JP2013194362A - Ground improvement method for liquefaction countermeasure - Google Patents
Ground improvement method for liquefaction countermeasure Download PDFInfo
- Publication number
- JP2013194362A JP2013194362A JP2012059464A JP2012059464A JP2013194362A JP 2013194362 A JP2013194362 A JP 2013194362A JP 2012059464 A JP2012059464 A JP 2012059464A JP 2012059464 A JP2012059464 A JP 2012059464A JP 2013194362 A JP2013194362 A JP 2013194362A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- liquefaction
- improved
- improvement
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Foundations (AREA)
Abstract
Description
本発明は、適切かつ確実に液状化強度を向上させることが可能な地盤改良工法に関するものである。 The present invention relates to a ground improvement method capable of improving liquefaction strength appropriately and reliably.
埋め立て地をはじめとして、地下水位が高い砂質地盤では、地震の震動により液状化現象が発生し、マンホールや下水管が押し上げられて地表面から突出したり、建造物が傾いたりする被害が発生している。このような液状化現象を未然に防止するためには、液状化が懸念される地盤に対して改良工事を行わなければならない。 In sandy ground with a high groundwater level, such as landfills, liquefaction occurs due to earthquake vibration, and manholes and sewer pipes are pushed up and protrude from the ground surface, and damage to the building may occur. ing. In order to prevent such a liquefaction phenomenon, improvement work must be performed on the ground where liquefaction is a concern.
従来から行われている液状化対策工法には、対象地盤中に薬液を注入して地盤強度を増加させる工法や、地下水位を低下させる工法等があり、数多くの技術が提案されている(例えば、特許文献1、特許文献2参照)。 The conventional liquefaction countermeasure methods include a method of increasing the strength of the ground by injecting a chemical into the target ground, a method of reducing the groundwater level, etc., and many techniques have been proposed (for example, , See Patent Document 1 and Patent Document 2).
特許文献1(特開2012−21269号公報)に記載された技術は、液状化対策地盤における液状化層に対して、複数の杭式改良体を造成する技術である。そして、杭式改良体は、液状化層を超えて基板層に到達しており、隣接する杭式改良体同士の間には、深さ方向に離間する複数の補強改良体が形成されている。また、補強改良体は、隣接する杭式改良体同士を繋げている。 The technique described in patent document 1 (Unexamined-Japanese-Patent No. 2012-21269) is a technique which produces a several pile improvement body with respect to the liquefaction layer in a liquefaction countermeasure ground. And the pile type improvement body has reached the substrate layer beyond the liquefied layer, and a plurality of reinforcement improvement bodies that are separated in the depth direction are formed between adjacent pile type improvement bodies. . Moreover, the reinforcement improvement body has connected adjacent pile type improvement bodies.
特許文献2(特開2008−208631号公報)に記載された技術は、杭基礎の地盤中に、杭に隣接させて固化工法により造成する改良体を、深さ方向に間隔をあけて配置する技術である。また、杭基礎の周辺地盤に、透水性を有するドレーン材を埋設すると共に、ドレーン材を改良体の外周側近傍に配置している。 The technique described in patent document 2 (Unexamined-Japanese-Patent No. 2008-208631) arrange | positions the improvement body created by the solidification method adjacent to a pile in the ground of a pile foundation at intervals in the depth direction. Technology. Moreover, the drain material which has water permeability is embed | buried in the surrounding ground of a pile foundation, and the drain material is arrange | positioned in the outer peripheral side vicinity of the improved body.
ところで、液状化対策のための薬液注入工法は、恒久的なグラウト材が必要であるばかりでなく、大がかりな薬液注入装置が必要であるため、高コストとなってしまうという問題がある。さらに、注入材の長期耐久性の検証や、注入地盤の信頼性に関する検証も必要である。 By the way, the chemical injection method for countermeasures against liquefaction not only requires a permanent grout material but also requires a large chemical injection device, resulting in a high cost. Furthermore, verification of the long-term durability of the injection material and verification of the reliability of the injection ground are also necessary.
また、液状化対策のための地下水位低下工法は、長期的な地盤沈下の問題があり、広域を対象とした場合には、居住者全員の合意が必要となる。また、個別対策では遮水壁が必要となり、遮水壁の構築にはコストが嵩むという問題がある。さらに、排水の長期的メンテナスが必要であり、数mの水位低下(液状化対象層の一部)を実現するためには、液状化対策効果の検証が必須である。 In addition, the groundwater level lowering method for liquefaction countermeasures has a problem of long-term land subsidence, and when it covers a wide area, all residents need to agree. In addition, the individual measures require a water shielding wall, and there is a problem that the construction of the water shielding wall is expensive. Furthermore, long-term maintenance of drainage is necessary, and verification of the effect of countermeasures against liquefaction is essential in order to achieve a water level drop of a few meters (part of the liquefaction target layer).
このように、液状化対策に関する各種の工法には、それぞれ長所及び短所が存在するが、未だ、適切かつ効果的で安価に液状化を防止することが可能な技術の開発には至っておらず、各工法の短所を補うべく、種々の技術開発が行われている。 As described above, various methods related to liquefaction countermeasures have advantages and disadvantages, respectively, but they have not yet been developed as a technology capable of preventing liquefaction at an appropriate, effective, and inexpensive price. Various technologies have been developed to compensate for the shortcomings of each method.
本発明は、上述した事情に鑑み提案されたもので、適切かつ確実で安価に液状化強度を向上させることが可能な液状化対策における地盤改良工法を提供することを目的とする。 This invention is proposed in view of the situation mentioned above, and it aims at providing the ground improvement construction method in the countermeasure against liquefaction which can improve liquefaction intensity | strength appropriately and reliably and cheaply.
本発明の液状化対策における地盤改良工法は、改良対象地盤の液状化強度を向上させるための地盤改良工法であって、以下の工程を含むことを特徴とするものである。まず初めに、改良対象地盤中に空気注入管を挿入して、当該空気注入管の先端部から改良対象地盤中に気泡を注入する。続いて、改良対象地盤を間に挟んだ地盤中に、音波を発射する発信器と、上下方向に配列した複数の受信器とを設置して、発信器から発射された音波を各受信器で受信して、音波の到達時間と振幅とに基づいて、弾性波速度とエネルギー減衰の分布を求める。続いて、弾性波速度とエネルギー減衰の分布とに基づき、改良対象地盤の液状化強度分布を推定する。 The ground improvement method in the countermeasure against liquefaction of the present invention is a ground improvement method for improving the liquefaction strength of the improvement target ground, and includes the following steps. First, an air injection pipe is inserted into the improvement target ground, and bubbles are injected into the improvement target ground from the tip of the air injection pipe. Subsequently, a transmitter that emits sound waves and a plurality of receivers arranged in the vertical direction are installed in the ground sandwiching the ground to be improved, and the sound waves emitted from the transmitters are received by each receiver. Based on the arrival time and the amplitude of the sound wave, the elastic wave velocity and the energy attenuation distribution are obtained. Subsequently, the liquefaction strength distribution of the ground to be improved is estimated based on the elastic wave velocity and the energy attenuation distribution.
また、改良対象地盤の液状化強度分布を推定する工程において、液状化強度分布は、弾性波速度及びエネルギー減衰の分布から求められる改良対象地盤における気泡混入率及び地盤の固さを用いて、予め計測しておいた気泡混入率及び地盤の固さと液状化強度との相関関係に基づいて推定することを特徴とするものである。 Further, in the process of estimating the liquefaction strength distribution of the improvement target ground, the liquefaction strength distribution is calculated in advance using the bubble mixing rate and the ground hardness in the improvement target ground obtained from the elastic wave velocity and energy attenuation distribution. It is estimated based on the measured bubble mixing rate and the correlation between ground hardness and liquefaction strength.
さらに、推定した液状化強度分布に応じて、所定の液状化強度に達していない改良対象地盤部分に、さらに気泡を注入する工程を含むことを特徴とするものである。 Furthermore, according to the estimated liquefaction strength distribution, the method further includes a step of injecting air bubbles into the improvement target ground portion that has not reached the predetermined liquefaction strength.
このような構成からなる液状化対策における地盤改良工法では、改良対象地盤(飽和地盤)中に気泡を混入させることにより、地盤が不飽和化する。そして、地盤に地震動が作用すると、地盤中に存在する空気の圧縮性により、過剰間隙水圧の上昇が低減して液状化強度が上昇する。この際、地盤の不飽和化が不均一であると、当該不均一な部分では液状化強度を向上させることができず、十分な液状化対策を行うことができない。 In the ground improvement method in the liquefaction countermeasure having such a configuration, the ground is desaturated by mixing bubbles in the ground to be improved (saturated ground). And when an earthquake motion acts on the ground, due to the compressibility of the air existing in the ground, the increase in excess pore water pressure is reduced and the liquefaction strength is increased. At this time, if the ground is unsaturated unevenly, the liquefaction strength cannot be improved in the uneven portion, and sufficient liquefaction countermeasures cannot be taken.
そこで、本発明では、気泡を注入した後の地盤について、発信器から発射された音波を複数の受信器で受信して、音波の到達時間と振幅とに基づいて、弾性波速度とエネルギー減衰の分布を求めることにより、改良対象地盤の液状化強度分布を推定して、適切かつ効果的に液状化対策が行われたか否かを知ることができる。 Therefore, in the present invention, the sound wave emitted from the transmitter is received by a plurality of receivers for the ground after the bubble is injected, and the elastic wave velocity and energy attenuation are determined based on the arrival time and amplitude of the sound wave. By obtaining the distribution, it is possible to estimate the liquefaction strength distribution of the ground to be improved and know whether or not the countermeasure for liquefaction has been appropriately and effectively performed.
さらに、推定した液状化強度分布に応じて、所定の液状化強度に達していない改良対象地盤部分に、さらに気泡を注入することができるので、より一層、適切かつ効果的に液状化対策を行うことができる。 Furthermore, according to the estimated liquefaction strength distribution, it is possible to inject more bubbles into the improvement target ground portion that has not reached the predetermined liquefaction strength, so that countermeasures for liquefaction can be taken more appropriately and effectively. be able to.
本発明の液状化対策における地盤改良工法によれば、改良対象地盤中に気泡を注入することにより液状化強度を向上せて、地震動による液状化を未然に防止することができる。この際、いわゆる音響トモグラフィー技術を用いて改良対象地盤の液状化強度を推定することにより、適切かつ確実で安価に液状化強度を向上させることが可能となる。 According to the ground improvement method in the countermeasure for liquefaction of the present invention, liquefaction strength can be improved by injecting bubbles into the ground to be improved, and liquefaction due to earthquake motion can be prevented beforehand. At this time, by estimating the liquefaction strength of the ground to be improved using a so-called acoustic tomography technique, the liquefaction strength can be improved appropriately, reliably and inexpensively.
また、所定の液状化強度に達していない改良対象地盤部分が存在する場合には、当該部分に対してさらに液状化対策を行うことにより、改良対象地盤の全体にわたって、適切かつ確実で安価に液状化強度を向上させることが可能となる。 In addition, when there is an improvement target ground portion that does not reach the predetermined liquefaction strength, by taking further measures against liquefaction on the relevant portion, the entire improvement target ground can be appropriately, reliably and inexpensively liquefied. It is possible to improve the forming strength.
以下、図面を参照して、本発明の液状化対策における地盤改良工法(以下、地盤改良工法と略記する)の実施形態を説明する。図1〜図3は本発明の実施形態に係る液状化対策における地盤改良工法を説明するもので、図1は空気注入装置の模式図、図2は音響トモグラフィー装置の模式図、図3は地盤改良工法で用いる装置及び機能手段の説明図である。 Hereinafter, an embodiment of a ground improvement construction method (hereinafter abbreviated as a ground improvement construction method) in the liquefaction countermeasure of the present invention will be described with reference to the drawings. 1 to 3 illustrate a ground improvement method for liquefaction measures according to an embodiment of the present invention. FIG. 1 is a schematic diagram of an air injection device, FIG. 2 is a schematic diagram of an acoustic tomography device, and FIG. It is explanatory drawing of the apparatus and functional means which are used by the improved construction method.
<地盤改良工法の概要>
我が国では、プレート境界型巨大地震の発生により地盤の液状化現象が発生し、これによる大規模な被害が予想されている。実際、東日本大震災では、埋立地、堤防や盛り土、護岸等で液状化現象が発生して、様々な被害をもたらした。このため、近い将来発生すると予測されている大規模地震に備えて、早急に液状化対策を行うことが望まれている。本発明の実施形態に係る地盤改良工法は、大規模な設備及び機械を用いることなく、適切かつ確実で安価に改良対象地盤の液状化強度を向上させるための技術である。すなわち、本発明の実施形態に係る地盤改良工法は、改良対象地盤中に空気注入を行って、地震動に伴う過剰間隙水圧の上昇を低減することにより、液状化強度を向上させと共に、原位置にて地盤改良後の液状化強度を推定し、改良対象地盤中に改良が不十分な部分が残らないようにしている。
<Outline of ground improvement method>
In Japan, liquefaction of the ground occurs due to the occurrence of a massive plate boundary earthquake, and large scale damage is expected due to this phenomenon. In fact, during the Great East Japan Earthquake, liquefaction occurred in landfills, embankments, banking, and revetments, causing various damage. For this reason, it is desirable to take measures against liquefaction as soon as possible in preparation for a large-scale earthquake that is expected to occur in the near future. The ground improvement method according to the embodiment of the present invention is a technique for improving the liquefaction strength of the ground to be improved appropriately, reliably and inexpensively without using a large-scale facility and machine. In other words, the ground improvement method according to the embodiment of the present invention improves the liquefaction strength by injecting air into the improvement target ground and reducing the increase in excess pore water pressure caused by the earthquake motion, and at the original position. Thus, the liquefaction strength after ground improvement is estimated, so that there is no insufficient improvement in the ground to be improved.
<空気注入>
飽和地盤に地震動が作用すると、過剰間隙水圧が上昇して有効上載圧に達すると、当該地盤の強度が低下して液状化現象が発生することが知られている。この点、間隙に空気(気泡)が存在する地盤では、地震動が作用した場合、空気の圧縮性により、過剰間隙水圧の上昇が低減されて液状化強度が向上することも知られている。そこで、液状化現象の発生が懸念される飽和地盤中に空気注入を行うことにより、液状化強度を向上させる技術が注目を浴びている。本実施形態の地盤改良工法は、このような空気注入による液状化対策工法を用いると共に、空気注入後の地盤における液状化強度を原位置で推定して、適切かつ確実で安価な地盤改良を行うことができるようにした技術である。
<Air injection>
It is known that when ground motion acts on the saturated ground, when the excess pore water pressure increases and reaches the effective upper pressure, the strength of the ground decreases and liquefaction occurs. In this regard, in the ground where air (bubbles) is present in the gap, it is also known that when seismic motion acts, the increase in excess pore water pressure is reduced and the liquefaction strength is improved due to the compressibility of air. Therefore, a technique for increasing the liquefaction strength by injecting air into the saturated ground where the occurrence of the liquefaction phenomenon is a concern has attracted attention. The ground improvement method of the present embodiment uses such a liquefaction countermeasure method by air injection, and estimates the liquefaction strength in the ground after air injection in-situ, and performs appropriate, reliable and inexpensive ground improvement. This is a technology that can be used.
改良対象地盤に空気注入を行うには、図1に示すように、改良対象地盤中に空気注入管21を挿入して、空気注入管21の先端部から改良対象地盤中に気泡を注入する。具体的な装置は、改良対象地盤中に挿入する空気注入管21と、この空気注入管21に連続して接続した送気パイプ22と、送気パイプ22を介して空気注入管21に空気を送出するコンプレッサー23とを主な構成機器として、付随機器として送気圧を測定するための圧力計24、送気パイプ22への送気を制御する開閉弁25等を備えている。
In order to inject air into the improvement target ground, as shown in FIG. 1, an air injection pipe 21 is inserted into the improvement target ground, and air bubbles are injected into the improvement target ground from the tip of the air injection pipe 21. A specific device includes an air injection pipe 21 to be inserted into the ground to be improved, an air supply pipe 22 continuously connected to the air injection pipe 21, and air to the air injection pipe 21 through the air supply pipe 22. A
なお、空気注入を行うための機器は、図1に示すものに限られず、改良対象地盤の土質、面積、現場の事情等に応じて、適宜な機器を使用することができる。例えば、コンプレッサー23を用いずに、圧縮空気を充填した空気ボンベを用い、減圧弁により適正圧力とした空気を空気注入管21に送気してもよい。また、送気する空気の圧力、気泡の大きさは、改良対象地盤の土質等に応じて適宜選択されるが、飽和地盤中に満遍なく気泡が行き渡る圧力及び大きさとする必要がある。
In addition, the apparatus for performing air injection is not restricted to what is shown in FIG. 1, A suitable apparatus can be used according to the soil quality of an improvement object ground, an area, the situation of the field, etc. For example, instead of using the
<音響トモグラフィー>
一般的に、改良後の地盤の強度は、コアサンプリングを行い、実験室で一軸圧縮試験、三軸圧縮試験等を行うことにより求めることができる。しかし、このようなサンプリング試験を行う場合には、ボーリング作業が必須であり、試験費用が嵩むだけではなく、ボーリングマシンを設置するスペースがない現場では実施することができない。さらに、改良後の地盤全体に対するサンプリング(ボーリング)を行うことは不可能であり、サンプリングを行った位置における地盤強度を把握できるのみであるため、改良対象地盤の全体にわたって、適切に液状化対策を行うことができたという確証を得ることはできない。
<Acoustic tomography>
Generally, the strength of the ground after the improvement can be obtained by performing core sampling and performing a uniaxial compression test, a triaxial compression test, or the like in a laboratory. However, when performing such a sampling test, a boring operation is indispensable, which not only increases the cost of the test, but also cannot be performed at a site where there is no space for installing the boring machine. Furthermore, it is impossible to perform sampling (boring) on the entire ground after the improvement, and it is only possible to grasp the ground strength at the position where the sampling was performed. There is no assurance that it could have been done.
そこで、本発明の地盤改良工法では、いわゆる音響トモグラフィー技術を用い、原位置にて、改良後の地盤における液状化強度を推定している。この音響トモグラフィーは、図2に示すように、改良対象地盤を間に挟んだ地盤中に、音波を発射する発信器31と、上下方向に配列した複数の受信器32とを設置する。そして、発信器31から発射された音波を各受信器32で受信して、音波の到達時間と振幅とに基づいて、弾性波速度とエネルギー減衰の分布を求めることができる。
Therefore, in the ground improvement method of the present invention, the so-called acoustic tomography technique is used to estimate the liquefaction strength in the ground after the improvement in situ. In this acoustic tomography, as shown in FIG. 2, a
すなわち、図2に示すように、改良対象地盤を挟んで2本の計測孔33を削孔し、一方の計測孔33に発信器31(例えば圧電セラミックススピーカ)を設置し、他方の計測孔33に複数の受信器32(例えばマイクロホン)を上下方向に並べて設置する。そして、発信器31から弾性波を発信し、受信器32で受信した弾性波の到達時間と振幅とに基づいて、改良対象地盤の断面を複数のグリッドに分割し、速度分布図と減衰率分布図を作成する。速度分布図から地盤の固さや種類を推定することができ、減衰率分布図から間隙物の性状を推定することができる。
That is, as shown in FIG. 2, two
さらに、この速度分布図と減衰率分布図に基づいて、改良対象地盤の液状化強度分布を推定する。この際、予め、気泡混入率及び地盤の固さと液状化強度との相関関係を計測しておく。そして、弾性波速度及びエネルギー減衰の分布から求められる改良対象地盤における気泡混入率及び地盤の固さを用いて、予め計測しておいた気泡混入率及び地盤の固さと液状化強度との相関関係に基づいて、改良対象地盤の液状化強度分布を推定することができる。 Furthermore, the liquefaction strength distribution of the improvement target ground is estimated based on the velocity distribution map and the attenuation rate distribution map. At this time, the correlation between the bubble mixing rate, the hardness of the ground and the liquefaction strength is measured in advance. Then, using the bubble mixing rate and ground hardness in the ground to be improved obtained from the distribution of elastic wave velocity and energy attenuation, the correlation between the bubble mixing rate and ground hardness and liquefaction strength measured in advance. Based on the above, the liquefaction strength distribution of the ground to be improved can be estimated.
なお、速度分布図及び減衰率分布図の作成や、改良対象地盤の液状化強度分布の推定は、所定のプログラムを用いたコンピュータ解析により行うことができる。このような音響トモグラフィーに用いる機器は、市販のものを使用することができる。 It should be noted that the creation of the velocity distribution map and the attenuation rate distribution map and the estimation of the liquefaction strength distribution of the ground to be improved can be performed by computer analysis using a predetermined program. Commercially available equipment can be used for such acoustic tomography.
<地盤改良の補充>
本発明の地盤改良工法では、上述した手順で推定した液状化強度分布に応じて、所定の液状化強度に達していない改良対象地盤部分に、さらに気泡を注入する。すなわち、原位置にて地盤改良後の液状化強度を推定し、液状化強度が不足している部分に対してさらに空気注入を行うことにより、改良対象地盤中に改良が不十分な部分が残らないようにしている。
<Replenishment of ground improvement>
In the ground improvement method of the present invention, air bubbles are further injected into the ground portion to be improved that does not reach the predetermined liquefaction strength according to the liquefaction strength distribution estimated by the above-described procedure. That is, by estimating the liquefaction strength after ground improvement at the original position and further injecting air into the portion where the liquefaction strength is insufficient, there remains an insufficient improvement portion in the ground to be improved. I am trying not to.
<地盤改良装置>
本発明の地盤改良工法に用いる地盤改良装置10は、図3に示すように、空気注入手段11と、音波発信手段12と、音波受信手段13と、弾性波速度・エネルギー減衰分布推定手段14と、液状化強度分布推定手段15とを備えている。
<Ground improvement device>
As shown in FIG. 3, the ground improvement device 10 used in the ground improvement method of the present invention includes an air injection means 11, a sound wave transmission means 12, a sound wave reception means 13, an elastic wave velocity / energy attenuation distribution estimation means 14, and And liquefaction strength distribution estimation means 15.
<空気注入手段>
空気注入手段11は、上述したように、空気注入管21、送気パイプ22、コンプレッサー23等の機器により構成される。この空気注入手段11を用いて、改良対象地盤中に気泡を注入する。
<Air injection means>
As described above, the air injecting means 11 is composed of devices such as the air injecting pipe 21, the air supply pipe 22, and the
<音波発信手段/音波受信手段>
音波発信手段12は、改良対象地盤中に弾性波を発信するための装置であり、上述したように、圧電セラミックススピーカ等の発信器31により構成される。また、音波受信手段13は、音波発信手段12から発信された弾性波を受信するための装置であり、上述したように、防水型のマイクロホン等の受信器32により構成される。また、マイクロホンを上下方向に並べて複数設置し、各マイクロホンで圧電セラミックススピーカから発信される弾性波を受信することにより、改良対象地盤の全体にわたる弾性波速度とエネルギー減衰分布とを認識することができる。
<Sound wave sending means / Sound wave receiving means>
The sound wave transmitting means 12 is a device for transmitting an elastic wave in the ground to be improved, and includes the
<弾性波速度・エネルギー減衰分布推定手段>
弾性波速度・エネルギー減衰分布推定手段14は、音波の到達時間と振幅とに基づいて、弾性波速度とエネルギー減衰の分布を求めるためのプログラムと、このプログラムを実行するためのCPU等を備えたコンピュータとにより構成される。弾性波速度・エネルギー減衰分布推定手段14による演算結果は、コンピュータに接続された表示装置の表示画面に表示したり、プリンタにより印刷したりすることができる。
<Measuring means for elastic wave velocity / energy attenuation distribution>
The elastic wave velocity / energy attenuation distribution estimating means 14 includes a program for obtaining the distribution of elastic wave velocity and energy attenuation based on the arrival time and amplitude of the sound wave, and a CPU for executing the program. It consists of a computer. The calculation result by the elastic wave velocity / energy attenuation distribution estimating means 14 can be displayed on a display screen of a display device connected to the computer, or printed by a printer.
<液状化強度分布推定手段>
液状化強度分布推定手段15は、弾性波速度とエネルギー減衰の分布とに基づき、改良対象地盤の液状化強度分布を推定するためのプログラムと、このプログラムを実行するためのCPU等を備えたコンピュータとにより構成される。液状化強度分布推定手段15による演算結果は、コンピュータに接続された表示装置の表示画面に表示したり、プリンタにより印刷したりすることができる。
<Liquefaction strength distribution estimation means>
The liquefaction strength distribution estimation means 15 is a computer including a program for estimating the liquefaction strength distribution of the ground to be improved based on the elastic wave velocity and the energy attenuation distribution, and a CPU or the like for executing the program. It consists of. The calculation result by the liquefaction intensity distribution estimating means 15 can be displayed on a display screen of a display device connected to a computer or printed by a printer.
10 地盤改良装置
11 空気注入手段
12 音波発信手段
13 音波受信手段
14 弾性波速度・エネルギー減衰分布推定手段
15 液状化強度分布推定手段
21 空気注入管
22 送気パイプ
23 コンプレッサー
24 圧力計
25 開閉弁
31 発信器
32 受信器
33 計測孔
DESCRIPTION OF SYMBOLS 10
Claims (3)
前記改良対象地盤中に空気注入管を挿入して、当該空気注入管の先端部から前記改良対象地盤中に気泡を注入する工程と、
前記改良対象地盤を間に挟んだ地盤中に、音波を発射する発信器と、上下方向に配列した複数の受信器とを設置して、前記発信器から発射された音波を前記各受信器で受信して、音波の到達時間と振幅とに基づいて、弾性波速度とエネルギー減衰の分布を求める工程と、
前記弾性波速度とエネルギー減衰の分布とに基づき、前記改良対象地盤の液状化強度分布を推定する工程と、
を含むことを特徴とする液状化対策における地盤改良工法。 A ground improvement method for improving the liquefaction strength of the ground to be improved,
Inserting an air injection pipe into the improvement target ground and injecting air bubbles into the improvement target ground from a tip of the air injection pipe; and
A transmitter that emits sound waves and a plurality of receivers arranged in the vertical direction are installed in the ground sandwiching the ground to be improved, and the sound waves emitted from the transmitters are received by each receiver. Receiving and determining the elastic wave velocity and energy attenuation distribution based on the arrival time and amplitude of the sound wave;
Estimating the liquefaction strength distribution of the ground to be improved based on the elastic wave velocity and the energy attenuation distribution;
A ground improvement method for liquefaction countermeasures characterized by containing liquefaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012059464A JP2013194362A (en) | 2012-03-15 | 2012-03-15 | Ground improvement method for liquefaction countermeasure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012059464A JP2013194362A (en) | 2012-03-15 | 2012-03-15 | Ground improvement method for liquefaction countermeasure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013194362A true JP2013194362A (en) | 2013-09-30 |
Family
ID=49393662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012059464A Pending JP2013194362A (en) | 2012-03-15 | 2012-03-15 | Ground improvement method for liquefaction countermeasure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013194362A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016084586A (en) * | 2014-10-23 | 2016-05-19 | 前田建設工業株式会社 | Method for determining appropriate air feeding pressure to caisson work room in pneumatic caisson method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02125013A (en) * | 1988-11-01 | 1990-05-14 | Shimizu Corp | Fluidization preventing method for sandy ground |
JPH1068779A (en) * | 1997-05-16 | 1998-03-10 | Yamamoto Eng Corp | Non-destructive measuring method using acoustic wave for physical characteristics of stratum |
JP2009121066A (en) * | 2007-11-12 | 2009-06-04 | National Institute Of Advanced Industrial & Technology | Method for measuring degree of saturation of ground by injection of air |
-
2012
- 2012-03-15 JP JP2012059464A patent/JP2013194362A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02125013A (en) * | 1988-11-01 | 1990-05-14 | Shimizu Corp | Fluidization preventing method for sandy ground |
JPH1068779A (en) * | 1997-05-16 | 1998-03-10 | Yamamoto Eng Corp | Non-destructive measuring method using acoustic wave for physical characteristics of stratum |
JP2009121066A (en) * | 2007-11-12 | 2009-06-04 | National Institute Of Advanced Industrial & Technology | Method for measuring degree of saturation of ground by injection of air |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016084586A (en) * | 2014-10-23 | 2016-05-19 | 前田建設工業株式会社 | Method for determining appropriate air feeding pressure to caisson work room in pneumatic caisson method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102912780B (en) | Sandy soil water-immersion testing method for loess collapsible deformation | |
CN100483081C (en) | Underwater concrete pouring level position indicator | |
CN113605410B (en) | Landslide reinforcement method | |
CN106638725A (en) | Pipe pile soil squeezing effect testing apparatus and method | |
CN105386474B (en) | Method for determining influences of leakage of waterproof curtain above foundation pit excavation face on surrounding environment | |
JP6319895B2 (en) | Quality control method and quality control device for improved ground | |
Tsetas et al. | Gentle driving of piles (GDP) at a sandy site combining axial and torsional vibrations: Part I-installation tests | |
Cheng et al. | Evaluation of jet grout column diameters by acoustic monitoring | |
JP2010037812A (en) | Method of estimating origin position gel time of ground injection chemical | |
CN105257318B (en) | A kind of lining cutting localized seepage causes the method for security protection that tunnel structure is deformed | |
JP2013194362A (en) | Ground improvement method for liquefaction countermeasure | |
CN104123433A (en) | Method for determining soil deformation caused by high-pressure horizontal rotary jet grouting construction | |
US20170138828A1 (en) | Method of soil liquefaction testing and remediation | |
Qin et al. | Detection of diaphragm wall defects using crosshole GPR | |
CN108508186A (en) | Ultrasonic activation vacuum preloading test method | |
WO2017087525A1 (en) | Method of soil liquefaction testing and remediation | |
Nagao et al. | In-situ applicability test of soil improvement for housing sites using Micro-Bubbles against soil liquefaction in URAYASU | |
KR101531698B1 (en) | Equipment for sink hole investigation | |
Zeng et al. | Study on positioning of trenchless drill bits based on the principle of acoustic resonance | |
KR100856066B1 (en) | Testing device for installing caisson | |
KR101279064B1 (en) | Hydraulic test method for ground | |
Marinucci et al. | Evaluation of the Effectiveness of Prefabricated Vertical Drains Using Full-Scale In Situ Staged Dynamic Testing | |
CN105464150B (en) | A kind of monitoring method of vacuum preloading envelope wall task performance | |
Gazzarrini et al. | Construction of a jet-grouted backup seepage cut-off wall in the John Hart North Earthfill Dam | |
Cheng et al. | Seismic cone penetration test assessment of vibratory probe compaction for liquefaction mitigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160330 |