JP4897982B1 - タッチパネル装置およびタッチ位置検出方法 - Google Patents

タッチパネル装置およびタッチ位置検出方法 Download PDF

Info

Publication number
JP4897982B1
JP4897982B1 JP2011004744A JP2011004744A JP4897982B1 JP 4897982 B1 JP4897982 B1 JP 4897982B1 JP 2011004744 A JP2011004744 A JP 2011004744A JP 2011004744 A JP2011004744 A JP 2011004744A JP 4897982 B1 JP4897982 B1 JP 4897982B1
Authority
JP
Japan
Prior art keywords
unit
signal
touch
electrode
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011004744A
Other languages
English (en)
Other versions
JP2012146173A (ja
Inventor
貴司 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011004744A priority Critical patent/JP4897982B1/ja
Priority to US13/345,887 priority patent/US20120182256A1/en
Application granted granted Critical
Publication of JP4897982B1 publication Critical patent/JP4897982B1/ja
Publication of JP2012146173A publication Critical patent/JP2012146173A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

【課題】タッチ操作に伴って電極交点の静電容量が変化する割合が小さい場合でも、タッチ位置を精度よく検出することができるようにする。
【解決手段】送信電極に印加する駆動信号に応じて受信電極から出力される応答信号を受信して電極交点ごとに検出量を出力する受信信号処理部16が、受信電極の出力信号に所定の処理を行って得られる信号を積分処理する積分部35と、この積分部の積分値が所定の閾値に達するとリセット信号を出力する監視部38と、を備え、積分部は、監視部のリセット信号に応じて積分値をゼロにリセットするものとする。特に、積分部の前段に、信号を平滑化する平滑化部34を備え、積分部は、平滑化部で平滑化された信号を積分処理するものとする。
【選択図】図3

Description

本発明は、タッチ操作に応じた静電容量の変化に伴う電極の出力信号の変化に基づいてタッチ位置を検出する静電容量方式のタッチパネル装置に関するものである。
タッチパネル装置では、タッチ位置を検出する原理が異なる種々の方式があるが、特に投影型静電容量方式は、使い勝手がよいなど優れた特徴を有している。この投影型静電容量方式は、格子状に配置された電極の交点部分に形成されるコンデンサの静電容量が、導電性物体(例えば人体)が接近あるいは接触することで変化する原理を利用したものであり、ユーザの指先で直接、あるいは単なる導電性材料からなるスタイラスでタッチ操作を行うことができ、またタッチ位置を高精度に検出することが可能になる。
一方、タッチパネル装置は、プラズマディスプレイパネルや液晶ディスプレイパネルなどの画像表示装置と組み合わせて用いられることが一般的であるが、タッチパネル装置において電極が配設されたパネル本体を画像表示装置の前面に配置した場合、画像表示装置の画面の視認性を確保することが必要となる。これには、パネル本体を透明な材料で構成すればよいが、ITOを用いた透明電極では、抵抗値が大きい上に、製造コストが嵩むため、大型のタッチパネル装置では実用化が難しい。
このような透明電極が有する問題に対して、導線を網目状に配したメッシュ状電極を採用する技術が知られている(特許文献1,2参照)。このようなメッシュ状電極では、不透明な金属材料で形成しても、微細配線化することで電極が見えにくくなるため、画像表示装置の視認性を確保することができ、また、抵抗値が低くかつ低コストな金属材料を用いることができるため、大型のタッチパネル装置の実用化が容易になる。
特開2006−344163号公報 特開2010−039537号公報
さて、投影型静電容量方式のタッチパネル装置では、電極交点の静電容量Cがタッチ操作に応じて変化したときの変化量ΔCに基づいてタッチ位置を算出する。このため、静電容量Cに対する変化量ΔCの割合(ΔC/C)が、タッチ操作を検出する際の感度となる。ところが、前記のメッシュ状電極を採用すると、電極交点の静電容量Cが一桁大きくなる一方で、タッチ操作に伴う変化量ΔCは静電容量Cの10%弱にしかならない。このため、静電容量Cに対する変化量ΔCの割合(ΔC/C)が小さくなり、タッチ検出の感度が低下するという問題があった。
特に、電極交点ごとの検出量から所要の補間法を用いてタッチ位置を求めると、電極の配置ピッチより高い分解能でタッチ位置を検出することができるが、前記のメッシュ状電極を採用して、静電容量Cに対する変化量ΔCの割合(ΔC/C)が小さくなると、補間法を用いたタッチ位置検出で十分な精度を確保することが困難となる。
本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、タッチ操作に伴って電極交点の静電容量が変化する割合が小さい場合でも、タッチ位置を精度よく検出することができるように構成されたタッチパネル装置を提供することにある。
本発明のタッチパネル装置は、互いに並走する複数の送信電極および互いに並走する複数の受信電極が格子状に設けられたパネル本体と、前記送信電極に対して駆動信号を印加する送信部と、前記送信電極に印加する駆動信号に応じて前記受信電極から出力される応答信号を受信して電極交点ごとに検出量を出力する受信部と、前記受信部から出力される検出量の変化量に基づいてタッチ位置を求める制御部と、を備え、前記受信部は、前記受信電極からの応答信号に基づいた信号を積分処理する積分部と、この積分部の積分値が所定の閾値に達するとリセット信号を出力する監視部と、を備え、前記積分部は、前記監視部のリセット信号に応じて積分値をゼロにリセットする構成とする。
本発明によれば、積分部の積分値が所定の閾値に達するのに応じてリセットが行われることから、積分部が飽和することがないため、入力信号に対して積分値が大きく変化する特性に積分部を設定することができ、これによりタッチ操作に伴う受信部の出力検出量の変化量が大きくなるため、タッチ操作に伴って電極交点の静電容量が変化する割合が小さい場合でも、タッチ位置を精度よく検出することができる。
本発明に係るタッチパネル装置が適用されたプラズマディスプレイ装置1を示す全体構成図 送信電極7および受信電極8を示す平面図 受信信号処理部16の概略構成図 積分部35の概略構成図 受信信号処理部16の各部から出力される信号を示す波形図 従来構成に基づく受信信号処理部の各部から出力される信号を示す波形図 図5の受信信号処理部16の各部から出力される信号を時間軸方向に拡大して示す波形図 タッチ/非タッチ状態でリセット回数が異なった場合の受信信号処理部16の各部から出力される信号を示す波形図 リセット信号および積分部35の出力信号を示す波形図 タッチ位置算出部17での処理の手順を示すフロー図
前記課題を解決するためになされた第1の発明は、互いに並走する複数の送信電極および互いに並走する複数の受信電極が格子状に設けられたパネル本体と、前記送信電極に対して駆動信号を印加する送信部と、前記送信電極に印加する駆動信号に応じて前記受信電極から出力される応答信号を受信して電極交点ごとに検出量を出力する受信部と、前記受信部から出力される検出量の変化量に基づいてタッチ位置を求める制御部と、を備え、前記受信部は、前記受信電極からの応答信号に基づいた信号を積分処理する積分部と、この積分部の積分値が所定の閾値に達するとリセット信号を出力する監視部と、を備え、前記積分部は、前記監視部のリセット信号に応じて積分値をゼロにリセットする構成とする。
これによると、積分部の積分値が所定の閾値に達するのに応じてリセットが行われることから、積分部が飽和することがないため、入力信号に対して積分値が大きく変化する特性に積分部を設定することができ、これによりタッチ操作に伴う受信部の出力検出量の変化量が大きくなるため、タッチ操作に伴って電極交点の静電容量が変化する割合が小さい場合でも、タッチ位置を精度よく検出することができる。
ここで、積分部は、オペアンプとコンデンサとで構成される積分回路からなるものとするとよい。この場合、積分回路のコンデンサの容量を小さくすることで、入力信号に対して積分値が大きく変化する特性に積分部を設定することができる。
また、第2の発明は、前記第1の発明において、前記受信部は、信号を平滑化する平滑化部を前記積分部の前段に備え、前記積分部は、前記平滑化部で平滑化された信号を積分処理する構成とする。
これによると、積分部でのリセットのタイミングが非タッチ状態とタッチ状態とで異なることで生じるタッチ位置の検出誤差を避けることができる。
また、第3の発明は、前記第2の発明において、前記制御部は、非タッチ状態とタッチ状態とでリセット回数が異なる場合に、前記受信部から出力される検出量を、リセット期間中に前記積分部に入力される信号に相当する補正値で補正する構成とする。
これによると、非タッチ状態とタッチ状態とでリセット回数が異なることで生じるタッチ位置の検出誤差を避けることができる。
