JP4811635B2 - Lead-acid battery and negative electrode and negative electrode active material used therefor - Google Patents

Lead-acid battery and negative electrode and negative electrode active material used therefor Download PDF

Info

Publication number
JP4811635B2
JP4811635B2 JP2004364302A JP2004364302A JP4811635B2 JP 4811635 B2 JP4811635 B2 JP 4811635B2 JP 2004364302 A JP2004364302 A JP 2004364302A JP 2004364302 A JP2004364302 A JP 2004364302A JP 4811635 B2 JP4811635 B2 JP 4811635B2
Authority
JP
Japan
Prior art keywords
diaminoanthraquinone
negative electrode
lead
organic molecule
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004364302A
Other languages
Japanese (ja)
Other versions
JP2006172921A (en
Inventor
信充 平井
敏宏 田中
謙吾 眞柄
努 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forestry and Forest Products Research Institute
Osaka University NUC
Original Assignee
Forestry and Forest Products Research Institute
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry and Forest Products Research Institute, Osaka University NUC filed Critical Forestry and Forest Products Research Institute
Priority to JP2004364302A priority Critical patent/JP4811635B2/en
Publication of JP2006172921A publication Critical patent/JP2006172921A/en
Application granted granted Critical
Publication of JP4811635B2 publication Critical patent/JP4811635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は鉛蓄電池に関し、特に充電性能を向上させた鉛蓄電池に関するものである。   The present invention relates to a lead storage battery, and more particularly to a lead storage battery with improved charging performance.

近年、アイドリングストップ車、ハイブリッド車、ロードレベリングシステム等に用いる二次電池として、高い充電性能を発揮する二次電池の開発が要望されている。
二次電池として代表的な鉛蓄電池は、リチウムイオン蓄電池やニッケル水素蓄電池等の他の二次電池と比較して、高出力で、使用温度域が広く、リサイクル率も高く、然も低コストであるため、種々の分野に広く利用されており、充放電性能の更なる向上を図るべく種々の鉛蓄電池が提案されている。
In recent years, as a secondary battery used in an idling stop vehicle, a hybrid vehicle, a road leveling system, etc., development of a secondary battery that exhibits high charging performance has been demanded.
Lead-acid batteries, which are typical secondary batteries, have a higher output, a wider operating temperature range, a higher recycling rate, and lower costs compared to other secondary batteries such as lithium-ion batteries and nickel-metal hydride batteries. For this reason, it is widely used in various fields, and various lead storage batteries have been proposed in order to further improve the charge / discharge performance.

例えば、鉛蓄電池の低温高率放電寿命特性を向上させるべく、負極活物質にリグニンとカーボンを添加した鉛蓄電池が提案されている(特許文献1)。
又、鉛蓄電池の高率放電性能及びサイクル寿命性能を向上させるべく、負極活物質中に金属錫を含有させた鉛蓄電池が提案されている(特許文献2)。
更に、鉛蓄電池の高率充電特性や長期間放置後の充電性能を向上させるべく、負極活物質中にカルシウムを添加した鉛蓄電池が提案されている(特許文献3)。
特開平9−213336号公報 特開平5−89873号公報 特開2000−22440号公報
For example, a lead storage battery in which lignin and carbon are added to a negative electrode active material has been proposed in order to improve the low temperature high rate discharge life characteristics of the lead storage battery (Patent Document 1).
Moreover, in order to improve the high rate discharge performance and cycle life performance of a lead storage battery, a lead storage battery in which metallic tin is contained in a negative electrode active material has been proposed (Patent Document 2).
Furthermore, a lead storage battery in which calcium is added to the negative electrode active material has been proposed in order to improve the high-rate charging characteristics of the lead storage battery and the charging performance after being left for a long time (Patent Document 3).
JP-A-9-213336 JP-A-5-89873 JP 2000-22440 A

しかしながら、負極活物質にリグニンとカーボンを添加した鉛蓄電池においては、カーボンの添加によって充電性能のある程度の向上は期待できるものの、カーボンの多量の添加は、水素過電圧を小さくするため、換言すれば、副反応である水素発生電流が流れるため、却って充電性能を低下させることになる。
又、負極活物質中に金属錫を含有させた鉛蓄電池や、負極活物質中にカルシウムを添加した鉛蓄電池によっても、充電性能の大幅な向上は期待できない。
However, in a lead storage battery in which lignin and carbon are added to the negative electrode active material, although a certain degree of improvement in charging performance can be expected by adding carbon, in other words, the addition of a large amount of carbon reduces the hydrogen overvoltage, in other words, Since a hydrogen generation current which is a side reaction flows, the charging performance is reduced.
In addition, a significant improvement in charging performance cannot be expected even with a lead storage battery in which metallic tin is contained in the negative electrode active material or a lead storage battery in which calcium is added to the negative electrode active material.

そこで本発明の目的は、充電性能を向上させることが出来る鉛蓄電池及びこれに用いる負極並びに負極活物質を提供することである。   Then, the objective of this invention is providing the lead acid battery which can improve charge performance, the negative electrode used for this, and a negative electrode active material.

本発明に係る鉛蓄電池は、負極を構成する活物質中又は電解液中に、ジアミノアントラキノンをその構造の少なくとも一部に含む有機分子を含有している。 The lead acid battery according to the present invention contains an organic molecule containing diaminoanthraquinone in at least a part of its structure in the active material constituting the negative electrode or in the electrolytic solution .

前記有機分子としては、1,5−ジアミノアントラキノン、1,4−ジアミノアントラキノン、2,6−ジアミノアントラキノンを採用することが出来、ジアミノアントラキノンはモノマーに限らず、ポリマーであってもよい。又、前記有機分子は、ジアミノアントラキノンをその構造の少なくとも一部に含むリグニンであってもよい。   As the organic molecule, 1,5-diaminoanthraquinone, 1,4-diaminoanthraquinone, and 2,6-diaminoanthraquinone can be employed, and the diaminoanthraquinone is not limited to a monomer but may be a polymer. The organic molecule may be a lignin containing diaminoanthraquinone in at least a part of its structure.

前記有機分子を電解液に添加する場合、その添加量は、電解液1リットルに対して6mg以上であることが好ましい。
又、前記有機分子を負極活物質に添加する場合、その添加量は、活物質の質量に対して0.1質量%以上であることが好ましい。
When the organic molecule is added to the electrolytic solution, the amount added is preferably 6 mg or more per liter of the electrolytic solution.
Moreover, when adding the said organic molecule | numerator to a negative electrode active material, it is preferable that the addition amount is 0.1 mass % or more with respect to the mass of an active material.

上記本発明の鉛蓄電池の充放電性能を、後述の如く3電極方式による充放電試験(単板試験)によって調べたところ、ジアミノアントラキノンの添加によって、放電性能を殆ど同一に維持したまま充電性能を向上させることが出来ることを確認した。   When the charge / discharge performance of the lead storage battery of the present invention was examined by a charge / discharge test (single plate test) using a three-electrode system as described below, the addition of diaminoanthraquinone improved the charge performance while maintaining almost the same discharge performance. It was confirmed that it could be improved.

鉛蓄電池におけるジアミノアントラキノンの作用については、現在のところ明らかではないが、次の様に推測される。
即ち、ジアミノアントラキノンを含有する電極は硫酸水溶液中においてアニオン及びカチオンを電極表面に捕捉する機能を有するものと考えられる。本発明の鉛蓄電池においては、負極活物質或いは電解液に添加されたジアミノアントラキノンによって、電極表面近傍の過剰なPb2+イオンが電極表面に捕捉され、この結果、Pb2+イオン濃度が低下し、これによって放電生成物である硫酸鉛の溶解が加速されることとなり、充電性能が大幅に向上するものと推測される。
The action of diaminoanthraquinone in lead-acid batteries is not clear at present, but is presumed as follows.
That is, the electrode containing diaminoanthraquinone is considered to have a function of trapping anions and cations on the electrode surface in an aqueous sulfuric acid solution. In the lead storage battery of the present invention, excess Pb 2+ ions in the vicinity of the electrode surface are trapped on the electrode surface by the diaminoanthraquinone added to the negative electrode active material or the electrolytic solution. As a result, the Pb 2+ ion concentration decreases, As a result, the dissolution of lead sulfate, which is a discharge product, is accelerated, and it is estimated that the charging performance is greatly improved.

本発明に係る鉛蓄電池によれば、従来の鉛蓄電池よりも充電性能を大幅に向上させることが出来る。   According to the lead storage battery according to the present invention, the charging performance can be greatly improved as compared with the conventional lead storage battery.

以下、本発明の実施形態につき、図面に沿って具体的に説明する。
本発明に係る鉛蓄電池は、負極を構成する活物質中又は電解液中に、ジアミノアントラキノンをその構造の少なくとも一部に含む有機分子を含有するものである。
又、本発明に係る鉛蓄電池用負極は、その活物質中に、ジアミノアントラキノンをその構造の少なくとも一部に含む有機分子を含有するものである。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The lead acid battery which concerns on this invention contains the organic molecule which contains diaminoanthraquinone in at least one part of the structure in the active material or electrolyte solution which comprises a negative electrode.
The negative electrode for a lead storage battery according to the present invention contains an organic molecule containing diaminoanthraquinone in at least a part of its structure in the active material.

前記有機分子としては、1,5−ジアミノアントラキノン、1,4−ジアミノアントラキノン、2,6−ジアミノアントラキノンを採用することが出来、ジアミノアントラキノンはモノマーに限らず、ポリマーであってもよい。又、前記有機分子は、ジアミノアントラキノンをその構造の少なくとも一部に含むリグニンであってもよい。   As the organic molecule, 1,5-diaminoanthraquinone, 1,4-diaminoanthraquinone, and 2,6-diaminoanthraquinone can be employed, and the diaminoanthraquinone is not limited to a monomer but may be a polymer. The organic molecule may be a lignin containing diaminoanthraquinone in at least a part of its structure.

1,5−ジアミノアントラキノン、1,4−ジアミノアントラキノン、及び2,6−ジアミノアントラキノンの化学構造式をそれぞれ次の化1、化2及び化3に示す。
又、これらのジアミノアントラキノンとの比較のために、アミノ基が1つ少ない1−アミノアントラキノンの化学構造式を化4に示す。
The chemical structural formulas of 1,5-diaminoanthraquinone, 1,4-diaminoanthraquinone and 2,6-diaminoanthraquinone are shown in the following chemical formula 1, chemical formula 2 and chemical formula 3, respectively.
For comparison with these diaminoanthraquinones, the chemical structural formula of 1-aminoanthraquinone having one less amino group is shown in Chemical Formula 4.

Figure 0004811635
Figure 0004811635
Figure 0004811635
Figure 0004811635
Figure 0004811635
Figure 0004811635
Figure 0004811635
Figure 0004811635

本発明に係る鉛蓄電池、鉛蓄電池用負極或いは負極活物質によれば、後述の実施例によって実証する様に、高い放電性能を維持したまま、充電性能を従来よりも大幅に向上させることが出来る。   According to the lead storage battery, the negative electrode for a lead storage battery, or the negative electrode active material according to the present invention, as demonstrated by the examples described later, the charging performance can be significantly improved while maintaining high discharge performance. .

本発明に係る鉛蓄電池の性能を確認するべく、図4に示す試験装置を用いて、3電極方式による充放電試験(単板試験)を行なった。試験装置は図示の如く、硫酸電解液(5)中に、作用電極としての鉛電極(1)と、参照電極としての硫酸/硫酸水銀電極(2)と、対極としての二酸化鉛電極(3)とを配置し、これらの電極にポテンシオスタット(4)を接続して構成される。   In order to confirm the performance of the lead storage battery according to the present invention, a charge / discharge test (single plate test) using a three-electrode system was performed using the test apparatus shown in FIG. As shown in the figure, the test apparatus is composed of a lead electrode (1) as a working electrode, a sulfuric acid / mercury sulfate electrode (2) as a reference electrode, and a lead dioxide electrode (3) as a counter electrode in a sulfuric acid electrolyte (5). And a potentiostat (4) connected to these electrodes.

該試験装置において硫酸電解液(5)を次の5種類の硫酸水溶液に入れ替えて5回の試験を行ない、それぞれ鉛電極(鉛蓄電池の負極)についてのサイクリックボルタモグラムを得た。尚、電位走査速度は10mV/minである。
本発明例1では、0.01m mol/リットルの1,5−ジアミノアントラキノンを溶解した脱気5mol/リットルの硫酸水溶液を用いた。
本発明例2では、0.025m mol/リットルの1,5−ジアミノアントラキノンを溶解した脱気5mol/リットルの硫酸水溶液を用いた。
本発明例3では、0.1m mol/リットルの1,5−ジアミノアントラキノンを溶解した脱気5mol/リットルの硫酸水溶液を用いた。
比較例1では、脱気5mol/リットルの硫酸水溶液を用いた。
比較例2では、0.1m mol/リットルの1−アミノアントラキノンを溶解した脱気5mol/リットルの硫酸水溶液を用いた。
In the test apparatus, the sulfuric acid electrolyte solution (5) was replaced with the following five types of sulfuric acid aqueous solutions, and the test was performed five times. A cyclic voltammogram was obtained for each lead electrode (the negative electrode of the lead storage battery). The potential scanning speed is 10 mV / min.
In Inventive Example 1, a degassed 5 mol / liter sulfuric acid aqueous solution in which 0.01 mmol / liter of 1,5-diaminoanthraquinone was dissolved was used.
In Inventive Example 2, a degassed 5 mol / liter sulfuric acid aqueous solution in which 0.025 mmol / liter of 1,5-diaminoanthraquinone was dissolved was used.
In Example 3 of the present invention, a degassed 5 mol / liter sulfuric acid aqueous solution in which 0.1 mmol / liter of 1,5-diaminoanthraquinone was dissolved was used.
In Comparative Example 1, a degassed 5 mol / liter sulfuric acid aqueous solution was used.
In Comparative Example 2, a degassed 5 mol / liter sulfuric acid aqueous solution in which 0.1 mmol / liter of 1-aminoanthraquinone was dissolved was used.

図1は、1,5−ジアミノアントラキノンを添加した本発明例3についてのサイクリックボルタモグラムを実線で示し、無添加の比較例1についてのサイクリックボルタモグラムを破線で示したものである。
又、図2は、1−アミノアントラキノンを添加した比較例2についてのサイクリックボルタモグラムを実線で示し、無添加の比較例1についてのサイクリックボルタモグラムを破線で示したものである。
FIG. 1 shows a cyclic voltammogram for the inventive example 3 to which 1,5-diaminoanthraquinone was added by a solid line, and a cyclic voltammogram for the non-added comparative example 1 by a broken line.
FIG. 2 shows a cyclic voltammogram for Comparative Example 2 to which 1-aminoanthraquinone was added by a solid line, and a cyclic voltammogram for the non-added Comparative Example 1 by a broken line.

そして、本発明例1〜3、比較例1及び2について得られた5つのサイクリックボルタモグラムから、各例についての放電容量及び充電容量を求めたところ、下記表1の結果が得られた。   And when the discharge capacity and charge capacity about each example were calculated | required from five cyclic voltammograms obtained about this invention examples 1-3 and the comparative examples 1 and 2, the result of following Table 1 was obtained.

Figure 0004811635
Figure 0004811635

表中、「DAAQ」は1,5−ジアミノアントラキノンを意味し、「AAQ」は1−アミノアントラキノンを意味する。
又、放電容量とは、サイクリックボルタモグラムのアノード走査時に得られた正の電流の時間に対する積分値(電気量)であり、充電容量とは、サイクリックボルタモグラムのカソード走査時に得られた負の電流の絶対値の時間に対する積分値(電気量)である。
In the table, “DAAQ” means 1,5-diaminoanthraquinone, and “AAQ” means 1-aminoanthraquinone.
The discharge capacity is an integral value (amount of electricity) with respect to the time of the positive current obtained during the anode scanning of the cyclic voltammogram, and the charge capacity is the negative current obtained during the cathode scanning of the cyclic voltammogram. It is an integral value (electric quantity) with respect to time of the absolute value of.

図1及び表1から明らかな様に、放電容量については、1,5−ジアミノアントラキノンを添加した本発明例1〜3と比較例1との間に大きな差異はないが、充電容量は、本発明例1〜3の方が比較例1よりも大幅に増大している。
例えば、図1に示す本発明例3を比較例1と比較した場合、比較例1においては放電容量の約33%が未充電であったのに対し、本発明例3においては放電容量の約8%のみが未充電であったに過ぎない。この結果は、1,5−ジアミノアントラキノンの添加によって鉛蓄電池の充電速度が増大したこと、即ち充電性能が向上したことを意味している。本発明例1及び2においても同様のことが言える。
As is apparent from FIG. 1 and Table 1, the discharge capacity is not significantly different between Examples 1 to 3 of the present invention to which 1,5-diaminoanthraquinone was added and Comparative Example 1, but the charge capacity was Inventive Examples 1 to 3 are significantly larger than Comparative Example 1.
For example, when Example 3 of the present invention shown in FIG. 1 is compared with Comparative Example 1, in Comparative Example 1, about 33% of the discharge capacity was uncharged, whereas in Example 3 of the present invention, the discharge capacity was about Only 8% were uncharged. This result means that the charging speed of the lead storage battery is increased by the addition of 1,5-diaminoanthraquinone, that is, the charging performance is improved. The same can be said for Invention Examples 1 and 2.

又、図2及び表1から明らかな様に、比較例2においては、1−アミノアントラキノンの添加によって放電容量に若干の増大は見られるものの、充電容量は著しく減少しており、1−アミノアントラキノンの添加によっては、鉛蓄電池の充電性能を向上させることは出来ないと言える。   As is clear from FIG. 2 and Table 1, in Comparative Example 2, although the discharge capacity was slightly increased by the addition of 1-aminoanthraquinone, the charge capacity was remarkably reduced, and 1-aminoanthraquinone was significantly reduced. It can be said that the charging performance of the lead-acid battery cannot be improved depending on the addition of.

1,5−ジアミノアントラキノンの添加濃度と容量比(充電容量/放電容量)との関係を図3に示す。
図3から明らかな様に、1,5−ジアミノアントラキノンの濃度が零から0.025m mol/リットルまで増大するにつれて、容量比は67%から88%に向かって急激に上昇し、濃度が0.025m mol/リットルを超えると、容量比の上昇は緩やかとなり、徐々に飽和状態に近づくことになる。
従って、1,5−ジアミノアントラキノンの濃度としては0.025m mol/リットル(電解液1リットル当たり約6mg)以上が好ましいと言える。
FIG. 3 shows the relationship between the added concentration of 1,5-diaminoanthraquinone and the capacity ratio (charge capacity / discharge capacity).
As is apparent from FIG. 3, as the concentration of 1,5-diaminoanthraquinone increases from zero to 0.025 mmol / liter , the volume ratio increases rapidly from 67% to 88%, and the concentration reaches 0.0. When it exceeds 025 mmol / liter , the increase in the capacity ratio becomes gradual and gradually approaches a saturated state.
Accordingly, it can be said that the concentration of 1,5-diaminoanthraquinone is preferably 0.025 mmol / liter (about 6 mg per liter of electrolyte) or more.

尚、鉛蓄電池の負極においては、水素発生などの副反応が生じることが知られているが、図1からも明らかな様に、ジアミノアントラキノンの添加によって副反応に因る電流の変化はない。   Although it is known that side reactions such as hydrogen generation occur in the negative electrode of the lead storage battery, as is apparent from FIG. 1, there is no change in current due to the side reaction due to the addition of diaminoanthraquinone.

上述の如く、3電極方式による単板試験によって鉛蓄電池の負極のみの性能を評価し、ジアミノアントラキノンの添加によって充電性能が大幅に向上することを実証したが、鉛蓄電池の充電性能は負極上での反応に律速されることが知られているため、負極及び正極を配備した実際の鉛蓄電池においても、ジアミノアントラキノンの添加によって同様に高い充電性能が得られる。   As described above, the performance of only the negative electrode of a lead-acid battery was evaluated by a single-plate test using a three-electrode system, and it was demonstrated that the charging performance was greatly improved by the addition of diaminoanthraquinone. Since it is known that it is rate-determined by this reaction, even in an actual lead storage battery provided with a negative electrode and a positive electrode, high charge performance can be obtained by adding diaminoanthraquinone as well.

又、電解液にジアミノアントラキノンを添加した構成において充電性能の向上を確認したが、負極活物質にジアミノアントラキノンを添加した構成によれば、更に高い充電性能が得られるのは言うまでもない。この場合のジアミノアントラキノンの添加量は、図3の結果から推定すると、負極活物質の質量に対して0.1質量%以上であることが好ましい。 Moreover, although the improvement of charging performance was confirmed in the configuration in which diaminoanthraquinone was added to the electrolytic solution, it goes without saying that a higher charging performance can be obtained according to the configuration in which diaminoanthraquinone is added to the negative electrode active material. In this case, the amount of diaminoanthraquinone added is preferably 0.1% by mass or more based on the mass of the negative electrode active material when estimated from the results of FIG.

又、ジアミノアントラキノンとしては、1,5−ジアミノアントラキノンについての効果を確認したが、1,4−ジアミノアントラキノン、2,6−ジアミノアントラキノン、或いはジアミノアントラキノンを含むリグニンであっても、同様にジアミノアントラキノンとしてのPb2+イオン捕捉機能を発揮するので、同様に充電性能を向上させることが出来る。 In addition, as diaminoanthraquinone, the effect on 1,5-diaminoanthraquinone was confirmed, but even in the case of lignin containing 1,4-diaminoanthraquinone, 2,6-diaminoanthraquinone, or diaminoanthraquinone, diaminoanthraquinone is similarly used. Since the Pb 2+ ion trapping function is exhibited, the charging performance can be similarly improved.

1,5−ジアミノアントラキノンを添加した場合と無添加の場合のサイクリックボルタモグラムを表わす図である。It is a figure showing the cyclic voltammogram of the case where 1, 5- diaminoanthraquinone is added and the case where it does not add. 1−アミノアントラキノンを添加した場合と無添加の場合のサイクリックボルタモグラムを表わす図である。It is a figure showing the cyclic voltammogram when 1-aminoanthraquinone is added and when it is not added. 1,5−ジアミノアントラキノン濃度を変化させたときの放電容量に対する充電容量の変化を表わすグラフである。It is a graph showing the change of the charge capacity with respect to the discharge capacity when the 1,5-diaminoanthraquinone concentration is changed. 試験装置の構成を示す図である。It is a figure which shows the structure of a test apparatus.

符号の説明Explanation of symbols

(1) 鉛電極
(2) 硫酸/硫酸水銀電極
(3) 二酸化鉛電極
(4) ポテンシオスタット
(5) 硫酸電解液
(1) Lead electrode
(2) Sulfuric acid / mercuric sulfate electrode
(3) Lead dioxide electrode
(4) Potentiostat
(5) Sulfuric acid electrolyte

Claims (19)

電解液中に負極及び正極を設置して構成される鉛蓄電池において、前記負極を構成する活物質に、ジアミノアントラキノンをその構造の少なくとも一部に含む有機分子を添加し、又は電解液中に、ジアミノアントラキノンをその構造の少なくとも一部に含む有機分子を含有していることを特徴とする鉛蓄電池。 In a lead storage battery configured by installing a negative electrode and a positive electrode in an electrolytic solution, an organic molecule containing diaminoanthraquinone in at least part of its structure is added to the active material constituting the negative electrode , or in the electrolytic solution, A lead-acid battery comprising an organic molecule containing diaminoanthraquinone in at least a part of its structure . 前記有機分子が1,5−ジアミノアントラキノンである請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the organic molecule is 1,5-diaminoanthraquinone. 前記有機分子が1,4−ジアミノアントラキノンである請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the organic molecule is 1,4-diaminoanthraquinone. 前記有機分子が2,6−ジアミノアントラキノンである請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the organic molecule is 2,6-diaminoanthraquinone. 前記有機分子がジアミノアントラキノンのポリマーである請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the organic molecule is a polymer of diaminoanthraquinone. 前記有機分子がジアミノアントラキノンをその構造の少なくとも一部に含むリグニンである請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the organic molecule is lignin containing diaminoanthraquinone in at least a part of its structure. 前記有機分子の添加量が、電解液1リットルに対して6mg以上である請求項1乃至請求項5の何れかに記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 5, wherein an addition amount of the organic molecule is 6 mg or more with respect to 1 liter of an electrolyte solution. 活物質に、ジアミノアントラキノンをその構造の少なくとも一部に含む有機分子を添加している鉛蓄電池用負極。 A negative electrode for a lead storage battery in which an organic molecule containing diaminoanthraquinone in at least a part of its structure is added to an active material . 前記有機分子が1,5−ジアミノアントラキノンである請求項8に記載の鉛蓄電池用負極。 The lead-acid battery negative electrode according to claim 8 , wherein the organic molecule is 1,5-diaminoanthraquinone. 前記有機分子が1,4−ジアミノアントラキノンである請求項8に記載の鉛蓄電池用負極。 The lead-acid battery negative electrode according to claim 8 , wherein the organic molecule is 1,4-diaminoanthraquinone. 前記有機分子が2,6−ジアミノアントラキノンである請求項8に記載の鉛蓄電池用負極。 The lead-acid battery negative electrode according to claim 8 , wherein the organic molecule is 2,6-diaminoanthraquinone. 前記有機分子がジアミノアントラキノンのポリマーである請求項8に記載の鉛蓄電池用負極。 The lead-acid battery negative electrode according to claim 8 , wherein the organic molecule is a polymer of diaminoanthraquinone. 前記有機分子がジアミノアントラキノンをその構造の少なくとも一部に含むリグニンである請求項8に記載の鉛蓄電池用負極。 The negative electrode for a lead storage battery according to claim 8 , wherein the organic molecule is lignin containing diaminoanthraquinone in at least a part of its structure. ジアミノアントラキノンをその構造の少なくとも一部に含む有機分子が添加されている鉛蓄電池用の負極活物質。 A negative electrode active material for a lead storage battery to which an organic molecule containing diaminoanthraquinone in at least a part of its structure is added . 前記有機分子が1,5−ジアミノアントラキノンである請求項14に記載の鉛蓄電池用の負極活物質。 The negative electrode active material for a lead storage battery according to claim 14 , wherein the organic molecule is 1,5-diaminoanthraquinone. 前記有機分子が1,4−ジアミノアントラキノンである請求項14に記載の鉛蓄電池用の負極活物質。 The negative electrode active material for a lead storage battery according to claim 14 , wherein the organic molecule is 1,4-diaminoanthraquinone. 前記有機分子が2,6−ジアミノアントラキノンである請求項14に記載の鉛蓄電池用の負極活物質。 The negative electrode active material for a lead storage battery according to claim 14 , wherein the organic molecule is 2,6-diaminoanthraquinone. 前記有機分子がジアミノアントラキノンのポリマーである請求項14に記載の鉛蓄電池用の負極活物質。 The negative electrode active material for a lead storage battery according to claim 14 , wherein the organic molecule is a polymer of diaminoanthraquinone. 前記有機分子がジアミノアントラキノンをその構造の少なくとも一部に含むリグニンである請求項14に記載の鉛蓄電池用の負極活物質。 15. The negative electrode active material for a lead storage battery according to claim 14 , wherein the organic molecule is lignin containing diaminoanthraquinone in at least a part of its structure.
JP2004364302A 2004-12-16 2004-12-16 Lead-acid battery and negative electrode and negative electrode active material used therefor Expired - Fee Related JP4811635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364302A JP4811635B2 (en) 2004-12-16 2004-12-16 Lead-acid battery and negative electrode and negative electrode active material used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364302A JP4811635B2 (en) 2004-12-16 2004-12-16 Lead-acid battery and negative electrode and negative electrode active material used therefor

Publications (2)

Publication Number Publication Date
JP2006172921A JP2006172921A (en) 2006-06-29
JP4811635B2 true JP4811635B2 (en) 2011-11-09

Family

ID=36673435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364302A Expired - Fee Related JP4811635B2 (en) 2004-12-16 2004-12-16 Lead-acid battery and negative electrode and negative electrode active material used therefor

Country Status (1)

Country Link
JP (1) JP4811635B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899378B2 (en) * 2005-08-23 2012-03-21 株式会社Gsユアサ Lead acid battery and negative electrode for lead acid battery
JP5088656B2 (en) * 2005-11-17 2012-12-05 株式会社Gsユアサ Negative electrode for lead-acid battery and lead-acid battery using the same
CN114989449B (en) * 2022-06-21 2023-04-18 南京林业大学 Lignin-anthraquinone electrolyte material and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992336B2 (en) * 1997-10-13 2007-10-17 株式会社ジーエス・ユアサコーポレーション Negative electrode for lead acid battery
JPH11250913A (en) * 1998-03-02 1999-09-17 Aisin Seiki Co Ltd Lead-acid battery
JP4430772B2 (en) * 2000-01-21 2010-03-10 新神戸電機株式会社 Lead-acid battery, lead-acid battery additive and method for producing them
JP4802358B2 (en) * 2000-10-10 2011-10-26 株式会社Gsユアサ Negative electrode plate for control valve type lead-acid battery
EP1339117A4 (en) * 2000-11-09 2004-10-06 Yuasa Battery Co Ltd Negative electrode active material, process for its production and lead storage battery
JP4614048B2 (en) * 2004-03-31 2011-01-19 株式会社Gsユアサ Negative electrode active material, lead-acid battery using the same, and method for producing additive of negative electrode active material
JP5034159B2 (en) * 2004-11-15 2012-09-26 株式会社Gsユアサ Negative electrode active material for lead acid battery and lead acid battery using the same

Also Published As

Publication number Publication date
JP2006172921A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP2008519399A5 (en)
JPWO2006129635A1 (en) Secondary battery, power supply system using the same, and method of using the power supply system
JP6168138B2 (en) Liquid lead-acid battery
US11177476B2 (en) Complexed iodine-based electrolyte and redox flow battery comprising the same
KR101976906B1 (en) Redox flow battery and Electrolyte Solution for The Same
JP2002151141A (en) Proton conduction polymer secondary battery
Zhu et al. A high-performance aqueous iron–hydrogen gas battery
JP2019071193A (en) Aqueous secondary battery and power generating system
KR20170096641A (en) Method of preparing Anolyte for vanadium redox flow battery including additives and vanadium redox flow battery comprising the same
JP4811635B2 (en) Lead-acid battery and negative electrode and negative electrode active material used therefor
KR20230107184A (en) electrolyte for vanadium redox flow battery and method of manufacturing electrolyte
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
JP2014170715A (en) Cell
KR101864710B1 (en) Crown ether-inclusive electrolyte for redox flow batteries and method of manufacturing the same
JP5105401B2 (en) Electrode active material and electrochemical device using the same
JP2010092635A (en) Storage battery
JP2007035339A (en) Control valve type lead-acid storage battery
KR20090045483A (en) Composition of electrolyte of lead storage battery
US11309567B2 (en) Ion exchange membrane and flow battery including same
JPWO2019082766A1 (en) Judgment method of liquid reduction performance of lead-acid battery, lead-acid battery and its charging method
US20220407102A1 (en) Zinc-bromine flow battery including conductive interlayer
JP2019207786A (en) Lead acid battery
KR20180125183A (en) Flow battery having excellent charge and discharge characteristics
CN113067025B (en) Online recovery method for electrolyte of alkaline zinc-iron flow battery
JP4411860B2 (en) Storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees