JP5882159B2 - Simple measurement method for soil saturation - Google Patents

Simple measurement method for soil saturation Download PDF

Info

Publication number
JP5882159B2
JP5882159B2 JP2012170048A JP2012170048A JP5882159B2 JP 5882159 B2 JP5882159 B2 JP 5882159B2 JP 2012170048 A JP2012170048 A JP 2012170048A JP 2012170048 A JP2012170048 A JP 2012170048A JP 5882159 B2 JP5882159 B2 JP 5882159B2
Authority
JP
Japan
Prior art keywords
water
sampler
ground
saturation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012170048A
Other languages
Japanese (ja)
Other versions
JP2014029297A (en
Inventor
吉田 正
正 吉田
一幸 乾
一幸 乾
洋之 小松
洋之 小松
直志 伊藤
直志 伊藤
未対 岡村
未対 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO SOIL RESEARCH CO., LTD.
Ehime University NUC
Original Assignee
TOKYO SOIL RESEARCH CO., LTD.
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO SOIL RESEARCH CO., LTD., Ehime University NUC filed Critical TOKYO SOIL RESEARCH CO., LTD.
Priority to JP2012170048A priority Critical patent/JP5882159B2/en
Publication of JP2014029297A publication Critical patent/JP2014029297A/en
Application granted granted Critical
Publication of JP5882159B2 publication Critical patent/JP5882159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

この発明は、サンプラーで採取した乱さない試料の実測値に基づき地盤(特には、砂地盤、砂質土地盤)の飽和度を測定する方法の技術分野に属し、更にいえば、地盤凍結サンプリングによることなく、簡易、かつ安価な方法で精度の高い飽和度を測定できる地盤の飽和度簡易測定方法に関する。 The present invention belongs to the technical field of a method for measuring the degree of saturation of a ground (particularly sand ground, sandy ground) based on an actual measurement value of an undisturbed sample collected by a sampler, and more specifically, by ground freezing sampling. The present invention relates to a simple method for measuring the degree of saturation of a ground, which can measure the degree of saturation with high accuracy by a simple and inexpensive method.

地盤の飽和度(Sr)は、土粒子間の間隙中に存在する間隙水の体積の割合であり(Vw/Vv)、地盤の液状化に対する強度の指標となるものである。
この地盤の飽和度を測定する方法は、大別して、乱さない試料を採取して室内試験により測定(算定)する方法と、試料を採取することなく現場で測定(推定)する方法がある。
Saturation degree (Sr) of the ground is a ratio of the volume of pore water existing in the gap between the soil particles (Vw / Vv), and serves as an index of strength against liquefaction of the ground.
The method of measuring the degree of saturation of the ground is roughly divided into a method in which a sample that is not disturbed is collected and measured (calculated) by a laboratory test, and a method in which the sample is measured (estimated) without taking a sample.

前者については、乱さない試料を採取する方法は種々開示されているものの(例えば、特許文献1〜3参照)、採取した試料を地上へ引き上げる際に多少なりとも脱水が生じるため、いわゆる地盤凍結サンプリング方法(例えば、特許文献4参照)以外で精度よく飽和度を測定することは困難とされている。   As for the former, various methods for collecting undisturbed samples have been disclosed (see, for example, Patent Documents 1 to 3), but since the collected samples are dehydrated more or less when they are pulled to the ground, so-called ground freezing sampling It is difficult to measure the degree of saturation with accuracy other than the method (for example, see Patent Document 4).

後者については、比抵抗トモグラフィーによる比抵抗の変化から飽和度を測定する方法(例えば、特許文献5参照)、土壌水分計(例えば、特許文献6参照)を用いて求められる体積含水率から含水比を算定して飽和度を測定する方法、地盤に設けた測定孔内にP波伝播速度測定用のプローブを挿入して地盤の飽和度に相関するP波伝播速度を測定する方法(例えば、特許文献7参照)、および揚水時間と水位低下量との関係から飽和度に相関する地盤の比貯留係数を求める方法(例えば、特許文献8参照)などが種々開示されている。   For the latter, the water content ratio is determined from the volumetric water content obtained using a method for measuring the saturation from the change in specific resistance by specific resistance tomography (for example, see Patent Document 5) and a soil moisture meter (for example, see Patent Document 6). A method for measuring the degree of saturation and calculating the degree of saturation, and a method for measuring the P-wave propagation speed correlated with the degree of saturation of the ground by inserting a probe for measuring the P-wave propagation speed into a measurement hole provided in the ground (for example, patent Various methods for obtaining a specific storage coefficient of the ground correlated with the degree of saturation from the relationship between the pumping time and the amount of lowered water level (see, for example, Patent Document 8) are disclosed.

特開平11−71744号公報Japanese Patent Laid-Open No. 11-71744 特開平11−101083号公報JP 11-101083 A 特開平11−152982号公報Japanese Patent Laid-Open No. 11-152982 特開平9−287378号公報JP-A-9-287378 特開2009−121066号公報JP 2009-121066 A 特開平8−219972号公報JP-A-8-219972 特開2003−278141号公報JP 2003-278141 A 特開2003−155735号公報JP 2003-155735 A

前者にかかる地盤凍結サンプリング方法は、原位置における土粒子の微視的な骨格構造を保持した状態で凍結されることから、間隙内の空気量、すなわち飽和度も保持した状態でサンプリングできる。よって、実測値に基づいて飽和度を精度よく測定できるので信頼性は高い。
しかし、試料を凍結させる必要があり、飽和度を測定するまで長期間を要する上にコストが嵩む問題がある。また、試料1体当たりのコストが嵩むので、例えば地上に長く敷設された既設の鉄道線路やパイプラインなどの線状構造物の基礎地盤には適用しづらい問題もある。
後者の方法は、共通して、部材点数が多く、測定ポイントの周辺地盤などに精密で大掛かりな装置を精度よく配設する必要があり、大変煩雑で、コストが嵩む問題がある。また、測定や解析に時間を要する上に装置のメンテナンス費用も嵩む問題がある。さらに、装置が大掛かりであるが故に、前記線状構造物の基礎地盤には適用しづらいという問題もある。
The ground freezing sampling method according to the former is frozen in a state in which the microscopic skeleton structure of the soil particles is maintained in the original position, and therefore can be sampled in a state in which the amount of air in the gap, that is, the degree of saturation is also maintained. Therefore, the degree of saturation can be accurately measured based on the actual measurement value, so that the reliability is high.
However, there is a problem that it is necessary to freeze the sample, and it takes a long time to measure the degree of saturation and the cost is increased. In addition, since the cost per sample increases, there is a problem that it is difficult to apply to the foundation ground of a linear structure such as an existing railway line or pipeline that has been laid long on the ground.
The latter method has a common problem that the number of members is large, and a precise and large-scale device needs to be accurately arranged on the ground around the measurement point, which is very complicated and expensive. In addition, it takes time for measurement and analysis, and there is a problem that the maintenance cost of the apparatus increases. Further, since the apparatus is large, there is a problem that it is difficult to apply to the foundation ground of the linear structure.

ところで、前者にかかる乱さない試料を採取して室内試験により測定する方法は、試料採取から飽和度測定までの一連の作業を脱水を防止しながら行うことができれば、安価で精度の高い飽和度測定を行い得るのは明らかである。   By the way, the former method of collecting undisturbed samples and measuring them by laboratory tests is an inexpensive and highly accurate saturation measurement if a series of operations from sample collection to saturation measurement can be performed while preventing dehydration. It is clear that can be done.

本発明の目的は、簡易、迅速、かつ確実に、採取した乱さない試料を水中から一切出すことなく原位置の飽和度を保持した保水状態のまま、採取試料の諸数値を速やかに測定することにより飽和度を精度よく測定(算定)できる、地盤の飽和度簡易測定方法を提供することにある。 The purpose of the present invention is to quickly and reliably measure the numerical values of the collected samples while maintaining the water retention state maintaining the in-saturation degree without taking out the collected undisturbed samples from the water. It is to provide a simple method for measuring the degree of saturation of the ground, which can measure (calculate) the degree of saturation with high accuracy.

上記背景技術の課題を解決するための手段として、請求項1に記載した発明に係る地盤の飽和度簡易測定方法は、
ロッドの先端へ設けたサンプラーでボーリング孔の孔底の地下水位以深の乱さない試料を採取した後、該サンプラーを、ボーリング孔の泥水で満たされた環境下で、保水具による保水状態でボーリング孔から引き上げて取り出すこと、
前記保水具を地上の容器内の水中に沈めた状態で、保水具からサンプラーを取り出し、該サンプラーを解体して採取試料を格納したチューブを取り出すこと、
前記チューブを水中に沈めた状態のまま、採取試料の両端部の端面成形をおこない、該採取試料の全長を測定した後、採取試料を格納したチューブを、同じく水中に沈めた測定容器内へ装填し、密封すること、
前記測定容器を水中から取り出して採取試料の質量を測定した後、採取試料の土粒子の質量と体積を測定し、これらの測定した諸数値と、前記採取試料を用いて測定した土粒子の密度から、間隙比、および含水比を算定して飽和度を求めることを特徴とする。
As a means for solving the problems of the background art, the soil saturation simple measurement method according to the invention described in claim 1 is:
After collecting a sample that is not disturbed below the groundwater level at the bottom of the borehole with a sampler provided at the tip of the rod, the sampler is placed in a borehole in an environment filled with muddy water in the borehole in the water-retained state with a water retainer. Picking it up from the
With the water retention device submerged in water in a container on the ground, take out the sampler from the water retention device, disassemble the sampler and take out the tube storing the collected sample;
While the tube is submerged in water, the end surfaces of both ends of the sample are molded, and after measuring the total length of the sample, the tube containing the sample is loaded into a measurement container that is also submerged in water. And sealing,
After taking out the measurement container from the water and measuring the mass of the collected sample, measure the mass and volume of the soil particles of the collected sample, these measured values, and the density of the soil particles measured using the collected sample From the above, the saturation ratio is obtained by calculating the gap ratio and the water content ratio.

請求項2記載の発明は、請求項1に記載した発明に係る地盤の飽和度簡易測定方法において、前記保水具は、前記サンプラー長よりも2倍以上長く、下端部にガイドバーを備えた筒状のビニールとし、該筒状のビニールを、前記ガイドバーで誘導することにより、ボーリングマシーン本体から取り外した前記ロッドの上方からサンプラーの下方まで該サンプラーを取り囲むように降下させ、該保水具の上端部を地上で保持しつつ、その下端部を地上へ引き上げることにより、サンプラーを泥水で満たされた保水状態のままボーリング孔から取り出すことを特徴とする。 The invention described in claim 2 is the ground saturation simple measuring method according to the invention described in claim 1, wherein the water retaining device is longer than the sampler length by at least twice, and a cylinder having a guide bar at the lower end. The cylindrical vinyl is guided by the guide bar, and is lowered so as to surround the sampler from above the rod removed from the boring machine main body to below the sampler, and the upper end of the water retainer The sampler is taken out from the borehole in the water retaining state filled with muddy water by pulling the lower end of the portion to the ground while holding the portion on the ground.

請求項3記載の発明は、請求項1に記載した発明に係る地盤の飽和度簡易測定方法において、前記保水具は、上方へ回動可能で自重で閉塞する逆流防止蓋を底部に備えた筒状部材とし、該筒状部材を、ボーリングマシーン本体から取り外した前記ロッドの上方から降下させ、該ロッドで逆流防止蓋を上方へ回動させたままの状態でボーリング孔と連通するように地盤に位置決めすること、
前記筒状部材の内部を満たす程度に泥水を注入し、該筒状部材の内部までサンプラーを引き上げて逆流防止蓋が底部を閉塞した後に筒状部材の上端を蓋材で閉塞して、サンプラーを泥水で満たされた保水状態のままボーリング孔から取り出すことを特徴とする。
A third aspect of the present invention is the simple method of measuring the degree of saturation of the ground according to the first aspect of the present invention, wherein the water retaining device is a cylinder having a backflow prevention lid at the bottom that is pivotable upward and closed by its own weight. The cylindrical member is lowered from above the rod removed from the boring machine main body, and the backflow prevention lid is rotated upward with the rod so as to communicate with the boring hole. Positioning,
Inject muddy water to the extent that the inside of the tubular member is filled, pull up the sampler to the inside of the tubular member, the backflow prevention cover closes the bottom, and then closes the upper end of the tubular member with the cover material, It is characterized in that it is taken out from the boring hole in a water retaining state filled with muddy water.

請求項4記載の発明は、請求項1〜3のいずれか一に記載した発明に係る地盤の飽和度簡易測定方法において、前記測定容器を水中から取り出して採取試料の質量を測定した後、該測定容器に加圧装置を接続し、加圧による体積変化量を測定して空気の体積を求め、該空気の体積の数値をもとにした飽和度も求めることを特徴とする。 The invention according to claim 4 is the ground saturation simple measurement method according to any one of claims 1 to 3, wherein the measurement container is taken out of the water and the mass of the sample collected is measured. A pressurizing device is connected to the measurement container, the volume change due to pressurization is measured to determine the volume of air, and the saturation based on the numerical value of the volume of the air is also determined.

請求項5記載の発明は、請求項1〜3のいずれか一に記載した発明に係る地盤の飽和度簡易測定方法において、前記サンプラーは、チューブ丈を50cm程度短くした全長が1m程度の短尺のロータリー式三重管サンプラーとすることを特徴とする。 The invention described in claim 5 is the ground saturation simple measurement method according to any one of claims 1 to 3, wherein the sampler has a short length of about 1 m with a tube length shortened by about 50 cm. It is a rotary triple pipe sampler.

本発明にかかる地盤の飽和度簡易測定方法によれば、サンプラーによるサンプリングから、飽和度を求めるのに必要な諸数値を測定するまでの一連の作業を、水中から一切出さずに脱水を生じさせることなく保水状態のまま速やかに行うことができる。
よって、原位置の飽和度を、ほぼ保持した状態の採取試料の実測値を求めることができる。したがって、該実測値に基づく精度の高い飽和度を測定(算定)できる。
また、図5にかかる加圧装置を用いて導出される空気の体積の数値を利用することにより、原位置の土被り圧における信頼性の高い飽和度を求めることもできる。
本発明に使用する器具は、従来のサンプリング方法と比し、保水具(筒状のビニール、又は筒状部材)が加わる程度で済み、しかも、前記一連の作業は、2/3程度の短尺のサンプラーを用いて行うので、経済性、施工性に優れている。もとより、高信頼性の飽和度を測定できる。
要するに、本発明にかかる地盤の飽和度簡易測定方法によれば、安価で簡易、迅速、かつ確実に飽和度を測定できるので使い勝手がよく、汎用性に優れ、例えば、線状構造物の基礎地盤にも好適に実施できる。
According to the simple method for measuring the degree of saturation of the ground according to the present invention, a series of operations from sampling by a sampler to measuring various values necessary for obtaining the degree of saturation cause dehydration without taking out from the water at all. It can be carried out promptly without any water retention.
Therefore, it is possible to obtain an actual measurement value of the collected sample in a state where the saturation at the original position is substantially maintained. Therefore, it is possible to measure (calculate) highly accurate saturation based on the actual measurement value.
Further, by utilizing the numerical value of the volume of air derived using the pressurizing apparatus according to FIG. 5, it is possible to obtain a highly reliable saturation degree at the soil covering pressure at the original position.
The instrument used in the present invention only requires a water retaining device (cylindrical vinyl or cylindrical member) as compared with the conventional sampling method, and the series of operations is about 2/3 shorter. Since it uses a sampler, it is excellent in economic efficiency and workability. Of course, a highly reliable saturation can be measured.
In short, according to the simple method for measuring the degree of saturation of the ground according to the present invention, it is easy to use because it can measure the degree of saturation inexpensively, simply, quickly and reliably, and is excellent in versatility, for example, the foundation ground of a linear structure. Moreover, it can implement suitably.

A〜Eは、サンプラーを保水具(筒状のビニール)を用いてボーリング孔から取り出す工程を段階的に示した概略図であり、F〜Gは、該保水具を水中に沈めた状態で、保水具からサンプラーを取り出す工程を段階的に示した概略図である。なお、筒状のビニールの下端部に設けたガイドバー(図6の符号6参照)は図示の便宜上省略した。AE is the schematic which showed in steps the process which takes out a sampler from a boring hole using a water retention tool (cylindrical vinyl), and FG is the state where the water retention tool was submerged in water, It is the schematic which showed the process of taking out a sampler from a water holding tool in steps. In addition, the guide bar (refer code | symbol 6 of FIG. 6) provided in the lower end part of cylindrical vinyl was abbreviate | omitted for convenience of illustration. A〜Cは、サンプラーを水中に沈めた状態で、サンプラーから採取試料を格納したライニングチューブを取り出し、該採取試料の両端部の端面成形を行う工程を段階的に示した概略図である。AC is the schematic which showed in steps the process which takes out the lining tube which stored the extract | collected sample from the sampler in the state which submerged the sampler in water, and performs the end surface shaping | molding of the both ends of this extract | collected sample. 採取試料を格納したライニングチューブを、水中に沈めた状態で測定容器へ装填し、密封した状態を示す概略図である。It is the schematic which shows the state which loaded the lining tube which stored the extract | collected sample into the measuring container in the state immersed in water, and was sealed. 水中から取り出した測定容器を重量計測器に載置した状態を示す概略図である。It is the schematic which shows the state which mounted the measuring container taken out from water on the weight measuring device. 水中から取り出した測定容器を加圧装置(二重管ビューレット)に接続した状態を示す概略図である。It is the schematic which shows the state which connected the measurement container taken out from water to the pressurization apparatus (double tube burette). 前記筒状のビニールを示した詳細図である。It is detail drawing which showed the said cylindrical vinyl. A〜Eは、サンプラーを保水具(有底の筒状部材)を用いてボーリング孔から取り出す工程を段階的に示した概略図であり、F〜Gは、該保水具を水中に沈めた状態で、保水具からサンプラーを取り出す工程を段階的に示した概略図である。AE is the schematic which showed in steps the process which takes out a sampler from a boring hole using a water retention tool (bottomed cylindrical member), and FG is the state which submerged the water retention tool in water It is the schematic which showed the process of taking out a sampler from a water retention tool in steps.

次に、本発明に係る地盤の飽和度簡易測定方法の実施例を図面に基づいて説明する。 Next, an embodiment of a simple method for measuring soil saturation according to the present invention will be described with reference to the drawings.

図1〜図5は、本発明にかかる地盤の飽和度簡易測定方法の実施例を段階的に示している。 先ず、図1Aに示すように、測定ポイントの地盤10をボーリングマシーン(図示省略)で所要の深さ掘削し、ロッド(ボーリングロッド)1の先端へ設けたサンプラー2でボーリング孔11の孔底の地下水位以深の乱さない試料3を採取する。
この試料3の採取作業は、従来のサンプリング方法の手順とほぼ同様に行われる。ただし、前記サンプラー2は、チューブ丈を50cm程度短くした、全長が1m程度の短尺のロータリー式三重管サンプラーが好適に用いられる。サンプラー2を短尺化した理由は、後述する本発明にかかる一連の作業の効率性を高めるためである。
FIGS. 1-5 has shown in steps the Example of the soil saturation simple measuring method concerning the present invention. First, as shown in FIG. 1A, a ground 10 at a measurement point is excavated to a required depth by a boring machine (not shown), and a sampler 2 provided at the tip of a rod (boring rod) 1 is used to drill the bottom of the boring hole 11. Collect undisturbed sample 3 deep below groundwater level .
The sampling operation of the sample 3 is performed in substantially the same manner as the procedure of the conventional sampling method. However, as the sampler 2, a short rotary triple pipe sampler having a tube length of about 50 cm and a total length of about 1 m is preferably used. The reason for shortening the sampler 2 is to increase the efficiency of a series of operations according to the present invention described later.

次に、図1Bに示すように、試料3を採取したサンプラー2を、ボーリング孔11の泥水12中に沈めた状態のまま地表面付近まで引き上げる。
測定ポイントの地盤10は軟弱地盤を対象とする場合が多いので、ボーリング孔11は地表面付近まで泥水12で満たされている場合が多い。泥水12が少ない場合は適宜、前記サンプラー2を引き上げる前に泥水12を継ぎ足して地表面付近まで泥水12で満たされた状態にしておく。
Next, as shown in FIG. 1B, the sampler 2 from which the sample 3 has been collected is pulled up to the vicinity of the ground surface while being submerged in the mud 12 in the borehole 11.
Since the ground 10 at the measurement point is often for soft ground, the borehole 11 is often filled with muddy water 12 to the vicinity of the ground surface. If the muddy water 12 is small, the muddy water 12 is suitably added before the sampler 2 is pulled up, and the muddy water 12 is filled to the vicinity of the ground surface.

次に、図1Cに示すように、前記サンプラー2の全長よりも2倍以上(図示例では3倍程度)長い筒状のビニール(保水具)4を、ボーリングマシーン本体から取り外した前記ロッド1の上方から、サンプラー2の下方まで該サンプラー2を取り囲むように降下させる。
前記筒状のビニール4は、防水性を有する材質で製造されており、図6に示すように、一端部(下端部)に紐材5を介してガイドバー6が取り付けられている。このガイドバー6で誘導することにより、前記筒状のビニール4の下端部をスムーズに下降又は上昇させることができるのである。
Next, as shown in FIG. 1C, a cylindrical vinyl (water retaining device) 4 longer than the entire length of the sampler 2 (about 3 times in the illustrated example) is removed from the boring machine body. The sampler 2 is lowered from above to below the sampler 2 so as to surround the sampler 2.
The said cylindrical vinyl 4 is manufactured with the material which has waterproofness, and as shown in FIG. 6, the guide bar 6 is attached to the one end part (lower end part) via the string material 5. As shown in FIG. By guiding with the guide bar 6, the lower end portion of the cylindrical vinyl 4 can be smoothly lowered or raised.

次に、図1Dに示すように、前記筒状のビニール4の上端部を地盤10上で保持しつつ、その下端部を、前記ガイドバー6で誘導して地盤10上へ引き上げる。かくして、筒状のビニール4内に泥水12で満たされたサンプラー2を収容することができる。   Next, as shown in FIG. 1D, the upper end of the cylindrical vinyl 4 is held on the ground 10, and the lower end is guided by the guide bar 6 and pulled up onto the ground 10. Thus, the sampler 2 filled with the muddy water 12 can be accommodated in the cylindrical vinyl 4.

次に、図1Eに示すように、前記筒状のビニール4を、その上下の端部を適宜、紐材で結び、ボーリング孔11から引き上げて取り出す。かくして、前記サンプラー2は、ボーリング孔11の泥水12で満たされた環境下で、筒状のビニール(保水具)4による保水状態のまま、脱水を生じさせることなく運搬可能な状態にすることができる。   Next, as shown in FIG. 1E, the upper and lower ends of the cylindrical vinyl 4 are appropriately tied with a string member and taken out from the boring hole 11. Thus, the sampler 2 can be transported without causing dehydration in an environment filled with the muddy water 12 in the borehole 11 while keeping the water retained by the tubular vinyl (water retaining device) 4. it can.

次に、図1F〜Gに示すように、前記筒状のビニール4を、速やかに測定ポイントの近くに用意した地上の容器7内の水中に沈め、筒状のビニール4を水中に沈めた状態で、該ビニール4からサンプラー2を取り出す。この容器7は、一般的な水槽のほか、型枠の内側に防水性のビニールを張設したもの等、筒状のビニール4を十分に収容できる容積と防水性を備えたものであればよい。なお、筒状のビニール4は適宜撤去する。   Next, as shown in FIGS. 1F to G, the cylindrical vinyl 4 is immediately submerged in the water in the ground container 7 prepared near the measurement point, and the cylindrical vinyl 4 is submerged in the water. Then, the sampler 2 is taken out from the vinyl 4. The container 7 may be a general water tank or a container having a sufficient capacity to store the tubular vinyl 4 and a waterproof property, such as a waterproof vinyl stretched inside the mold. . The cylindrical vinyl 4 is removed as appropriate.

続いて、図2Aに示すように、前記容器7内で前記サンプラー2を解体し、採取試料3を格納したチューブ(ライニングチューブ)2aを取り出す。   Subsequently, as shown in FIG. 2A, the sampler 2 is disassembled in the container 7, and a tube (lining tube) 2 a storing the collected sample 3 is taken out.

次に、図2B〜Cに示すように、前記ライニングチューブ2aを水中に沈めた状態のまま、採取試料3の両端部を、表面にカッターを備えた端面成形器8を用いて平らに均した後、採取試料3の両端部(上下端)を有孔板9で採取試料3が崩れないように押さえる(嵌め込む)。そして、有孔板9の挿入深さから採取試料3の全長を測定する。なお、端面成形時に生じる削りカスは適宜、吸引装置(図示省略)で除去する。
この作業は、前記容器7からドラム缶等の縦長の容器7’へ移動させて行うこともできる。この場合、採取試料3を格納したライニングチューブ2aを防水性ビニールで包み込む等して脱水を生じさせないことは勿論、採取試料3を乱すことなく慎重に行う。
Next, as shown in FIGS. 2B to 2C, the both ends of the sample 3 were leveled using an end face molding machine 8 having a cutter on the surface while the lining tube 2a was submerged in water. Thereafter, both ends (upper and lower ends) of the sample 3 are pressed (inserted) with the perforated plate 9 so that the sample 3 does not collapse. Then, the total length of the sample 3 is measured from the insertion depth of the perforated plate 9. In addition, the shavings generated at the time of end face molding are appropriately removed by a suction device (not shown).
This operation can also be performed by moving the container 7 to a vertically long container 7 ′ such as a drum can. In this case, the lining tube 2a in which the sample 3 is stored is wrapped with waterproof vinyl so that dehydration does not occur.

次に、図3に示すように、採取試料3を格納したライニングチューブ2aを、容器7(7’)内で空気が入らないように、同じく水中に沈めた測定容器13内に水を満たした状態で装填し、密封する。前記測定容器13は、従来の室内三軸圧縮試験で用いられる三軸圧力室と同じく、両端部にネジ留め蓋を配して、加圧による変形のない、鋼製の円筒形容器が好適に用いられる。   Next, as shown in FIG. 3, the lining tube 2 a in which the collected sample 3 is stored is filled with water in a measurement container 13 that is also submerged in water so that air does not enter the container 7 (7 ′). Load in state and seal. The measurement vessel 13 is preferably a steel cylindrical vessel that is provided with screwed lids at both ends and is not deformed by pressurization, similar to the triaxial pressure chamber used in the conventional indoor triaxial compression test. Used.

次に、前記測定容器13を水中から取り出し、図4に示すように、該測定容器13を重量計測器14上に載置し、予め測定しておいたライニングチューブ2a、測定容器13、および水重量を差し引き、採取試料3の質量を測定する。測定容器13内の水が濁る場合、同測定容器13に設けた開閉弁13aを通じて脱気水を循環させる等の工夫を施している。
その後、従来のサンプリング方法と同様に前記採取試料3の土粒子の質量と体積を測定し、これらの測定した諸数値と、前記採取試料3を用いて測定した土粒子の密度から、間隙比、および含水比を算定して飽和度を求めるのである。
なお、前記図4で採取試料3の質量を測定した後、さらに図5に示すように、前記測定容器13に加圧装置(二重管ビューレット)15を接続し、該加圧装置15から測定容器13内を加圧して体積変化量を測定し、圧力と空気量の関係であるボイルの法則に準拠して空気の体積を求め、該空気の体積の数値をもとに飽和度を求める。ちなみに、図5中の符号16は圧力、17は水圧計、18は銅管、19は差圧計を示している。
Next, the measurement container 13 is taken out of the water, and as shown in FIG. 4, the measurement container 13 is placed on the weight measuring instrument 14, and the lining tube 2a, the measurement container 13, and the water that have been measured in advance are measured. The weight is subtracted and the mass of the collected sample 3 is measured. When the water in the measurement container 13 becomes cloudy, the degassing water is circulated through an on-off valve 13 a provided in the measurement container 13.
Thereafter, as in the conventional sampling method, the mass and volume of the soil particles of the collected sample 3 are measured. From these measured values and the density of the soil particles measured using the collected sample 3, the gap ratio, And the water content ratio is calculated and the saturation is obtained.
In addition, after measuring the mass of the sample 3 in FIG. 4, a pressurization device (double tube burette) 15 is connected to the measurement container 13 as shown in FIG. The inside of the measurement container 13 is pressurized to measure the volume change amount, the air volume is obtained according to Boyle's law, which is the relationship between the pressure and the air amount, and the saturation is obtained based on the numerical value of the air volume. . Incidentally, reference numeral 16 in FIG. 5 denotes a pressure, 17 denotes a water pressure gauge, 18 denotes a copper tube, and 19 denotes a differential pressure gauge.

ここで、前記測定した諸数値をもとに飽和度を測定(算定)する手順を、土質力学の計算式に基づいて説明する。
前記段落[0024]で説明したように、有孔板9の挿入深さから採取試料3の全長を測定すると、採取試料3の断面積は、ライニングチューブ2aの内径から分かるので該採取試料3の体積(V)が求まる。
前記段落[0026]で説明したように、採取試料3の質量(m)を測定すると、該採取試料3の湿潤密度(ρ=m/V)が求まる。
また、採取試料3を用いて土粒子の密度(ρ=m/V)を測定し、採取試料3の乾燥質量(m)と体積(V)から乾燥密度(ρ=m/V)が求まる。さらに、間隙比(e=ρ/ρ−1)も求まる。
含水比(w)は、w=100(ρ/ρ−1)の式中、既に判明している前記ρ、及びρの数値を代入して求まる。
よって、飽和度Sr(%)は、Sr=(w・ρ)/(e・ρ)の計算式で求まるので、この式に、既に判明している含水比(w)、土粒子の密度(ρ)、間隙比(e)、水密度(ρ=1)の数値を代入して飽和度を求めるのである。
Here, the procedure for measuring (calculating) the degree of saturation based on the measured values will be described based on the calculation formula of soil mechanics.
As described in paragraph [0024] above, when the total length of the sample 3 is measured from the insertion depth of the perforated plate 9, the cross-sectional area of the sample 3 can be determined from the inner diameter of the lining tube 2a. Volume (V) is obtained.
As described in the paragraph [0026], when the mass (m) of the sample 3 is measured, the wet density (ρ t = m / V) of the sample 3 is obtained.
Moreover, the density (ρ s = m s / V s ) of the soil particles is measured using the collected sample 3, and the dry density (ρ d = m s ) is determined from the dry mass (m s ) and the volume (V) of the collected sample 3. / V) is obtained. Further, the gap ratio (e = ρ s / ρ d −1) is also obtained.
The water content ratio (w) is obtained by substituting previously known numerical values of ρ t and ρ d in the formula w = 100 (ρ t / ρ d −1).
Therefore, since the saturation Sr (%) is obtained by the calculation formula of Sr = (w · ρ s ) / (e · ρ w ), the water content ratio (w), the soil particle The saturation is obtained by substituting numerical values of density (ρ s ), gap ratio (e), and water density (ρ w = 1).

また、前記測定容器13に加圧装置15を接続して空気の体積(V)を求めた場合は、試料全体の体積(V)、および土粒子の体積(V)が既に判明しているので、間隙に占める水の体積(V=V−V−V)と、土の間隙の体積(V=V−V)が求まる。
よって、飽和度Sr(%)は、(V /V)×100の計算式に、前記VとVの数値を代入して求めるのである。
Further, when the pressurizer 15 is connected to the measurement container 13 and the volume of air (V a ) is obtained, the volume of the entire sample (V) and the volume of soil particles (V s ) have already been found. Therefore, the volume of water in the gap (V w = V−V s −V a ) and the volume of the soil gap (V v = V−V s ) are obtained.
Therefore, the saturation Sr (%) is obtained by substituting the numerical values of V w and V v into the calculation formula of (V w / V v ) × 100.

この実施例1にかかる地盤の飽和度簡易測定方法によれば、サンプラー2によるサンプリングから、採取試料3の質量等の飽和度を求めるのに必要な諸数値を測定するまでの一連の作業を、水中から一切出さずに脱水を生じさせることなく保水状態のまま速やかに行うことができる。よって、原位置の飽和度を、ほぼ保持した状態の採取試料3の実測値を求めることができる。したがって、該実測値に基づく精度の高い飽和度を測定することができる。
また、図5にかかる加圧装置15を用いて導出される空気の体積の数値を利用することにより、原位置の土被り圧における信頼性の高い飽和度を求めることができる。
本発明に使用する器具は、従来のサンプリング方法と比し、筒状のビニール(保水具)4が加わる程度で済み、しかも、前記一連の作業は、2/3程度の短尺のサンプラーを用いて行うので、経済性、施工性に優れている。もとより、高信頼性の飽和度を測定できる。 要するに、実施例1にかかる地盤の飽和度簡易測定方法によれば、安価で簡易、迅速、かつ確実に飽和度を測定できるので使い勝手がよく、汎用性に優れ、例えば、線状構造物の基礎地盤にも好適に実施できる。
According to the simple method for measuring the degree of saturation of the ground according to Example 1, a series of operations from sampling by the sampler 2 to measuring various values necessary for obtaining the degree of saturation such as the mass of the sample 3 is performed. It can be carried out promptly in a water retaining state without causing any dehydration without taking out from the water. Therefore, it is possible to obtain the actual measurement value of the collected sample 3 in a state where the in-saturation degree is substantially maintained. Therefore, it is possible to measure the degree of saturation with high accuracy based on the actual measurement value.
Further, by utilizing the numerical value of the air volume derived using the pressurizing device 15 according to FIG. 5, it is possible to obtain a highly reliable saturation level at the soil covering pressure at the original position.
The instrument used in the present invention is only required to add a cylindrical vinyl (water retaining device) 4 as compared with the conventional sampling method, and the series of operations is performed using a short sampler of about 2/3. Because it does, it is excellent in economic efficiency and workability. Of course, a highly reliable saturation can be measured. In short, according to the simple method for measuring the degree of saturation of the ground according to Example 1, it is easy to use because it can measure the degree of saturation inexpensively, simply, quickly and reliably, and is excellent in versatility, for example, the basis of a linear structure It can also be suitably applied to the ground.

図7A〜Gは、本発明にかかる地盤の飽和度簡易測定方法の異なる実施例を段階的に示している。この実施例2は、上記実施例1と比し、前記サンプラー2を、泥水で満たされた保水状態のままボーリング孔11から引き上げて取り出す手法が主に相違する。その後の作業は、実施例1と同様である(前記図2〜図5を援用して参照)。ロッド1、サンプラー2、採取試料3等の構成は、上記実施例1と同様なので同一の符号を付してその説明を適宜省略する。 FIGS. 7A to G show different embodiments of the simple method for measuring the degree of saturation of the ground according to the present invention step by step. The second embodiment is mainly different from the first embodiment in the method of pulling out the sampler 2 from the boring hole 11 while keeping the water retaining state filled with muddy water. Subsequent operations are the same as those in Example 1 (refer to FIGS. 2 to 5). Since the configuration of the rod 1, the sampler 2, the sample 3 and the like is the same as that of the first embodiment, the same reference numerals are given and the description thereof is omitted as appropriate.

すなわち、この実施例2にかかる地盤の飽和度簡易測定方法は、先ず図7Aに示すように、測定ポイントの地盤10をボーリングマシーン(図示省略)で所要の深さ掘削し、ロッド(ボーリングロッド)1の先端へ取り付けたサンプラー2でボーリング孔11の孔底の乱さない試料3を採取する。ここまでの作業は、上記実施例1とまったく同様である。 In other words, saturation simple measurement method of the ground according to the second embodiment, first, as shown in FIG. 7A, and required depth drilling ground 10 measurement points boring machine (not shown), rod (boring rod) The sample 3 that does not disturb the bottom of the bore hole 11 is collected by the sampler 2 attached to the tip of 1. The operations up to this point are exactly the same as in the first embodiment.

次に、図7Bに示すように、上方へ回動可能で自重で閉塞する逆流防止蓋20aを底部に備えた筒状部材(保水具)20を、ボーリングマシーン本体から取り外した前記ロッド1の上方から降下させ、該ロッド1で逆流防止蓋20aを上方へ回動させたままの状態でボーリング孔11と連通するように地盤10に位置決めする。
前記筒状部材20は、要するにベーラータイプの採水器に相当するもので、前記ボーリング孔11の断面形状とほぼ同形同大の断面形状を有し、前記サンプラー2の全長より十分に長い円筒形の有底鋼管が好適に用いられる。なお、前記筒状部材20の下方の外周面には、該筒状部材20を地盤10に容易に位置決めするための突設部(コ字形部材、リング状部材など)20bが設けられている。
Next, as shown in FIG. 7B, the cylindrical member (water retaining device) 20 provided with a backflow prevention lid 20 a that is pivotable upward and is closed by its own weight at the bottom is above the rod 1 from which the boring machine body has been removed. Then, the rod 1 is positioned on the ground 10 so as to communicate with the boring hole 11 while the backflow prevention lid 20a is rotated upward.
In short, the cylindrical member 20 corresponds to a baler type water sampler, and has a cross-sectional shape that is substantially the same as the cross-sectional shape of the boring hole 11 and is sufficiently longer than the entire length of the sampler 2. A shaped bottomed steel pipe is preferably used. A projecting portion (a U-shaped member, a ring-shaped member, etc.) 20 b for easily positioning the tubular member 20 on the ground 10 is provided on the outer peripheral surface below the tubular member 20.

次に、図7C〜Dに示すように、前記筒状部材20の内部を満たす程度に泥水12’を注入し、該筒状部材20の内部までサンプラー2を引き上げる。具体的には、前記サンプラー2の下端が前記逆流防止蓋20aを通過するまで引き上げると、該逆流防止蓋20aが自重作用で底部を閉塞する。そして、底部を閉塞した逆流防止蓋20aの上面に前記サンプラー2を載置するのである。   Next, as shown in FIGS. 7C to 7D, muddy water 12 ′ is injected to fill the inside of the cylindrical member 20, and the sampler 2 is pulled up to the inside of the cylindrical member 20. Specifically, when the lower end of the sampler 2 is pulled up until it passes through the backflow prevention lid 20a, the backflow prevention lid 20a closes the bottom by its own weight. And the said sampler 2 is mounted in the upper surface of the backflow prevention lid | cover 20a which obstruct | occluded the bottom part.

次に、前記筒状部材20の天端まで泥水12’が満たされていることを確認した後、図7Eに示すように、ロッド1の尺をネジ継ぎ部から取り外して短くした後、筒状部材20の上端を蓋材21で閉塞する。かくして、前記サンプラー2を、泥水12’で満たされた保水状態のまま、脱水を生じさせることなく運搬可能な状態にすることができる。   Next, after confirming that the muddy water 12 ′ is filled up to the top end of the tubular member 20, as shown in FIG. 7E, the rod 1 is removed from the screw joint portion and shortened. The upper end of the member 20 is closed with a lid material 21. Thus, the sampler 2 can be transported without causing dehydration in the water retaining state filled with the muddy water 12 '.

次に、図7F〜Gに示すように、前記筒状部材20を、速やかに測定ポイントの近くに用意した容器7内の水中に沈め、筒状部材20を水中に沈めた状態で、該筒状部材20からサンプラー2を取り出す。筒状部材20は適宜撤去する。   Next, as shown in FIGS. 7F to G, the cylindrical member 20 is immediately submerged in the water in the container 7 prepared near the measurement point, and the cylindrical member 20 is submerged in the water. The sampler 2 is removed from the shaped member 20. The cylindrical member 20 is removed as appropriate.

続いて、前記容器7内で前記サンプラー2を解体し、採取試料3を格納したライニングチューブ2aを取り出す以後の工程、および飽和度を求める手法は、上記実施例1とまったく同様である(上記段落[0023]〜[0028]を参照)。   Subsequently, the steps after disassembling the sampler 2 in the container 7 and taking out the lining tube 2a storing the sample 3 and the technique for obtaining the saturation are exactly the same as in the first embodiment (the paragraph above). [0023] to [0028]).

この実施例2にかかる地盤の飽和度簡易測定方法によれば、サンプラー2によるサンプリングから、採取試料3の質量等の飽和度を求めるのに必要な諸数値を測定するまでの一連の作業を、上記実施例1と同様に、水中から一切出さずに脱水を生じさせることなく保水状態のまま速やかに行うことができるので、上記実施例1と同様の作用効果を奏する(上記段落[0029]を参照)。 According to the simple method for measuring the degree of saturation of the ground according to Example 2, a series of operations from sampling by the sampler 2 to measuring various values necessary for obtaining the degree of saturation such as the mass of the sample 3 is performed. As in the first embodiment, since it can be carried out quickly without leaving the water and without causing dehydration, the same effects as in the first embodiment can be obtained (see paragraph [0029] above). reference).

以上、実施例1、2を図面に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。   As described above, the first and second embodiments have been described with reference to the drawings. However, the present invention is not limited to the illustrated examples, and variations of design changes and application that are usually performed by those skilled in the art without departing from the technical idea thereof. Note that it includes the range.

1 ロッド
2 サンプラー
2a ライニングチューブ
3 採取試料
4 筒状のビニール(保水具)
5 紐材
6 ガイドバー
7 容器
7’ 容器
8 端面成形器
9 有孔板
10 地盤
11 ボーリング孔
12 泥水
12’ 泥水
13 測定容器
13a 開閉弁
14 重量計測器
15 加圧装置(二重管ビューレット)
16 圧力
17 水圧計
18 銅管
19 差圧計
20 筒状部材(保水具)
20a 逆流防止蓋
20b 突設部
21 蓋材
1 Rod 2 Sampler 2a Lining tube 3 Collected sample 4 Cylindrical vinyl (water retaining device)
DESCRIPTION OF SYMBOLS 5 String material 6 Guide bar 7 Container 7 'Container 8 End face shaper 9 Perforated board 10 Ground 11 Boring hole 12 Muddy water 12' Muddy water 13 Measuring container 13a On-off valve 14 Weight measuring instrument 15 Pressurizing device (double tube burette)
16 Pressure 17 Water pressure gauge 18 Copper pipe 19 Differential pressure gauge 20 Cylindrical member (water retaining device)
20a Backflow prevention lid 20b Projecting portion 21 Lid

Claims (5)

ロッドの先端へ設けたサンプラーでボーリング孔の孔底の地下水位以深の乱さない試料を採取した後、該サンプラーを、ボーリング孔の泥水で満たされた環境下で、保水具による保水状態でボーリング孔から引き上げて取り出すこと、
前記保水具を地上の容器内の水中に沈めた状態で、保水具からサンプラーを取り出し、該サンプラーを解体して採取試料を格納したチューブを取り出すこと、
前記チューブを水中に沈めた状態のまま、採取試料の両端部の端面成形をおこない、該採取試料の全長を測定した後、採取試料を格納したチューブを、同じく水中に沈めた測定容器内へ装填し、密封すること、
前記測定容器を水中から取り出して採取試料の質量を測定した後、採取試料の土粒子の質量と体積を測定し、これらの測定した諸数値と、前記採取試料を用いて測定した土粒子の密度から、間隙比、および含水比を算定して飽和度を求めることを特徴とする、地盤の飽和度簡易測定方法。
After collecting a sample that is not disturbed below the groundwater level at the bottom of the borehole with a sampler provided at the tip of the rod, the sampler is placed in a borehole in an environment filled with muddy water in the borehole in the water-retained state with a water retainer. Picking it up from the
With the water retention device submerged in water in a container on the ground, take out the sampler from the water retention device, disassemble the sampler and take out the tube storing the collected sample;
While the tube is submerged in water, the end surfaces of both ends of the sample are molded, and after measuring the total length of the sample, the tube containing the sample is loaded into a measurement container that is also submerged in water. And sealing,
After taking out the measurement container from the water and measuring the mass of the collected sample, measure the mass and volume of the soil particles of the collected sample, these measured values, and the density of the soil particles measured using the collected sample From the above, a simple method for measuring the degree of saturation of the ground, wherein the saturation is calculated by calculating the gap ratio and the water content ratio.
前記保水具は、前記サンプラー長よりも2倍以上長く、下端部にガイドバーを備えた筒状のビニールとし、該筒状のビニールを、前記ガイドバーで誘導することにより、ボーリングマシーン本体から取り外した前記ロッドの上方からサンプラーの下方まで該サンプラーを取り囲むように降下させ、該保水具の上端部を地上で保持しつつ、その下端部を地上へ引き上げることにより、サンプラーを泥水で満たされた保水状態のままボーリング孔から取り出すことを特徴とする、請求項1に記載した地盤の飽和度簡易測定方法。 The water retainer is longer than the sampler length and is made of cylindrical vinyl having a guide bar at the lower end, and the cylindrical vinyl is removed from the boring machine body by guiding with the guide bar. Further, the sampler is lowered from above the rod to below the sampler so as to surround the sampler, while holding the upper end of the water retainer on the ground and pulling the lower end to the ground, the sampler is filled with muddy water. The ground saturation simple measuring method according to claim 1, wherein the ground saturation is taken out from the boring hole in a state. 前記保水具は、上方へ回動可能で自重で閉塞する逆流防止蓋を底部に備えた筒状部材とし、該筒状部材を、ボーリングマシーン本体から取り外した前記ロッドの上方から降下させ、該ロッドで逆流防止蓋を上方へ回動させたままの状態でボーリング孔と連通するように地盤に位置決めすること、
前記筒状部材の内部を満たす程度に泥水を注入し、該筒状部材の内部までサンプラーを引き上げて逆流防止蓋が底部を閉塞した後に筒状部材の上端を蓋材で閉塞して、サンプラーを泥水で満たされた保水状態のままボーリング孔から取り出すことを特徴とする、請求項1に記載した地盤の飽和度簡易測定方法。
The water retainer is a cylindrical member provided with a backflow prevention lid that can be rotated upward and closed by its own weight at the bottom, and the cylindrical member is lowered from above the rod removed from the boring machine body, and the rod Positioning the backflow prevention lid on the ground so as to communicate with the boring hole in a state in which the backflow prevention lid is rotated upward.
Inject muddy water to the extent that the inside of the tubular member is filled, pull up the sampler to the inside of the tubular member, the backflow prevention cover closes the bottom, and then closes the upper end of the tubular member with the cover material, The ground saturation simple measuring method according to claim 1, wherein the ground saturation is taken out from the borehole in a water retaining state filled with muddy water.
前記測定容器を水中から取り出して採取試料の質量を測定した後、該測定容器に加圧装置を接続し、加圧による体積変化量を測定して空気の体積を求め、該空気の体積の数値をもとにした飽和度も求めることを特徴とする、請求項1〜3のいずれか一に記載した地盤の飽和度簡易測定方法。 After taking out the measurement container from the water and measuring the mass of the collected sample, a pressure device is connected to the measurement container, the volume change due to the pressure is measured to determine the volume of the air, and the numerical value of the volume of the air The saturation saturation simple measuring method according to any one of claims 1 to 3, wherein a saturation degree based on the ground is also obtained. 前記サンプラーは、チューブ丈を50cm程度短くした全長が1m程度の短尺のロータリー式三重管サンプラーとすることを特徴とする、請求項1〜3のいずれか一に記載した地盤の飽和度簡易測定方法。 The ground sample simple measurement method according to any one of claims 1 to 3, wherein the sampler is a short rotary triple pipe sampler having a tube length of about 50 cm and a total length of about 1 m. .
JP2012170048A 2012-07-31 2012-07-31 Simple measurement method for soil saturation Active JP5882159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170048A JP5882159B2 (en) 2012-07-31 2012-07-31 Simple measurement method for soil saturation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170048A JP5882159B2 (en) 2012-07-31 2012-07-31 Simple measurement method for soil saturation

Publications (2)

Publication Number Publication Date
JP2014029297A JP2014029297A (en) 2014-02-13
JP5882159B2 true JP5882159B2 (en) 2016-03-09

Family

ID=50201962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170048A Active JP5882159B2 (en) 2012-07-31 2012-07-31 Simple measurement method for soil saturation

Country Status (1)

Country Link
JP (1) JP5882159B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730225B (en) * 2015-04-21 2016-05-04 河海大学 A kind of ground saturation degree on-site testing device and method
CN109000599B (en) * 2018-09-28 2020-03-31 山东大学 Volume measurement system and method for closed water-filled cavern
JP7363934B2 (en) * 2021-02-24 2023-10-18 Jfeスチール株式会社 Evaluation method of granular material, manufacturing method of granular material for roadbed material, and granular material for roadbed material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668306A (en) * 1995-04-28 1997-09-16 Doherty; David L. Soil analysis method including separate analyses of core sample strata
JP2919833B1 (en) * 1998-07-08 1999-07-19 有限会社岡田地質 Core Pack Wireline Core Barrel
JP4625293B2 (en) * 2004-09-03 2011-02-02 中央開発株式会社 Core processing method
JP2006322141A (en) * 2005-05-17 2006-11-30 Railway Technical Res Inst Sampling device with little disturbance
JP4899164B2 (en) * 2007-11-12 2012-03-21 独立行政法人産業技術総合研究所 Measuring method of ground saturation by air injection
JP5300659B2 (en) * 2009-08-26 2013-09-25 株式会社竹中工務店 Soil sample collecting device and soil sample collecting method

Also Published As

Publication number Publication date
JP2014029297A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
RU2721034C1 (en) Methods and device for sampling and storage of core samples from reservoir
CN103953025A (en) Equipment for measuring layered settlement of deep soft soil or blanket and setup method thereof
CN105651546B (en) Water conservancy reservoir investigation and sampling device and its sampling method
CN103868569A (en) Device and setting method for measuring underground water level of vacuum drainage prepressing sealing membrane
CN109000967A (en) The System and method for of the acquisition of native stone binary medium earth pillar and hydrologic parameter measurement
CN103207137A (en) Device for fully automatically measuring penetration rate and void ratio of compact rock under dynamic confining pressure
CN104389592B (en) Oil loss evaluation experiment test method for water flooded layer of bottom water condensate gas reservoir with oil rim
JP5882159B2 (en) Simple measurement method for soil saturation
CN106248548B (en) Aeration zone drilling constant head water injection test saturation permeability coefficient test method
CN106644890A (en) Device for measuring soil sample permeability coefficient in indoor soil engineering test
CN103048261A (en) Device and method for researching rock physical property parameter change under action of acid fluid
CN103061320B (en) Method for determining soil permeability coefficient on basis of piezocone sounding
CN102928571A (en) Method for measuring coal seam gas content directly through downward borehole of pressure ventilation pipe
CN203858186U (en) Soil permeability coefficient determinator
CN106501156B (en) Scene determines the outer tube drawdown double-tube method of outer tube aquiclude hydrogeological parameter
CN109000599A (en) For the volume measuring system and method for closing water-filling solution cavity
CN205330662U (en) Cutting ring soil moisture content brill that fetches earth
CN207650061U (en) A kind of field soil experimental rig
CN106680175B (en) Scene determines the outer tube drawdown double-tube method of inner tube aquiclude hydrogeological parameter
JP2019011608A (en) Method and device for measuring saturation degree of subsoil
CN206362576U (en) A kind of hand held for coordinating wax coating method to use rotation soil sampler
CN104730225B (en) A kind of ground saturation degree on-site testing device and method
CN211228434U (en) Deep device of burying underground of soft soil area pore water pressure gauge
CN106680177A (en) Inner tube drawdown double tube method of determining hydrogeological parameters of aquitard of inner tube on site
CN209470908U (en) The system of the acquisition of native stone binary medium earth pillar and hydrologic parameter measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5882159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250