また、第4の発明は、前記第1乃至第3の発明において、前記積分部において1回のリセットで破棄される信号量が、タッチ操作に伴う検出量の変化量より大きくなるように設定され、前記制御部は、前記受信部から出力される検出量と、非タッチ状態で取得した検出量の初期値との差に基づいてタッチ操作の有無を判定し、タッチ操作があったものと判定されると、そのタッチ状態での検出量と前記初期値との大小に基づいて非タッチ状態とタッチ状態とのリセット回数の差を判定する構成とする。
これによると、受信部から出力される検出量のみでタッチ位置を求めることができるため、リセット回数を計数する手段が不要となり、さらに処理するデータ量が削減されるため、メモリ容量を節約することができる上に、演算負荷およびデータ転送の負荷を軽減して、タッチ位置検出の処理速度(検出レート)を向上させることができる。
また、第5の発明は、前記第1乃至第4の発明において、前記パネル本体は、画像表示装置の前面に配置され、前記送信電極および前記受信電極は、導線が格子状に配置されたメッシュ状電極で構成された構成とする。
これによると、導線を微細な線径に形成することで電極を見えにくくして、タッチパネル装置の背面側に配置される画像表示装置の画面の視認性を高めることができる。この場合、送信電極および受信電極がメッシュ状電極で構成されているため、電極交点の静電容量が大きくなり、タッチ操作に伴って電極交点の静電容量が変化する割合が小さくなるため、特に本発明が有効である。
また、第6の発明は、互いに並走する複数の送信電極および互いに並走する複数の受信電極が格子状に設けられたパネル本体と、前記送信電極に対して駆動信号を印加する送信部と、前記送信電極に印加する駆動信号に応じて前記受信電極から出力される応答信号を受信して電極交点ごとに検出量を出力する受信部と、前記受信部から出力される検出量の変化量に基づいてタッチ位置を求める制御部とを備えるタッチパネル装置のタッチ位置検出方法において、前記受信部は、前記受信電極からの応答信号に基づいた信号を積分処理し、この積分処理による積分値が所定の閾値に達すると前記積分値をゼロにリセットすることにより、タッチ操作に伴い出力する前記検出量の変化量を大きくするものとする。
これによると、積分部の積分値が所定の閾値に達するのに応じてリセットが行われることから、積分部が飽和することがないため、入力信号に対して積分値が大きく変化する特性に積分部を設定することができ、これによりタッチ操作に伴う受信部の出力検出量の変化量が大きくなるため、タッチ操作に伴って電極交点の静電容量が変化する割合が小さい場合でも、タッチ位置を精度よく検出することができる。
以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明に係るタッチパネル装置が適用されたプラズマディスプレイ装置1を示す全体構成図である。このプラズマディスプレイ装置1は、プラズマディスプレイパネル(画像表示装置。以下、PDPと呼称する。)2と、PDP制御部3と、タッチパネル装置4とからなっており、タッチパネル装置4のパネル本体5がPDP2の表示面の前側に配置されている。
タッチパネル装置4のパネル本体5は、指示物(ユーザの指先及びスタイラスや指示棒等の導電体)によるタッチ操作が行われるタッチ面6を備え、互いに並走する複数の送信電極7と互いに並走する複数の受信電極8とが格子状に配置されている。
また、タッチパネル装置4は、送信電極7に対して駆動信号を印加する送信部9と、送信電極7に印加された駆動信号に応答した受信電極8の応答信号を受信して、送信電極7と受信電極8とが交差する電極交点ごとの静電容量に相当する検出量を出力する受信部10と、この受信部10から出力される検出量に基づいてタッチ位置を検出すると共に送信部9及び受信部10の動作を制御する制御部11とを備えている。
制御部11から出力されるタッチ位置情報は、パソコンなどの外部機器12に入力され、ここで生成した表示画面データがPDP2を制御するPDP制御部3に出力される。これによりパネル本体5のタッチ面6上でユーザが指示物で行ったタッチ操作に対応した画像がPDP2の画面に表示され、タッチ面6にマーカーで直接描画するのと同様の感覚で所要の画像を表示させることができ、またPDP2の表示画面に表示されたボタンなどを操作することができる。さらに、タッチ操作で描かれた画像を消去するイレーサを用いることもできる。
送信電極7と受信電極8とは、絶縁層を挟んで重なり合う態様で交差しており、この送信電極7と受信電極8とが交差する電極交点にはコンデンサが形成され、ユーザが指等の指示物でタッチ操作を行う際に、指示物がタッチ面6に接近あるいは接触すると、これに応じて電極交点の静電容量が実質的に減少することで、タッチ操作の有無を検出することができる。
ここでは、相互容量方式が採用されており、送信電極7に駆動信号を印加すると、これに応答して受信電極8に充放電電流が流れ、この充放電電流が応答信号として受信電極8から出力され、このとき、ユーザのタッチ操作に応じて電極交点の静電容量が変化すると、受信電極8の充放電電流、すなわち応答信号が変化し、この変化量に基づいてタッチ位置が算出される。この相互容量方式では、受信部10で応答信号を信号処理して得られる検出量が、送信電極7と受信電極8とによる電極交点ごとに出力されるため、同時に複数のタッチ位置を検出する、いわゆるマルチタッチ(多点検出)が可能である。
制御部11のタッチ位置算出部17は、受信部10から出力される電極交点ごとの検出量から所定の演算処理によってタッチ位置(タッチ領域の中心座標)を求める。このタッチ位置の演算では、X方向(受信電極8の配列方向、つまりPDP2の幅方向)とY方向(送信電極7の配列方向、つまりPDP2の高さ方向)とでそれぞれ隣接する複数(例えば4×4)の電極交点ごとの検出量から所要の補間法(例えば重心法)を用いてタッチ位置を求める。これにより、送信電極7及び受信電極8の配置ピッチ(例えば10mm)より高い分解能(例えば1mm以下)でタッチ位置を検出することができる。
また、制御部11のタッチ位置算出部17では、タッチ面6の全面に渡って電極交点ごとの検出量の受信が終了する1フレーム周期ごとにタッチ位置を求める処理が行われ、タッチ位置情報がフレーム単位で外部機器12に出力される。外部機器12では、時間的に連続する複数のフレームのタッチ位置情報に基づいて、各タッチ位置を時系列に連結する表示画面データを生成して、PDP制御部3に出力する。なお、マルチタッチの場合には、複数の指示物によるタッチ位置を含むタッチ位置情報がフレーム単位で出力される。
送信部9は、駆動信号となるパルスを発生する送信パルス発生部13と、送信電極7を1本ずつ選択して、送信パルス発生部13から出力されたパルスを送信電極7に順次印加する電極選択部14と、を備えている。
受信部10は、受信電極8から出力される応答信号を処理する受信信号処理部16と、受信電極8を1本ずつ選択して、受信電極8からの応答信号を受信信号処理部16に順次入力させる電極選択部15と、を備えている。
送信部9および受信部10は、制御部11から出力される同期信号に応じて動作し、1本の送信電極7にパルス信号を印加する間に、受信電極8を1本ずつ選択して、受信電極8からの応答信号を受信信号処理部16に順次入力させ、これを全ての送信電極7について順次繰り返すことで、全ての電極交点ごとの応答信号を取り出すことができる。
図2は、送信電極7および受信電極8を示す平面図である。送信電極7は、導線21a,21bが格子状に配置されたメッシュ状電極で構成されている。導線21aは、送信電極7の長手方向に対して時計方向に所定角度θだけ傾いた方向に延在し、導線21bは、送信電極7の長手方向に対して反時計方向に所定角度θだけ傾いた方向に延在し、導線21a,21bの交差角度2θを90度より小さくすることで、菱形格子が連続する形態をなしている。なお、導線21a,21bは、交差部分で互いに電気的に接続されている。
受信電極8も、送信電極7と同様に、導線22a,22bが格子状に配置されたメッシュ状電極で構成されており、導線22a,22bの配置形態も、送信電極7の導線21a,21bと同様である。
このように送信電極7および受信電極8を構成して、導線21a,21b,22a,22bを微細な線径に形成することにより、送信電極7および受信電極8を見えにくくして、タッチパネル装置4の背面側に配置されるPDP2の画面の視認性を高めることができ、さらに、PDP2の画素パターンに送信電極7および受信電極8が重なり合うことで発生するモアレを抑制することができる。
また、送信電極7および受信電極8をメッシュ状電極で構成した場合、電極交点の静電容量Cが大きくなる一方で、タッチ操作に伴う静電容量の変化量ΔCは静電容量Cの10%弱にしかならない。このため、静電容量Cに対する変化量ΔCの割合(ΔC/C)が小さくなり、タッチ検出の感度が低下する。そこで、ここでは、後述するように、受信電極8の出力信号を処理する受信信号処理部16で感度を向上させる処理を行って、タッチ位置を精度よく検出することができるようにしている。
図3は、受信信号処理部16の概略構成図である。この受信信号処理部16は、IV変換部31と、バンドパスフィルタ32と、絶対値検出部33と、平滑化部34と、積分部35と、サンプルホールド部36と、AD変換部37と、監視部38と、を備えている。
IV変換部31では、電極選択部15を介して入力される受信電極8の応答信号(充放電電流信号)が電圧信号に変換される。バンドパスフィルタ32では、IV変換部31の出力信号に対して、送信電極7に印加される駆動信号の周波数以外の周波数成分を有する信号を除去する処理が行われる。絶対値検出部(整流部)33では、バンドパスフィルタ32の出力信号に対して全波整流が行われる。平滑化部34では、絶対値検出部33の出力信号を平滑化する処理が行われる。積分部35では、平滑化部34の出力信号を時間軸方向に積分する処理が行われる。サンプルホールド部36では、積分部35の出力信号を所定のタイミングでサンプリングする処理が行われる。AD変換部37では、サンプルホールド部36の出力信号をAD変換して電極交点ごとの検出量を出力する。
監視部38は、積分部35の積分値を監視し、この積分値を所定の閾値と比較して、積分値が閾値に達するとリセット信号を出力する。この監視部38は、具体的にはコンパレータで構成され、積分部35の出力電圧が所定電圧に達するとリセットパルスを発生する。
図4は、積分部35の概略構成図である。積分部35は、オペアンプ41の反転入力端子と出力端子との間の帰還回路に設けられたコンデンサ42と抵抗43とを備えた積分回路44と、コンデンサ42の電荷を放電するリセット回路45と、を有している。積分回路44では、入力電圧を時間で積分して出力し、監視部38からのリセット信号がリセット回路45に入力されると、積分回路44での積分値がゼロにリセットされる。積分回路44では、コンデンサ42の容量を小さくすることで、入力信号に対して出力電圧が大きく変化する特性に設定することができる。
図5は、受信信号処理部16の各部から出力される信号を示す波形図である。送信電極7に駆動信号(パルス信号)を所定回数印加すると、パルス波の立ち上がり及び立ち下がりに応じた充放電電流が受信電極8に流れ、これに応じてIV変換部31から出力される電圧信号が変化する。
積分部35では、監視部38から出力されるリセット信号に応じて積分値がゼロにリセットされ、積分処理とリセットとが繰り返される。IV変換部31の出力信号は、送信電極7の駆動信号の印加が終了するのに応じて収束し、このIV変換部31の出力信号が収束する所定のタイミングで、サンプルホールド部36により積分部35の出力信号のサンプリングが行われる。
タッチ操作が行われると、電極交点の静電容量が減少するのに伴って、IV変換部31から出力される電圧信号の振幅が小さくなり、これに応じて、絶対値検出部33の出力信号および平滑化部34の出力信号の電圧が低くなる。このため、タッチ状態では、非タッチ状態と比較して、積分部35の積分値が閾値に到達するまでの時間が長くなり、リセットのタイミングが遅くなる。
AD変換部37では、積分部35の出力信号をサンプルホールド部36で所定のタイミングでサンプリングして出力される電圧信号を、0〜2.55Vの範囲で、8ビット(0〜255)の検出量(AD変換値)に変換する。検出量はAD変換部37から制御部11に出力される。また、監視部38からリセット信号が制御部11に出力され、制御部11では、監視部38からのリセット信号に基づいてリセット回数を計数する。
ここで、電極交点の静電容量Cは、受信信号処理部16から出力される検出量Xと、1回のリセットで破棄された積分値に相当する破棄信号量Tと、リセット回数Nとから、次式のように表すことができる。
C=T×N+(T−X) (式1)
また、制御部11のタッチ位置算出部17では、非タッチ状態での静電容量の初期値C0に対する変化量ΔCに基づいてタッチ位置を求めるようにしており、この変化量ΔCは、式1により、受信信号処理部16の出力検出量Xおよびリセット回数Nと、非タッチ状態で取得した検出量の初期値X0およびリセット回数の初期値N0と、1回のリセット分の破棄信号量Tとから、次式により求められる。
ΔC=C0−C
={T×N0+(T−X0)}−{T×N+(T−X)} (式2)
ここで、受信信号処理部16の出力検出量Xおよび検出量の初期値X0は、装置の個体差によりばらつきが生じるが、タッチ操作に伴う変化量ΔC自体には大きなばらつきが生じないため、変化量ΔCに基づいてタッチ位置を求めることによりタッチ位置検出を精度よく行うことができる。
なお、ここで説明する静電容量Cは、説明の便宜上、受信信号処理部16の出力検出量Xを基準にして換算した静電容量の検出量を示すものであり、電極交点部分に形成されるコンデンサの物理学的な静電容量値とは異なる。また、破棄信号量Tも、受信信号処理部16の出力検出量Xを基準にして換算したものである。
図6は、従来構成に基づく受信信号処理部の各部から出力される信号を示す波形図である。この従来構成では、図5に示した本実施形態による場合と同様に、IV変換部の出力信号が収束するタイミングで、積分部の出力信号のサンプリングが行われるが、積分期間中に積分が飽和することがないように、積分回路のコンデンサの容量が大きく設定されており、これによりタッチ操作に伴う出力検出量の変化量が小さくなる。
これに対して、図5に示した本実施形態では、積分部35での積分値を積分期間の途中でリセットするようにしたため、積分部35が飽和することがなく、入力信号に対して積分値が大きく変化する特性に積分部35を設定することができ、これによりタッチ操作に伴う受信信号処理部16の出力検出量の変化量が大きくなる。このため、送信電極7および受信電極8をメッシュ状電極で構成することにより、タッチ操作に伴って電極交点の静電容量が変化する割合(ΔC/C)が小さくなる場合でも、タッチ位置を精度よく検出することができる。
また、電極交点の静電容量のばらつきが原因で受信電極8の出力信号の大きさに個体差があるため、積分部35の入力電圧が高くなることがあるが、このような場合でも、積分部35が飽和することがないため、タッチ位置の検出精度を確保することができる。
図7は、受信信号処理部16の各部から出力される信号を示す波形図である。この図7は、基本的には図5と同じものであるが、リセット期間内での絶対値検出部33の出力電圧の変化状況が分かり易くなるように、図5の要部を時間軸方向に拡大して示している。この図7に示すように、積分部35の積分処理はリセット期間で一時的に停止し、リセット期間中に積分部35に入力された信号は積分されることなく無効となる。
また、タッチ操作が行われると、電極交点の静電容量が減少するのに伴って、絶対値検出部23の出力電圧が低くなり、これに応じて積分部35の積分値が閾値に到達するまでの時間が長くなるため、タッチ状態では非タッチ状態と比較してリセットのタイミングが遅くなる。一方、絶対値検出部23の出力信号は周期的に変化しているため、絶対値検出部23の出力信号をそのまま積分すると、リセット期間で無効となる信号量がタッチ状態と非タッチ状態とで異なるものとなり、これがタッチ位置の検出誤差となる。
そこで、ここでは、図3に示したように、積分部35の前段に平滑化部34を設け、積分部35では、平滑化部34で平滑化された信号を積分処理するようにしている。これにより、積分部35に入力される信号が一定となり、タッチ状態と非タッチ状態とでリセットのタイミングが異なっても、リセット期間で無効となる信号量は変わらないため、積分部35でのリセットのタイミングが異なることで生じるタッチ位置の検出誤差を避けることができる。
図8は、非タッチ状態とタッチ状態でリセット回数が異なった場合の受信信号処理部16の各部から出力される信号を示す波形図である。前記のように、積分部35の積分処理はリセット期間で一時的に停止し、リセット期間中に積分部35に入力された信号は積分されることなく無効となる。このため、リセット期間中に積分部35に入力される信号分だけ、受信信号処理部16の出力検出量が真の値からずれ、これがタッチ位置の検出誤差となる。
一方、タッチ位置算出部17では、タッチ操作に伴う静電容量の変化量ΔCでタッチ位置が判断されることから、非タッチ状態とタッチ状態とでリセット回数が同じであれば、誤差が相殺されるため、問題とならないが、非タッチ状態とタッチ状態とでリセット回数が異なる場合がある。図示する例では、非タッチ状態でリセット回数が4回となるのに対して、タッチ状態ではリセット回数が3回に減少している。このような場合、リセット期間で無効となる信号がタッチ位置の検出誤差となる。
そこで、ここでは、タッチ位置算出部17において、非タッチ状態とタッチ状態とでリセット回数が異なる場合に、受信信号処理部16の出力検出量を、リセット期間中に積分部35に入力される信号に相当する補正値で補正するようにしている。これにより、リセット回数が異なることで生じるタッチ位置の検出誤差を避けることができる。
リセット期間は一定の時間に設定されており、また、積分部35に入力される信号は平滑化部34で平滑化されているため、1回のリセット期間中に積分部35に入力される信号量は、タイミングに関係なく一定である。したがって、1回のリセット分の補正値を、平滑化部34の出力信号のレベルに基づいて定めることができる。ここでは、起動直後の非タッチ状態で取得した受信信号処理部16の出力検出量とリセット回数とから、平滑化部34の出力信号のレベルを推定して、補正値を決定する。
なお、タッチ操作に伴って平滑化部34の出力電圧が低くなるため、厳密には、リセット期間で無効となる信号量は非タッチ状態とタッチ状態とで異なるが、メッシュ状電極を採用した場合、タッチ操作に伴う信号変化量が小さいため、非タッチ状態での信号レベルで補正値を決定しても実用上支障はない。
図示する例では、非タッチ状態でリセット回数N0=4、出力検出量X0=200となり、タッチ状態でリセット回数N=3、出力検出量X=100となる。よって、前記の式2により変化量ΔCは次式のようになる。
ΔC={255×4+(255−200)}−{255×3+(255−100)}
=1075−920
=155
ここで、タッチ状態では非タッチ状態よりリセット回数が1回少なくなっているため、リセット1回分の補正値を10とすると、真の変化量ΔCは、155+10=165となる。
以上、受信信号処理部16の出力検出値とリセット回数に基づいてタッチ操作に伴う静電容量の変化量ΔCを求めるようにしたが、以下に説明するように、受信信号処理部16の出力検出値のみで変化量ΔCを求めることも可能である。
図9は、リセット信号および積分部35の出力信号を示す波形図であり、図9(A)に非タッチ状態とタッチ状態とでリセット回数が変化しない場合を、図9(B)に非タッチ状態とタッチ状態とでリセット回数が変化する場合を、それぞれ示している。
図9(A)に示す例では、非タッチ状態とタッチ状態とでリセット回数がともに4回となっている。この場合、タッチ状態では非タッチ状態と比較して最後のリセットのタイミングが遅くなり、タッチ状態での出力検出量X(=220)が、非タッチ状態で取得した検出量の初期値X0(=80)より大きくなる。
一方、図9(B)に示す例では、非タッチ状態でリセット回数が4回となるのに対して、タッチ状態ではリセット回数が3回に減少している。この場合、タッチ状態では非タッチ状態と比較して最後のリセットのタイミングが早くなるため、タッチ状態での出力検出量X(=100)が、非タッチ状態で取得した検出量の初期値X0(=200)より小さくなる。
このようにタッチ状態と非タッチ状態とのリセット回数の差に応じて、受信信号処理部16の出力検出量Xと初期値X0との大小が逆転する。このため、出力検出量Xと初期値X0の大小に基づいて、タッチ状態と非タッチ状態とのリセット回数の差を判断することができる。すなわち、出力検出量Xが初期値X0より大であれば、タッチ状態と非タッチ状態とでリセット回数が同じものと判断することができ、逆に出力検出量Xが初期値X0より小であれば、タッチ状態でリセット回数が非タッチ状態より1回少なくなっているものと判断することができる。
ここで、タッチ状態での静電容量Cが、1回のリセット分の破棄信号量Tだけ、非タッチ状態での静電容量の初期値C0より少ない場合、すなわちC=C0−Tとなる場合、タッチ状態でリセット回数が非タッチ状態より1回少なくなるが、タッチ状態での出力検出量Xは初期値X0と等しくなるため、出力検出量Xと初期値X0との差のみで、非タッチ状態とタッチ状態とを判別することができない。
さらに、タッチ操作に伴う静電容量の変化量ΔCが、1回のリセット分の破棄信号量Tより大きいと、タッチ操作に応じてリセット回数が変化する場合でも、図9(A)に示す例と同様に、出力検出量Xが初期値X0より大きくなる場合が生じるため、出力検出量Xと初期値X0との差のみで、リセット回数の差を判別することができない。
そこで、ここでは、積分部35において1回のリセットで破棄される破棄信号量Tが、タッチ操作に伴う静電容量の変化量ΔCより大きくなるように設定されている。これには、積分部35でリセットを行う際の閾値や、積分回路44のコンデンサ42の容量を適切に定めればよい。また、パネル本体5において、静電容量の変化量ΔCが破棄信号量Tより小さくなるように、タッチ操作に伴う静電容量の変化特性を設定するようにしてもよい。
具体的には、例えばタッチ状態での静電容量Cが、非タッチ状態での静電容量の初期値C0に対して最大15%しか変化しないものとすると、図9(A)に示した例の場合、非タッチ状態での静電容量C0は、式1により、255×4+(255−80)=1020+175=1195となるため、タッチ操作に伴う変化量ΔCは最大で1195×0.15≒180となる。これは、1回のリセット分の破棄信号量T(=255)より小さくなる。よって、出力検出量Xと初期値X0との差のみで非タッチ状態とタッチ状態とを判別することができ、また、出力検出量Xと初期値X0との大小の比較のみでリセット回数の差を判別することができる。
図10は、タッチ位置算出部17での処理の手順を示すフロー図である。ここでは、まず、装置の起動時に実施されるキャリブレーションにおいて、非タッチ状態で受信信号処理部16から出力される検出量の初期値X0を取得する(ST101)。そして、ユーザによる使用が可能な状態となって、受信信号処理部16の出力検出量Xを取得すると(ST102)、この出力検出量Xと初期値X0との差の絶対値(ABS(X0−X))を算出し、その絶対値が所定の基準値(ここでは2)以上となるか否で、タッチ操作の有無を判定する。
ここでタッチ操作が行われたものと判定されると(ST103でYes)、出力検出量Xと初期値X0の大小を比較し、出力検出量Xが初期値X0以上となる場合は(ST104でYes)、タッチ状態と非タッチ状態とでリセット回数が同じものと判断する。この場合、リセットで破棄された信号量が非タッチ状態とタッチ状態とで同一であるため、単に出力検出量Xと初期値X0とを比較すればよく、タッチ操作に伴う変化量ΔCは次式により求められる(ST105)。
ΔC=X−X0 (式3)
図9(A)に示した例の場合、非タッチ状態での出力検出量X0=80、タッチ状態での出力検出量X=220となるため、変化量ΔC=220−80=140となる。
一方、出力検出量Xが初期値X0以上とならない場合は(ST104でNo)、タッチ状態でリセット回数が非タッチ状態より1回少なくなっているものと判断する。この場合、非タッチ状態とタッチ状態とでは、リセットで破棄された信号量が1回のリセット分の破棄信号量T(=255)だけ異なり、タッチ操作に伴う変化量ΔCは次式により求められる(ST106)。
ΔC=255−(X0−X) (式4)
図9(B)に示した例の場合、非タッチ状態での出力検出量X0=200、タッチ状態での出力検出量X=100となるため、変化量ΔC=255−(200−100)=155となる。さらに、リセット期間中に積分部35に入力されて無効となった信号に相当する補正値(ここでは10)を1回分加えて、変化量ΔCは165となる。
なお、タッチ操作の有無の判定(ST103)では、出力検出量Xと初期値X0との差が所定の範囲(±2)に収まるか否かにより判定を行っており、これにより出力検出量Xのばらつきによる誤判定を避けることができる。
このように受信信号処理部16の出力検出量Xを、非タッチ状態で取得した検出量の初期値X0と比較して、その大小に基づいて非タッチ状態とタッチ状態とのリセット回数の差を判定して、そのリセット回数の差に応じて静電容量の変化量ΔCを求めるため、受信信号処理部16の出力検出量Xのみでタッチ位置を求めることができる。これにより、リセット回数を計数する手段が不要となり、さらに処理するデータ量が削減されるため、メモリ容量を節約することができる上に、演算負荷およびデータ転送の負荷を軽減して、タッチ位置検出の処理速度(検出レート)を向上させることができる。
なお、前記の例では、送信電極7および受信電極8をメッシュ状電極で構成したが、本発明における送信電極および受信電極はこれに限定されるものではなく、例えば電極となる導線を1方向に配列しただけの構成にも本発明を適用することが可能である。
また、前記の例では、図3に示したように、受信信号処理部16において平滑化部34を積分部35の前段に設けたが、平滑化部34を設けずに絶対値検出部33の出力信号をそのまま積分部35に入力する構成も可能である。このような構成でも、所期の効果、すなわちタッチ操作に伴う受信信号処理部16の出力検出量の変化量が大きくなる効果を得ることができる。
また、前記の例では、図3に示したように、受信電極8からの応答信号を処理するためにIV変換部31、バンドパスフィルタ32および絶対値検出部33を設けたが、これらの処理は適宜に省略することができる。すなわち、積分部35には受信電極8からの応答信号に基づいた信号を入力させればよく、IV変換やバンドパスフィルタ処理や全波整流の処理を行うことなく、受信電極8からの応答信号をそのまま積分部35に入力する構成も可能である。このような構成でも、所期の効果、すなわちタッチ操作に伴う受信信号処理部16の出力検出量の変化量が大きくなる効果を得ることができる。
本発明にかかるタッチパネル装置は、タッチ操作に伴って電極交点の静電容量が変化する割合が小さい場合でも、タッチ位置を精度よく検出することができる効果を有し、タッチ操作に応じた静電容量の変化に伴う電極の出力信号の変化に基づいてタッチ位置を検出する静電容量方式のタッチパネル装置などとして有用である。
1 プラズマディスプレイ装置
2 PDP(画像表示装置)
4 タッチパネル装置
5 パネル本体
6 タッチ面
7 送信電極
8 受信電極
9 送信部
10 受信部
11 制御部
16 受信信号処理部
17 タッチ位置算出部
34 平滑化部
35 積分部
36 サンプルホールド部
38 監視部
41 オペアンプ
42 コンデンサ
44 積分回路
45 リセット回路

Claims (6)

  1. 互いに並走する複数の送信電極および互いに並走する複数の受信電極が格子状に設けられたパネル本体と、
    前記送信電極に対して駆動信号を印加する送信部と、
    前記送信電極に印加する駆動信号に応じて前記受信電極から出力される応答信号を受信して電極交点ごとに検出量を出力する受信部と、
    前記受信部から出力される検出量の変化量に基づいてタッチ位置を求める制御部と、を備え、
    前記受信部は、前記受信電極からの応答信号に基づいた信号を積分処理する積分部と、この積分部の積分値が所定の閾値に達するとリセット信号を出力する監視部と、を備え、前記積分部は、前記監視部のリセット信号に応じて積分値をゼロにリセットすることを特徴とするタッチパネル装置。
  2. 前記受信部は、信号を平滑化する平滑化部を前記積分部の前段に備え、前記積分部は、前記平滑化部で平滑化された信号を積分処理することを特徴とする請求項1に記載のタッチパネル装置。
  3. 前記制御部は、非タッチ状態とタッチ状態とでリセット回数が異なる場合に、前記受信部から出力される検出量を、リセット期間中に前記積分部に入力される信号に相当する補正値で補正することを特徴とする請求項2に記載のタッチパネル装置。
  4. 前記積分部において1回のリセットで破棄される信号量が、タッチ操作に伴う検出量の変化量より大きくなるように設定され、
    前記制御部は、前記受信部から出力される検出量と、非タッチ状態で取得した検出量の初期値との差に基づいてタッチ操作の有無を判定し、タッチ操作があったものと判定されると、そのタッチ状態での検出量と前記初期値との大小に基づいて非タッチ状態とタッチ状態とのリセット回数の差を判定することを特徴とする請求項1乃至請求項3のいずれかに記載のタッチパネル装置。
  5. 前記パネル本体は、画像表示装置の前面に配置され、
    前記送信電極および前記受信電極は、導線が格子状に配置されたメッシュ状電極で構成されたことを特徴とする請求項1乃至請求項4のいずれかに記載のタッチパネル装置。
  6. 互いに並走する複数の送信電極および互いに並走する複数の受信電極が格子状に設けられたパネル本体と、前記送信電極に対して駆動信号を印加する送信部と、前記送信電極に印加する駆動信号に応じて前記受信電極から出力される応答信号を受信して電極交点ごとに検出量を出力する受信部と、前記受信部から出力される検出量の変化量に基づいてタッチ位置を求める制御部とを備えるタッチパネル装置のタッチ位置検出方法において、
    前記受信部は、前記受信電極からの応答信号に基づいた信号を積分処理し、この積分処理による積分値が所定の閾値に達すると前記積分値をゼロにリセットすることにより、タッチ操作に伴い出力する前記検出量の変化量を大きくすることを特徴とするタッチ位置検出方法。
JP2011004744A 2011-01-13 2011-01-13 タッチパネル装置およびタッチ位置検出方法 Expired - Fee Related JP4897982B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011004744A JP4897982B1 (ja) 2011-01-13 2011-01-13 タッチパネル装置およびタッチ位置検出方法
US13/345,887 US20120182256A1 (en) 2011-01-13 2012-01-09 Touch screen device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004744A JP4897982B1 (ja) 2011-01-13 2011-01-13 タッチパネル装置およびタッチ位置検出方法

Publications (2)

Publication Number Publication Date
JP4897982B1 true JP4897982B1 (ja) 2012-03-14
JP2012146173A JP2012146173A (ja) 2012-08-02

Family

ID=45907987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004744A Expired - Fee Related JP4897982B1 (ja) 2011-01-13 2011-01-13 タッチパネル装置およびタッチ位置検出方法

Country Status (2)

Country Link
US (1) US20120182256A1 (ja)
JP (1) JP4897982B1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328228B1 (ko) * 2011-11-21 2013-11-14 삼성전기주식회사 접촉 감지 장치 및 접촉 감지 방법
US8946985B2 (en) * 2012-05-07 2015-02-03 Samsung Display Co., Ltd. Flexible touch screen panel and flexible display device with the same
TWI592843B (zh) * 2012-11-09 2017-07-21 恆顥科技股份有限公司 觸控電極裝置
TWI552211B (zh) * 2012-11-30 2016-10-01 恆顥科技股份有限公司 觸控電極裝置
US20140204046A1 (en) * 2013-01-22 2014-07-24 Pixart Imaging Inc. Capacitive touch sensing device and detection method thereof
CN104461180B (zh) * 2013-09-12 2018-06-08 广州市和唐电子科技有限公司 一种电容式触摸屏防干扰装置及方法
JP6556421B2 (ja) * 2013-12-24 2019-08-07 エルジー ディスプレイ カンパニー リミテッド タッチパネル装置およびタッチ検出方法
JP6225793B2 (ja) * 2014-03-28 2017-11-08 凸版印刷株式会社 タッチセンサ用電極、タッチパネル、および、表示装置
US20170090609A1 (en) * 2015-09-25 2017-03-30 Synaptics Incorporated Oversampled step and wait system for capacitive sensing
CN105224140B (zh) * 2015-11-09 2019-03-22 京东方科技集团股份有限公司 一种阵列基板及其制作方法、触摸显示装置
JP7334606B2 (ja) * 2019-12-13 2023-08-29 Smk株式会社 浮遊容量の変化検出回路と浮遊容量の変化検出回路を用いた静電容量式タッチパネル
WO2022094374A2 (en) * 2020-10-31 2022-05-05 Tactual Labs Co. Flourish taxel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003060A (ja) * 2008-06-19 2010-01-07 Hitachi Displays Ltd タッチパネル付き表示装置
JP2010250522A (ja) * 2009-04-15 2010-11-04 Hitachi Displays Ltd 座標入力装置、およびそれを備える表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2464525C (en) * 2001-10-24 2012-01-10 Pressure Profile Systems, Inc. Array sensor electronics
US8456434B2 (en) * 2006-06-22 2013-06-04 Atlab Inc. Touch sensor and operating method thereof
US8830180B2 (en) * 2008-04-10 2014-09-09 Atmel Corporation Capacitive position sensor
US8462135B1 (en) * 2009-01-08 2013-06-11 Cypress Semiconductor Corporation Multi-touch disambiguation
US8692781B2 (en) * 2010-06-02 2014-04-08 Pixart Imaging Inc. Capacitive touchscreen system with multiplexers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003060A (ja) * 2008-06-19 2010-01-07 Hitachi Displays Ltd タッチパネル付き表示装置
JP2010250522A (ja) * 2009-04-15 2010-11-04 Hitachi Displays Ltd 座標入力装置、およびそれを備える表示装置

Also Published As

Publication number Publication date
JP2012146173A (ja) 2012-08-02
US20120182256A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP4897982B1 (ja) タッチパネル装置およびタッチ位置検出方法
JP4897983B1 (ja) タッチパネル装置および指示物判別方法
TWI475450B (zh) Picture input type image display system
JP4913859B2 (ja) タッチパネル装置
US20120293430A1 (en) Touch screen device and plasma display apparatus having the same
JP5396333B2 (ja) タッチパネル装置
JP2012138036A (ja) タッチパネル装置およびこれを備えたプラズマディスプレイ装置
JP4850946B2 (ja) タッチパネル装置
US9823785B2 (en) Touch sensitive device with stylus support
US9389724B2 (en) Touch sensitive device with stylus support
US9182862B2 (en) High noise immunity sensing methods and apparatus for a capacitive touch device
JP2011257831A (ja) タッチパネル装置
JP2009098942A5 (ja)
KR102623873B1 (ko) 터치 패널 컨트롤러
US9612704B2 (en) Apparatus and method for sensing touch
JP2013020479A (ja) タッチパネル装置
JP2013535744A5 (ja)
KR102189017B1 (ko) 터치센서패널 및 터치입력장치
GB2502600A (en) A method for determining touch in a touch sensitive display with reference to base touch or offset values
JP4944998B1 (ja) タッチパネル装置およびこれを備えたプラズマディスプレイ装置
JP2011243081A (ja) タッチパネル装置
KR101388699B1 (ko) 터치 감지 방법 및 터치 감지 장치
US11537248B2 (en) Touch sensor panel and touch input device with reduced magnitude of low ground mass interference signal
US20150248178A1 (en) Touchscreen apparatus and touch sensing method
JP2009015685A (ja) タッチパネル装置、及びその操作情報生成方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees