JP2796748B2 - Single hole fluctuating hydraulic permeability tester and test method - Google Patents

Single hole fluctuating hydraulic permeability tester and test method

Info

Publication number
JP2796748B2
JP2796748B2 JP30122789A JP30122789A JP2796748B2 JP 2796748 B2 JP2796748 B2 JP 2796748B2 JP 30122789 A JP30122789 A JP 30122789A JP 30122789 A JP30122789 A JP 30122789A JP 2796748 B2 JP2796748 B2 JP 2796748B2
Authority
JP
Japan
Prior art keywords
packer
pressure
water
permeability
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30122789A
Other languages
Japanese (ja)
Other versions
JPH03161609A (en
Inventor
幸雄 大井
康範 大塚
昭教 高橋
一誠 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO CHISHITSU KK
Original Assignee
OYO CHISHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO CHISHITSU KK filed Critical OYO CHISHITSU KK
Priority to JP30122789A priority Critical patent/JP2796748B2/en
Publication of JPH03161609A publication Critical patent/JPH03161609A/en
Application granted granted Critical
Publication of JP2796748B2 publication Critical patent/JP2796748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は地盤の透水性を試験する装置及び方法に関
し、更に詳しくは、調査対象となる地盤中の単一ボーリ
ング孔を用い、その際の透水量及び上下方向の伝播圧力
を測定することによりボーリング孔周辺の地盤の透水性
を調査する装置及び方法に関するものである。
The present invention relates to an apparatus and a method for testing the permeability of the ground, and more particularly, to a method using a single borehole in the ground to be investigated. The present invention relates to an apparatus and a method for examining the water permeability of the ground around a borehole by measuring the water permeability and the vertical propagation pressure.

[従来の技術] 地盤の透水性や地層構造を調査する技術としては、ボ
ーリング孔内に変動形式の種々異なる水圧水流を供給
し、その際の透水量及び伝播圧力から地盤の透水性並び
に構造についての知見を得ようとするものがある。この
調査では、調査対象領域に複数本のボーリング孔を掘削
して相互の間での透水量及び伝播圧力を求める。
[Prior art] As a technique for investigating the permeability and the stratum structure of the ground, various types of hydraulic water flows of varying type are supplied into a borehole, and the permeability and the structure of the ground are determined from the amount of water permeability and the propagation pressure at that time. There is something that seeks to obtain the knowledge of. In this survey, a plurality of boreholes are excavated in the survey target area, and the water permeability and propagation pressure between each other are obtained.

他方、石油工学の分野において油層評価のために油層
の浸透率を求める技術がある。この試験は、石油生産を
行う生産井内をパッカーによって分断し、その分断位置
の上下に圧力センサを配置し、石油生産を停止あるいは
生産区間に流体を注入することによって分断位置上部に
圧力をかけ、分断区間下部に伝播する圧力を計測する。
そして試験結果から算定した圧力上昇量と圧力上昇の時
間的遅れを用いて、発信点−受信点間が均質であるとい
う仮定と、予め分かっている不透水境界の位置から油層
の水平及び鉛直方向の浸透率を解析的に求める。
On the other hand, in the field of petroleum engineering, there is a technique for determining the permeability of an oil reservoir for oil reservoir evaluation. In this test, the inside of a production well that performs oil production is divided by a packer, pressure sensors are arranged above and below the division position, and pressure is applied to the upper part of the division position by stopping oil production or injecting fluid into the production section, Measure the pressure propagating to the lower part of the dividing section.
Using the pressure rise amount and the time delay of the pressure rise calculated from the test results, it is assumed that the transmission point and the reception point are homogeneous, and the horizontal and vertical directions of the oil reservoir are determined from the position of the impervious boundary known in advance. Is determined analytically.

[発明が解決しようとする課題] 発信孔と受信孔というように複数のボーリング孔を用
いる方法は、広範囲にわたる透水性や地層構造を調査で
きるものの、装置や作業が大掛りとなり解析も複雑化
し、費用や時間が多くかかる問題がある。
[Problems to be Solved by the Invention] The method using a plurality of boreholes such as a transmission hole and a reception hole can investigate a wide range of water permeability and a stratum structure, but requires a large amount of equipment and work, and the analysis becomes complicated. There is a problem that costs and takes a lot of time.

石油工学の分野では、多くの場合、油層を形成してい
るのは砂岩等の多孔質の岩石であるため、発信点−受信
点間が均質であるという仮定が可能である。しかしなが
ら一般土木分野で扱う地盤は複雑な地層構造を示してい
る場合が多く、上記の仮定が成り立つことは少ない。ま
た油層評価方法の場合には不透水境界の深度が予め分か
っているが、一般的な地盤では不透水境界が存在すると
は限らず且つその深度は試験結果が出るまで不明である
ことが多い。更に油層評価の方法は生産井を利用して油
層全体の概略的な浸透率を求めることを目的とするため
に、試験装置の構造上、発信−受信の深度を固定して行
うのに対し、一般土木分野ではボーリング孔に沿った細
かい透水性の分布を把握することが要求される。従来の
方法は発信点及び受信点を任意に設定できないため、透
水性の分布を連続的に知ることは不可能である。このよ
うに油層評価に用いている従来技術は、石油生産を行う
地層と一般土木分野での調査対象となる地層との違いが
大きいため、類似性があるように見えるものの、そのま
までは適用できない。
In the field of petroleum engineering, in many cases, the oil layer is formed of porous rocks such as sandstone, so that it is possible to assume that the transmission point and the reception point are homogeneous. However, the ground treated in the general civil engineering field often shows a complicated stratum structure, and the above assumption is rarely satisfied. In addition, in the case of the oil reservoir evaluation method, the depth of the impermeable boundary is known in advance, but the impermeable boundary is not always present in general ground and the depth is often unknown until a test result is obtained. Further, the method of oil reservoir evaluation is to fix the transmission-reception depth on the structure of the test equipment in order to obtain the approximate permeability of the entire oil reservoir using the production well, In the general civil engineering field, it is required to understand the distribution of fine water permeability along the borehole. In the conventional method, since the transmission point and the reception point cannot be set arbitrarily, it is impossible to continuously know the distribution of water permeability. As described above, the conventional technique used for oil reservoir evaluation has a large difference between a formation in which oil is produced and a formation to be surveyed in the general civil engineering field, and although it seems that there is similarity, it cannot be applied as it is.

本発明の目的は、このような課題を解決し、簡便に且
つ経済的に地層並びに地下水調査を行なえる装置及び方
法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide an apparatus and a method that can easily and economically perform a geological survey and a groundwater survey.

[課題を解決するための手段] 上記の目的を達成できる本発明は、単一のボーリング
孔での上下方向の透水量及び伝播圧力を測定することに
よりボーリング孔周辺の地盤の透水性及び構造などにつ
いて調査する装置及び方法である。
[Means for Solving the Problems] The present invention, which can achieve the above objects, measures the water permeability and the structure of the ground around the boring hole by measuring the vertical water permeability and propagation pressure in a single boring hole. It is an apparatus and a method for investigating.

基本的な装置は、間隔をおいて一列に配設した3個以
上のニューマチック圧力遮断パッカー部と、隣り合うパ
ッカー部によって形成される複数のパッカー区間にそれ
ぞれ設けた圧力センサと、装置軸方向に通水性を有し任
意の一つのパッカー区間でのみ開口する注水路を具備し
ている。
The basic device includes three or more pneumatic pressure-blocking packers arranged in a line at intervals, pressure sensors provided in a plurality of packer sections formed by adjacent packers, and a device axial direction. And an irrigation channel having water permeability and opening only in any one packer section.

実際に試験を行うには、前記注水路に接続される変動
水圧発生・供給装置と、各圧力センサからの信号を記録
・解析する装置とを地上に設置する。
In order to actually perform the test, a variable water pressure generation / supply device connected to the water injection channel and a device for recording and analyzing signals from each pressure sensor are installed on the ground.

本発明方法は上記の装置を用い、パッカー部を膨張さ
せた後、変動水圧発生・供給装置から注水路を通してそ
れが開口している送信パッカー区間に流量の経時変化に
伴う変動水圧と、それに対する他の受信パッカー区間で
の応答圧力を計測し、発信パッカー区間と受信パッカー
区間に分布する地盤の水平及び鉛直方向の透水係数分布
を求めるものである。
The method of the present invention uses the above-described apparatus, and after inflating the packer section, fluctuates with the passage of time of the flow rate in the transmission packer section where it is opened from the fluctuating water pressure generation / supply device through the water injection path, The response pressure in another receiving packer section is measured, and the horizontal and vertical permeability distributions of the ground distributed in the transmitting packer section and the receiving packer section are obtained.

[作用] 試験対象となる地盤のボーリング孔内でパッカー部に
よって遮断した発信パッカー区間に、地上の変動水圧発
生・供給装置から所定流量の水を注入すると、その影響
によって地盤内に圧力上昇が生じ、受信パッカー区間で
水圧変化が生じる。発信パッカー区間と受信パッカー区
間との間隔はパッカーの位置によって調節でき、装置全
体をボーリング孔に沿って上下に移動させることによっ
て試験孔全長にわたって連続且つ詳細な透水性分布を求
めることができる。
[Action] When a predetermined flow rate of water is injected from the fluctuating water pressure generation / supply device on the ground into the transmission packer section cut off by the packer in the borehole of the ground to be tested, a pressure rise occurs in the ground due to the effect. , Water pressure changes in the receiving packer section. The interval between the sending packer section and the receiving packer section can be adjusted by the position of the packer, and a continuous and detailed permeability distribution can be obtained over the entire length of the test hole by moving the whole apparatus up and down along the boring hole.

また不透水境界の有無や深度が予め分からないという
問題、及び発信点−受信点間が均質であるとは限らない
という問題は、解析方法として数値解析的手法を用いる
ことによって解決する。即ち、解析対象領域を水平面内
で同心状に分けると共に軸方向にスライスして多数の円
環要素に分割し、3次元軸対称気液2相流を対象とした
浸透流シュミレーションと、誤差評価・パラメータ修正
を行う逆解析とによって計測結果を最も的確に再現する
水平及び鉛直方向の浸透率を有する透水性分布モデルを
探索する。これによってボーリング孔に沿う地盤の透水
性並びに構造の詳細を調査する。
In addition, the problem that the presence or depth of the impermeable boundary is not known in advance and the problem that the transmission point-reception point is not always uniform can be solved by using a numerical analysis method as an analysis method. That is, the analysis target area is divided concentrically in the horizontal plane, sliced in the axial direction and divided into a number of annular elements, and a permeation flow simulation for a three-dimensional axisymmetric gas-liquid two-phase flow is performed. Search for a permeability distribution model having horizontal and vertical permeability that most accurately reproduces the measurement results by inverse analysis with parameter correction. This will investigate the soil permeability and structure details along the borehole.

[実施例] 第1図は本発明に係る試験装置の一実施例を示す説明
図である。この実施例は4個のニューマチック圧力遮断
パッカー部を用い、上から2段目のパッカー区間を発信
区間(圧力付加部)とし、その上下のパッカー区間を受
信区間(圧力測定部)としたものである。
Embodiment FIG. 1 is an explanatory view showing one embodiment of a test apparatus according to the present invention. In this embodiment, four pneumatic pressure cut-off packers are used, the second packer section from the top is a transmission section (pressure applying section), and the upper and lower packer sections are a reception section (pressure measurement section). It is.

4個のニューマチック圧力遮断パッカー部10を所定の
間隔をおいて一列に配設する。パッカー部10は、センタ
ーパイプ12と、それを取り囲むように同軸状に位置し気
密性を保持する可撓性パッカーチューブ14とを備えてい
る。センターパイプ12間を所定寸法の連結パイプ16によ
り結合する。ここでは上から2段目のパッカー区間と3
段目のパッカー区間との間の連結管として多孔通水管18
を用い、その内部はそれより上部のセンターパイプ及び
連結パイプと連通して上端から水を供給できるようにな
っており、下端は閉塞してそれより下方には水が通らな
いようになっている。各パッカー区間には圧力センサ20
が設けられる。圧力センサ20の信号リード線22は各パッ
カー部を通って上方に至り、また各パッカー部はパッカ
ー部膨張用エアーチューブ24によって直列に接続され
る。隣り合うパッカー部の間隔は、多孔通水管18の長さ
あるいは連結パイプ16の長さを変えることによって自由
に変更できる。各パッカー部10はエアーチューブ24を用
いて地上から加圧空気を供給することにより同時に膨張
させ孔内を各区間で遮断できる。
Four pneumatic pressure shut-off packers 10 are arranged in a line at a predetermined interval. The packer unit 10 includes a center pipe 12 and a flexible packer tube 14 that is coaxially located so as to surround the center pipe 12 and maintains airtightness. The center pipes 12 are connected by a connecting pipe 16 having a predetermined size. Here, the second packer section from the top and 3
Perforated water pipe 18 as a connecting pipe between the packer section of the stage
The inside is communicated with a center pipe and a connecting pipe above it so that water can be supplied from the upper end, and the lower end is closed so that water does not pass below it. Pressure sensor 20 for each packer section
Is provided. The signal lead wire 22 of the pressure sensor 20 extends upward through each packer portion, and each packer portion is connected in series by an air tube 24 for expanding the packer portion. The distance between adjacent packers can be freely changed by changing the length of the perforated water pipe 18 or the length of the connecting pipe 16. Each packer section 10 is simultaneously expanded by supplying pressurized air from the ground using the air tube 24, so that the inside of the hole can be blocked in each section.

透水性試験の概略図を第2図に示す。解析対象領域の
地盤30内にボーリング孔32を掘削する。そしてそのボー
リング孔32内に第1図に示すような装置を挿入する。装
置上部から地上に至るような送水路を設け、それに変動
水圧発生・供給装置34を接続するとともに、各圧力セン
サ20を信号リード線22により記録・解析装置36に接続す
る。そして地上の変動水圧発生・供給装置34から流量の
経時変化が明確な水を注入する。ここでは水量Qが矩形
波状に変化するように注水している。
FIG. 2 shows a schematic diagram of the water permeability test. A boring hole 32 is excavated in the ground 30 in the analysis target area. Then, a device as shown in FIG. 1 is inserted into the boring hole 32. A water supply passage extending from the upper part of the apparatus to the ground is provided, a variable water pressure generating / supplying apparatus 34 is connected to the water supply path, and each pressure sensor 20 is connected to a recording / analyzing apparatus 36 by a signal lead 22. Then, water having a clear change with time in the flow rate is injected from the variable water pressure generation / supply device 34 on the ground. Here, water is injected such that the water amount Q changes in a rectangular wave shape.

なおこのような大量の断続的な注水は、渦巻ポンプ
と、その吐出圧を一定に保つように吐出側−吸入側間に
設けた流量調整可能な戻り経路と、吐出配管に設けたニ
ードル開閉弁等を組み合わせ、戻り経路で流量を調整
し、ニードル開閉片で吐出配管の開閉によって行うこと
ができる。
In addition, such a large amount of intermittent water injection is performed by a centrifugal pump, a return path adjustable between a discharge side and a suction side to keep the discharge pressure constant, and a needle opening / closing valve provided in a discharge pipe. By adjusting the flow rate in the return path and opening and closing the discharge pipe with the needle opening / closing piece.

各パッカー区間で圧力が検出される。その信号は受信
圧力Pの時間的変化を表し、計測結果は記録・解析装置
36に送られて解析が行われる。
Pressure is detected in each packer section. The signal indicates the time change of the received pressure P, and the measurement result is recorded and analyzed
Sent to 36 for analysis.

これらの実施例では4個のパッカー部を使用しパッカ
ー区間を、圧力付加部を含めて3個所設定しているが、
より多くのパッカー部を用いることによって測定に要す
る時間を低減することが可能である。必要最小限として
は3個のパッカー部を用い、パッカー区間を圧力付加部
を含めて2個所にすることである。いずれにしてもボー
リング孔の深度方向で挿入位置をずらせて試験を行うこ
とによりボーリング孔全体にわたって透水性試験を行う
ことができる。
In these embodiments, four packer sections are used and three packer sections are set including the pressure applying section.
By using more packers, the time required for measurement can be reduced. At a minimum, three packer sections are used, and the packer section is provided at two places including the pressure applying section. In any case, by performing the test by shifting the insertion position in the depth direction of the borehole, the water permeability test can be performed over the entire borehole.

測定は特定の発信パッカー区間から注入した矩形波状
に変化する水量(即ち一定水量の水を一定時間注入し、
次いで注入を遮断するサイクルを複数回繰り返して行っ
た場合)による発信パッカー区間での圧力と、受信パッ
カー区間での圧力を一定時間毎に計測しプロットする。
発信パッカー区間での圧力はその深度での水圧の影響に
よりあるレベルを持つ。また受信パッカー区間での応答
圧力は、それぞれ深度によりレベルが異なるため静水圧
を差し引いた増減値として求める。これらの測定結果か
ら圧力伝達の遅れ時間と応答圧力が求まる。
The measurement is performed by injecting a rectangular wave of water from a specific outgoing packer section (ie, injecting a certain amount of water for a certain time,
Next, the pressure in the transmission packer section and the pressure in the reception packer section due to the case where the injection blocking cycle is repeated a plurality of times) are measured and plotted at regular intervals.
The pressure in the outgoing packer section has a certain level due to the effect of water pressure at that depth. Further, the response pressure in the reception packer section is obtained as an increase / decrease value obtained by subtracting the hydrostatic pressure since the level differs depending on the depth. From these measurement results, the pressure transmission delay time and the response pressure are obtained.

解析は単一のボーリング孔周辺の状態を求めるため第
3図に示すような軸対称の円筒座標系モデルを構築する
ことにより行う。つまりボーリング孔の周りの解析対象
領域を同心状に且つ軸に直角にスライスして多数の円環
要素に分割し、各円環要素で水平方向及び鉛直方向の浸
透率をパラメータとする透水系分布モデルを構築する。
そして各円環要素での3次元軸対称気液2相浸透流の流
入・流出を境界条件とする物質収支式を立て、前記各受
信パッカー区間での応答圧力を数値解析する。この基本
方程式は、2相それぞれの物質収支式をダルシー則及び
連続の式に基づいて立てる。結果的に物質収支式は、単
位体積当たりでは以下のように表せる。
The analysis is performed by constructing an axially symmetric cylindrical coordinate system model as shown in FIG. 3 in order to obtain the state around a single borehole. In other words, the area to be analyzed around the borehole is concentrically sliced at right angles to the axis, divided into a number of annular elements, and the permeation distribution using the horizontal and vertical permeability as parameters for each annular element. Build the model.
Then, a mass balance formula is established using the inflow and outflow of the three-dimensional axisymmetric gas-liquid two-phase permeate flow at each annular element as a boundary condition, and the response pressure in each of the receiving packer sections is numerically analyzed. This basic equation establishes a material balance equation for each of the two phases based on Darcy's law and a continuous equation. As a result, the material balance equation can be expressed as follows per unit volume.

ここでkr :水平方向への浸透率 kz :鉛直方向への浸透
率 kra:空気の相対浸透率 krw:水の相対浸透率 μa:空気の粘性係数 μw:水の粘性係数 Ba :空気の容積係数 Bw:水の容積係数 Pa :空気の圧力 Pw :水の圧力 Sa :空気の飽和度 Sw :水の飽和度 Pc :毛管圧 γ:流体の密度 h :深度 φ:地盤の間隙率 (1)式は気相に関する物質収支式、(2)式は液相
に関する物質収支式である。以上の式を空間及び時間で
離散化し解析する。ここではボーリング孔全長にわたっ
て発信点−受信点間隔が一定のため、一定厚さの円環要
素で計算を行っている。また半径方向に関しては数重の
分割を行い、十分遠い位置にある最も外側の円環要素は
境界条件設定のために圧力が常に一定となるように操作
している。
Where k r : permeability in the horizontal direction k z : permeability in the vertical direction k ra : relative permeability of air k rw : relative permeability of water μ a : viscosity coefficient of air μ w : viscosity coefficient of water B a : Air volume coefficient B w : Water volume coefficient P a : Air pressure P w : Water pressure S a : Air saturation S w : Water saturation P c : Capillary pressure γ: Fluid density h: Depth φ: Porosity of the ground Equation (1) is the mass balance equation for the gas phase, and equation (2) is the mass balance equation for the liquid phase. The above equation is discretized in space and time and analyzed. Here, since the interval between the transmitting point and the receiving point is constant over the entire length of the borehole, the calculation is performed using an annular element having a constant thickness. In the radial direction, several divisions are performed, and the outermost ring element located far enough away is operated so that the pressure is always constant for setting boundary conditions.

上記順解析中の水平方向への浸透率及び鉛直方向への
浸透率を未知として、非線形最小2乗法により解析を繰
り返し、それらの値が収束するまで実行する。但し可能
な限り簡素化するため同一深度の円環要素は同一の水平
及び鉛直方向の浸透率を持つというモデルで計算してい
る。透水性分布モデルを修正し、再び各円環要素での3
次元対称気液2相浸透流の流入・流出を境界条件とする
物質収支式に基づき各受信区間での応答圧力を数値解析
によって求める。このような操作を収束するまで行い最
適モデルを求める。実際の測定結果の一例を第4図に示
す。また以上の手順をフローチャートで表したのが第5
図である。
The analysis is repeated by the nonlinear least-squares method with the permeability in the horizontal direction and the permeability in the vertical direction during the forward analysis being unknown, and executed until the values converge. However, for simplicity as much as possible, the calculation is based on a model that annular elements having the same depth have the same horizontal and vertical permeability. Modify the permeability distribution model, and again 3
The response pressure in each receiving section is obtained by numerical analysis based on a material balance equation using the inflow and outflow of the two-dimensional symmetric gas-liquid permeation flow as boundary conditions. Such an operation is performed until convergence, and an optimal model is obtained. FIG. 4 shows an example of the actual measurement results. The above procedure is represented by a flowchart in the fifth section.
FIG.

以上本発明の好ましい一実施例について詳述したが、
本発明はこのような構成のみに限定されるものではな
い。発信パッカー区間から注入する水は、その水量の経
時変化さえ正確に把握できれば矩形波状に限らず任意の
波形であってもよい。前述したようにパッカー部の設置
個数は試験条件等に応じて適宜変更してよい。
Although the preferred embodiment of the present invention has been described in detail,
The present invention is not limited to only such a configuration. The water to be injected from the transmission packer section is not limited to a rectangular wave shape, and may have an arbitrary waveform as long as the change with time of the water amount can be accurately grasped. As described above, the number of packers to be installed may be appropriately changed according to test conditions and the like.

[発明の効果] 本発明は上記のように3個以上のニューマチック圧力
遮断パッカー部と、それによって形成される複数のパッ
カー区間に設けた圧力センサと、任意の一つのパッカー
区間で開口する注水路を具備した透水試験装置であるか
ら、それにより単一のボーリング孔を使用してそのボー
リング孔に沿った透水係数分布を細かく連続的に且つ簡
便に求めることができる。本発明では、計測データの解
析は透水性分布モデルを構築して数値解析的に行うた
め、不透水境界の有無や位置、発信点−受信点間で地層
が均質であるか否かといったことが問題にならず、この
ため一般土木分野での各種地盤の透水性並びに地層構造
の調査に適用可能となる。
[Effect of the Invention] As described above, the present invention provides three or more pneumatic pressure cut-off packers, pressure sensors provided in a plurality of packer sections formed by the pneumatic pressure cut-off packers, and an opening in any one packer section. Since the permeability test apparatus is provided with a water channel, the distribution of permeability along the bore hole can be finely and continuously and easily obtained by using a single bore hole. In the present invention, since the analysis of the measurement data is performed numerically by constructing a permeability distribution model, the presence or absence and position of the impermeable boundary, whether or not the stratum is homogeneous between the transmission point and the reception point, etc. This is not a problem, and therefore, it can be applied to the investigation of the permeability and the stratum structure of various types of ground in the general civil engineering field.

更に解析上必要となる境界条件として流量の経時変化
を正確に記録しておけばよいため変動水圧発生・供給装
置の機構も簡素化でき、小型化できる。
Further, since it is only necessary to accurately record the change over time in the flow rate as a boundary condition required for analysis, the mechanism of the variable water pressure generation / supply device can be simplified and downsized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る試験装置の一実施例を示す説明
図、第2図はそれによる透水性試験の概念図、第3図は
解析に用いる透水性分布モデルの説明図、第4図は試験
結果の一例を示す説明図、第5図は試験方法の一例を示
すフローチャートである。 10……パッカー部、12……センターパイプ、14……可撓
性パッカーチューブ、16……連結パイプ、18……多孔通
水管、20……圧力センサ、22……パッカー膨張用エアー
チューブ。
FIG. 1 is an explanatory view showing an embodiment of a test apparatus according to the present invention, FIG. 2 is a conceptual diagram of a water permeability test using the test apparatus, FIG. 3 is an explanatory view of a water permeability distribution model used for analysis, FIG. Is an explanatory diagram showing an example of a test result, and FIG. 5 is a flowchart showing an example of a test method. 10 Packer part, 12 Center pipe, 14 Flexible packer tube, 16 Connecting pipe, 18 Perforated water pipe, 20 Pressure sensor, 22 Air tube for packer expansion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 一誠 東京都千代田区九段北4丁目2番6号 応用地質株式会社内 (56)参考文献 特開 平3−55310(JP,A) (58)調査した分野(Int.Cl.6,DB名) E02D 1/00 E21B 33/12 G01L 27/00──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Kazumasa Ito 4-6-6 Kudankita, Chiyoda-ku, Tokyo Applied Geology Co., Ltd. (56) References JP-A-3-55310 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) E02D 1/00 E21B 33/12 G01L 27/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】間隔をおいて一列に配設した3個以上のニ
ューマチック圧力遮断パッカー部と、隣り合うパッカー
部によって形成される複数のパッカー区間にそれぞれ設
けた圧力センサと、装置軸方向に通水性を有し任意の一
つのパッカー区間でのみ開口する注水路を具備している
単孔変動水圧式透水試験装置。
1. A pneumatic pressure cut-off packer section which is arranged in a row at intervals, pressure sensors provided in a plurality of packer sections formed by adjacent packer sections, respectively, A single-hole variable hydraulic pressure permeation test apparatus having a water injection passage which is open only in any one of the packer sections.
【請求項2】ボーリング孔内に間隔をおいて一列に配設
した3個以上のニューマチック圧力遮断パッカー部と、
隣り合うパッカー部によって形成される複数のパッカー
区間にそれぞれ設けた圧力センサと、装置軸方向に通水
性を有し任意の一つのパッカー区間でのみ開口する注水
路と、地上に設置され前記注水路に接続される変動水圧
発生・供給装置と、各圧力センサからの信号を記録・解
析する装置とを具備している単孔変動水圧式透水試験装
置。
2. Three or more pneumatic pressure shut-off packers disposed in a row in a borehole and spaced apart from each other;
A pressure sensor provided in each of a plurality of packer sections formed by adjacent packer sections; a water injection path having water permeability in the apparatus axial direction and opening only in any one packer section; and a water injection path installed on the ground. A single-hole variable hydraulic pressure permeation test apparatus, comprising: a variable hydraulic pressure generation / supply device connected to the apparatus; and a device for recording and analyzing signals from each pressure sensor.
【請求項3】請求項2記載の装置を用い、パッカー部を
膨張させた後、変動水圧発生・供給装置から注水路を通
してそれが開口している送信パッカー区間に流量の経時
変化を把握しうる変動水圧を付加し、それに対する他の
受信パッカー区間での応答圧力を計測し、発信パッカー
区間と受信パッカー区間の間の水平及び鉛直方向の透水
係数分布を求めることを特徴とする単孔変動水圧式透水
試験方法。
3. After the packer section is inflated by using the apparatus according to claim 2, the change over time in the flow rate can be grasped from the variable water pressure generating / supplying device to the transmission packer section where it is opened through the water injection passage. A single-hole fluctuating water pressure characterized by adding a fluctuating water pressure, measuring the response pressure in the other receiving packer sections to that, and obtaining the horizontal and vertical permeability distributions between the transmitting packer section and the receiving packer section. Water permeability test method.
【請求項4】ボーリング孔の周りの解析対象領域を軸対
称の多数の円環要素に分割して各円環要素で浸透性をパ
ラメータとする円筒座標系モデルを構築し、各円環要素
での3次元軸対称気液2相浸透流の流入・流出を境界条
件とする物質収支式に基づき受信パッカー区間での応答
圧力を数値解析により求め、その計算値と計測値とを比
較して誤差評価し、浸透性を示すパラメータを変更して
透水性分布モデルを修正し、上記の数値解析−モデル修
正の操作を繰り返して最適モデルを求める請求項3記載
の方法。
4. A region to be analyzed around a boring hole is divided into a number of axially symmetrical ring elements, and a cylindrical coordinate system model is constructed in which each ring element has permeability as a parameter. Calculates the response pressure in the receiving packer section by numerical analysis based on the mass balance equation with the inflow and outflow of the three-dimensional axisymmetric gas-liquid two-phase permeate flow as the boundary conditions, compares the calculated value with the measured value, and calculates the error. 4. The method according to claim 3, wherein the water permeability distribution model is modified by evaluating and changing parameters indicating permeability, and the above-mentioned numerical analysis-model modification operation is repeated to obtain an optimal model.
【請求項5】発信パッカー区間と受信パッカー区間の間
の地盤の水平方向及び鉛直方向の透水係数分布を求める
作業を試験装置のボーリング孔内深度を変えて実施し、
ボーリング孔全長にわたる地盤の透水係数分布を求める
請求項4記載の方法。
5. The operation of obtaining the horizontal and vertical permeability distributions of the ground between the transmission packer section and the reception packer section is performed by changing the depth in the borehole of the test device,
5. The method according to claim 4, wherein the distribution of the hydraulic conductivity of the ground over the entire length of the borehole is determined.
JP30122789A 1989-11-20 1989-11-20 Single hole fluctuating hydraulic permeability tester and test method Expired - Fee Related JP2796748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30122789A JP2796748B2 (en) 1989-11-20 1989-11-20 Single hole fluctuating hydraulic permeability tester and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30122789A JP2796748B2 (en) 1989-11-20 1989-11-20 Single hole fluctuating hydraulic permeability tester and test method

Publications (2)

Publication Number Publication Date
JPH03161609A JPH03161609A (en) 1991-07-11
JP2796748B2 true JP2796748B2 (en) 1998-09-10

Family

ID=17894311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30122789A Expired - Fee Related JP2796748B2 (en) 1989-11-20 1989-11-20 Single hole fluctuating hydraulic permeability tester and test method

Country Status (1)

Country Link
JP (1) JP2796748B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273538A (en) * 1993-03-24 1994-09-30 Kajima Corp Method and system for measuring moving gradient of underground water
JP4985235B2 (en) * 2007-08-28 2012-07-25 株式会社大林組 Hole permeability coefficient measuring device and hole permeability coefficient measuring method
CZ304687B6 (en) * 2011-09-20 2014-08-27 Česká Geologická Služba Apparatus for in-situ measuring rock, geotechnical and building material permeability using measurement of weight loss of a towed measuring medium by means of sensitive balance
CN103196800B (en) * 2013-04-17 2016-04-06 南京大学 Structural plane transmission coefficient defining method and test unit
JP6929179B2 (en) * 2017-09-26 2021-09-01 大成建設株式会社 Hydraulic characterization method
CN107976393A (en) * 2017-11-24 2018-05-01 金陵科技学院 Permeation coefficient of permeable concrete constant head and varying head test device and test method

Also Published As

Publication number Publication date
JPH03161609A (en) 1991-07-11

Similar Documents

Publication Publication Date Title
US6681185B1 (en) Method of seismic signal processing
US6098448A (en) In situ measurement apparatus and method of measuring soil permeability and fluid flow
US6585044B2 (en) Method, system and tool for reservoir evaluation and well testing during drilling operations
Paillet et al. Characterization of fracture permeability with high‐resolution vertical flow measurements during borehole pumping
US7059179B2 (en) Multi-probe pressure transient analysis for determination of horizontal permeability, anisotropy and skin in an earth formation
EP0520903B1 (en) Determining horizontal and/or vertical permeability of an earth formation
US5672819A (en) Formation evaluation using phase shift periodic pressure pulse testing
CA2615183C (en) Method and device for on-line acoustic monitoring of foam and aerated fluid properties
US7395703B2 (en) Formation testing apparatus and method for smooth draw down
US5417103A (en) Method of determining material properties in the earth by measurement of deformations due to subsurface pressure changes
CN101126816A (en) NMR method for measuring mud filtration rate of a wellbore and its uses
NO305722B1 (en) Apparatus for determining horizontal and / or vertical permeability for a foundation formation
US11230923B2 (en) Apparatus and method for determining properties of an earth formation with probes of differing shapes
US7448262B2 (en) Determination of correct horizontal and vertical permeabilities in a deviated well
WO2006026311A1 (en) Determination of correct horizontal and vertical permeabilities in a deviated well
EP1936112A2 (en) Method, system and tool for reservoir evaluation and well testing during drilling operations
CN100523431C (en) Method for simulating oil-water two-phase cable formation testing
Kuchuk et al. Performance evaluation of horizontal wells
JP2796748B2 (en) Single hole fluctuating hydraulic permeability tester and test method
Boonstra et al. Well hydraulics and aquifer tests
US3285064A (en) Method for defining reservoir heterogeneities
CN114487125B (en) Three-dimensional monitoring comprehensive method for determining anisotropy of coal body
EP0950795A2 (en) Tool for and method of geological formation evaluation testing
JPH0355310A (en) Water permeability testing for cracked rockbed
WO1998046858A1 (en) In situ measurement apparatus and method of measuring soil permeability and fluid flow

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees