JP4899164B2 - Measuring method of ground saturation by air injection - Google Patents

Measuring method of ground saturation by air injection Download PDF

Info

Publication number
JP4899164B2
JP4899164B2 JP2007293617A JP2007293617A JP4899164B2 JP 4899164 B2 JP4899164 B2 JP 4899164B2 JP 2007293617 A JP2007293617 A JP 2007293617A JP 2007293617 A JP2007293617 A JP 2007293617A JP 4899164 B2 JP4899164 B2 JP 4899164B2
Authority
JP
Japan
Prior art keywords
ground
measurement
saturation
measuring device
air injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007293617A
Other languages
Japanese (ja)
Other versions
JP2009121066A (en
Inventor
元治 神宮司
未対 岡村
誠 西垣
昌哉 武林
雅俊 武藤
直 藤井
武彦 今里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ehime University NUC
Toa Corp
Fudo Tetra Corp
Oriental Shiraishi Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ehime University NUC
Toa Corp
Fudo Tetra Corp
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ehime University NUC, Toa Corp, Fudo Tetra Corp, Oriental Shiraishi Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007293617A priority Critical patent/JP4899164B2/en
Publication of JP2009121066A publication Critical patent/JP2009121066A/en
Application granted granted Critical
Publication of JP4899164B2 publication Critical patent/JP4899164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地盤の液状化防止対策である地盤への空気注入手段における空気注入状態の計測方法に関し、地盤への空気注入により変化する地盤の飽和度を二種類の計測方法を組み合わせて計測する空気注入による地盤の飽和度の計測方法に関する。   The present invention relates to a measurement method of an air injection state in an air injection means to the ground, which is a measure for preventing liquefaction of the ground, and measures the saturation of the ground that changes due to the air injection to the ground by combining two measurement methods. The present invention relates to a method for measuring the degree of ground saturation by air injection.

従来、地盤の液状化防止技術として地盤に空気泡を含有する気液混合流体(例えば、微細空気混合水)を注入し、または地盤に空気のみを直接的に注入するなどして、地盤内に多数の空気泡を滞留させることにより地盤の飽和度を低下させて液状化を防止する提案がなされている。なお、ここでいう地盤の飽和度とは、地盤を構成する土粒子と土粒子との間隙、および該間隙に存在する間隙水(地下水)との体積比率(地盤の地下水体積/土粒子間の間隙体積)を表し、地盤の液状化の可能性の程度を示す指標である。   Conventionally, as a technology to prevent liquefaction of the ground, a gas-liquid mixed fluid containing air bubbles (for example, fine air mixed water) is injected into the ground, or only air is directly injected into the ground. Proposals have been made to reduce the saturation of the ground by retaining a large number of air bubbles to prevent liquefaction. The soil saturation referred to here is the volume ratio between the soil particles constituting the ground and the soil particles, and the pore water (ground water) existing in the gaps (between ground water volume / soil particles). This is an index indicating the degree of possibility of liquefaction of the ground.

しかし、空気を含有する気液混合流体または空気のみを地盤に注入する方法や装置などの技術については種々提案されているが(例えば、特許文献1)、これら空気注入による地盤内の状態変化、つまり地盤の飽和度の変化を計測する適切な手法が確立していないという問題があった。   However, various techniques such as a method and an apparatus for injecting only air-liquid mixed fluid containing air or air into the ground have been proposed (for example, Patent Document 1). In other words, there has been a problem that an appropriate method for measuring changes in the saturation level of the ground has not been established.

具体的には、公知の物理探査手法を利用して地盤の飽和度を調査する検討は進められているものの、その調査対象が地盤の浅深度域に限定されていたり、局所的であったり、または比較的大きな空洞部や空隙部の探査に特定されるなどして、所定の地盤について地盤の飽和度を全体的に計測することができないという問題があった。さらには、複数の計測方法の組み合わせによる技術であっても、それぞれの計測方法の計量単位(例えば、電位差や振動数など)が異なることもあって計測値の相互評価が複雑化し、または、同種の計量単位による異なる計測方法の組み合わせによっても、そこで得られる計測値の差異を吸収できる評価法がないことによる計測値の確度低下によって一義的な評価が難しいという問題があった。また、物理探査手法以外にあっては、例えば地盤凍結工法を利用するなどして対象地盤の一部を凍結固化させた後に穿孔して採取し、該固化地盤の試料を調査する手法もあるが、調査終了までに非常に多くの時間を消費するために定量的評価が困難になり、地盤の液状化対策そのものの工期に影響を及ぼし、かつコストが高いことから実施工での採用が不可能であるという問題があった。   Specifically, although investigations to investigate the degree of saturation of the ground using a known geophysical exploration method are underway, the investigation target is limited to the shallow depth region of the ground, Or there was a problem that the degree of saturation of the ground could not be measured as a whole for a predetermined ground because it was specified for exploration of a relatively large cavity or gap. Furthermore, even if the technology is based on a combination of multiple measurement methods, the measurement unit of each measurement method (for example, potential difference or frequency) may be different, making the mutual evaluation of measurement values complicated or similar. Even with combinations of different measurement methods depending on the unit of measurement, there is a problem that the unambiguous evaluation is difficult due to a decrease in the accuracy of the measurement value because there is no evaluation method that can absorb the difference in the measurement value obtained there. In addition to the geophysical exploration method, there is a method in which a part of the target ground is frozen and solidified by using, for example, a ground freezing method and then drilled and collected, and a sample of the solidified ground is investigated. Quantitative evaluation becomes difficult because it takes a great deal of time to complete the survey, affects the construction period of the ground liquefaction countermeasures itself, and is expensive, so it cannot be adopted in construction work. There was a problem of being.

これより、空気注入時/後の地盤の飽和度が不明瞭であることから、空気注入の方法、注入箇所の決定、注入装置の選定および注入量の適切な制御などができず、また時間がかかるという問題に繋がっている。   As a result, since the saturation level of the ground during / after air injection is unclear, the method of air injection, determination of the injection location, selection of the injection device and appropriate control of the injection amount cannot be performed, and time This leads to the problem.

特開2007−132061号公報Japanese Patent Laid-Open No. 2007-132061

そこで、本発明は、地盤に空気を注入して地盤を不飽和化させる地盤の液状化防止方法における地盤の飽和度の計測方法において、地盤の飽和度を水平方向または鉛直方向共に所定の地盤全体について2次元または3次元的に計測することを可能とし、二種の計測方法の組み合わせによって相互の機能的劣位を補完するように確度の高い計測を可能とすることで、正確な地盤の飽和度の計測を可能とするため空気注入の方法、注入箇所の決定、注入装置の選定および注入量の適切な制御などの地盤への空気注入手段が適正化され、計測に長時間を要しない地盤の飽和度の計測方法を提供することを目的とする。   Therefore, the present invention relates to a method for measuring ground saturation in a ground liquefaction prevention method for insaturating the ground by injecting air into the ground. It is possible to measure two-dimensionally or three-dimensionally, and it is possible to measure with high accuracy so as to complement each other's functional inferiority by a combination of two kinds of measurement methods. In order to enable measurement of air, the method of injecting air, determining the injection location, selecting the injection device and controlling the injection amount appropriately, the air injection means to the ground has been optimized, and the measurement of ground that does not require a long time for measurement It aims at providing the measuring method of saturation.

前記目的の達成および課題を解決するために、本発明はつぎのように構成される。   In order to achieve the above object and to solve the problems, the present invention is configured as follows.

本願請求項1にかかる地盤に空気を注入し該地盤を不飽和化する地盤の液状化防止方法における空気注入による地盤の飽和度の計測方法は、
比誘電率計測装置により地盤の比誘電率を計測することで地盤の飽和度を計測し、さらに比抵抗トモグラフィ計測装置により地盤の比抵抗変化率を計測することで地盤の飽和度を計測し、比抵抗トモグラフィ計測装置による前記計測結果および比誘電率計測装置による前記計測結果から地盤の飽和度の相関を導出し、かつ比抵抗トモグラフィ計測装置による前記計測結果を比誘電率計測装置による前記計測結果に基づき較正することで、比抵抗トモグラフィ計測装置による計測方法をもって比誘電率計測装置による計測結果として所定の地盤の飽和度を計測することを特徴とする。
The method for measuring the degree of saturation of the ground by air injection in the ground liquefaction prevention method for injecting air into the ground according to claim 1 and desaturating the ground,
The soil saturation is measured by measuring the relative permittivity of the ground using a relative permittivity measuring device, and the soil saturation is measured by measuring the specific resistance change rate of the ground using a specific resistance tomography measuring device. The correlation between the degree of saturation of the ground is derived from the measurement result obtained by the specific resistance tomography measurement apparatus and the measurement result obtained by the specific dielectric constant measurement apparatus, and the measurement result obtained by the specific resistance tomography measurement apparatus is derived from the specific dielectric constant measurement apparatus. By calibrating based on the measurement result, saturation of a predetermined ground is measured as a measurement result by the relative permittivity measurement device by a measurement method by the specific resistance tomography measurement device.

本願請求項2にかかる地盤に空気を注入し該地盤を不飽和化する地盤の液状化防止方法における空気注入による地盤の飽和度の計測方法は、請求項1に記載の発明において、
比誘電率計測装置の計測点を部分配置し、かつ比抵抗トモグラフィ計測装置の計測点を広範囲に多点配置して同時に地盤の飽和度を計測することで、高精度かつ広範囲にわたる地盤の飽和度を計測することを特徴とする。
In the invention according to claim 1, the ground saturation measurement method by air injection in the ground liquefaction prevention method of injecting air into the ground according to claim 2 of the present application and desaturating the ground,
Highly accurate and wide-range ground saturation by partially arranging the measurement points of the relative permittivity measurement device and arranging the measurement points of the specific resistance tomography measurement device in a wide range and measuring the soil saturation at the same time It is characterized by measuring the degree.

本願請求項3にかかる地盤に空気を注入し該地盤を不飽和化する地盤の液状化防止方法における空気注入による地盤の飽和度の計測方法は、請求項1または2に記載の発明において、
(1)地盤内および地表面に比抵抗トモグラフィ計測装置の電極を設置し、さらに地盤内に比誘電率計測装置のプローブおよび空気注入管を設置し、(2)比誘電率計測装置および比抵抗トモグラフィ計測装置によりそれぞれ地盤の飽和度を計測し、(3)地盤内に前記空気注入管から空気注入し、(4−1)比誘電率計測装置の計測値が変化したら空気注入を一旦停止し、比抵抗トモグラフィ計測装置により地盤の飽和度を計測し、(4−2)または、比抵抗トモグラフィ計測装置の計測値が変化したら空気注入を一旦停止し、比誘電率計測装置を該計測値が変化した地盤に新設して地盤の飽和度を計測し、(5)所定の地盤の飽和度または飽和地盤の分布状態を満足しない場合は、前記工程(3)および(4−1)または(4−2)を繰り返す一連の前記工程(1)〜(5)により地盤に空気注入することを特徴とする。
In the invention according to claim 1 or 2, the ground saturation measurement method by air injection in the ground liquefaction prevention method of injecting air into the ground according to claim 3 of the present application and desaturating the ground,
(1) The electrode of the specific resistance tomography measuring device is installed in the ground and the ground surface, and the probe of the relative permittivity measuring device and the air injection pipe are further installed in the ground. (2) The relative permittivity measuring device and the ratio Soil saturation is measured by a resistance tomography measuring device, (3) air is injected from the air injection pipe into the ground, and (4-1) once the measured value of the relative permittivity measuring device changes, the air is injected once. Stop and measure the ground saturation with the resistivity tomography measuring device. (4-2) Or, when the measured value of the resistivity tomography measuring device changes, air injection is temporarily stopped and the relative permittivity measuring device is The ground is newly installed on the ground where the measurement value has changed, and the saturation of the ground is measured. (5) If the predetermined saturation or the distribution of the saturated ground is not satisfied, the steps (3) and (4-1) ) Or (4-2) Wherein the air injected into the ground by a series of the steps (1) to (5) to return.

本願請求項4にかかる地盤に空気を注入し該地盤を不飽和化する地盤の液状化防止方法における地盤の飽和度の計測方法は、請求項1〜3のうち何れか一項に記載の発明において、
比誘電率計測装置をFDR計測装置、TDR計測装置またはADR計測装置とすることを特徴とする。
The ground saturation measurement method in the ground liquefaction prevention method for injecting air into the ground according to claim 4 and desaturating the ground is the invention according to any one of claims 1 to 3. In
The relative dielectric constant measuring device is an FDR measuring device, a TDR measuring device, or an ADR measuring device.

本願請求項5にかかる地盤に空気を注入し該地盤を不飽和化する地盤の液状化防止方法における地盤の飽和度の計測方法は、請求項1〜4のうち何れか一項に記載の発明において、
比抵抗トモグラフィ計測装置により2次元または3次元的に地盤の飽和度を計測することを特徴とする。
The ground saturation measurement method in the ground liquefaction prevention method for injecting air into the ground according to claim 5 of the present invention to desaturate the ground is the invention according to any one of claims 1 to 4. In
It is characterized in that the saturation of the ground is measured two-dimensionally or three-dimensionally by a specific resistance tomography measuring device.

本発明によれば、
比誘電率計測装置と比抵抗トモグラフィ計測装置との計測結果の相関を導出した上で、計測精度の高い比誘電率計測装置による計測結果を基に比抵抗トモグラフィ計測装置による計測結果を較正し、較正後は比抵抗トモグラフィ計測装置により地盤の飽和度を計測することとしたため、
二種の計測値の評価に複雑性がなく、計測精度および確度の向上に繋がる。
According to the present invention,
After derivation of the correlation between the measurement results of the relative permittivity measurement device and the specific resistance tomography measurement device, the measurement result by the specific resistance tomography measurement device is calibrated based on the measurement result of the relative permittivity measurement device with high measurement accuracy. And after calibrating, we decided to measure the saturation of the ground with a specific resistance tomography measurement device,
There is no complexity in the evaluation of the two types of measurement values, leading to improvements in measurement accuracy and accuracy.

また、設置が容易な比抵抗トモグラフィ計測装置の計測点を広範囲に多点配置するため、
調査対象の地盤が浅深度域または局所に限定されたり、空洞部や空隙部の探査に特定されることなく、地盤の飽和度を広範囲に計測可能であり、このため比誘電率計測装置の計測点を部分的に配置するに留めることができる。
In addition, in order to arrange a large number of measurement points of a specific resistance tomography measurement device that is easy to install,
Soil saturation can be measured over a wide range without limiting the ground to be surveyed to shallow depths or local areas, or being specified for exploration of cavities and voids. The points can be kept in partial arrangement.

また、二種の計測方法は共に地盤内または地表面に計測用の電極やプローブを設置する物理探査方法を採用するため、
地盤の一部を直接採取する方法などに比して短時間で計測できるため液状化対策工の全体工期の短縮に繋がり、かつ低コストで実現できる。
In addition, both types of measurement methods employ a geophysical exploration method in which electrodes and probes for measurement are installed in the ground or on the ground surface.
Compared to the method of directly collecting a part of the ground, it can be measured in a short time, leading to a reduction in the overall construction period of the liquefaction countermeasure work, and at a low cost.

また、地盤内および地表面に比抵抗トモグラフィ計測装置の電極を設置し、さらに地盤内に比誘電率計測装置のプローブおよび空気注入管を設置し、比誘電率計測装置および比抵抗トモグラフィ計測装置によりそれぞれの地盤の飽和度を計測し、地盤内に前記空気注入管から空気注入し、比誘電率計測装置の計測値が変化したら空気注入を一旦停止して比抵抗トモグラフィ計測装置の比抵抗値を計測するか、または比抵抗トモグラフィ計測装置の計測値が変化したら空気注入を一旦停止し、比誘電率計測装置を該計測値が変化した地盤に新設して地盤の飽和度を計測し、所定の地盤の飽和度または飽和地盤の分布状態を満足しない場合は、空気注入の工程を繰り返す一連の工程によるため、比誘電率計測装置による高精度計測と比抵抗トモグラフィ計測装置による広域計測との相互の優位性をより効果的に発揮することができる。   In addition, the electrode of the specific resistance tomography measuring device is installed in the ground and the ground surface, and the probe of the relative permittivity measuring device and the air injection pipe are installed in the ground, and the relative permittivity measuring device and the specific resistance tomography measurement The saturation of each ground is measured by the device, air is injected from the air injection pipe into the ground, and when the measured value of the relative permittivity measuring device changes, the air injection is temporarily stopped and the specific resistance tomography measuring device ratio When the resistance value is measured or the measured value of the resistivity tomography measuring device changes, air injection is temporarily stopped, and the relative permittivity measuring device is newly installed on the ground where the measured value has changed to measure the saturation of the ground. However, if the saturation level or the distribution condition of the saturated ground is not satisfied, it is a series of steps that repeat the air injection process. It can be more effectively exhibited mutual advantage of the wide area measurement by Fi measuring device.

また、比誘電率計測装置はFDR計測装置、TDR計測装置またはADR計測装置とする自由度があるため、土質や地下水などの地盤状態または他の施工条件に応じた計測方法および計測装置を適宜選定することができる。   In addition, since the relative permittivity measuring device has a degree of freedom to be an FDR measuring device, TDR measuring device or ADR measuring device, a measuring method and measuring device corresponding to the ground condition such as soil and groundwater or other construction conditions are appropriately selected. can do.

さらに、比抵抗トモグラフィ計測装置により2次元または3次元の地盤の飽和度分布が明瞭化するため、空気注入の方法、注入箇所の決定、注入装置の選定および注入量の適切な制御などができるという効果を奏する。   Furthermore, since the saturation distribution of the two-dimensional or three-dimensional ground is clarified by the specific resistance tomography measurement device, it is possible to determine the air injection method, determine the injection location, select the injection device, and control the injection amount appropriately. There is an effect.

以下、本発明の地盤に空気を注入し該地盤を不飽和化する地盤の液状化防止方法における地盤の飽和度の計測方法について、比誘電率計測装置をFDR計測装置とする場合を例示して図面を基に説明する。   Hereinafter, as a method for measuring the degree of saturation of the ground in the ground liquefaction prevention method for injecting air into the ground of the present invention to desaturate the ground, a case where the relative permittivity measuring device is an FDR measuring device will be exemplified. This will be described with reference to the drawings.

まず、図1に、本発明の実施形態の対象地盤に空気注入装置、FDR計測装置および比抵抗トモグラフィ計測装置を設備する工程、および空気の注入状況を示すように、地盤の液状化防止を目的とする地盤1の不飽和化対策を講ずる対象地盤1aおよびその周辺の地盤1に、先端部に空気注入孔2aを有する空気注入管2bを(例えば、穿設するなどして)設置し、地上に設備する空気圧縮機2c、空気貯留器2dおよび流量制御装置2eなどから構成される空気製造設備に配管接続することで対象地盤1aを不飽和化するための空気注入装置2を施設する。なお、空気注入孔2aは先端部に限定されず、空気注入管2bの中間位置であっても、また複数箇所にあってもよく、さらに空気注入管2bを前後方向または左右方向に間隔をおいて複数本設置しても構わない。   First, as shown in FIG. 1, the process of installing an air injection device, an FDR measurement device and a specific resistance tomography measurement device on the target ground according to the embodiment of the present invention, and prevention of liquefaction of the ground are shown. An air injection pipe 2b having an air injection hole 2a at the tip is installed (for example, by drilling) on the target ground 1a to take measures for desaturation of the target ground 1 and the surrounding ground 1; An air injecting device 2 for desaturating the target ground 1a is provided by pipe connection to an air production facility comprising an air compressor 2c, an air reservoir 2d, a flow rate control device 2e, and the like installed on the ground. The air injection hole 2a is not limited to the tip portion, and may be at an intermediate position of the air injection pipe 2b or at a plurality of locations. Further, the air injection pipe 2b is spaced in the front-rear direction or the left-right direction. You may install multiple.

つぎに、対象地盤1aもしくはその近傍の地盤1に穿孔5aを築造し、プローブ3aを対象地盤1a,地盤1に挿設する。プローブ3aには計測結線3bが接続されており、さらに地上に設備するコントローラ3cに接続することで、FDR計測装置3を構成する。ここで、FDR計測装置3のプローブ3aの設置個所は、例えば対象地盤1aの外縁要部およびその中間部に数本を設置すればよい。なお、コントローラ3cは、トラッキングジェネレータ、ディレクティブカプラ、スペクトラムアナライザおよびコンピュータなどから構成される計測ユニットである。   Next, a perforation 5 a is built in the target ground 1 a or the ground 1 in the vicinity thereof, and the probe 3 a is inserted into the target ground 1 a and the ground 1. A measurement connection 3b is connected to the probe 3a, and further, the FDR measurement device 3 is configured by being connected to a controller 3c installed on the ground. Here, as for the installation location of the probe 3a of the FDR measuring device 3, for example, several may be installed at the outer edge main part of the target ground 1a and its intermediate part. The controller 3c is a measurement unit including a tracking generator, a directive coupler, a spectrum analyzer, a computer, and the like.

また、対象地盤1aから若干の離隔をとって穿孔5bを築造し、電極4aを地盤1に挿設すると共に、地表面1bにも電極4aおよび遠電極4a′を設置する。電極4a,遠電極4a′には計測結線4bが接続されており、さらに地上に設備するコントローラ4cに接続することで、比抵抗トモグラフィ計測装置4を構成する。ここで、電極4aは、穿孔5bの内部において例えば1m間隔を維持して縦列配設し、かつ地表面1bにおいて同様の間隔で前後方向および左右方向に間隔をおいて平面配置することが効率的である。なお、電極4aの設置数または設置間隔は、必要とする計測精度に応じて増減すればよく、また、穿孔5bは対象地盤1aを囲むように複数本を設置すればよい。なお、コントローラ4cは、送受信機、電極切換装置、解析装置およびコンピュータなどから構成される計測ユニットである。   Further, a perforation 5b is constructed with a slight separation from the target ground 1a, the electrode 4a is inserted into the ground 1, and the electrode 4a and the far electrode 4a 'are also installed on the ground surface 1b. A measurement connection 4b is connected to the electrode 4a and the far electrode 4a ′, and a specific resistance tomography measurement device 4 is configured by connecting to the controller 4c installed on the ground. Here, it is efficient to arrange the electrodes 4a in a row in the perforations 5b while maintaining, for example, a 1 m interval, and to arrange them on the ground surface 1b in a plane with a similar interval in the front-rear direction and the left-right direction. It is. The number of electrodes 4a or the installation interval may be increased or decreased according to the required measurement accuracy, and a plurality of perforations 5b may be installed so as to surround the target ground 1a. The controller 4c is a measurement unit that includes a transceiver, an electrode switching device, an analysis device, a computer, and the like.

ここで、FDR計測装置3(以下、単に「FDR」ともいう)の構成設備である穿孔5aおよび比抵抗トモグラフィ計測装置4(以下、単に「比抵抗トモグラフィ」ともいう)の構成設備である穿孔5bのそれぞれは、プローブ3aまたは電極4aの挿設後に穿孔時に発生した土砂などにより埋め戻せばよく、または地上にて作泥した泥水を充填するなどして孔壁維持してもよい。また、各計測装置は地盤1または対象地盤1aを構成する土砂を使用して、予めそれぞれキャリブレーションすることで、土質に起因する計測誤差を排除しておく。   Here, the perforation 5a and the specific resistance tomography measuring device 4 (hereinafter also simply referred to as “specific resistance tomography”), which are the structural facilities of the FDR measuring device 3 (hereinafter also simply referred to as “FDR”). Each of the perforations 5b may be backfilled with earth and sand generated at the time of perforation after insertion of the probe 3a or the electrode 4a, or the perforated walls may be maintained by filling muddy water made on the ground. Moreover, each measuring device uses the earth and sand which comprises the ground 1 or the target ground 1a, respectively, and calibrates beforehand, respectively, and eliminates the measurement error resulting from soil quality.

つぎに、図2に、FDRの計測に基づき比抵抗トモグラフィの計測結果を較正する工程を示すように、FDR計測装置3および比抵抗トモグラフィ計測装置4により、対象地盤1a,地盤1に空気6を注入する前の初期比誘電率および初期比抵抗変化率を計測し原地盤の地盤の飽和度の初期値を計測しておく。なお、図示では、FDRの計測点3dの一箇所について、この計測点3dが比抵抗トモグラフィの計測経路4dの中間点として位置するいくつかの計測経路4dにわたって、それぞれ地盤の飽和度を計測する形態としている。もちろん、設置したFDRのプローブ3aの全ての計測点3dについて比抵抗トモグラフィによる地盤の飽和度を計測することが望ましい。   Next, as shown in FIG. 2, the process of calibrating the measurement result of the specific resistance tomography based on the measurement of the FDR, the air is applied to the target ground 1 a and the ground 1 by the FDR measurement device 3 and the specific resistance tomography measurement device 4. The initial relative dielectric constant and the initial specific resistance change rate before injecting 6 are measured, and the initial value of the saturation degree of the ground of the original ground is measured. In the figure, the saturation level of the ground is measured for each of the measurement points 3d of the FDR over several measurement paths 4d where the measurement point 3d is positioned as an intermediate point of the measurement path 4d of the resistivity tomography. It is in form. Of course, it is desirable to measure the saturation of the ground by specific resistance tomography at all the measurement points 3d of the installed FDR probe 3a.

これより、FDRのプローブ3aが設置される計測点3dについて、FDR計測装置3および比抵抗トモグラフィ計測装置4によって、かつ比抵抗トモグラフィ計測装置4の計測の場合は通常では複数の計測経路4dにわたって、地盤の飽和度が計測される。ここで、両計測装置による計測精度は、FDR計測装置3がプローブ3aの周囲数mm〜数十mmの局所範囲を誘電率により計測するのに対して、比抵抗トモグラフィ計測装置4は電極4a,4a間の比較的長距離を電気抵抗の変化率を基に計測し、また土質固有のパラメータ(例えば、迂回係数、膠結係数または飽和係数など)に基づいて演算処理していることもあり、FDRによる計測結果が優れている。そこで、比抵抗トモグラフィ計測装置4とFDR計測装置3とによるそれぞれの計測結果から地盤の飽和度の相関を求め、比抵抗トモグラフィによる計測結果をFDRによる計測結果に基づいて較正することで両計測結果を一致させ、比抵抗トモグラフィによる計測結果がFDRによる計測結果を示すようにする。また、破線Rで図示するように、コントローラ3c,4cを結線し、コントローラ4c内においてコントローラ3cからの出力信号(FDRの計測結果)に対して自動較正を可能とするように構成すれば効率的である。   Accordingly, the measurement point 3d where the FDR probe 3a is installed is usually measured by the FDR measurement device 3 and the specific resistance tomography measurement device 4 and in the case of measurement by the specific resistance tomography measurement device 4, usually a plurality of measurement paths 4d. The saturation of the ground is measured. Here, the measurement accuracy of both measurement devices is that the FDR measurement device 3 measures a local range of several millimeters to several tens of millimeters around the probe 3a by the dielectric constant, whereas the specific resistance tomography measurement device 4 uses the electrode 4a. , 4a is measured based on the rate of change of electrical resistance, and may be processed based on soil-specific parameters (eg, detour coefficient, caking coefficient or saturation coefficient), The measurement result by FDR is excellent. Therefore, the correlation of the ground saturation is obtained from the respective measurement results by the specific resistance tomography measurement device 4 and the FDR measurement device 3, and the measurement result by the specific resistance tomography is calibrated based on the measurement result by the FDR. The measurement results are matched so that the measurement results obtained by resistivity tomography indicate the measurement results obtained by FDR. Further, as shown by the broken line R, it is efficient if the controllers 3c and 4c are connected so that the output signal (FDR measurement result) from the controller 3c can be automatically calibrated in the controller 4c. It is.

このように対象地盤1a,地盤1に空気注入装置2、FDR計測装置3および比抵抗トモグラフィ計測装置4を設備し、先述のように原地盤の地盤の飽和度の初期値を計測した後に、図1に示すように空気注入装置2から空気注入孔2aを空気6の吐出孔として地盤1に空気(圧縮空気)6を注入して空気泡を混入させ対象地盤1aの地盤の不飽和化を開始する。なお、本実施例においては地盤1,対象地盤1aに直接的に空気6を注入する不飽和化手段を示しているが、例えば微細空気泡を含有する気液混合流体を注入する場合などであっても、地盤の飽和度を変化させる手段によるものであればよい。   Thus, after installing the air injection device 2, the FDR measurement device 3 and the specific resistance tomography measurement device 4 on the target ground 1a, the ground 1, and measuring the initial value of the saturation of the ground of the original ground as described above, As shown in FIG. 1, air (compressed air) 6 is injected from the air injection device 2 into the ground 1 using the air injection hole 2a as a discharge hole for the air 6, and air bubbles are mixed to desaturate the ground of the target ground 1a. Start. In this embodiment, the desaturation means for directly injecting the air 6 into the ground 1 and the target ground 1a is shown. However, this is the case, for example, when a gas-liquid mixed fluid containing fine air bubbles is injected. However, what is necessary is just by the means to change the saturation degree of the ground.

つぎに、ある一定量の空気6の注入の後に一旦空気6の注入を停止し、所定箇所の計測点3dに設置したFDRのプローブ3aにより、図2に示すように地盤の飽和度を計測する。さらに、ここでもFDRによる計測結果に基づいて比抵抗トモグラフィによる計測結果を較正することで、確度の高いデータを採取し、以降の計測についても同様にFDRの計測結果で比抵抗トモグラフィの計測結果を較正しつつ、空気6の注入作業を継続し地盤の不飽和化を進めていく。   Next, after the injection of the air 6 of a certain amount, the injection of the air 6 is temporarily stopped, and the saturation of the ground is measured as shown in FIG. 2 by the FDR probe 3a installed at the predetermined measurement point 3d. . Furthermore, again, by calibrating the measurement result by the resistivity tomography based on the measurement result by the FDR, highly accurate data is collected, and the measurement of the resistivity tomography is similarly performed by the FDR measurement result for the subsequent measurements. While calibrating the results, the operation of injecting the air 6 is continued to promote the desaturation of the ground.

ただし、注入する空気6は、対象地盤1a,地盤1の内部において常に安定的な拡散を続けることが希有であることから、先述のような当初配置した計測点3dのプローブ3aによる計測が常時可能とは限らない。そこで、このような場合であって、かつ地盤の不飽和化の程度をFDRの高精度な計測により確認する必要がある場合には、先述の計測手順を逆にして、比抵抗トモグラフィによる計測結果を基に(地盤の飽和度が変化している箇所を特定)して、対象地盤1a,地盤1に穿孔5aおよびプローブ3aを新規に増設して計測結線3bによりコントローラ3cに接続しFDRにより計測することで、飽和度の変化点を追求する形態で高精度な飽和度計測を実現可能とする(図示を省略する)。この場合、飽和度が変化している絶対位置に直接的に計測点3dを増設しているため、以降は該計測点3dによって定量的な計測が可能となる。   However, since it is rare that the air 6 to be injected always continues to be stably diffused inside the target ground 1a and the ground 1, measurement with the probe 3a at the initially arranged measurement point 3d is possible at all times. Not necessarily. Therefore, in such a case and when it is necessary to confirm the degree of desaturation of the ground by high-precision measurement of FDR, the measurement procedure described above is reversed and measurement by specific resistance tomography is performed. Based on the result (specify the location where the saturation level of the ground has changed), the perforation 5a and the probe 3a are newly added to the target ground 1a and the ground 1, and connected to the controller 3c by the measurement connection 3b and connected by the FDR. By measuring, it is possible to realize highly accurate saturation measurement in a form in which a change point of saturation is pursued (illustration is omitted). In this case, since the measurement point 3d is directly added to the absolute position where the degree of saturation is changed, quantitative measurement can be performed by the measurement point 3d thereafter.

ここで、地盤の飽和度の計測を複数回にわたって繰り返し、その都度FDRの計測結果に基づいて比抵抗トモグラフィによる計測結果を較正する作業を繰り返していると、FDRと比抵抗トモグラフィによる両計測結果から地盤の飽和度の相関が明瞭化され、この相関に基づき比抵抗トモグラフィのみでほぼ安定した計測結果が得られるようになることが多い。   Here, if the measurement of ground saturation is repeated a plurality of times, and the work of calibrating the measurement result by resistivity tomography based on the measurement result of FDR is repeated each time, both measurements by FDR and resistivity tomography are performed. From the results, the correlation of the degree of saturation of the ground is clarified, and based on this correlation, it is often possible to obtain an almost stable measurement result only by resistivity tomography.

そこで、図3に、比抵抗トモグラフィによる地盤の飽和度の計測工程を示すように、安定的計測結果が比抵抗トモグラフィから得られるようになったら、以降は比抵抗トモグラフィのみで地盤の飽和度を計測することが可能となる。つまり、地盤の飽和度の計測方法は比抵抗トモグラフィを採用し、その計測結果はFDRの計測結果に同等の数値を反映させることができ、これより従前の手法による複数計測法の組み合わせによる計測値の評価の複雑性などをはじめとする問題が克服可能となる。なお、FDR計測装置3は常時機能させておき、飽和度変化の瞬時値を確認するなどの計測に充てればよい。   Therefore, as shown in FIG. 3, the process of measuring the degree of saturation of the ground by resistivity tomography, when a stable measurement result can be obtained from the resistivity tomography, thereafter, only the resistivity tomography is used. It becomes possible to measure the degree of saturation. In other words, the soil saturation measurement method employs resistivity tomography, and the measurement result can reflect the same numerical value in the FDR measurement result. Problems such as the complexity of value evaluation can be overcome. Note that the FDR measurement device 3 may be always functioned and used for measurement such as checking the instantaneous value of the saturation change.

ここで、両計測法の特徴として、FDRによる飽和度計測は、瞬時に計測結果が得られ、かつ局所計測を可能とするため対象地盤1a,地盤1の絶対座標における数値を取得することができる一方で、広範な計測にはプローブ3aの設置点数が増加する他、プローブ3a,3a間の計測ができない。他方、比抵抗トモグラフィによる飽和度計測は、広域計測に適しているが、設置する電極4aの必要量などから計測自体にある程度の時間を要し、さらに計測値の解析作業を経て飽和度が算出されるため計測開始から相応のタイムラグが生じ、また電極4a,4a間が長距離化するため対象地盤1a,地盤1の内部に障害物がある場合などは計測経路4dの寸断によって正確な計測に困難を極める。   Here, as a feature of both measurement methods, in the saturation measurement by FDR, a measurement result can be obtained instantaneously, and in order to enable local measurement, numerical values in the absolute coordinates of the target ground 1a and the ground 1 can be acquired. On the other hand, for a wide range of measurements, the number of installation points of the probe 3a increases and measurement between the probes 3a and 3a is not possible. On the other hand, saturation measurement by resistivity tomography is suitable for wide-area measurement, but it takes a certain amount of time for the measurement itself due to the required amount of the electrode 4a to be installed, and the saturation is further analyzed through analysis of the measured value. As a result, a corresponding time lag occurs from the start of the measurement, and the distance between the electrodes 4a and 4a is increased, so that there is an obstacle in the target ground 1a and the ground 1, so that accurate measurement is possible by cutting the measurement path 4d. Extremely difficult.

よって、本発明ではFDR計測装置3および比抵抗トモグラフィ計測装置4を組み合わせて地盤の飽和度を計測することにより、両計測法の劣位を相互補完して解消し、正確で広範囲の飽和度計測を可能としたものである。これより、従前のような計測域が浅深度部や局部に限定されたり、または空洞部や空隙部の探査に特定されることなく、地盤1の全体にわたって飽和度計測が可能となる。このとき、FDR計測装置3のプローブ3aは比抵抗トモグラフィの計測結果の較正を主とした機能とするため、部分的に数箇所配置すればよく、対して比抵抗トモグラフィ計測装置4の電極4aは地盤1および地表面1bにわたって必要な計測精度に応じて多点的に配設する。   Therefore, in the present invention, by combining the FDR measurement device 3 and the specific resistance tomography measurement device 4 to measure the saturation of the ground, the inferiority of both measurement methods is complemented and eliminated, and accurate and wide-range saturation measurement is performed. Is possible. As a result, it is possible to measure the degree of saturation over the entire ground 1 without limiting the conventional measurement area to a shallow part or a local part, or being specified for exploration of a cavity or a gap. At this time, since the probe 3a of the FDR measuring device 3 mainly functions to calibrate the measurement result of the specific resistance tomography, the probe 3a may be partially arranged, whereas the electrode of the specific resistance tomography measuring device 4 4a is arranged in multiple points over the ground 1 and the ground surface 1b according to the required measurement accuracy.

ここで、図4に、FDRの計測結果と比抵抗トモグラフィの計測結果との対応関係を示すように、原地盤の土質状態に対応した高精度の計測法による計測結果を基準として地盤の飽和度を評価する必要があるため、実際の対象地盤1aによるFDR計測装置3の計測結果を基準として、該計測結果(34b)と比抵抗トモグラフィ計測装置4による計測結果(34b)との相関を取得することで、比抵抗トモグラフィの計測結果をFDRの計測結果を基に較正することが可能な較正曲線34aが導出される。よって、比抵抗トモグラフィによる計測結果は、FDRによる高精度な計測結果として置き換えて使用することが可能となる。これより、本来広域計測を得意とする比抵抗トモグラフィに、FDRの高精度な計測法による計測と同等の計測精度を付加することが可能となる。なお、図示は、本出願人による一試験結果であり最も単純な一次の相関にある地盤の例であるが、地盤を構成する土粒子や地下水の性状などによって2次の関数となる場合や、さらに高次の関数として相関を示す場合も存在し、地盤が大きく層変化する場合などは、各層ごとに相関を取得する必要がある場合も存在する。   Here, as shown in FIG. 4, the relationship between the FDR measurement result and the resistivity tomography measurement result, the ground saturation based on the measurement result by the high-precision measurement method corresponding to the soil condition of the original ground Therefore, the correlation between the measurement result (34b) and the measurement result (34b) by the specific resistance tomography measurement device 4 is obtained with reference to the measurement result of the FDR measurement device 3 using the actual target ground 1a. By obtaining the calibration curve 34a, the specific resistance tomography measurement result can be calibrated based on the FDR measurement result. Therefore, the measurement result by specific resistance tomography can be used as a highly accurate measurement result by FDR. As a result, it is possible to add measurement accuracy equivalent to the measurement by the high-precision measurement method of FDR to the resistivity tomography which is originally good at wide-area measurement. In addition, illustration is an example of the ground which is one test result by the present applicant and has the simplest primary correlation, but when it becomes a quadratic function depending on the properties of soil particles and groundwater constituting the ground, Furthermore, there is a case where the correlation is shown as a higher-order function, and there is a case where the correlation needs to be acquired for each layer when the ground changes greatly.

つぎに、図5に、対象地盤1aの任意断面について地盤の飽和度および飽和分布を示すように、地盤の飽和度計測のひとつに比抵抗トモグラフィを組み合わせることの利点として、計測結果を任意の水平または鉛直の2次元断面として切り出すことが可能であり、経時的な対象地盤1a,地盤1の不飽和化の進行を可視化することができることにある。もちろん、この計測結果はFDRの計測結果によって較正されている高精度なものである。   Next, as shown in FIG. 5, as an advantage of combining specific resistance tomography with one of the soil saturation measurements, the measurement results can be arbitrarily set as shown in FIG. It is possible to cut out as a horizontal or vertical two-dimensional section, and to visualize progress of desaturation of the target ground 1a and the ground 1 over time. Of course, this measurement result is highly accurate that is calibrated by the FDR measurement result.

さらに、比抵抗トモグラフィによる計測経路4dは、図3に一断面を示したように、電極4aの設置数と設置間隔によって細かな設定ができるため、図示を省略するが縦横断面の可視化に留まらず斜断面を表示することも可能であり、さらに図示を省略するが複数断面をコンピュータ上で立体合成すれば、3次元グラフィックスとして空気(空気泡)6の注入状況および地盤の飽和度の変化が明瞭になり、加えて時間経緯による連続的な不飽和化の進行状況を把握することが可能となる。   Furthermore, the measurement path 4d by specific resistance tomography, as shown in one cross section in FIG. 3, can be finely set according to the number of the electrodes 4a and the installation interval. It is also possible to display an oblique cross section, and although illustration is omitted, if a plurality of cross sections are three-dimensionally synthesized on a computer, the state of air (air bubbles) 6 injection as a three-dimensional graphic and the change in ground saturation In addition, it becomes possible to grasp the progress of continuous desaturation over time.

以上のことは、空気注入管2bの穿設位置を特定することにも繋がり、例えば従来技術にみられる一定間隔による空気注入管2bの設置から、空気6の注入が困難な箇所に集約して空気注入管2bを設置する計画などが可能となる。さらに、種々提案されている空気注入方法について、最も適切な注入方法および装置を選定する要素にもなり、空気6の必要注入量の制御などが適正化され、かつ対象地盤1aを例えば凍結固化させるなどして採取することを必要としないため計測工自体が比較的短時間で終了し、これより定量的な評価が可能となり、かつコスト低下にも繋がり、空気注入による地盤の液状化防止工法の全体としての工期短縮をもたらす。   The above also leads to specifying the drilling position of the air injection pipe 2b. For example, from the installation of the air injection pipe 2b at regular intervals found in the prior art, the air 6 can be gathered at places where injection of the air 6 is difficult. It is possible to plan to install the air injection pipe 2b. Furthermore, the various proposed air injection methods also serve as an element for selecting the most appropriate injection method and apparatus, control of the required injection amount of the air 6 is optimized, and the target ground 1a is frozen and solidified, for example. Therefore, the measurement work itself can be completed in a relatively short time, and quantitative evaluation is possible. This leads to cost reduction. The construction period is shortened as a whole.

なお、比誘電率計測装置をTDR計測装置またはADR計測装置とする場合についても、計測における計量単位が異なるもののFDR計測装置3とした場合と基本的に実施形態が同様であるため説明を省略することとし、ここでの実施形態に示した構成を適宜設計変更して実施することは本発明の範囲に属する。   Note that the case where the relative permittivity measuring device is a TDR measuring device or an ADR measuring device is basically the same as the case of the FDR measuring device 3 with different measurement units, but the description thereof is omitted. In particular, it is within the scope of the present invention to appropriately change the design of the configuration shown in the embodiment here.

本発明の実施形態の対象地盤に空気注入装置、FDR計測装置および比抵抗トモグラフィ計測装置を設備する工程、および空気の注入状況を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of installing an air injection apparatus, a FDR measurement apparatus, and a specific resistance tomography measurement apparatus in the object ground of embodiment of this invention, and the injection | pouring condition of air. 本発明の実施形態のFDRの計測に基づき比抵抗トモグラフィの計測結果を較正する工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of calibrating the measurement result of specific resistance tomography based on measurement of FDR of embodiment of this invention. 本発明の実施形態の比抵抗トモグラフィによる地盤の飽和度の計測工程のイメージを示す縦断面図である。It is a longitudinal cross-sectional view which shows the image of the measurement process of the saturation degree of the ground by the specific resistance tomography of embodiment of this invention. 本発明の実施形態のFDRの計測に基づき比抵抗トモグラフィの計測結果を較正するための両計測結果の対応関係であり、FDRの計測結果と比抵抗トモグラフィの計測結果とによる地盤の飽和度の相関を示すグラフである。It is a correspondence relationship between the two measurement results for calibrating the measurement result of the specific resistance tomography based on the measurement of the FDR of the embodiment of the present invention, and the degree of saturation of the ground based on the measurement result of the FDR and the measurement result of the specific resistance tomography It is a graph which shows correlation of these. 本発明の実施形態の地盤の任意断面における地盤の飽和度および飽和分布であり、(A)は対象地盤の2次元水平断面の一部を可視化した映像であり、(B)は対象地盤の2次元鉛直断面の一部を可視化した映像である。It is the saturation degree and saturation distribution of the ground in the arbitrary cross section of the ground of embodiment of this invention, (A) is the image | video which visualized a part of two-dimensional horizontal cross section of object ground, (B) is 2 of object ground. It is the image which visualized a part of the dimension vertical section.

符号の説明Explanation of symbols

1 地盤
1a 対象地盤(不飽和化対策地盤)
1b 地表面
2 空気注入装置
2a 空気注入孔
2b 空気注入管
2c 空気圧縮機
2d 空気貯留器
2e 流量制御装置
3 FDR計測装置
3a プローブ
3b 計測結線
3c コントローラ
3d 計測点
34a (FDRと比抵抗トモグラフィの計測結果の相関を示す)較正曲線
34b (対象地盤による)計測結果
4 比抵抗トモグラフィ計測装置
4a 電極
4a′ 遠電極
4b 計測結線
4c コントローラ
4d 計測経路
5a (プローブ3a設置用の)穿孔
5b (電極4a設置用の)穿孔
6 空気
-
1 Ground 1a Target ground (ground for desaturation prevention)
1b Ground surface 2 Air injection device 2a Air injection hole 2b Air injection tube 2c Air compressor 2d Air reservoir 2e Flow control device 3 FDR measurement device 3a Probe 3b Measurement connection 3c Controller 3d Measurement point 34a (of FDR and resistivity tomography Calibration curve 34b (corresponding to the measurement result) Measurement result 4 (depending on the target ground) Resistivity tomography measurement device 4a Electrode 4a 'Far electrode 4b Measurement connection 4c Controller 4d Measurement path 5a Perforation 5b (for installation of probe 3a) (Electrode) Perforated 6 air (for 4a installation)
-

Claims (5)

地盤に空気を注入し該地盤を不飽和化する地盤の液状化防止方法における空気注入による地盤の飽和度の計測方法について、
比誘電率計測装置により地盤の比誘電率を計測することで地盤の飽和度を計測し、
さらに比抵抗トモグラフィ計測装置により地盤の比抵抗変化率を計測することで地盤の飽和度を計測し、
比抵抗トモグラフィ計測装置による前記計測結果および比誘電率計測装置による前記計測結果から地盤の飽和度の相関を導出し、かつ比抵抗トモグラフィ計測装置による前記計測結果を比誘電率計測装置による前記計測結果に基づき較正することで、
比抵抗トモグラフィ計測装置による計測方法をもって比誘電率計測装置による計測結果として所定の地盤の飽和度を計測することを特徴とする
空気注入による地盤の飽和度の計測方法。
About the method of measuring the degree of saturation of the ground by air injection in the ground liquefaction prevention method of injecting air into the ground and desaturating the ground,
By measuring the relative permittivity of the ground with a relative permittivity measuring device, the degree of saturation of the ground is measured,
Furthermore, by measuring the resistivity change rate of the ground with a resistivity tomography measuring device, the saturation of the ground is measured,
A correlation between the saturation degree of the ground is derived from the measurement result by the specific resistance tomography measurement apparatus and the measurement result by the specific dielectric constant measurement apparatus, and the measurement result by the specific resistance tomography measurement apparatus is calculated by the specific dielectric constant measurement apparatus. By calibrating based on the measurement results,
A method for measuring the degree of saturation of a ground by air injection, wherein the degree of saturation of a predetermined ground is measured as a result of measurement by a relative permittivity measuring device using a measuring method by a resistivity tomography measuring device.
比誘電率計測装置の計測点を部分配置し、かつ比抵抗トモグラフィ計測装置の計測点を広範囲に多点配置して同時に地盤の飽和度を計測することで、
高精度かつ広範囲にわたる地盤の飽和度を計測することを特徴とする
請求項1に記載の空気注入による地盤の飽和度の計測方法。
By partially arranging the measurement points of the relative permittivity measurement device and arranging the measurement points of the specific resistance tomography measurement device in a wide range, and simultaneously measuring the saturation of the ground,
2. The method for measuring the degree of ground saturation by air injection according to claim 1, wherein the degree of ground saturation over a wide range is measured with high accuracy.
(1)地盤内および地表面に比抵抗トモグラフィ計測装置の電極を設置し、さらに地盤内に比誘電率計測装置のプローブおよび空気注入管を設置し、
(2)比誘電率計測装置および比抵抗トモグラフィ計測装置によりそれぞれ地盤の飽和度を計測し、
(3)地盤内に前記空気注入管から空気注入し、
(4−1)比誘電率計測装置の計測値が変化したら空気注入を一旦停止し、比抵抗トモグラフィ計測装置により地盤の飽和度を計測し、
(4−2)または、比抵抗トモグラフィ計測装置の計測値が変化したら空気注入を一旦停止し、比誘電率計測装置を該計測値が変化した地盤に新設して地盤の飽和度を計測し、
(5)所定の地盤の飽和度または飽和地盤の分布状態を満足しない場合は、前記工程(3)および(4−1)または(4−2)を繰り返す
一連の前記工程(1)〜(5)により地盤に空気注入することを特徴とする
請求項1または請求項2に記載の空気注入による地盤の飽和度の計測方法。
(1) Install the electrodes of the resistivity tomography measuring device in the ground and the ground surface, and further install the probe of the relative permittivity measuring device and the air injection pipe in the ground,
(2) Measure the saturation level of the ground with a relative permittivity measuring device and a specific resistance tomography measuring device,
(3) Air is injected into the ground from the air injection pipe,
(4-1) When the measured value of the relative permittivity measuring device changes, air injection is temporarily stopped, and the saturation of the ground is measured by the specific resistance tomography measuring device,
(4-2) Or, when the measured value of the resistivity tomography measuring device changes, air injection is temporarily stopped, and a relative permittivity measuring device is newly installed on the ground where the measured value is changed to measure the saturation of the ground. ,
(5) When the saturation level of the predetermined ground or the distribution state of the saturated ground is not satisfied, a series of the steps (1) to (5) in which the steps (3) and (4-1) or (4-2) are repeated. The method for measuring the degree of saturation of the ground by air injection according to claim 1 or 2, wherein air is injected into the ground by the above method.
比誘電率計測装置をFDR計測装置、TDR計測装置またはADR計測装置とすることを特徴とする
請求項1〜3のいずれか一項に記載の空気注入による地盤の飽和度の計測方法。
The method for measuring the degree of saturation of the ground by air injection according to any one of claims 1 to 3, wherein the relative permittivity measuring device is an FDR measuring device, a TDR measuring device, or an ADR measuring device.
比抵抗トモグラフィ計測装置により2次元または3次元的に地盤の飽和度を計測することを特徴とする
請求項1〜4のいずれか一項に記載の空気注入による地盤の飽和度の計測方法。
The ground saturation measurement method by air injection according to any one of claims 1 to 4, wherein the soil saturation is measured two-dimensionally or three-dimensionally by a specific resistance tomography measurement device.
JP2007293617A 2007-11-12 2007-11-12 Measuring method of ground saturation by air injection Active JP4899164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293617A JP4899164B2 (en) 2007-11-12 2007-11-12 Measuring method of ground saturation by air injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293617A JP4899164B2 (en) 2007-11-12 2007-11-12 Measuring method of ground saturation by air injection

Publications (2)

Publication Number Publication Date
JP2009121066A JP2009121066A (en) 2009-06-04
JP4899164B2 true JP4899164B2 (en) 2012-03-21

Family

ID=40813513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293617A Active JP4899164B2 (en) 2007-11-12 2007-11-12 Measuring method of ground saturation by air injection

Country Status (1)

Country Link
JP (1) JP4899164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852128A (en) * 2012-05-27 2013-01-02 上海岩土工程勘察设计研究院有限公司 Probing method of static penetrometer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565306B (en) * 2012-01-05 2015-04-22 交通运输部公路科学研究所 Measuring device and measuring method for roadbed wheel track
JP2013194362A (en) * 2012-03-15 2013-09-30 Maeda Corp Ground improvement method for liquefaction countermeasure
JP5944730B2 (en) * 2012-04-24 2016-07-05 東亜建設工業株式会社 Construction management method for residual soil saturation
JP6012295B2 (en) * 2012-07-04 2016-10-25 東亜建設工業株式会社 Method and system for injecting air into the ground
JP5882159B2 (en) * 2012-07-31 2016-03-09 株式会社東京ソイルリサーチ Simple measurement method for soil saturation
JP5458332B1 (en) * 2013-03-04 2014-04-02 強化土株式会社 Ground improvement method
JP5467233B1 (en) * 2013-03-04 2014-04-09 強化土株式会社 Ground improvement method
JP5382561B1 (en) * 2013-04-22 2014-01-08 強化土株式会社 Ground improvement method
CN112878300B (en) * 2021-01-12 2022-07-22 浙江工业大学 System and method for monitoring pressurization period under pressurization type vacuum pre-pressing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852128A (en) * 2012-05-27 2013-01-02 上海岩土工程勘察设计研究院有限公司 Probing method of static penetrometer

Also Published As

Publication number Publication date
JP2009121066A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP4899164B2 (en) Measuring method of ground saturation by air injection
JP4757092B2 (en) Groundwater flow evaluation method
US6098448A (en) In situ measurement apparatus and method of measuring soil permeability and fluid flow
US11480512B2 (en) Method, a system, and a computer program product for determining soil properties using pumping tests
JP5544443B2 (en) Uncertainty reduction technique in pressure pulse collapse test
CN109781773A (en) A kind of frost heave device and its detection method being layered telescopic detection soil
US20080105426A1 (en) Method and Apparatus for Estimating the Permeability Distribution During a Well Test
KR20090081146A (en) System for streamer electrical resistivity survey and method for analysis of underground structure below a riverbed
JP3041426B1 (en) Fill dam management system by resistivity tomography and its management method
CN104122577A (en) Site stratum shear wave velocity quick retesting device and method
CN108732628A (en) Along the high-density electric pipeline detection observation procedure and system of pipeline trend
CN116165718A (en) Method and device for measuring seepage safety of earth and rockfill dam, electronic equipment and medium
Boike et al. Time domain reflectometry as a field method for measuring water content and soil water electrical conductivity at a continuous permafrost site
Kachanoski et al. Measurement of soil water content during three‐dimensional axial‐symmetric water flow
JP2796748B2 (en) Single hole fluctuating hydraulic permeability tester and test method
CN112946778B (en) Method for early warning karst collapse based on underground water turbidity monitoring
CN107268400A (en) A kind of construction quality of pavement detection method and system
JP5944730B2 (en) Construction management method for residual soil saturation
Burns et al. Investigating internal erosion using a miniature resistivity array
JP2011133301A (en) Method for surveying bottom depth of underground base structure
CN110230327A (en) A kind of real-time monitoring system and method for sandy pile construction quality
CN103940724B (en) Drainage performance test method is oozed at retaining engineering loaded filter scene
WO1998046858A1 (en) In situ measurement apparatus and method of measuring soil permeability and fluid flow
JPS6236086B2 (en)
Yamamoto et al. Systems for forward prediction of geological condition ahead of the tunnel face

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4899164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250