを立体映像表示部5の表示空間内に表示させることで、仮想オブジェクトVの立体表示を行う。
このようなプロセスで生成・表示された仮想オブジェクトV(V1、V2)は、光透過性の実物体7と同時に観察されることにより、観察者は、平面状の実物体7を利用して、球状の仮想オブジェクトV1がバウンドしたり、溜まったりする様子を鑑賞することができる。
なお、図13−1の構成の場合、穴状の仮想オブジェクトV2に仮想オブジェクトV1が落ちた際に、当該仮想オブジェクトV2に対応する位置(例えば、立体映像表示部5の背面)から、仮想オブジェクトV1に相当する実物の球を出現させる機構を設けておくことで、仮想オブジェクトV1の存在感を増大させることができるとともに、インタラクティブ性を向上させることができる。
具体的には、図13−1の構成の立体映像表示装置100を遊技機等に設置し、仮想オブジェクトV1の球を遊技用の球に視覚的に類似した属性を付与しておく。立体映像表示部5の表示空間から仮想オブジェクトV1の球が非表示になったタイミングに連動して、遊技機の排出口から遊技用の球が排出することで、仮想オブジェクトV1の存在感、臨場感をより向上させることができる。
以上のように、本実施形態によれば、表示空間内に配置された少なくとも一部に光透過性部分を有する実物体7と、当該表示空間内における実物体7の仮想的な外部環境との相互作用を演算し、この演算結果を立体映像(仮想オブジェクト)として表示することができるため、立体映像と実物体との自然な融合を実現できるとともに、立体映像の臨場感、存在感を向上させることができる。
[第2の実施形態]
次に、第2の実施形態の立体映像表示装置について説明する。なお、上述した第1の実施形態と同様の構成要素については、同一の符号を付与し、その説明を省略する。
図14は、本実施形態の立体映像表示装置101の機能的構成を示したブロック図である。図14に示したように、立体映像表示装置101は、プロセッサ1が立体映像表示プログラムに従って各部を制御することにより、第1の実施形態で説明した実物体位置姿勢情報記憶部11、実物体属性情報記憶部12、要素画像生成部14に加え、実物体付加情報記憶部15と相互作用演算部16とを備えている。
ここで、実物体付加情報記憶部15は、実物体7を表すModel_obj131に、付加的に追加することが可能な情報を、実物体付加情報としてHDD4に記憶している。
実物体付加情報としては、例えば、相互作用の結果に応じて実物体7に重畳して表すことが可能な仮想オブジェクトに関する付加情報や、Model_obj131の生成時に付加する属性条件等が挙げられる。ここで、付加情報とは、例えば、実物体7にひびが入ったように見せかける仮想オブジェクトや、実物体7に穴が空いたように見せかける仮想オブジェクト等の演出効果用のコンテンツである。
また、属性条件とは、実物体7の属性に、付加的に追加する新たな属性であって、例えば、実物体7が光透過性の平面ガラスである場合に、当該実物体7を表すModel_obj131に鏡としての属性を付加したり、レンズとしての属性を付加したりすることが可能な情報である。
相互作用演算部16は、上述した相互作用演算部13と同様の機能を有するとともに、実物体7を表すModel_obj131の生成時又はModel_other132との相互作用の演算結果に応じて、実物体付加情報記憶部15に記憶された実物体付加情報を読み出し、当該実物体付加情報を付加した処理を実行する。
以下、図15〜18を参照して、本実施形態の立体映像表示装置100における表示形態を説明する。
図15、16は、垂直に立設(縦置き)された立体映像表示部5と、当該立体映像表示部5の表示面と平行となる近傍位置に垂直に立設された、光透過性の平面状の実物体7との間に、球状の仮想オブジェクトV1を表示させた状態を示している。ここで、実物体7は、光透過性のガラス板やアクリル板等の実在物であるものとする。なお、図中波線で表した線分Tは、球状の仮想オブジェクトV1の運動軌跡を表している。
この構成の場合、実物体位置姿勢情報記憶部11には、例えば、立体映像表示部5の表示面から10cn離間した位置に、当該表示面と平行に実物体7が設定されていることを指示する情報が実物体位置姿勢情報として記憶される。また、実物体属性情報記憶部12には、実物体7の属性、即ち、アクリル板やガラス板の材質、強度、厚み、屈折率等が実物体属性情報として記憶される。
相互作用演算部16は、実物体位置姿勢情報及び実物体属性情報に基づいて、実物体7を表すModel_obj131を生成するとともに、仮想オブジェクトV1を表すModel_other132を生成し、両物理演算モデル間の相互作用を演算する。
図15の構成の場合、相互作用時の判定基準として、実物体と仮想オブジェクトV1とが衝突した場合等が挙げられる。この場合、相互作用演算部16は、Model_obj131と、Model_other132との相互作用の結果として、実物体7に球状の仮想オブジェクトV1が跳ね返るといった演算結果を得ることできる。さらに、相互作用演算部16は、両物理演算モデル間の相互作用の演算結果と、実物体付加情報記憶部15に記憶さえた実物体付加情報とに基づき、実物体7に重畳表示させる仮想オブジェクトV3を、衝突位置を基準に表示させるよう演算する。
要素画像生成部14は、相互作用演算部16での演算結果をModel_obj131及び/又はModel_other132に反映したうえで多視点画像をレンダリングにより生成し、これら多視点画像を並び替えて要素画像アレイを生成する。そして、生成した要素画像アレイを立体映像表示部5の表示空間内に表示させることで、仮想オブジェクトV1を表示させるとともに、実物体7の衝突位置を基準に仮想オブジェクトV3を表示させる。
図15では、実物体7にひびが入ったように見せかける仮想オブジェクトV3を表示させた例を示している。ここで、仮想オブジェクトV3は、上記のプロセスで生成・表示されることで、実物体7と仮想オブジェクトV1との衝突位置を基準として、当該実物体7上に立体表示される。
また、図16では、上記図15と同様、仮想オブジェクトV1と実物体7との衝突位置を基準として、穴が空いたように見せかける付加映像を仮想オブジェクトV3として実物体7上に重畳表示させた例を示している。なお、図16の例の場合、仮想オブジェクトV3として表示させた穴から、仮想オブジェクトV1の球が飛び出していくような表示を行うこととしてもよい。
このように、実物体7と仮想オブジェクトVとの仮想的な相互作用に伴い、実物体7自体に付加的な立体映像(仮想オブジェクト)を重畳して表示させることにより、立体映像と実物体との自然な融合を実現できるとともに、立体映像の臨場感、存在感を向上させることができる。
図17は、立体映像表示装置101による立体映像の他の表示形態を示した図である。この表示形態では、水平に設置(平置き)された立体映像表示部5上に、光透過性の板状からなる実物体7を垂直に立設した構成としている。ここで、実物体7は、光透過性のガラス板やアクリル板等であるものとする。なお、実物体7に関する実物体位置姿勢情報及び実物体属性情報は、実物体位置姿勢情報記憶部11及び実物体属性情報記憶部12に夫々記憶されており、実物体付加情報として、鏡(全反射)の属性を指示する付加条件が実物体付加情報記憶部15に予め記憶されているものとする。
図17の構成の場合、相互作用演算部16は、実物体7を表すModel_obj131の生成時に、実物体付加情報記憶部15から、鏡(全反射)の特性を指示する付加条件を読み出し、Model_obj131に付加することで、Model_obj131が表す実物体をあたかも鏡のように取り扱うことが可能となる。即ち、Model_obj131とModel_other132との相互作用の演算の際には、付加条件が付加されたModel_obj131に基づいて処理が行われることになる。
そのため、図17に示したように、Model_other132が表す仮想オブジェクトVとして光線を模擬的に表示させた場合、この光線と実物体7とが衝突時には、相互作用演算部16による相互作用の演算結果により、実物体7は鏡として取り扱われることになる。その結果、仮想オブジェクトVは、実物体7と仮想オブジェクトVとの衝突位置を基準とし、当該実物体7により反射されたように表示される。
また図18は、図17の例と同様に、水平に設置(平置き)された立体映像表示部5上に、ガラス板やアクリル板等の光透過性の円板状からなる実物体7が垂直に立設された構成を示した図である。ここで、実物体7を表すModel_obj131は、相互作用演算部16により、レンズ(凸レンズ)の属性を付加する付加条件が付加されているものとする。
この場合、図18に示したように、Model_other132が表す仮想オブジェクトVとして模擬的に表示させた光線と、実物体7との衝突時には、相互作用演算部16による相互作用の演算結果により、実物体7はレンズとして取り扱われることになる。そのため、仮想オブジェクトVは、実物体7と仮想オブジェクトVとの衝突位置を基準とし、当該実物体7により屈折(集光)されたように表示される。
このように、表示された立体映像と、光透過性の実物体7と同時に鑑賞することで、観察者は、鏡で光線が反射したり、レンズで集光したりといった仮想的な表現を鑑賞することができる。光線の軌跡を実際に鑑賞しようとすると、空間にスモークを炊いたりして散乱させる必要がある。また、反射やレンズによる集光を学習しようとしたときに、光学素子そのものも高価であるし、壊れやすい、汚れを嫌うといった扱いを慎重にしなければならない。本実施例の構成では、アクリル板等の実物体7で光学素子相当の性能を仮想的に発現させることから、子供向けの光線の軌跡を学ぶ教材等の用途に用いることが適している。
以上のように、本実施形態によれば、実物体7を表すModel_obj131の生成時に、新たな属性を付加することで、実物体7が本来有する属性を仮想的に拡張することができ、立体映像と実物体との自然な融合を実現するとともに、インタラクティブ性をより向上させることができる。
[第3の実施形態]
次に、第3の実施形態の立体映像表示装置について説明する。なお、上述した第1の実施形態と同様の構成要素については、同一の符号を付与し、その説明を省略する。
図19は、本実施形態の相互作用演算部17の構成を示したブロック図である。図19に示したように、相互作用演算部17は、プロセッサ1が立体映像表示プログラムに従って各部を制御することにより、遮光部映像非表示部171を備えている。なお、他の機能部については、第1の実施形態又は第2の実施形態で説明した構成と同様であるものとする。
ここで、遮光部映像非表示部171は、実物体位置姿勢情報記憶部11に実物体位置姿勢情報として記憶された実物体7の位置、姿勢と、実物体属性情報記憶部12に実物体属性情報として記憶された実物体7の形状と、に基づいて、実物体7が立体映像表示部5により照射された光線を遮光する領域である遮光領域を算出する。
具体的に、遮光部映像非表示部171は、実物体7を表すModel_obj131からCGモデルを生成し、立体映像表示部5から照射される光線が当該CGモデルに照射された状態を演算により再現することで、立体映像表示部5により照射された光線を遮光するCGモデルの領域を算出する。
また、遮光部映像非表示部171は、算出した遮光領域に該当するCGモデルの部分を、要素画像生成部14における各視点画像作成の直前に除去したModel_obj131を生成し、当該Model_obj131と、Model_other132との相互作用が演算されることになる。
以上のように、本実施形態によれば、実物体7の遮光性部位に立体映像が表示されることを防止することが可能となるため、この遮光性部位と立体映像との位置がずれた場合の二重像等の違和感を抑制し、観察者から見てより違和感の少ない表示を実現することができる。
なお、本実施形態では、立体映像表示部5から照射される光線が当該CGモデルに照射された状態を演算により再現することで遮光領域を算出する態様としたが、これに限らず、例えば、実物体位置姿勢情報や実物体属性情報として、遮光領域に相当する情報が予め記憶されていた場合には、この情報を用いて立体映像の表示を制御する態様としてもよい。また、後述する実物体7の位置及び姿勢を検出可能な機能部(実物体位置姿勢検出部19)を備えた場合、当該機能部によりリアルタイムで取得される実物体7の位置及び姿勢に基づいて、遮光領域を算出する態様としてもよい。
[第4の実施形態]
次に、第4の実施形態の立体映像表示装置について説明する。なお、上述した第1の実施形態と同様の構成要素については、同一の符号を付与し、その説明を省略する。
図20は、本実施形態の相互作用演算部18の構成を示したブロック図である。図20に示したように、相互作用演算部18は、プロセッサ1が立体映像表示プログラムに従って各部を制御することにより、光学的影響補正部181を備えている。なお、他の機能部については、第1の実施形態又は第2の実施形態で説明した構成と同様であるものとする。
ここで、光学的影響補正部181は、実物体7に仮想オブジェクトを重畳表示させた際、当該仮想オブジェクトの見え方が所定の状態となるよう、Model_obj131を補正する。
例えば、実物体7の光透過性部分の屈折率が空気より高く、且つ、形状が曲面を有する場合、この光透過性部分はレンズとしての効果を発揮する。このような場合、このレンズ効果を見かけ上発生しないよう制御するため、光学的影響補正部181は、Model_obj131に含まれる実物体7の屈折率等に寄与する項を補正することで、レンズ効果を相殺するModel_obj131を生成する。
また、例えば、実物体7が白色光の元、青みを帯びて見えるような光学特性(黄色の波長を吸収する)を有するような場合、立体映像表示部5から照射された白色光は実物体7の吸光効果により青みを帯びて観察される。このような場合、実物体7の吸光効果が見かけ上発生しないよう制御するため、光学的影響補正部181は、Model_obj131に含まれる表示色に寄与する項を補正することで、仮想オブジェクトが重畳表示された際に観察される色を補正する。例えば、立体映像表示部5の射出瞳から照射された光を、実物体7の光透過性部分を経由して最終的に赤に見せるためには、当該光透過性部分に該当する仮想オブジェクトの色を橙色で生成することになる。
要素画像生成部14は、光学的影響補正部181により補正されたModel_obj131での演算結果を反映したうえで、多視点画像をレンダリングにより生成し、これら多視点画像を並び替えて要素画像アレイを生成する。そして、生成した要素画像アレイを立体映像表示部5の表示空間内に表示させることで、仮想オブジェクトの立体表示を行う。
なお、立体映像表示部5の光により実物体7の光透過部を呈色させる場合、実物体7の光透過性部を覆うように、色のついた仮想オブジェクトを重畳表示させることで実現することが可能であるが、実物体7が所定の散乱特性を有する場合、この特性に基づいて光を照射することで、より効率的に呈色させることが可能となる。
ここで、実物体7の散乱特性とは、実物体7に入射された光の散乱する程度を意味する。例えば、実物体7が微細な気泡を包含した素材から構成されるような場合で且つ、当該実物体7の屈折率が1より高いような場合には、微細な気泡により光が散乱されるため、均質な光透過性の素材から構成したものに比べて散乱の程度は高くなる。
実物体7の屈折率が1より高く、且つ、光散乱の程度が所定値以上である場合、光学的影響補正部181は、図21に示したように、実物体7内の任意の位置に、仮想オブジェクトVを輝点として表示させるよう制御することで、実物体7全体を所定の色や輝度で呈することができる。なお、図中Lは、立体映像表示部5の射出瞳から照射された光を示している。これにより、実物体7の光透過性部に仮想オブジェクトを重畳表示させるのと比較し、よりロバストな制御で効率的に実物体7全体を所定の色や輝度で呈することが可能となる。
また、図22−1に示したように、屈折率が1より高く、且つ、光散乱の程度が所定値以上であるような実物体7内に、遮光性の壁Wを複数設け、当該壁Wにより実物体7を複数の領域に区分けしたものを用いることができる。この場合、光学的影響補正部181は、図22−2に示したように、何れか一の領域内に仮想オブジェクトVを輝点として表示させるよう制御することで、領域単位で呈色させることができる。
なお、図22−1に示した実物体7を用いる様な場合、当該実物体7に内蔵される壁Wの位置等、各領域を特定するための情報が実物体属性情報として実物体属性情報記憶部12に記憶されているものとする。また、図22−2では、一の領域に輝点を表示する態様を示したが、これに限らず、例えば、複数の領域の夫々に輝点を表示する態様としてもよいし、領域毎に異なる色の輝点を表示させる態様としてもよい。
以上のように、本実施形態によれば、実物体7の光透過性部分に表示する立体映像が所定の表示状態となるようModel_obj131を補正するため、実物体7の属性によらず、所望する見え方で立体画像を観察者に提示することができる。
[第5の実施形態]
次に、第5の実施形態の立体映像表示装置について説明する。なお、上述した第1の実施形態と同様の構成要素については、同一の符号を付与し、その説明を省略する。
図23は、本実施形態の立体映像表示装置102の構成を示したブロック図である。図23に示したように、立体映像表示装置102は、プロセッサ1が立体映像表示プログラムに従って各部を制御することにより、第1の実施形態で説明した各機能部に加えて、実物体位置姿勢検出部19を備えている。
ここで、実物体位置姿勢検出部19は、立体映像表示部5の表示面又は当該表示面の近傍に配置される実物体7の位置と姿勢を検出し、実物体位置姿勢情報として実物体位置姿勢情報記憶部11に記憶させる。なお、ここで実物体7の位置とは立体映像表示部5との相対的な位置を意味し、また実物体7の姿勢とは立体映像表示部5の表示面に対する実物体7の向きや角度を意味する。
具体的に、実物体位置姿勢検出部19は、実物体7に搭載した位置及び姿勢検出用のジャイロセンサから有線又は無線通信にて送信される信号に基づいて、実物体7の現在位置及び姿勢を検出し、実物体位置姿勢情報として実物体位置姿勢情報記憶部11に記憶させることで、実物体7の位置及び姿勢をリアルタイムで捕捉する。なお、実物体位置姿勢検出部19により位置及び姿勢が検出される実物体7に関する実物体属性情報は、実物体属性情報記憶部12に予め記憶されているものとする。
図24は、本実施形態の立体映像表示装置102の動作を説明するための図である。同図において、直方体状の仮想オブジェクトVは、相互作用演算部13の制御の下、水平に設置(平置き)された立体映像表示部5の表示空間内に表示された立体映像である。
実物体7は、遮光性の遮光部71と、光透過性の光透過部72とから構成されており、本装置の観察者は、実物体7の遮光部71を把持し、立体映像表示部5の表示空間内を自在に移動させることが可能となっている。
図24の構成において、実物体位置姿勢検出部19は、実物体7の位置及び姿勢をリアルタイムで捕捉し、実物体位置姿勢情報の一要素として実物体位置姿勢情報記憶部11に順次記憶させる。相互作用演算部13は、実物体位置姿勢情報の更新に併せ、当該実物体位置姿勢情報と実物体属性情報とに基づいて、現在の実物体7を表すModel_obj131を生成し、別途生成された仮想オブジェクトVを表すModel_other132との相互作用を演算する。
ここで、観察者の操作により、実物体7が仮想オブジェクトVと重畳する位置に移動された場合、相互作用演算部13は、Model_obj131とModel_other132との相互作用を演算し、この演算結果に基づいた仮想オブジェクトVを、要素画像生成部14を介して表示させる。なお、図24では、実物体7と仮想オブジェクトVとの接触位置を基準として、凹んだような表現を表す仮想オブジェクトVが表示された例を示している。このような、表示制御により、観察者は実物体7の光透過部72を介し、実物体7が仮想オブジェクトVに入り込む様子を鑑賞することができる。
また、図25は、他の表示形態を示した図であって、立体映像表示部5を水平に設置(平置き)した構成を示している。ここで、実物体7aは、遮光性の遮光部71aと、光透過性の光透過部72aとから構成された実在物であって、遮光部71a等に位置及び姿勢検出用のジャイロセンサが備えられている。観察者(操作者)は、実物体7aを把持することで、実物体7aを立体映像表示部5上を自在に移動させることが可能となっている。
実物体7bは、光透過性の平面状からなる実在物であって、立体映像表示部5の表示面上に垂直に立設されている。ここで、実物体7bには、相互作用演算部13による表示制御により、鏡の属性を有した実物体7bと同形状の仮想オブジェクトVが、要素画像生成部14を介して重畳表示されている。
図25の構成において、実物体位置姿勢検出部19により、実物体7aの位置及び姿勢が検出され、実物体位置姿勢情報の一要素として実物体位置姿勢情報記憶部11に記憶されると、相互作用演算部13は、実物体7aに対応するModel_obj131を生成し、実物体7bに重畳表示された仮想オブジェクトVを表すModel_other132との相互作用を演算する。即ち、実物体7aを表すModel_obj131として、実物体7aと同形状(同属性)のCGモデルを生成し、このCGモデルと、鏡の属性が付加された実物体7bのCGモデルと、の相互作用を演算する。
例えば、図25に示したように、操作者の操作により実物体7aが、当該実物体7aの一部又は全てが実物体7bの面(鏡面)に写りこむ位置に移動した場合、相互作用演算部13による相互作用の演算処理において、実物体7aの写り込み部分を算出し、実物体7aの写り込み部分に相当するCGモデルの二次元画像を、仮想オブジェクトVとして実物体7bに重畳表示させるよう制御する。
以上のように、本実施形態によれば、実物体7の位置及び姿勢をリアルタイムで捕捉することができるため、立体映像と実物体との自然な融合をリアルタイムで実現できるとともに、立体映像の臨場感、存在感を向上させることができ、インタラクティブ性をより向上させることができる。
なお、本実施形態では、実物体7に内蔵したジャイロセンサにより当該実物体7の位置を検出する態様としたが、これに限らず他の検出機構を用いることとしてもよい。
例えば、立体映像表示部5の周囲から実物体7に赤外光を照射し、その反射の程度から実物体7の位置を検出する赤外線イメージセンサ方式を用いてもよい。この場合、実物体7の位置を検出する機構としては、赤外線を発光する赤外発光部、該赤外光を検出する赤外検出器、赤外光を反射する再帰性反射シート等から構成することができる(何れも図示せず)。ここで、赤外発光部及び赤外検出器は、立体映像表示部5の表示面を構成する4辺のうち、何れか1辺の両端部に夫々設けられ、残りの3辺に赤外光を反射する再帰性反射シートを設けることで、実物体7の表示面上での位置を検出することが可能となる。
図26は、光透過性の半球状の実物体7を立体映像表示部5の表示面に載置した状態を示す模式図である。表示面上の実物体7が存在する場合、当該表示面の一辺(例えば、図中左辺)の両端部に設けられた図示しない赤外発光部から夫々照射された赤外光が、実物体7に遮られることになる。実物体位置姿勢検出部19は、赤外検出器により検出された再帰性反射シートによる反射光(赤外光)に基づき、赤外光が検出されない位置、即ち実物体7の存在位置を三角測量方式で特定する。
実物体位置姿勢検出部19により特性された実物体7の位置は、実物体位置姿勢情報の一要素として実物体位置姿勢情報記憶部11に記憶され、上記同様相互作用演算部13により仮想オブジェクトVとの相互作用が演算されることで、その演算結果が反映された仮想オブジェクトVが、要素画像生成部14を介して立体映像表示部5の表示空間に表示されることになる。なお、図中波線で表した線分Tは、球状の仮想オブジェクトVの運動軌跡を表している。
上記した赤外線イメージセンサ方式を用いる場合、図26に示したように、実物体7を半球状という異方性のない形状とすることで、実物体7を点として扱うことでき、1点の検出位置から立体映像表示部5の表示空間を占有する実物体7の領域を決定することができる。また、実物体7の赤外光が照射される領域に、磨りガラス状の不透明加工や半透明のシールを貼付する等の処理を施しておくことで、実物体7自体の光透過性を活かしながら赤外検出器の検出精度を向上させることができる。
図27−1〜図27−3は、他の方法による実物体7の位置及び姿勢の検出方法を説明するための図である。以下、図27−1〜図27−3を参照して、デジタルカメラ等の撮影装置を用いた実物体7の位置及び姿勢の検出方法について説明する。
図27−1において、実物体7は、遮光性の遮光部71と光透過性の光透過部72とから構成されている。ここで、遮光部71には赤外光等を照射する二つの発光部81、82が設けられている。この二つの発光点を撮影装置9により撮影することで得られた撮影画像を実物体位置姿勢検出部19が解析することで、立体映像表示部5の表示面上における実物体7の位置及び方向を特定する。
具体的に、実物体位置姿勢検出部19は、撮影画像中に含まれる二つの光点画像の2点間の距離と撮影装置9との位置関係に基づいて、三角測量方式により実物体7の位置を特定する。なお、実物体位置姿勢検出部19は、発光部81、82間の距離を予め把握しているものとする。また、実物体位置姿勢検出部19は、撮影画像中に含まれる二つの光点画像の大きさと、二つの光点間を結ぶベクトルから、実物体7の姿勢を特定することができる。
図27−2は、二つの撮影装置91、92を用いた場合の模式図である。実物体位置姿勢検出部19は、図27−1の構成と同様、撮影画像中に含まれた二つの光点画像を基に、三角測量方式用いることで位置及び姿勢を特定するが、撮影装置91、92間の距離に基づき、各光点の位置を特定することで、図27−1の構成と比較し、より精度良く実物体7の位置を特定することができる。なお、実物体位置姿勢検出部19は、撮影装置91、92間の距離を予め把握しているものとする。
ところで、図27−1、図27−2で説明した発光部81、82間の距離が大きいほど、三角測量の際の精度が向上するという実情がある。そこで、図27−3では、実物体7の両端部を発光部81、82とした構成を示している。
図27−3において、実物体7は遮光性の遮光部71と、当該遮光部71の両側に設けられた光透過性の光透過部72、73とから構成されている。ここで、遮光部71には、光透過部72、73のそれぞれの方向に発光する光源(図示せず)が内蔵されており、光透過部72、73の先端部分には光を散乱する散乱部が形成されている。即ち、光透過部72、73を導光路として利用し、この導光路を経由した光を光透過部72、73の散乱部にて発光させることで、光透過部72、73の先端部分を発光部81、82とすることを実現している。この発光部81、82の光を撮影装置91、92でそれぞれ撮影し、撮影情報として実物体位置姿勢検出部19に出力することで、より精度良く実物体7の位置を特定することができる。なお、光透過部72、73の先端部分に設ける散乱部は、例えば、アクリル樹脂の断面を利用することができる。
[第5の実施形態の変形例]
以下、図28、図29−1及び図29−2を参照して、本実施形態の立体映像表示装置102の変形例を説明する。
図28は、第5の実施形態の変形例における立体映像表示装置103の構成を示したブロック図である。図28に示したように、立体映像表示装置103は、第1の実施形態で説明した各機能部に加えて、実物体変位機構部191を備えている。
ここで、実物体変位機構部191は、実物体7を所定の位置及び姿勢に変位させるためのモーター等の駆動機構を備え、図示しない外部装置から入力される指示信号に応じて実物体7を所定の位置及び姿勢に変位させる。また、実物体変位機構部191は、実物体7の変位動作時において、駆動機構の駆動量等に基づいて実物体7の立体映像表示部5の表示面に対する位置及び姿勢を検出し、実物体位置姿勢情報として実物体位置姿勢情報記憶部11に記憶させる。
なお、実物体位置姿勢情報記憶部11に実物体位置姿勢情報が記憶された後の動作は、上述した相互作用演算部13、要素画像生成部14と同様であるため、説明は省略する。
図29−1、図29−2は、本変形例の立体映像表示装置103における具体的な構成例を示した図であって、水平面に対し45度の傾斜をつけて設置された立体映像表示部5の下端部近傍に、光透過性の板状からなる実物体7を垂直に配置した構成を示している。
図29−1及び図29−2の左図は、実物体7の面を正面方向(Z軸方向)から見た正面図である。また、図29−1及び図29−2の右図は、図29−1及び図29−2の図の右側面図である。ここで、実物体7の上先端部には、当該上先端部を支点に、実物体7の正面方向に回転させる実物体変位機構部191が設けられており、外部装置から入力される指示信号に応じて実物体7の位置及び姿勢を変位させる。
また、図29−1に示したように、実物体7を表すModel_obj131と、複数の球に対応する仮想オブジェクトVを表すModel_other132との相互作用の演算結果の下、実物体7と立体映像表示部5との間の谷部に、複数の球状の仮想オブジェクトV1が滞留した状態を表示させている。
この状態において、実物体変位機構部191が外部装置から入力される指示信号により駆動されると、実物体変位機構部191は、駆動機構の駆動量に基づいて実物体7の立体映像表示部5の表示面に対する位置及び姿勢を検出する。本構成の場合、実物体7の駆動量(変位量)は回転角度に依存するため、例えば、実物体変位機構部191は、静止状態にある実物体7の位置及び姿勢から回転角度に応じた値を算出し、実物体位置姿勢情報として実物体位置姿勢情報記憶部11に記憶させる。
相互作用演算部13は、実物体変位機構部191により更新された実物体位置姿勢情報と、実物体属性情報とを用いて、実物体7を表すModel_obj131を生成し、複数の球からなる仮想オブジェクトVを表すModel_other132との相互作用を演算する。この場合、図29−2に示したように、相互作用演算部13は、実物体7と立体映像表示部5との間の谷部に滞留させていた仮想オブジェクトVを、実物体7と立体映像表示部5との間に生じた間隙をすり抜けて、下方に転がり落ちると行った演算結果を得ることができる。
要素画像生成部14は、相互作用演算部13の演算結果をModel_obj131及び/又はModel_other132に反映したうえで多視点画像をレンダリングにより生成し、これら多視点画像を並び替えて要素画像アレイを生成する。そして、生成した要素画像アレイを立体映像表示部5の表示空間内に表示させることで、仮想オブジェクトV1の立体表示を行う。
このようなプロセスで生成・表示された立体映像を、光透過性の実物体7と同時に鑑賞することにより、観察者は、光透過性の実物体7を利用して、仮想オブジェクトVである球が溜まっていた状態から、実物体7の移動により生じた隙間からこぼれ落ちる様子を鑑賞することができる。
このように、本変形例によれば、第5の実施形態の立体映像表示装置と同様、実物体7の位置及び姿勢をリアルタイムで捕捉することができるため、立体映像と実物体との自然な融合をリアルタイムで実現できるとともに、立体映像の臨場感、存在感を向上させることができ、インタラクティブ性をより向上させることができる。
[第6の実施形態]
次に、第6の実施形態の立体映像表示装置について説明する。なお、上述した第1、第5の実施形態と同様の構成要素については、同一の符号を付与し、その説明を省略する。
図30は、本実施形態の立体映像表示装置104の構成を示したブロック図である。図30に示したように、立体映像表示装置104は、プロセッサ1が立体映像表示プログラムに従って各部を制御することにより、第5の実施形態で説明した各機能部に加えて、RFID識別部20を備えている。
なお、本実施形態で用いる実物体7には、RFID(Radio Frequency IDentification)タグ83が設けられているものとし、当該RFIDタグ83毎に固有の実物体属性情報が格納されているものとする。
RFID識別部20は、立体映像表示部5の表示空間を包含するように電波の発射方向を制御したアンテナを有し、実物体7のRFIDタグ83に格納された実物体属性情報を読み出し、実物体属性情報記憶部12に記憶させる。ここで、RFIDタグ83に格納される実物体属性情報には、例えば、スプーン形状やナイフ形状、フォーク形状を指示する形状情報及び光学特性等の物理的特性情報が含まれているものとする。
相互作用演算部13は、実物体位置姿勢検出部19により記憶された実物体位置姿勢情報を実物体位置姿勢情報記憶部11から読み出すとともに、RFID識別部20により記憶された実物体属性情報を実物体属性情報記憶部12から読み出し、これら実物体位置姿勢情報と実物体属性情報とに基づいて、実物体7を表すModel_obj131を生成する。このように生成されたModel_obj131は、要素画像生成部14を介し、仮想オブジェクトRVとして実物体7に重畳表示される。
図31−1は、RFIDタグ83にスプーン形状を指示する形状情報が含まれていた場合の仮想オブジェクトRVの表示例を示した図である。ここで、実物体7は、遮光性の遮光部71と、光透過性の光透過部72とから構成されており、遮光部71等にRFIDタグ83が設けられているものとする。この場合、実物体7のRFIDタグ83がRFID識別部20により読み出されることで、同図に示したように、スプーン形状の仮想オブジェクトRVが、実物体7の光透過部72を包含するよう立体映像表示部5の表示空間に表示される。
また、本実施形態においても、相互作用演算部13により、仮想オブジェクトRVと他の仮想オブジェクトVとの相互作用が演算されることで、図31−1の仮想オブジェクトRV(スプーン)が、図31−2に示したように、円柱状の仮想オブジェクトV(例えば、ケーキ等)に入り込む様子を表現することができる。
図32−1は、RFIDタグ83にナイフ形状を指示する形状情報が含まれていた場合の仮想オブジェクトRVの表示例を示した図である。ここで、実物体7は、図31−1と同様、遮光性の遮光部71と、光透過性の光透過部72とから構成されており、遮光部71等にRFIDタグ83が設けられているものとする。この場合、実物体7のRFIDタグ83がRFID識別部20により読み出されることで、同図に示したように、ナイフ形状の仮想オブジェクトRVが、実物体7の光透過部72を包含するよう立体映像表示部5の表示空間に表示される。
また、図32−1においても、相互作用演算部13により、仮想オブジェクトRVと他の仮想オブジェクトVとの相互作用が演算されることで、図32−1の仮想オブジェクトRV(ナイフ)が、図32−2に示したように、円柱状の仮想オブジェクトV(例えば、ケーキ等)を切る様子を表現することができる。このように、仮想オブジェクトRVとしてナイフ形状を表示させた場合、ナイフ形状の切っ先部分が、実物体7の光透過部72に対応するよう表示させることが好ましい。これにより、観察者は、当該光透過部72が立体映像表示部5の表示面に触れる感触を得ながらケーキを切るという動作を行うことができるため、操作性を向上させるとともに仮想オブジェクトRVの臨場感、存在感を向上させることができる。
図33は、本実施形態の他の態様を示した図であって、RFIDタグ83にペン先形状を指示する形状情報が含まれていた場合の仮想オブジェクトRVの表示例を示した図である。ここで、実物体7は、図31−1と同様、遮光性の遮光部71と、光透過性の光透過部72とから構成されており、遮光部71等にRFIDタグ83が設けられているものとする。この場合も同様に、実物体7のRFIDタグ83がRFID識別部20により読み出されることで、同図に示したように、ペン先形状の仮想オブジェクトRVが、実物体7の光透過部72を包含するよう立体映像表示部5の表示空間に表示される。
なお、図33の態様では、観察者の操作による実物体7の移動に伴い、ペン先形状の仮想オブジェクトRVを連動して光透過部72に重畳表示させるとともに、その移動の軌跡Tを立体映像表示部5の表示面上に表示させることで、仮想オブジェクトRVで表したペン先により線が描画された様子を表現することができる。このように、仮想オブジェクトRVとしてペン先形状を表示させた場合、ペン先形状の先端部分が、実物体7の光透過部72に対応するよう表示させることが好ましい。これにより、観察者は、当該光透過部72が立体映像表示部5の表示面に触れる感触を得ながら線を引くといった動作を行うことができるため、操作性を向上させるとともに仮想オブジェクトRVの臨場感、存在感を向上させることができる。
以上のように、本実施形態によれば、実物体7を表すModel_obj131の生成時に、新たな属性を付加することで、実物体7が本来有する属性を仮想的に拡張することができ、インタラクティブ性をより向上させることができる。
なお、後述するフォースフィードバック部(図34、35参照)を本実施形態の構成に加えることとしてもよい。この構成の場合、例えば、立体映像表示部5に備えられたフォースフィードバック部84を用いることで、仮想オブジェクトRVで表されたペン先等が立体映像表示部5の表示面をなぞるときの風合い(例えば、ざらついた紙質等)を体感させることができ、仮想オブジェクトRVの臨場感、存在感をより向上させることができる。
[第7の実施形態]
次に、第7の実施形態の立体映像表示装置について説明する。なお、上述した第1、第5の実施形態と同様の構成要素については、同一の符号を付与し、その説明を省略する。
図34は、本実施形態の立体映像表示装置105の構成を示したブロック図である。図34に示したように、立体映像表示装置105は、第5の実施形態で説明した各機能部に加えて、実物体7内にフォースフィードバック部84を備えている。
ここで、フォースフィードバック部84は、相互作用演算部13からの指示信号に応じて衝撃や振動を発生させ、実物体7を把持する操作者の手に振動や力を加える。具体的に、相互作用演算部13は、例えば、図24で示した実物体7(光透過部72)を表すModel_obj131と、仮想オブジェクトVを表すModel_other132との相互作用の演算結果が衝突を表すような場合、フォースフィードバック部84に指示信号を送信することで、フォースフィードバック部84を駆動させ、実物体7の操作者に衝突の際の衝撃を体感させる。なお、相互作用演算部13とフォースフィードバック部84との間の通信は有線、無線を問わないものとする。
図34の例では、実物体7にフォースフィードバック部84を設けた構成を説明したが、これに限らず、観察者が体感可能な位置であれば設置する位置は問わないものとする。図35は本実施形態の他の構成例を示した図である。ここで、立体映像表示装置106は、第5の実施形態で説明した各機能部に加えて、立体映像表示部5内にフォースフィードバック部21を備えている。
ここで、フォースフィードバック部21は、フォースフィードバック部84と同様、相互作用演算部13からの指示信号に応じて衝撃や振動を発生させ、立体映像表示部5自体に振動や力を加える。具体的に、相互作用演算部13は、例えば、図8で示した実物体7を表すModel_obj131と、球状の仮想オブジェクトV1を表すModel_other132との相互作用の演算結果が、衝突を表すような場合、フォースフィードバック部21に指示信号を送信することで、フォースフィードバック部21を駆動させ、観察者に衝突の際の衝撃を体感させる。この場合、観察者は実物体7自体を把持していないが、球状の仮想オブジェクトV1が実物体7に衝突したとき衝撃を与えることで、仮想オブジェクトV1の臨場感、存在感を向上させることができる。
また、図示しないが、実物体7及び/又は立体映像表示部5にスピーカ等の音響発生装置を備え、相互作用演算部13からの指示信号に応じて、衝突時の効果音やガラスが割れるような効果音を出力させることで、臨場感をより向上させることができる。
以上のように、本実施形態によれば、実物体7と仮想オブジェクトとの仮想的な相互作用の演算結果に応じて、フォースフィードバック装置又は音響発生装置を駆動させることで、立体映像の臨場感、存在感をより向上させることができる。
以上、発明の実施の形態について説明したが、本発明はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲での種々の変更、置換、追加等が可能である。
なお、上述した第1〜第7の実施形態の立体映像表示装置で実行されるプログラムは、ROM2又はHDD4に予め組み込まれて提供するものとするが、これに限らず、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。また、このプログラムをインターネット等のネットワークに接続されたコンピュータ上に格納し、ニットワーク経由でダウンロードさせることにより提供するように構成してもよく、インターネット等のネットワーク経由で提供又は配布するように構成してもよい。
立体映像表示装置のハードウェア構成を示した図である。 立体映像表示部の構造を概略的に示す斜視図である。 多眼方式の立体映像表示部を説明するための図である。 1次元IP方式の立体映像表示部を説明するための図である。 視差画像が変化している状態を示す模式図である。 視差画像が変化している状態を示す模式図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。 立体映像の表示例を示した図である。 実物体の構造を示した図である。 立体映像の表示例を示した図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 実物体の位置・姿勢検出方法の一例を示した図である。 実物体の位置・姿勢検出方法の一例を示した図である。 実物体の位置・姿勢検出方法の一例を示した図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像の表示例を示した図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。 立体映像表示装置の機能的構成の一例を示したブロック図である。
符号の説明
100 立体映像表示装置
101 立体映像表示装置
102 立体映像表示装置
103 立体映像表示装置
104 立体映像表示装置
105 立体映像表示装置
106 立体映像表示装置
1 プロセッサ
2 ROM
3 RAM
4 HDD
5 立体映像表示部
51 視差画像表示部
52 光線制御素子
53 実効画素
6 ユーザインタフェース(UI)
7 実物体
71 遮光部
72 光透過部
73 光透過部
81 発光部
82 発光部
83 RFIDタグ
84 フォースフィードバック部
9 撮影装置
91 撮影装置
92 撮影装置
11 実物体位置姿勢情報記憶部
12 実物体属性情報記憶部
12 実物体属性記憶部
13 相互作用演算部
131 Model_obj
132 Model_other
14 要素画像生成部
15 実物体付加情報記憶部
16 相互作用演算部
17 相互作用演算部
171 遮光部映像非表示部
18 相互作用演算部
181 光透過性部分光学的影響補正部
19 実物体位置姿勢検出部
191 実物体変位機構部
20 RFID識別部
21 フォースフィードバック部

Claims (14)

  1. 空間像方式により表示空間内に立体映像を表示する立体映像表示装置と、当該表示空間内に配置される少なくとも一部が光透過性部分である実物体と、を含む立体映像表示システムであって、
    前記立体映像表示装置は、
    前記実物体の位置及び姿勢を示した位置姿勢情報を記憶する位置姿勢情報記憶手段と、
    前記実物体の光学的特性を含む属性を示した属性情報を記憶する属性情報記憶手段と、
    前記位置姿勢情報及び属性情報に基づいて、前記実物体を表す第1物理演算モデルを生成する第1物理演算モデル生成手段と、
    前記表示空間内における前記実物体の仮想的な外部環境を表す第2物理演算モデルを生成する第2物理演算モデル生成手段と、
    前記第1物理演算モデルと第2物理演算モデルとの相互作用を演算する演算手段と、
    前記相互作用演算手段による演算結果に基づいて、前記表示空間内に立体映像を表示させる表示制御手段と、
    を備えたことを特徴とする立体映像表示システム。
  2. 前記表示制御手段は、前記演算手段による演算結果を、前記第1物理演算モデルから表される立体映像及び/又は第2物理演算モデルから表される立体映像に反映することを特徴とする請求項1に記載の立体映像表示システム。
  3. 前記実物体の属性とは異なる他の属性を付加情報として記憶する付加情報記憶手段を更に備え、
    前記第1物理演算モデル生成手段は、前記位置姿勢情報及び属性情報とともに、前記付加情報に基づいて、前記第1物理演算モデルを生成することを特徴とする請求項1に記載の立体映像表示システム。
  4. 前記表示制御手段は、前記第1物理演算モデルから表される立体映像のうち、前記実物体の少なくとも一部に相当する領域を非表示にする映像非表示手段を更に備えたことを特徴とする請求項2に記載の立体映像表示システム。
  5. 前記実物体の光透過性部分の属性情報に基づいて、当該光透過性部分に表示する立体映像が所定の表示状態となるよう前記第1物理演算モデルを補正する光学影響補正手段を更に備えたことを特徴とする請求項1に記載の立体映像表示システム。
  6. 前記実物体は、当該実物体の光透過性部内に光を散乱する散乱部位を有し、
    前記表示制御手段は、前記実物体の散乱部位に前記立体映像を輝点として表示させることを特徴とする請求項1に記載の立体映像表示システム。
  7. 前記実物体の位置及び姿勢を検出する位置姿勢検出手段を更に備え、
    前記位置姿勢検出手段は、前記検出した実物体の位置及び姿勢を実物体位置姿勢情報として、前記位置姿勢情報記憶手段に記憶させることを特徴とする請求項1に記載の立体映像表示システム。
  8. 前記実物体は、位置及び姿勢を検出可能なセンサ手段を更に備え、
    前記位置姿勢検出手段は、前記センサ手段により検出された前記実物体の位置及び姿勢を実物体位置姿勢情報として、前記位置姿勢情報記憶手段に記憶させることを特徴とする請求項7に記載の立体映像表示システム。
  9. 前記位置姿勢検出手段は、前記立体映像の表示面における前記実物体の位置を赤外線イメージセンサ方式で検出することを特徴とする請求項7に記載の立体映像表示システム。
  10. 前記実物体は、光を照射する発光体を有し、
    前記立体映像表示装置は、前記発光体から照射された少なくとも二つの光点を撮影する撮影手段を更に備え、
    前記位置検出手段は、前記撮影手段により撮影された撮影画像に含まれる前記光点の位置関係に基づいて、前記実物体の位置及び姿勢を検出することを特徴とする請求項7に記載の立体映像表示システム。
  11. 前記実物体は、屈折率が1より大なる前記光透過性部分の互いに異なる二つの位置に、光を散乱する散乱部位を有し、
    前記発光体は、前記光透過性部分を通じて前記散乱部位を発光させることを特徴とする請求項9に記載の立体映像表示システム。
  12. 前記実物体の位置及び姿勢を変位させる位置変位手段を更に備え、
    前記位置変位手段は、前記実物体を変位させた位置及び姿勢を実物体位置姿勢情報として、前記位置姿勢情報記憶手段に記憶させることを特徴とする請求項1に記載の立体映像表示システム。
  13. 前記実物体は、当該実物体に固有の属性を記憶する情報記憶手段を備え
    前記立体映像表示装置は、前記情報記憶手段から前記固有の属性を読み出し、当該固有の属性を前記属性情報として、属性情報記憶手段に記憶させる情報読出手段を備えたことを特徴とする請求項1に記載の立体映像表示システム。
  14. 前記実物体又は前記立体映像表示装置は、衝撃や振動を発生するフォースフィードバック手段を更に備え、
    前記立体映像表示装置は、前記演算手段による演算結果に応じて、前記フォースフィードバック手段を駆動させる駆動制御手段を更に備えたことを特徴とする請求項1に記載の立体映像表示システム。
JP2007057423A 2007-03-07 2007-03-07 立体映像表示システム Expired - Fee Related JP4901539B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007057423A JP4901539B2 (ja) 2007-03-07 2007-03-07 立体映像表示システム
US12/043,255 US20080218515A1 (en) 2007-03-07 2008-03-06 Three-dimensional-image display system and displaying method
CNA2008100837133A CN101287141A (zh) 2007-03-07 2008-03-07 立体影像显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057423A JP4901539B2 (ja) 2007-03-07 2007-03-07 立体映像表示システム

Publications (2)

Publication Number Publication Date
JP2008219772A JP2008219772A (ja) 2008-09-18
JP4901539B2 true JP4901539B2 (ja) 2012-03-21

Family

ID=39741175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057423A Expired - Fee Related JP4901539B2 (ja) 2007-03-07 2007-03-07 立体映像表示システム

Country Status (3)

Country Link
US (1) US20080218515A1 (ja)
JP (1) JP4901539B2 (ja)
CN (1) CN101287141A (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245390A (ja) * 2008-03-31 2009-10-22 Brother Ind Ltd 表示処理装置及び表示処理システム
US8624962B2 (en) * 2009-02-02 2014-01-07 Ydreams—Informatica, S.A. Ydreams Systems and methods for simulating three-dimensional virtual interactions from two-dimensional camera images
US8994645B1 (en) * 2009-08-07 2015-03-31 Groundspeak, Inc. System and method for providing a virtual object based on physical location and tagging
DE102009058802B4 (de) * 2009-12-18 2018-03-29 Airbus Operations Gmbh Anordnung zur kombinierten Darstellung eines realen und eines virtuellen Modells
US8533192B2 (en) 2010-09-16 2013-09-10 Alcatel Lucent Content capture device and methods for automatically tagging content
US20120067954A1 (en) * 2010-09-16 2012-03-22 Madhav Moganti Sensors, scanners, and methods for automatically tagging content
US8655881B2 (en) 2010-09-16 2014-02-18 Alcatel Lucent Method and apparatus for automatically tagging content
US8666978B2 (en) 2010-09-16 2014-03-04 Alcatel Lucent Method and apparatus for managing content tagging and tagged content
JP2012115414A (ja) * 2010-11-30 2012-06-21 Nintendo Co Ltd ゲーム装置、ゲームを提供する方法、ゲームプログラム、および、ゲームシステム
JP5325267B2 (ja) * 2011-07-14 2013-10-23 株式会社エヌ・ティ・ティ・ドコモ オブジェクト表示装置、オブジェクト表示方法及びオブジェクト表示プログラム
US8990682B1 (en) 2011-10-05 2015-03-24 Google Inc. Methods and devices for rendering interactions between virtual and physical objects on a substantially transparent display
US9081177B2 (en) 2011-10-07 2015-07-14 Google Inc. Wearable computer with nearby object response
US9547406B1 (en) 2011-10-31 2017-01-17 Google Inc. Velocity-based triggering
US9105073B2 (en) * 2012-04-24 2015-08-11 Amadeus S.A.S. Method and system of producing an interactive version of a plan or the like
US9183676B2 (en) * 2012-04-27 2015-11-10 Microsoft Technology Licensing, Llc Displaying a collision between real and virtual objects
US20140002492A1 (en) * 2012-06-29 2014-01-02 Mathew J. Lamb Propagation of real world properties into augmented reality images
WO2014024649A1 (ja) 2012-08-06 2014-02-13 ソニー株式会社 画像表示装置および画像表示方法
US9233470B1 (en) * 2013-03-15 2016-01-12 Industrial Perception, Inc. Determining a virtual representation of an environment by projecting texture patterns
JP5947333B2 (ja) * 2014-05-29 2016-07-06 日東電工株式会社 表示装置
US9508195B2 (en) * 2014-09-03 2016-11-29 Microsoft Technology Licensing, Llc Management of content in a 3D holographic environment
CN104766361B (zh) * 2015-04-29 2018-04-27 腾讯科技(深圳)有限公司 一种残影效果的实现方法,及装置
JP2017010387A (ja) * 2015-06-24 2017-01-12 キヤノン株式会社 システム、複合現実表示装置、情報処理方法及びプログラム
JP6676294B2 (ja) * 2015-06-30 2020-04-08 キヤノン株式会社 情報処理装置、情報処理方法、プログラム
US10037085B2 (en) * 2015-12-21 2018-07-31 Intel Corporation Techniques for real object and hand representation in virtual reality content
CN106056663B (zh) * 2016-05-19 2019-05-24 京东方科技集团股份有限公司 增强现实场景中的渲染方法、处理模块和增强现实眼镜
US20180096506A1 (en) * 2016-10-04 2018-04-05 Facebook, Inc. Controls and Interfaces for User Interactions in Virtual Spaces
WO2018187171A1 (en) * 2017-04-04 2018-10-11 Usens, Inc. Methods and systems for hand tracking
CN108762490B (zh) 2017-05-09 2021-06-22 苏州乐轩科技有限公司 用于混合现实的装置
US11205402B2 (en) * 2017-09-25 2021-12-21 Mitsubishi Electric Corporation Information display apparatus and method, and recording medium
JP7280032B2 (ja) * 2018-11-27 2023-05-23 ローム株式会社 入力デバイス、自動車
CN109917911B (zh) * 2019-02-20 2021-12-28 西北工业大学 一种基于信息物理交互的振动触觉反馈装置设计方法
JP2021071754A (ja) * 2019-10-29 2021-05-06 ソニー株式会社 画像表示装置
KR102594258B1 (ko) * 2021-04-26 2023-10-26 한국전자통신연구원 증강현실에서 실제 객체를 가상으로 이동하는 방법 및 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3558104B2 (ja) * 1996-08-05 2004-08-25 ソニー株式会社 3次元仮想物体表示装置および方法
US6151009A (en) * 1996-08-21 2000-11-21 Carnegie Mellon University Method and apparatus for merging real and synthetic images
US6456289B1 (en) * 1999-04-23 2002-09-24 Georgia Tech Research Corporation Animation system and method for a animating object fracture
JP2001183994A (ja) * 1999-12-27 2001-07-06 Sony Corp 画像表示装置
US7098888B2 (en) * 2000-04-28 2006-08-29 Texas Tech University System Development of stereoscopic-haptic virtual environments
JP2002175539A (ja) * 2000-12-06 2002-06-21 Data Keekibeeka Kk 画像処理方法およびそのプログラムと画像処理装置
JP3944019B2 (ja) * 2002-07-31 2007-07-11 キヤノン株式会社 情報処理装置および方法
JP3640256B2 (ja) * 2002-11-12 2005-04-20 株式会社ナムコ 立体視用印刷物の製造方法、立体視用印刷物
JP2008219788A (ja) * 2007-03-07 2008-09-18 Toshiba Corp 立体画像表示装置、方法およびプログラム

Also Published As

Publication number Publication date
CN101287141A (zh) 2008-10-15
US20080218515A1 (en) 2008-09-11
JP2008219772A (ja) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4901539B2 (ja) 立体映像表示システム
US7371163B1 (en) 3D portable game system
JP4764305B2 (ja) 立体画像生成装置、方法およびプログラム
JP6933727B2 (ja) 画像処理装置、画像処理方法、およびプログラム
CN106796453B (zh) 驱动投影仪以生成共享空间增强现实体验
KR102240568B1 (ko) 영상 처리 방법 및 장치
CN103337095B (zh) 一种真实空间三维地理实体的立体虚拟显示方法
US20170150108A1 (en) Autostereoscopic Virtual Reality Platform
US20210283496A1 (en) Realistic Virtual/Augmented/Mixed Reality Viewing and Interactions
CN106131536A (zh) 一种裸眼3d增强现实互动展示系统及其展示方法
US20100315414A1 (en) Display of 3-dimensional objects
KR101997298B1 (ko) 3차원 가상의 시나리오 내 물체의 선택
KR20070005091A (ko) 입체 영상 표시 장치
JP6039594B2 (ja) 情報処理装置および情報処理方法
KR20200046048A (ko) 이전의 관점으로부터의 렌더링된 콘텐츠 및 비-렌더링된 콘텐츠를 사용하는 새로운 프레임의 생성
US20180322818A1 (en) Head Tracking Based Depth Fusion
JP2012174238A5 (ja)
JP4772952B2 (ja) 立体視画像生成装置及び情報記憶媒体
US20220400245A1 (en) Multiview autostereoscopic display using lenticular-based steerable backlighting
JP4137714B2 (ja) オブジェクト表示方法およびオブジェクト表示装置
JP2017069924A (ja) 画像表示装置
JP4958289B2 (ja) 立体ディスプレイ
JP2010253264A (ja) ゲーム装置、立体視画像生成方法、プログラム及び情報記憶媒体
WO2015196877A1 (en) Autostereoscopic virtual reality platform
He Volume Visualization in Projection-Based Virtual Environments: Interaction and Exploration Tools Design and Evaluation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees