JP4899378B2 - Lead acid battery and negative electrode for lead acid battery - Google Patents

Lead acid battery and negative electrode for lead acid battery Download PDF

Info

Publication number
JP4899378B2
JP4899378B2 JP2005241155A JP2005241155A JP4899378B2 JP 4899378 B2 JP4899378 B2 JP 4899378B2 JP 2005241155 A JP2005241155 A JP 2005241155A JP 2005241155 A JP2005241155 A JP 2005241155A JP 4899378 B2 JP4899378 B2 JP 4899378B2
Authority
JP
Japan
Prior art keywords
negative electrode
group
naphthoquinone
lead
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005241155A
Other languages
Japanese (ja)
Other versions
JP2007059134A (en
Inventor
郁美 元井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2005241155A priority Critical patent/JP4899378B2/en
Publication of JP2007059134A publication Critical patent/JP2007059134A/en
Application granted granted Critical
Publication of JP4899378B2 publication Critical patent/JP4899378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、鉛蓄電池の改良に関するもので、さらに詳しく言えば、その負極の改良に関するものである。   The present invention relates to an improvement of a lead-acid battery, and more particularly to an improvement of the negative electrode.

近年、鉛蓄電池は、携帯用電子機器、非常用電源装置あるいは電気自動車などの電源として、その需要が増大してきており、高容量が望まれていて、種々の試みがなされている。鉛蓄電池の高容量化は、特許文献2に開示されたような、正、負極板を薄くして極板の枚数を増加させること、格子体に充填する活物質の密度を小さくして多孔性にすること、といった手段、あるいは特許文献1に開示されたような、負極活物質にカーボン等を添加して負極活物質の利用率を向上させて負極の充電受入性能を向上させること、といった手段によって行われてきた。
特開2001−332264号公報 特開平10−040907号公報
In recent years, the demand for lead-acid batteries has been increasing as a power source for portable electronic devices, emergency power supply devices or electric vehicles, and high capacity is desired, and various attempts have been made. Increased capacity of the lead-acid battery is made porous by reducing the positive and negative electrode plates to increase the number of electrode plates, and reducing the density of the active material filled in the lattice, as disclosed in Patent Document 2. Or means such as disclosed in Patent Document 1 to improve the charge acceptance performance of the negative electrode by adding carbon or the like to the negative electrode active material to improve the utilization rate of the negative electrode active material. Has been done by.
JP 2001-332264 A Japanese Patent Laid-Open No. 10-040907

上記した、正、負極板を薄くして極板の枚数を増加させることは、それによって格子体も薄くしなければならず、腐食によって格子体の強度が早期に低下するという問題があり、格子体に充填する活物質の密度を小さくして多孔性にすることは、充放電の反復や振動によって活物質の軟化や脱落が生じやすいという問題があって、いずれも鉛蓄電池の寿命性能が低下する原因を有していた。また、負極活物質に炭素粉末を添加して負極活物質の利用率を向上させて負極の充電受入性能を向上させることは、活物質量の減少につながるという問題や、1CA以上の大電流での充電に対しては十分な効果が得られないという問題があって、高容量化には限界があった。   Increasing the number of electrode plates by thinning the positive and negative plates described above has a problem that the lattice body must also be thinned, and the strength of the lattice body is lowered early due to corrosion. Reducing the density of the active material that fills the body to make it porous has the problem that the active material is likely to soften or fall off due to repeated charge / discharge and vibration, both of which reduce the life performance of lead-acid batteries. Had a cause to do. Moreover, adding carbon powder to the negative electrode active material to improve the utilization rate of the negative electrode active material and improving the charge acceptance performance of the negative electrode leads to a problem that the amount of the active material is reduced and a large current of 1 CA or more. However, there is a problem that a sufficient effect cannot be obtained for charging, and there is a limit to increasing the capacity.

発明者は、上記した問題に鑑みて、特願2004−329958号にて、キノン構造を有したキノン物質、または前記キノン物質を重合させたキノンポリマー(キノン物質としてはベンゾキノン、アントラキノン、ナフトキノンあるいはそれらの誘導体)を鉛粉に添加することで、活物質量の減少につながることなく鉛蓄電池の寿命性能の改良ができることを提案しているが、本発明は、さらなる寿命性能の改良を図ったものである。   In view of the above problems, the inventor disclosed in Japanese Patent Application No. 2004-329958, a quinone substance having a quinone structure, or a quinone polymer obtained by polymerizing the quinone substance (the quinone substances include benzoquinone, anthraquinone, naphthoquinone or the like). It has been proposed that the life performance of lead-acid batteries can be improved without reducing the amount of active material by adding a derivative of the above) to the lead powder. It is.

上記した特願2004−329958号においては、鉛粉に、ナフトキノンあるいはアミノ基やクロロ基といった官能基をナフトキノンに導入したものを添加することによって鉛蓄電池の寿命性能の改良を実現したが、これは、このような官能基によって硫酸鉛の溶解度が向上したためである。これに対し、本発明は、前記ナフトキノンに、スルホン基、カルボキシル基あるいは水酸基のような親水基を有した官能基を導入すると、親水基によってナフトキノンが負極活物質中に均一に分散することに着目してなされたもので、官能基を導入したキノン物質を負極に含有し、官能基は、スルホン基、カルボキシル基、水酸基から選択された少なくとも一つであり、キノン物質がナフトキノン、またはナフトキノン誘導体である、ことを特徴とする鉛蓄電池であり(請求項1)、また、官能基を導入したキノン物質が含有され、官能基は、スルホン基、カルボキシル基、水酸基から選択された少なくとも一つであり、キノン物質がナフトキノンである、鉛蓄電池用負極であり(請求項2)、前記ナフトキノンは添加量が鉛粉に対して0.01質量%以上、0.04質量%以下であり(請求項3)、また、官能基を導入したキノン物質が含有され、官能基は、スルホン基、カルボキシル基、水酸基から選択された少なくとも一つであり、キノン物質がナフトキノン誘導体である、鉛蓄電池用負極であり(請求項4)、前記ナフトキノン誘導体は添加量が鉛粉に対して0.05質量%以上、0.5質量%以下であり(請求項5)、前記ナフトキノン誘導体はメナキノンとその誘導体またはフィロキノンとその誘導体である(請求項6)ことを、それぞれ特徴とする。   In the above-mentioned Japanese Patent Application No. 2004-329958, the life performance of a lead storage battery was improved by adding naphthoquinone or a functional group such as amino group or chloro group introduced into naphthoquinone to lead powder. This is because the solubility of lead sulfate is improved by such a functional group. On the other hand, in the present invention, when a functional group having a hydrophilic group such as a sulfone group, a carboxyl group or a hydroxyl group is introduced into the naphthoquinone, the naphthoquinone is uniformly dispersed in the negative electrode active material by the hydrophilic group. A quinone substance having a functional group introduced therein is contained in the negative electrode, and the functional group is at least one selected from a sulfone group, a carboxyl group, and a hydroxyl group, and the quinone substance is a naphthoquinone or a naphthoquinone derivative. A lead-acid battery characterized in that it contains a quinone substance into which a functional group is introduced, and the functional group is at least one selected from a sulfone group, a carboxyl group, and a hydroxyl group; The quinone substance is naphthoquinone, and is a negative electrode for a lead storage battery (Claim 2). 1% by mass or more and 0.04% by mass or less (Claim 3), and a quinone substance into which a functional group is introduced is contained, and the functional group is at least one selected from a sulfone group, a carboxyl group, and a hydroxyl group The quinone substance is a naphthoquinone derivative, and is a negative electrode for a lead storage battery (Claim 4), and the naphthoquinone derivative is added in an amount of 0.05% by mass to 0.5% by mass with respect to the lead powder (Claim 5) The naphthoquinone derivative is menaquinone and a derivative thereof or phylloquinone and a derivative thereof (Claim 6), respectively.

本発明によれば、スルホン基、カルボキシル基あるいは水酸基のような親水性を有した官能基を導入したナフトキノンあるいはナフトキノン誘導体を含有させることによって、ナフトキノンあるいはナフトキノン誘導体を負極活物質中に均一に分散させることができ、かつキノン物質の酸素原子が負極活物質表面に吸着し、充放電を反復させることによって進行する負極活物質の収縮、すなわち比表面積の低下を抑制することができる。また、本発明によれば、上記した負極活物質を鉛蓄電池に用いているから、活物質量の減少や寿命性能の低下につながることなく、高容量の鉛蓄電池を得るのに寄与することができる。なお、このようなキノン物質は上述した効果が得られるならば、必ずしも負極活物質中に含有させなくてもよく、負極を構成する格子体の表面に塗布する等、多様な含有のさせ方を適宜選択することができる。   According to the present invention, naphthoquinone or a naphthoquinone derivative is uniformly dispersed in a negative electrode active material by containing a naphthoquinone or a naphthoquinone derivative having a hydrophilic functional group such as a sulfone group, a carboxyl group, or a hydroxyl group. In addition, the oxygen atom of the quinone material is adsorbed on the surface of the negative electrode active material, and the negative electrode active material can be prevented from shrinking, that is, the specific surface area can be reduced by repeating charge and discharge. In addition, according to the present invention, since the negative electrode active material described above is used for a lead storage battery, it contributes to obtaining a high capacity lead storage battery without reducing the amount of active material and the life performance. it can. In addition, as long as the above-described effects can be obtained, such a quinone material does not necessarily need to be contained in the negative electrode active material, and various ways of inclusion such as application to the surface of the lattice constituting the negative electrode can be used. It can be selected appropriately.

以下、本発明を、その実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the embodiments.

鉛蓄電池用負極活物質を以下のように作製した。すなわち、キノン物質として、ナフトキノンA(化1に示した官能基Xが水素Hであるもの)に対し、その官能基Xがスルホン基−SO3Hであるナフトキノン類C、その官能基Xがカルボキシル基−COOHであるナフトキノン類D、その官能基Xが水酸基−OHであるナフトキノン類E、ナフトキノン誘導体の一種であるメナキノンH(化1に示したナフトキノンの基本構造に第1のイソプレノイド側鎖が導入された、化2に示した構造を有し、官能基Xが水素Hであるもの)に対し、その官能基Xがスルホン基−SO3Hであるメナキノン類I、その官能基Xがカルボキシル基−COOHであるメナキノン類J、メナキノン誘導体の一種であるメナキノールK(化1に示したナフトキノンの基本構造のC=O二重結合をそれぞれC−O単結合とO−H単結合にし、これに前記第1のイソプレノイド側鎖が導入された、化3に示した構造を有し、官能基Xが水素Hであるもの)に対し、その官能基Xがスルホン基−SO3Hであるメナキノール類L、ナフトキノン誘導体の一種であるフィロキノンM(化2に示したメナキノンHの第1のイソプレノイド側鎖に代えて第2のイソプレノイド側鎖が導入された、化4に示した構造を有し、官能基Xが水素Hであるもの)に対し、その官能基Xがスルホン基−SO3Hであるフィロキノン類N、およびフィロキノン誘導体の一種であるフィロクロメノールO(化3に示したメナキノールKの第1のイソプレノイド側鎖に代えてフィロキノンMの第2のイソプレノイド側鎖が導入され、かつ一つのO−H単結合のOを前記第2のイソプレノイド側鎖中のC=C二重結合部のCに単結合された、化5に示した官能基Xが水素Hであるもの)に対し、その官能基Xがスルホン基−SO3Hであるフィロクロメノール類Pを準備した。そして、公知の方法で作製した鉛粉に、硫酸バリウムを、前記鉛粉に対して1.0質量%、活物質補強材としてのポリプロピレン樹脂の短繊維(平均長さ2〜5mm)を、前記鉛粉に対して0.03質量%、前記ナフトキノン類C、DおよびEを、前記鉛粉に対してそれぞれ0.005質量%、0.01質量%、0.02質量%、0.03質量%、0.04質量%および0.05質量%添加した18種類の負極活物質と、前記メナキノン類I、J、メナキノール類L、フィロキノン類N、フィロクロメノール類Pを、前記鉛粉に対してそれぞれ0.02質量%、0.05質量%、0.1質量%、0.3質量%、0.5質量%および0.6質量%添加した30種類の負極活物質と、を本発明品として作製した。また、これらとは別に、前記特願2004−329958号の実施例にあるナフトキノンA、その官能基Xにアミノ基−NH2を導入したナフトキノン類B、その官能基Xにメチル基−CH3を導入したナフトキノン類F、その官能基Xにメトキシ基−OCH3を導入したナフトキノン類Gを、鉛粉に対してそれぞれ0.005質量%、0.01質量%、0.02質量%、0.03質量%、0.04質量%および0.05質量%添加した24種類の負極活物質と、前記特願2004−329958号の実施例にあるメナキノンH、メナキノールK、フィロキノンM、フィロクロメノールOを、鉛粉に対してそれぞれ0.02質量%、0.05質量%、0.1質量%、0.3質量%、0.5質量%および0.6質量%添加した24種類の負極活物質と、を参考品として作製した。 A negative electrode active material for a lead-acid battery was prepared as follows. That is, as a quinone substance, naphthoquinone A (the functional group X shown in Chemical Formula 1 is hydrogen H), the naphthoquinones C whose functional group X is a sulfone group —SO 3 H, and the functional group X is carboxyl A naphthoquinone D which is a group —COOH, a naphthoquinone E whose functional group X is a hydroxyl group —OH, menaquinone H which is a kind of naphthoquinone derivatives (the first isoprenoid side chain is introduced into the basic structure of naphthoquinone shown in Chemical Formula 1) In which the functional group X is a hydrogen H), the functional group X is a sulfone group —SO 3 H, and the functional group X is a carboxyl group. Menaquinones J which are —COOH and menaquinol K which is a kind of menaquinone derivative (C—O double bond of the basic structure of naphthoquinone shown in Chemical Formula 1 is represented by C—O, respectively. And a functional group X having a structure shown in Chemical Formula 3 in which the first isoprenoid side chain is introduced and the functional group X is hydrogen H). Is a sulfone group —SO 3 H, phylloquinone M, which is a kind of naphthoquinone derivative (in which a second isoprenoid side chain is introduced instead of the first isoprenoid side chain of menaquinone H shown in Chemical Formula 2, Phylloquinones N having a structure shown in Chemical formula 4 and the functional group X being hydrogen H), and the functional group X being a sulfone group —SO 3 H, and phylochromenol being a kind of phylloquinone derivative O (in place of the first isoprenoid side chain of menaquinol K shown in Chemical Formula 3, the second isoprenoid side chain of phylloquinone M is introduced, and one O—H single bond O is replaced with the second isoprenoid side chain. It is a single bond to C C = C double bond portion in the maytansinoid side chains of relative functional group X are hydrogen H) shown in 5, the functional group X is sulfone group -SO 3 H A certain phylochromenol P was prepared. And, to the lead powder produced by a known method, barium sulfate, 1.0% by mass with respect to the lead powder, polypropylene fiber short fibers (average length of 2 to 5 mm) as an active material reinforcing material, 0.03 mass% with respect to the lead powder, the naphthoquinones C, D, and E are 0.005 mass%, 0.01 mass%, 0.02 mass%, and 0.03 mass with respect to the lead powder, respectively. %, 0.04% by mass and 0.05% by mass of negative electrode active material, menaquinones I, J, menaquinols L, phylloquinones N, phylochromemenols P with respect to the lead powder 30 kinds of negative electrode active materials added with 0.02% by mass, 0.05% by mass, 0.1% by mass, 0.3% by mass, 0.5% by mass and 0.6% by mass, respectively, according to the present invention. It was produced as a product. In addition to these, naphthoquinone A in the examples of the Japanese Patent Application No. 2004-329958, naphthoquinones B in which an amino group -NH 2 is introduced into the functional group X, and a methyl group -CH 3 in the functional group X. The introduced naphthoquinones F and naphthoquinones G having a methoxy group —OCH 3 introduced into the functional group X thereof are 0.005% by mass, 0.01% by mass, 0.02% by mass, and 0.0. 24 kinds of negative electrode active materials added with 03% by mass, 0.04% by mass and 0.05% by mass, menaquinone H, menaquinol K, phylloquinone M, phylochromenol O in the examples of the aforementioned Japanese Patent Application No. 2004-329958 Types of negative electrode actives in which 0.02 mass%, 0.05 mass%, 0.1 mass%, 0.3 mass%, 0.5 mass% and 0.6 mass% were added to lead powder, respectively. object And, it was prepared as reference materials.

同様に、化6に示した基本構造のリグニンを前記鉛粉に対して0.25質量%、硫酸バリウムを同1.0質量%および前記活物質補強材を同0.03質量%添加した負極活物質を従来品として、硫酸バリウムを同1.0質量%および前記活物質補強材を同0.03質量%添加した負極活物質を比較品として作製した。   Similarly, 0.25% by mass of the lignin having the basic structure shown in Chemical Formula 6 with respect to the lead powder, 1.0% by mass of barium sulfate, and 0.03% by mass of the active material reinforcing material were added. A negative electrode active material to which 1.0% by mass of barium sulfate and 0.03% by mass of the above active material reinforcing material were added was used as a comparative product.

次に、これらの負極活物質に、常法によって希硫酸と水を加えて練り合わせて負極活物質ペーストを調製した。   Next, to these negative electrode active materials, dilute sulfuric acid and water were added and kneaded by a conventional method to prepare negative electrode active material pastes.

Figure 0004899378
Figure 0004899378

Figure 0004899378
Figure 0004899378

Figure 0004899378
Figure 0004899378

Figure 0004899378
Figure 0004899378

Figure 0004899378
Figure 0004899378

Figure 0004899378
Figure 0004899378

次に、上記した各負極活物質ペーストを、Pb−0.07重量%Ca−1.5重量%Sn合金から製造したエキスパンド格子体に充填し、熟成、乾燥して未化成の負極板を作成した。そして、この未化成の負極板を4枚と、公知の方法で作製した未化成のペースト式正極板を3枚準備し、正、負極板間にポリエチレンからなるセパレータを介在させて積層して極板群とした。そして、各極板群をポリプロピレン製の電槽内に配置し、電槽内に20℃の比重が1.28の希硫酸からなる電解液を注液し、公知の条件で電槽化成を行い、ナフトキノン類C、D、E、メナキノン類I、J、メナキノール類L、フィロキノン類N、フィロクロメノール類Pを含む本発明に係る負極を用いた鉛蓄電池の本発明品c、d、e、i、j、l、n、pを、それぞれ添加量を前述のように変化させて各6個ずつ完成させた。また、ナフトキノンA、ナフトキノン類B、F、G、メナキノンH、メナキノールK、フィロキノンM、フィロクロメノールOを含む参考例に係る負極を用いた鉛蓄電池の参考品a、b、f、g、h、k、m、oを、それぞれ添加量を前述のように変化させて各6個ずつ完成させた。さらに、負極に従来品の負極活物質を用いた鉛蓄電池の従来品と、負極に比較品の負極活物質を用いた鉛蓄電池の比較品を1個ずつ完成させた。なお、得られた鉛蓄電池は、公称容量が27Ahで、正、負極板の寸法は縦が115mm、横が103mm、厚さが1.5mmであった。   Next, each of the negative electrode active material pastes described above is filled in an expanded lattice produced from a Pb-0.07 wt% Ca-1.5 wt% Sn alloy, and aged and dried to produce an unformed negative electrode plate. did. Then, four unformed negative electrode plates and three unformed paste-type positive electrode plates prepared by a known method are prepared and laminated with a separator made of polyethylene interposed between the positive and negative electrode plates. A group of plates was used. Each electrode plate group is placed in a polypropylene battery case, and an electrolytic solution made of dilute sulfuric acid having a specific gravity of 1.28 at 20 ° C. is injected into the battery case, and the battery case is formed under known conditions. , Naphthoquinones C, D, E, menaquinones I, J, menaquinols L, phylloquinones N, phylochromemenols P, lead-acid batteries of the present invention products c, d, e, Each of i, j, l, n, and p was completed by changing the addition amount as described above. Reference products a, b, f, g, h of lead acid batteries using negative electrodes according to reference examples including naphthoquinone A, naphthoquinones B, F, G, menaquinone H, menaquinol K, phylloquinone M, phylochromenol O , K, m, and o were each completed by changing the addition amount as described above. Further, a conventional lead storage battery using a conventional negative electrode active material for the negative electrode and a comparative lead storage battery using a comparative negative electrode active material for the negative electrode were completed one by one. The obtained lead storage battery had a nominal capacity of 27 Ah, and the positive and negative electrode plate dimensions were 115 mm in length, 103 mm in width, and 1.5 mm in thickness.

次に、前述した鉛蓄電池の本発明品、参考品、従来品および比較品をサイクル寿命試験に供し、その結果を図1、図2に示す。図1はナフトキノンA、ナフトキノン類B、C、D、E、F、Gの添加量とサイクル寿命数との関係を示し、図2はメナキノンH、メナキノン類I、J、メナキノールK、メナキノール類L、フィロキノンM、フィロキノン類N、フィロクロメノールO、フィロクロメノール類Pの添加量とサイクル寿命数との関係を示している。なお、試験条件は、JIS D 5301に規定される軽負荷寿命試験における周囲温度を40℃から25℃に変更したもので、その周囲温度下で、25Aの定電流で4分間の放電を行った後、14.4Vの定電圧で最大充電電流を25Aとして10分間の充電を行い、その後、272Aの定電流で判定放電を行い、30秒目の電圧が7.2Vを下回ったところを寿命としたものである。図1および図2は、このようにして寿命に至るまでに反復できたサイクル数を、従来品の鉛蓄電池で反復できたサイクル数を100として示している。   Next, the present invention product, reference product, conventional product, and comparative product of the lead storage battery described above were subjected to a cycle life test, and the results are shown in FIGS. FIG. 1 shows the relationship between the amount of naphthoquinone A, naphthoquinones B, C, D, E, F, and G and the number of cycle lives. FIG. 2 shows menaquinone H, menaquinones I, J, menaquinol K, menaquinols L. , Phylloquinone M, phylloquinones N, phyllochromenol O, phylochromenols P, and the relationship between the number of cycles and the number of cycles. The test conditions were those in which the ambient temperature in the light load life test specified in JIS D 5301 was changed from 40 ° C. to 25 ° C., and discharge was performed for 4 minutes at a constant current of 25 A under the ambient temperature. After that, the battery is charged for 10 minutes with a constant voltage of 14.4 V and a maximum charging current of 25 A, and then discharged with a constant current of 272 A. The life at the point where the voltage at 30 seconds falls below 7.2 V It is a thing. FIG. 1 and FIG. 2 show the number of cycles that can be repeated until the end of the life in this way as 100, and the number of cycles that can be repeated with a conventional lead-acid battery as 100.

図1の結果より、鉛蓄電池の本発明品c、d、eは、ナフトキノン類C、DおよびEの添加量が0.01質量%以上、0.03質量%以下の範囲において、寿命性能が鉛蓄電池の従来品と比較して向上しており、ナフトキノンA、ナフトキノン類Bを添加した鉛蓄電池の参考品a、bでは、添加量が0.04質量%になると、寿命性能が従来品レベルかそれ以下に低下しているのに対し、ナフトキノン類C、DおよびEでは添加量が0.04質量%になっても、寿命性能の大幅な低下は認められないことがわかる。これは、ナフトキノン類C、DおよびEの方がナフトキノンA、ナフトキノン類Bより活物質の分散性を良好にする効果が大きく、ナフトキノンA、ナフトキノン類Bを多く添加すると、これが活物質中に偏在して充放電の妨げになることが原因であると考えられる。このことから、鉛蓄電池の本発明品c、d、eは、ナフトキノンAを添加した鉛蓄電池の参考品aあるいはナフトキノンAにアミノ基を導入したナフトキノン類Bを添加した鉛蓄電池の参考品b以上の効果がある、と言える。なお、鉛蓄電池の参考品f、gは、ナフトキノン類F、Gが、ナフトキノン類C、DおよびEにあるような、スルホン基、カルボキシル基、水酸基のような親水基でない官能基(メチル基、メトキシ基)であるために寿命性能の改善に寄与できなかった、と考えられる。   From the results shown in FIG. 1, the products c, d and e of the lead-acid battery have a life performance in the range where the addition amount of naphthoquinones C, D and E is 0.01 mass% or more and 0.03 mass% or less. Compared to conventional lead-acid batteries, the lead-acid battery reference products a and b to which naphthoquinone A and naphthoquinones B are added have a life performance level of 0.04% by mass. On the other hand, in the case of naphthoquinones C, D and E, even if the addition amount is 0.04% by mass, no significant decrease in the life performance is observed. This is because naphthoquinones C, D and E are more effective in improving the dispersibility of the active material than naphthoquinone A and naphthoquinones B. When naphthoquinone A and naphthoquinones B are added in a larger amount, this is unevenly distributed in the active material. This is considered to be the cause of hindering charging and discharging. From this, the present invention products c, d and e of the lead storage battery are more than the reference product a of the lead storage battery to which the naphthoquinone A is added or the reference product b of the lead storage battery to which the naphthoquinones B having an amino group introduced into the naphthoquinone A are added. It can be said that there is an effect. The lead-acid battery reference products f and g are functional groups that are not hydrophilic groups such as sulfone groups, carboxyl groups, and hydroxyl groups such as naphthoquinones F and G in naphthoquinones C, D, and E (methyl groups, It is considered that the methoxy group) could not contribute to the improvement of the life performance.

また、図2の結果より、鉛蓄電池の本発明品i、j、l、n、pは、メナキノン類I、J、メナキノール類L、フィロキノン類N、フィロクロメノール類Pの添加量が0.05質量%以上、0.5質量%以下の範囲において、寿命性能が鉛蓄電池の従来品と比較して向上しており、メナキノンH、メナキノールK、フィロキノンM、フィロクロメノールOを添加した鉛蓄電池の参考品h、k、m、oと比べても寿命性能が大きく向上していることがわかる。このことから、前述のナフトキノン類C、D、Eの場合と同様に、メナキノン類I、メナキノール類L、フィロキノン類N、フィロクロメノール類Pに導入されたスルホン基やメナキノン類Jに導入されたカルボキシル基のような親水基が寿命性能の改善に寄与している、と考えられる。   In addition, from the results of FIG. 2, the products i, j, l, n, and p of the lead storage battery according to the present invention had an addition amount of menaquinones I, J, menaquinols L, phylloquinones N, phylochromemenols P of 0. In the range of 05% by mass or more and 0.5% by mass or less, the life performance is improved as compared with the conventional lead acid battery, and the lead acid battery to which menaquinone H, menaquinol K, phylloquinone M, phylochromenol O is added. It can be seen that the life performance is greatly improved as compared with the reference products h, k, m and o. Therefore, as in the case of the naphthoquinones C, D, and E described above, the sulfone group introduced into the menaquinones I, menaquinols L, phylloquinones N, and phylochromemenols P and menaquinones J were introduced. It is considered that a hydrophilic group such as a carboxyl group contributes to the improvement of the life performance.

次に、上記したサイクル寿命試験の終了後、すべての電池を解体し、それぞれの負極板で、BET法によってその比表面積を分析し、電池ごとに平均値を算出して、結果を図1、図2で示したサイクル寿命性能比とともに表1、表2に示す。なお、表1、表2は鉛蓄電池の従来品の寿命性能と従来品の比表面積の最高値を100として示している。   Next, after the end of the cycle life test described above, all the batteries were disassembled, the specific surface area was analyzed by the BET method with each negative electrode plate, the average value was calculated for each battery, and the results are shown in FIG. Table 1 and Table 2 show the cycle life performance ratio shown in FIG. Tables 1 and 2 show the life performance of the conventional lead-acid battery and the maximum value of the specific surface area of the conventional product as 100.

Figure 0004899378
Figure 0004899378

Figure 0004899378
Figure 0004899378

表1の結果より、鉛蓄電池の本発明品c(c−1〜c−6)、d(d−1〜d−6)、e(e−1〜e−6)における負極板の比表面積は、鉛蓄電池の従来品における負極板の比表面積や、鉛蓄電池の参考品a(a−1〜a−6)、b(b−1〜b−6)における負極板の比表面積に対して大きくなっていることがわかる。また、表2の結果より、鉛蓄電池の本発明品i(i−1〜i−6)、j(j−1〜j−6)、l(l−1〜l−6)、n(n−1〜n−6)、p(p−1〜p−6)における負極板の比表面積も、鉛蓄電池の従来品における負極板の比表面積や、鉛蓄電池の参考品h(h−1〜h−6)、k(k−1〜k−6)、m(m−1〜m−6)、o(o−1〜o−6)における負極板の比表面積に対して大きくなっていることがわかる。このことから、ナフトキノン類C、D、E、メナキノン類I、J、メナキノール類L、フィロキノン類N、フィロクロメノール類Pに導入されたスルホン基、カルボキシル基、水酸基のような親水基によって、負極活物質の収縮が抑制され、比表面積の低下が抑制されている、と考えられる。なお、表1の鉛蓄電池の参考品f(f−1〜f−6)、g(g−1〜g−6)における負極板の比表面積は、鉛蓄電池の従来品における負極板の比表面積に対して小さいのは、この負極活物質に添加されたナフトキノン類F、Gの官能基には親水性がなく、負極板の比表面積の増大に寄与していないことが原因である、と考えられる。   From the results in Table 1, the specific surface area of the negative electrode plate in the lead-acid battery products c (c-1 to c-6), d (d-1 to d-6), and e (e-1 to e-6) of the present invention. Is relative to the specific surface area of the negative electrode plate in the conventional product of the lead acid battery and the specific surface area of the negative electrode plate in the reference products a (a-1 to a-6) and b (b-1 to b-6) of the lead acid battery. You can see that it is getting bigger. Moreover, from the result of Table 2, this invention product i (i-1 to i-6), j (j-1 to j-6), l (l-1 to 1-6), n (n) of lead acid battery -1 to n-6) and the specific surface area of the negative electrode plate in p (p-1 to p-6), the specific surface area of the negative electrode plate in the conventional lead acid battery, and the reference product h (h-1 to lead acid battery). h-6), k (k-1 to k-6), m (m-1 to m-6), and o (o-1 to o-6) are larger than the specific surface area of the negative electrode plate. I understand that. From this, naphthoquinones C, D, E, menaquinones I, J, menaquinols L, phylloquinones N, phylochromemenols P are introduced into the negative electrode by hydrophilic groups such as sulfone groups, carboxyl groups, and hydroxyl groups. It is considered that the shrinkage of the active material is suppressed and the decrease in the specific surface area is suppressed. In addition, the specific surface area of the negative electrode plate in the reference products f (f-1 to f-6) and g (g-1 to g-6) of the lead storage battery in Table 1 is the specific surface area of the negative electrode plate in the conventional product of the lead storage battery. The reason is that the functional groups of naphthoquinones F and G added to the negative electrode active material are not hydrophilic and do not contribute to an increase in the specific surface area of the negative electrode plate. It is done.

上記したナフトキノン類C、DおよびEは、それぞれナフトキノンAに、スルホン基、カルボキシル基、水酸基のような親水基の一つが導入されたものであるが、ナフトキノンAにアミノ基が導入されたナフトキノン類B、あるいは特願2004−329958号にある、ナフトキノンAにクロロ基やアルキル基が導入されたナフトキノン類に、上記した親水基が導入されたものであってもよい。同様に、メナキノン類JはメナキノンHにカルボキシル基が親水基として一つ導入され、メナキノン類I、メナキノール類L、フィロキノン類N、フィロクロメノール類Pは、それぞれメナキノンH、メナキノールK、フィロキノンM、フィロクロメノールOに、スルホン基が親水基として一つ導入されたものであるが、特願2004−329958号にある、メナキノンHにクロロ基やアルキル基が導入されたメナキノン類、メナキノール類、フィロキノン類、フィロクロメノール類に、上記した親水基が導入されたものであってもよい。また、上記した実施例のナフトキノン誘導体では、ナフトキノンの基本構造に親水性の官能基Xが導入された例のみを示したが、例示した第1または第2のイソプレノイド側鎖に親水性の官能基Xが導入されたものであってもよく、その数や種類については限定するものではない。なお、メナキノン誘導体には、上記したメナキノール以外に、メナクロメノールやメナクロマノールがあり、フィロキノン誘導体には、上記したフィロクロメノール以外に、フィロキノールやフィロクロマノールなどがあり、これらについても、官能基Xの種類あるいはそれが導入される位置や数を任意に選択することができる。さらに、好ましくは、上記したナフトキノンあるいはナフトキノン誘導体と負極活物質との混ざりをより良好にするために、Na、K、Ca、Mgなどが溶解している溶液中に、ナフトキノンあるいはナフトキノン誘導体を投入して官能基XにNa、K、Ca、Mgなどを付加した塩にしてもよい。   The naphthoquinones C, D, and E are naphthoquinones in which one of hydrophilic groups such as a sulfone group, a carboxyl group, and a hydroxyl group is introduced into naphthoquinone A, but an amino group is introduced into naphthoquinone A. The above-described hydrophilic group may be introduced into naphthoquinones in which a chloroquinone or an alkyl group is introduced into naphthoquinone A in B or Japanese Patent Application No. 2004-329958. Similarly, menaquinones J have one carboxyl group introduced into menaquinone H as a hydrophilic group, and menaquinones I, menaquinols L, phylloquinones N, and phylochromemenols P are menaquinone H, menaquinol K, phylloquinone M, Menoroquinones, menaquinols, and phylloquinones in which a chloro group or an alkyl group is introduced into menaquinone H described in Japanese Patent Application No. 2004-329958. The above-described hydrophilic group may be introduced into phyllochromenols. In the naphthoquinone derivatives of the above-described examples, only examples in which a hydrophilic functional group X is introduced into the basic structure of naphthoquinone are shown. However, a hydrophilic functional group is present in the illustrated first or second isoprenoid side chain. X may be introduced, and the number and type thereof are not limited. Menaquinone derivatives include menachromenol and menachromanol in addition to the above menaquinol, and phylloquinone derivatives include phyloquinol and phytochromanol in addition to the above phylochromenol. The type or the position and number where it is introduced can be arbitrarily selected. Furthermore, preferably, in order to improve the mixing of the naphthoquinone or naphthoquinone derivative and the negative electrode active material, naphthoquinone or naphthoquinone derivative is introduced into a solution in which Na, K, Ca, Mg, etc. are dissolved. Thus, a salt obtained by adding Na, K, Ca, Mg or the like to the functional group X may be used.

上記した実施形態は、自動車用電池等に用いられる液式鉛蓄電池についてのものであるが、コンシューマー用や据置用に用いられる制御弁式鉛蓄電池についても同様の結果が得られた。すなわち、制御弁式鉛蓄電池として、2V、7Ahの電池について、65℃の周囲温度下でフロート充電寿命試験に供した後、解体して負極板の比表面積を分析したところ、従来例と比較して比表面積の低下が抑えられていることがわかった。このことから、制御弁式鉛蓄電池においても、種々の官能基を有したナフトキノンやナフトキノン誘導体を添加することによって、負極活物質の収縮が抑制されていることが考えられる。このように、本発明は、鉛蓄電池の種類や形式に関わらずに、その効果が発揮できるものである。なお、上記した実施例で示した試験方法も、これに限定されるものではなく、実施形態以外の方法によってもよい。   Although the above-described embodiment is for a liquid type lead acid battery used for an automobile battery or the like, similar results were obtained for a control valve type lead acid battery used for consumer use or stationary use. That is, as a control valve type lead-acid battery, a battery of 2V, 7Ah was subjected to a float charge life test at an ambient temperature of 65 ° C., then disassembled and analyzed for the specific surface area of the negative electrode plate. Thus, it was found that the decrease in specific surface area was suppressed. From this, also in the control valve type lead-acid battery, it is considered that the shrinkage of the negative electrode active material is suppressed by adding naphthoquinone and naphthoquinone derivatives having various functional groups. As described above, the present invention can exert its effect regardless of the type and form of the lead storage battery. In addition, the test method shown by the above-mentioned Example is not limited to this, You may use methods other than embodiment.

上述した如く、本発明は、負極活物質の収縮が抑制できる長寿命の鉛蓄電池を提供するのに寄与できるから、産業上の利用可能性が大である。   As described above, the present invention can contribute to providing a long-life lead-acid battery capable of suppressing the shrinkage of the negative electrode active material, and therefore has great industrial applicability.

ナフトキノンA、ナフトキノン類B、C、D、E、F、Gの添加量とサイクル寿命数との関係を示した図。The figure which showed the relationship between the addition amount of naphthoquinone A, naphthoquinones B, C, D, E, F, and G, and the cycle life number. メナキノンH、メナキノン類I、J、メナキノールK、メナキノール類L、フィロキノンM、フィロキノン類N、フィロクロメノールO、フィロクロメノール類Pの添加量とサイクル寿命数との関係を示した図。The figure which showed the relationship between the addition amount of menaquinone H, menaquinones I and J, menaquinol K, menaquinols L, phylloquinone M, phylloquinones N, phylochromenol O, phylochromenols P, and the cycle life number.

Claims (6)

官能基を導入したキノン物質を負極に含有し、前記官能基は、スルホン基、カルボキシル基、水酸基から選択された少なくとも一つであり、前記キノン物質がナフトキノン、またはナフトキノン誘導体である、ことを特徴とする鉛蓄電池。 The negative electrode contains a quinone substance having a functional group introduced therein , wherein the functional group is at least one selected from a sulfone group, a carboxyl group, and a hydroxyl group, and the quinone substance is naphthoquinone or a naphthoquinone derivative. Lead acid battery. 官能基を導入したキノン物質が含有され、前記官能基は、スルホン基、カルボキシル基、水酸基から選択された少なくとも一つであり、前記キノン物質がナフトキノンである、鉛蓄電池用負極。 A negative electrode for a lead storage battery , comprising a quinone substance into which a functional group is introduced , wherein the functional group is at least one selected from a sulfone group, a carboxyl group, and a hydroxyl group, and the quinone substance is naphthoquinone . ナフトキノンは、添加量が、鉛粉に対して、0.01質量%以上、0.04質量%以下である、請求項2に記載の鉛蓄電池用負極。The negative electrode for lead acid batteries according to claim 2, wherein the amount of naphthoquinone added is 0.01% by mass or more and 0.04% by mass or less with respect to the lead powder. 官能基を導入したキノン物質が含有され、前記官能基は、スルホン基、カルボキシル基、水酸基から選択された少なくとも一つであり、前記キノン物質がナフトキノン誘導体である、鉛蓄電池用負極。 A negative electrode for a lead storage battery , comprising a quinone substance into which a functional group is introduced, wherein the functional group is at least one selected from a sulfone group, a carboxyl group, and a hydroxyl group, and the quinone substance is a naphthoquinone derivative . ナフトキノン誘導体は、添加量が、鉛粉に対して、0.05質量%以上、0.5質量%以下である、請求項4に記載の鉛蓄電池用負極。5. The negative electrode for a lead storage battery according to claim 4, wherein the naphthoquinone derivative is added in an amount of 0.05% by mass to 0.5% by mass with respect to the lead powder. ナフトキノン誘導体は、メナキノンとその誘導体またはフィロキノンとその誘導体である、請求項5に記載の鉛蓄電池用負極。The negative electrode for lead acid batteries according to claim 5, wherein the naphthoquinone derivative is menaquinone and a derivative thereof or phylloquinone and a derivative thereof.
JP2005241155A 2005-08-23 2005-08-23 Lead acid battery and negative electrode for lead acid battery Active JP4899378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241155A JP4899378B2 (en) 2005-08-23 2005-08-23 Lead acid battery and negative electrode for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241155A JP4899378B2 (en) 2005-08-23 2005-08-23 Lead acid battery and negative electrode for lead acid battery

Publications (2)

Publication Number Publication Date
JP2007059134A JP2007059134A (en) 2007-03-08
JP4899378B2 true JP4899378B2 (en) 2012-03-21

Family

ID=37922451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241155A Active JP4899378B2 (en) 2005-08-23 2005-08-23 Lead acid battery and negative electrode for lead acid battery

Country Status (1)

Country Link
JP (1) JP4899378B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992336B2 (en) * 1997-10-13 2007-10-17 株式会社ジーエス・ユアサコーポレーション Negative electrode for lead acid battery
JPH11250913A (en) * 1998-03-02 1999-09-17 Aisin Seiki Co Ltd Lead-acid battery
JP4802358B2 (en) * 2000-10-10 2011-10-26 株式会社Gsユアサ Negative electrode plate for control valve type lead-acid battery
JP4614048B2 (en) * 2004-03-31 2011-01-19 株式会社Gsユアサ Negative electrode active material, lead-acid battery using the same, and method for producing additive of negative electrode active material
JP4811635B2 (en) * 2004-12-16 2011-11-09 国立大学法人大阪大学 Lead-acid battery and negative electrode and negative electrode active material used therefor

Also Published As

Publication number Publication date
JP2007059134A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP5587523B1 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6045329B2 (en) Lead acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2007328979A (en) Lead acid storage battery
JPWO2012153464A1 (en) Negative electrode for lead acid battery and lead acid battery
JP6575536B2 (en) Lead acid battery
JP4899378B2 (en) Lead acid battery and negative electrode for lead acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP2006114417A (en) Lead-acid storage battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
WO2014097516A1 (en) Lead storage battery
JP4892827B2 (en) Lead acid battery
JP2008243480A (en) Lead storage battery
JP2004014283A (en) Valve regulated lead battery
JP2007305370A (en) Lead storage cell
JPH11339788A (en) Lead-acid battery
JP4483308B2 (en) Lead acid battery
JP6582386B2 (en) Lead acid battery
JP2008034286A (en) Closed lead battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2007213896A (en) Lead-acid storage battery
JP2004171872A (en) Lead-acid battery
JP2004171982A (en) Lead-acid battery
JP2004327157A (en) Storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3