JP4895855B2 - Scrubber wastewater treatment method - Google Patents

Scrubber wastewater treatment method Download PDF

Info

Publication number
JP4895855B2
JP4895855B2 JP2007037912A JP2007037912A JP4895855B2 JP 4895855 B2 JP4895855 B2 JP 4895855B2 JP 2007037912 A JP2007037912 A JP 2007037912A JP 2007037912 A JP2007037912 A JP 2007037912A JP 4895855 B2 JP4895855 B2 JP 4895855B2
Authority
JP
Japan
Prior art keywords
scrubber
gas
cyan
boiler
scrubber wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007037912A
Other languages
Japanese (ja)
Other versions
JP2008200578A (en
Inventor
輝城 福松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2007037912A priority Critical patent/JP4895855B2/en
Publication of JP2008200578A publication Critical patent/JP2008200578A/en
Application granted granted Critical
Publication of JP4895855B2 publication Critical patent/JP4895855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Incineration Of Waste (AREA)
  • Drying Of Solid Materials (AREA)

Description

本発明は、有機性廃棄物の燃料回収工程に設置されたスクラバから排出されるスクラバ排水の処理方法に関するものである。   The present invention relates to a method for treating scrubber wastewater discharged from a scrubber installed in a fuel recovery process for organic waste.

窒素化合物を含有する有機性廃棄物、特にタンパク質を多く含む下水汚泥等から、熱分解やガス化処理により燃料ガスを回収する燃料回収工程では、窒素化合物のガス化反応により高濃度のシアン化水素(HCN)等のシアン成分やアンモニア(NH)が副生される。燃料ガスはスクラバを通して浄化したうえで回収されるが、燃料ガス中のシアン成分やアンモニアはスクラバ排水中に移行するため、スクラバ排水中のシアン成分の処理が必要である。また、アンモニア成分も低減させる必要がある場合がある。 In the fuel recovery process for recovering fuel gas from organic waste containing nitrogen compounds, especially sewage sludge containing a large amount of protein, by pyrolysis or gasification, high concentration hydrogen cyanide (HCN) is obtained by gasification reaction of nitrogen compounds. ) And the like and ammonia (NH 3 ) are by-produced. The fuel gas is purified through a scrubber and then recovered, but the cyan component and ammonia in the fuel gas are transferred into the scrubber wastewater, so that the cyan component in the scrubber wastewater needs to be treated. Further, it may be necessary to reduce the ammonia component.

シアン含有廃水の処理方法には、次亜塩素酸ソーダを用いたアルカリ塩素法が一般的に用いられている。またアンモニア成分については、次亜塩素酸ソーダを用いたブレークポイント法が知られている。   As a method for treating cyanide-containing wastewater, an alkali chlorine method using sodium hypochlorite is generally used. As for the ammonia component, a breakpoint method using sodium hypochlorite is known.

ところが、これらのアルカリ塩素法やブレークポイント法は、次亜塩素酸ソーダを酸化剤として用いるため、排水中の被酸化成分の同伴により、過剰に次亜塩素酸ソーダが使用されるほか、pH調整に用いるアルカリ薬剤も緩衝作用により多量に必要となるため、コスト高になってしまうという問題があった。   However, these alkali chlorine methods and breakpoint methods use sodium hypochlorite as an oxidizing agent, so that sodium hypochlorite is used in excess due to the presence of oxidizable components in the wastewater, and pH adjustment There is a problem in that the alkaline agent used in the above method requires a large amount due to the buffering action, which increases the cost.

そこで、特許文献1〜3に示されるような、放散塔や曝気塔による気相側へのシアン揮散法が提案されている。また、アンモニア成分については、放散塔によるアンモニアストリッピング法がある。しかしながら、これらの放散塔や揮散塔を用いた、シアン成分やアンモニア成分の気相側への揮散処理では、気相側へ移行したシアン成分の安全な処理方法が未確立であるという問題があった。   Then, the cyan volatilization method to the gaseous-phase side by a diffusion tower or an aeration tower as shown by patent documents 1-3 is proposed. As for the ammonia component, there is an ammonia stripping method using a diffusion tower. However, the volatilization treatment of the cyan component and ammonia component to the gas phase side using these stripping towers and volatilization towers has a problem that a safe treatment method for the cyan component transferred to the gas phase side has not been established. It was.

また、特許文献2に示される揮散シアン成分を炉に返送する方法を燃料回収工程のガス化炉に適用すると、ガス化炉内が低酸素雰囲気であるため、シアン成分の分解が進ます、かえって燃料ガス中のシアン成分が濃縮されてしまう恐れがあった。
特開平11−302667号公報 特開平7−148493号公報 特許昭54−156343号公報
Moreover, when the method of returning the volatilized cyan component shown in Patent Document 2 to the furnace is applied to the gasification furnace in the fuel recovery process, the decomposition of the cyan component proceeds because the gasification furnace has a low oxygen atmosphere. There was a risk that the cyan component in the fuel gas would be concentrated.
JP-A-11-302667 JP 7-148493 A Japanese Patent No. 54-156343

本発明の目的は、有機性廃棄物の燃料回収工程に設置されたスクラバから排出されるスクラバ排水に含まれるシアン成分を安全に、かつ低コストで処理することができるスクラバ排水の処理方法を提供することである。   An object of the present invention is to provide a scrubber wastewater treatment method capable of safely and inexpensively treating cyan components contained in scrubber wastewater discharged from a scrubber installed in a fuel recovery process for organic waste. It is to be.

上記課題を解決するためになされた本発明は、有機性廃棄物のガス化炉の後段に配置されたスクラバから排出されるスクラバ排水を、pH調整槽でpH2〜pH5に調整したうえ曝気槽で曝気して排水中のシアン成分及びアンモニア成分を気相側に移行させ、これにより生じたシアン及びアンモニア含有ガスを、前記ガス化炉で得られた熱分解ガスの一部を燃焼させるボイラに設けられたガスバーナに燃焼用空気として供給し、燃焼処理することを特徴とするものである。 The present invention was made to solve the above problems by adjusting the scrubber drainage discharged from the scrubber disposed downstream of the organic waste gasification furnace to a pH of 2 to 5 with a pH adjusting tank and an aeration tank. The cyan and ammonia components in the wastewater are aerated and transferred to the gas phase side, and the cyan and ammonia-containing gas generated thereby is provided in a boiler that burns a part of the pyrolysis gas obtained in the gasification furnace. The gas burner is supplied as combustion air and burned .

なお、スクラバ排水からのシアン成分の気相側への移行を、曝気により行うことができ、その場合にはスクラバ排水量の20〜100倍の体積比の空気を、スクラバ排水に吹き込んで曝気することが好ましい。また、スクラバ排水をpH2〜pH5に調整したうえ、曝気することが好ましい。また、回収燃料の一部を燃焼させるボイラで発生させた蒸気を燃料回収工程に供給される有機性廃棄物の乾燥に利用することが好ましい。 In addition, the transition from the scrubber drainage to the gas phase side of the cyan component can be performed by aeration, and in that case, air having a volume ratio of 20 to 100 times the scrubber drainage amount is blown into the scrubber drainage and aerated. Is preferred. Moreover, it is preferable to aerate after adjusting scrubber waste_water | drain to pH2-pH5. Further, it is preferable to use steam generated by a boiler that burns a part of the recovered fuel for drying organic waste supplied to the fuel recovery process.

本発明によれば、スクラバ排水に含まれるシアン成分を気相側に移行させたうえ、シアン含有ガスをボイラで燃焼処理するので、安全確実にシアン成分を処理することが可能となる。またシアン成分を気相側に移行させる手段として曝気を採用すれば、効果的に気相側に移行させることが可能となり、特にスクラバ排水を予めpH2〜pH5に調整しておけば、シアンの揮散が促進される。またボイラの発生蒸気を有機性廃棄物の乾燥に利用することにより、エネルギの無駄をなくすることができる。   According to the present invention, the cyan component contained in the scrubber wastewater is transferred to the gas phase side, and the cyan-containing gas is combusted in the boiler, so that the cyan component can be treated safely and reliably. Further, if aeration is adopted as a means for transferring the cyan component to the gas phase side, it becomes possible to effectively transfer the cyan component to the gas phase side. In particular, if the scrubber drainage is adjusted to pH 2 to pH 5 in advance, the volatilization of cyan Is promoted. Moreover, waste of energy can be eliminated by using the steam generated from the boiler for drying organic waste.

以下に、図面を参照しつつ本発明の好ましい実施の形態を示す。
図1は本発明の実施の形態を示す説明図であり、ここでは下水処理場から発生する脱水汚泥を原料として燃料を回収する工程を示す。ただし有機性廃棄物は脱水汚泥に限定されるものではなく、都市ゴミその他のバイオマスを用いることもできる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing an embodiment of the present invention, and here shows a step of recovering fuel using dehydrated sludge generated from a sewage treatment plant as a raw material. However, organic waste is not limited to dehydrated sludge, and municipal waste and other biomass can also be used.

図1において1は脱水汚泥の乾燥機、2はガス化炉、3は排熱ボイラ、4は集塵機、5はガス浄化用のスクラバ、6はブロア、7は回収された燃料ガスを燃料とするガスエンジン、8は発電機である。   In FIG. 1, 1 is a dewatered sludge dryer, 2 is a gasifier, 3 is a waste heat boiler, 4 is a dust collector, 5 is a gas purification scrubber, 6 is a blower, and 7 is a recovered fuel gas. A gas engine 8 is a generator.

脱水汚泥は乾燥機1で乾燥したうえ、ガス化炉2に供給される。乾燥汚泥は、ガス化炉2内で流動撹拌されながら熱分解し、可燃性の熱分解ガスに分解される。   The dehydrated sludge is dried by the dryer 1 and then supplied to the gasification furnace 2. The dried sludge is thermally decomposed while being fluidly stirred in the gasification furnace 2, and is decomposed into a combustible pyrolysis gas.

得られたガスは排熱ボイラ3で排熱回収され、水蒸気を発生させる。この水蒸気は乾燥機1の熱源として使用される。   The obtained gas is exhausted and recovered by the exhaust heat boiler 3 to generate water vapor. This water vapor is used as a heat source for the dryer 1.

また得られたガスは、セラミックフィルタ等の集塵機4で灰分が除去され、スクラバ5を通して浄化されて清浄な燃料ガスとなり、ガスエンジンに導かれる。スクラバ内で洗浄水と気液接触することにより、改質ガス中のシアン化水素(HCN)等のシアン成分やアンモニアは、スクラバ排水に移行する。 The obtained gas is ash removed by a dust collector 4 such as a ceramic filter and purified through a scrubber 5 to become a clean fuel gas, which is led to a gas engine 7 . By making gas-liquid contact with the cleaning water in the scrubber 5 , cyan components such as hydrogen cyanide (HCN) and ammonia in the reformed gas are transferred to the scrubber drain.

スクラバ5で、浄化された燃料ガスは、ブロア6によりガスエンジン7に供給され、発電機8を駆動するためのエネルギ源として利用される。ガスエンジン7の排ガスはボイラ14に供給され、水蒸気を発生させたうえで、煙突16から排出される。脱水汚泥が高含水の場合や、運転条件によっては、排熱ボイラ3やボイラ14から乾燥機1に供給される水蒸気の熱量では、乾燥機1内での脱水汚泥の乾燥が不十分となって、ガス化炉2のガス化の効率が落ちる恐れがある。そこで、乾燥機1に供給される熱量の不足分を補うために、ボイラ14内にバーナ15を設け、燃料回収工程で回収された燃料ガスの一部を燃焼させて、乾燥機1の熱源としている。   The fuel gas purified by the scrubber 5 is supplied to the gas engine 7 by the blower 6 and used as an energy source for driving the generator 8. The exhaust gas from the gas engine 7 is supplied to the boiler 14 to generate water vapor, and then discharged from the chimney 16. When the dewatered sludge has a high water content or depending on the operating conditions, the amount of steam supplied to the dryer 1 from the exhaust heat boiler 3 or the boiler 14 is insufficient to dry the dewatered sludge in the dryer 1. The gasification efficiency of the gasification furnace 2 may be reduced. Therefore, in order to compensate for the shortage of heat supplied to the dryer 1, a burner 15 is provided in the boiler 14, and a part of the fuel gas recovered in the fuel recovery process is burned to serve as a heat source for the dryer 1. Yes.

スクラバ5から排出されるスクラバ排水は、ポンプ9でpH調整槽10に送給される。なお、スクラバ5から排出されるスクラバ排水の水温は40℃〜60℃である。このpH調整槽10には酸、例えば硫酸を投入して、pH2〜5に調整する。このようなpH領域に調整することにより、シアンが水中から解離し易くなる。   The scrubber wastewater discharged from the scrubber 5 is fed to the pH adjustment tank 10 by the pump 9. In addition, the water temperature of the scrubber drainage discharged | emitted from the scrubber 5 is 40 to 60 degreeC. The pH adjustment tank 10 is adjusted to pH 2 to 5 by introducing an acid such as sulfuric acid. By adjusting to such a pH range, cyan becomes easy to dissociate from water.

pH調整槽10でpH調整されたスクラバ排水は、その後段に設けられた気相移行手段である曝気槽11に導かれる。この曝気槽11は水深が1〜4mであり、散気板や散気管などの散気手段11aにブロア12で空気を送給して微細気泡を吹き込み、曝気する。この曝気により、スクラバ排水に含まれるシアン成分やアンモニア成分等の有害物質が揮散し、気相側に移行する。なお、スクラバ排水から前記有害物質を、確実に気相側に移行させるためには、少なくともスクラバ排水量の20〜100倍の体積比の空気をスクラバ排水に吹き込んで曝気することが好ましい。前述したように、スクラバ排水をpH調整槽10でpH2〜5に調整するのは、この曝気槽17で前記有害物質、特にシアン成分の気相側への移行を迅速かつ確実にするためである。また、pH調整を曝気槽内で行うことにより、pH調整槽10でpH調整をする工程を省略することが可能となり、この場合にはpH調整槽10は不要となる。   The scrubber wastewater whose pH is adjusted in the pH adjusting tank 10 is guided to the aeration tank 11 which is a gas phase transfer means provided in the subsequent stage. This aeration tank 11 has a water depth of 1 to 4 m, and air is blown into the aeration means 11a such as a diffusion plate or a diffusion tube by blowing air through a blower 12 and aerated. By this aeration, harmful substances such as cyan and ammonia components contained in the scrubber drainage are volatilized and transferred to the gas phase side. In order to reliably transfer the harmful substances from the scrubber wastewater to the gas phase side, it is preferable to aerate by blowing air having a volume ratio of at least 20 to 100 times the scrubber wastewater amount into the scrubber wastewater. As described above, the scrubber drainage is adjusted to pH 2 to 5 in the pH adjusting tank 10 in order to quickly and surely transfer the harmful substances, particularly the cyan component, to the gas phase side in the aeration tank 17. . Further, by performing pH adjustment in the aeration tank, it is possible to omit the step of adjusting the pH in the pH adjustment tank 10, and in this case, the pH adjustment tank 10 is unnecessary.

なお、曝気槽11内のスクラバ排水の曝気により、気相側に移行したシアン成分を含有するガスが外部に漏洩しないように、曝気槽11はブロア等で陰圧に保持されている。   The aeration tank 11 is maintained at a negative pressure by a blower or the like so that the gas containing the cyan component transferred to the gas phase side does not leak to the outside due to aeration of the scrubber drainage in the aeration tank 11.

スクラバ排水は40℃〜60℃の温水であるので、スクラバ排水に含まれる前記有害物質の、気相側への移行が促進される。しかし、必要に応じて、前記有害物質の気相側への移行を促進させるために、曝気槽11に、スクラバ排水を保温する保温手段や、スクラバ排水を加温する加温手段を設けることが好ましい。また、このスクラバ排水を加温する加温手段の熱源に、例えば、排熱ボイラ3で得られた熱等のような、有機性廃棄物のガス化処理工程の排熱を利用することが好ましく、この場合には、排熱を利用することから、環境負荷を低減することが可能となる。   Since the scrubber wastewater is warm water of 40 ° C. to 60 ° C., the migration of the harmful substances contained in the scrubber wastewater to the gas phase side is promoted. However, if necessary, in order to promote the transition of the harmful substances to the gas phase side, the aeration tank 11 may be provided with a heat retaining means for keeping the scrubber waste water or a warming means for warming the scrubber waste water. preferable. Moreover, it is preferable to use the exhaust heat of the organic waste gasification process, such as the heat obtained by the exhaust heat boiler 3, as the heat source of the heating means for heating the scrubber waste water. In this case, since the exhaust heat is used, the environmental load can be reduced.

なお、本実施形態では気相移行手段として曝気槽11を使用したがこれに限定されず、塔高さ4〜8mの多段放散塔や、ラシヒリング等を充填した充填塔等を気相移行手段として用いることもできる。   In this embodiment, the aeration tank 11 is used as the vapor phase transfer means, but is not limited to this, and a multistage diffusion tower having a tower height of 4 to 8 m, a packed tower filled with Raschig rings, or the like is used as the gas phase transfer means. It can also be used.

曝気槽11から排出されるシアン含有ガスは、前述したボイラ14内に設けられたバーナ15の燃焼空気として供給され、燃焼処理される。このように、燃料ガスとともに高温で酸化燃焼させるので、シアン成分やアンモニア成分等の有害物質を、完全に燃焼処理することができる。なお、シアン含有ガスをガス化炉内へ返送した場合にはシアンやアンモニアの濃縮や、NOなどの温暖化ガスの発生が懸念されるが、本発明ではそのような問題は生じない。 The cyan-containing gas discharged from the aeration tank 11 is supplied as the combustion air of the burner 15 provided in the boiler 14 described above, and is subjected to combustion processing. As described above, since the fuel gas is oxidized and burned at a high temperature, harmful substances such as cyan and ammonia components can be completely burned. When the cyan-containing gas is returned into the gasification furnace, there is a concern about the concentration of cyan and ammonia and the generation of warming gases such as N 2 O, but such a problem does not occur in the present invention.

また、燃焼熱はボイラ14で回収され、有機性廃棄物を乾燥機1で乾燥させるための熱源として利用するので、排熱を利用してガス化炉2における有機性廃棄物のガス化の効率を向上させることが可能となり、環境負荷を低減することが可能となる。   Moreover, since the combustion heat is recovered by the boiler 14 and used as a heat source for drying the organic waste by the dryer 1, the efficiency of gasification of the organic waste in the gasification furnace 2 using the exhaust heat. It is possible to improve the environmental load.

曝気槽11でシアン成分等が除去されたスクラバ排水は、中和槽13に導かれる。中和槽13には例えば水酸化ナトリウム等のアルカリが投入され、スクラバ排水を中和する。このスクラバ排水は例えば下水処理場の最初沈殿地へ返送され、処理される。   The scrubber waste water from which the cyan component and the like are removed in the aeration tank 11 is guided to the neutralization tank 13. The neutralization tank 13 is charged with an alkali such as sodium hydroxide to neutralize the scrubber waste water. This scrubber effluent is returned to the first sedimentation site of a sewage treatment plant and processed.

図1に示される下水汚泥ガス変換設備に設置されたスクラバから排出されるスクラバ排水には、濃度300mg/Lのシアン化水素(HCN)と、濃度1000mg/Lのアンモニアが含有されていた。その水温は60℃である。このスクラバ排水に硫酸を添加してpHを2に調整したうえ、水温を60℃に保持しながら、容積比で30倍の空気により曝気した。曝気開始から3時間後の水中のシアン化水素(HCN)、アンモニア濃度を測定したところ、シアン化水素(HCN)濃度0.1mg/L、アンモニア濃度300mg/Lにまで低下していた。曝気槽から排出されるシアン含有ガスをボイラのバーナの燃焼用空気として用い、燃焼処理をした。ボイラから排出される排ガス中のシアン化水素(HCN)、アンモニア(NH)はともに検出限界以下であることを確認した。 The scrubber effluent discharged from the scrubber installed in the sewage sludge gas conversion facility shown in FIG. 1 contained hydrogen cyanide (HCN) with a concentration of 300 mg / L and ammonia with a concentration of 1000 mg / L. The water temperature is 60 ° C. Sulfuric acid was added to the scrubber effluent to adjust the pH to 2, and the water temperature was kept at 60 ° C. and aerated with 30 times the volume of air. When hydrogen cyanide (HCN) and ammonia concentrations in water 3 hours after the start of aeration were measured, the hydrogen cyanide (HCN) concentration was reduced to 0.1 mg / L and the ammonia concentration was reduced to 300 mg / L. The cyanide-containing gas discharged from the aeration tank was used as combustion air for the boiler burner and subjected to combustion treatment. It was confirmed that both hydrogen cyanide (HCN) and ammonia (NH 3 ) in the exhaust gas discharged from the boiler were below the detection limit.

以上、現時点において、もっとも、実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うスクラバ排水の処理方法及びスクラバ排水の処理装置もまた技術的範囲に包含されるものとして理解されなければならない。   Although the present invention has been described above in connection with the most practical and preferred embodiments at the present time, the present invention is not limited to the embodiments disclosed herein. The scrubber wastewater treatment method and scrubber wastewater treatment apparatus with such changes are also within the technical scope, as long as they do not contradict the gist or concept of the invention that can be read from the claims and the entire specification. It must be understood as included.

本発明の実施の形態を示す説明図である。It is explanatory drawing which shows embodiment of this invention.

符号の説明Explanation of symbols

1 乾燥機
2 ガス化炉
3 排熱ボイラ
4 集塵機
5 スクラバ
6 ブロア
7 ガスエンジン
8 発電機
9 ポンプ
10 pH調整槽
11 曝気槽
11a 散気手段
12 ブロア
13 中和槽
14 ボイラ
15 バーナ
16 煙突
DESCRIPTION OF SYMBOLS 1 Dryer 2 Gasifier 3 Waste heat boiler 4 Dust collector 5 Scrubber 6 Blower 7 Gas engine 8 Generator 9 Pump 10 pH adjustment tank 11 Aeration tank 11a Aeration means 12 Blower 13 Neutralization tank 14 Boiler 15 Burner 16 Chimney

Claims (3)

有機性廃棄物のガス化炉の後段に配置されたスクラバから排出されるスクラバ排水を、pH調整槽でpH2〜pH5に調整したうえ曝気槽で曝気して排水中のシアン成分及びアンモニア成分を気相側に移行させ、これにより生じたシアン及びアンモニア含有ガスを、前記ガス化炉で得られた熱分解ガスの一部を燃焼させるボイラに設けられたガスバーナに燃焼用空気として供給し、燃焼処理することを特徴とするスクラバ排水の処理方法。 Scrubber effluent discharged from the scrubber placed downstream of the organic waste gasification furnace is adjusted to pH 2 to pH 5 in the pH adjustment tank and then aerated in the aeration tank to remove cyan and ammonia components in the effluent. The gas containing cyan and ammonia generated thereby is supplied as combustion air to a gas burner provided in a boiler for burning a part of the pyrolysis gas obtained in the gasification furnace, and is subjected to combustion treatment. A method of treating scrubber wastewater. スクラバ排水量の20〜100倍の体積比の空気を、スクラバ排水に吹き込んで曝気することを特徴とする請求項1に記載のスクラバ排水の処理方法。   The scrubber wastewater treatment method according to claim 1, wherein air having a volume ratio of 20 to 100 times the scrubber wastewater is blown into the scrubber wastewater and aerated. ボイラで発生させた蒸気をガス化炉に供給される有機性廃棄物の乾燥に利用することを特徴とする請求項1に記載のスクラバ排水の処理方法。   The scrubber wastewater treatment method according to claim 1, wherein steam generated in a boiler is used for drying organic waste supplied to a gasification furnace.
JP2007037912A 2007-02-19 2007-02-19 Scrubber wastewater treatment method Active JP4895855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037912A JP4895855B2 (en) 2007-02-19 2007-02-19 Scrubber wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037912A JP4895855B2 (en) 2007-02-19 2007-02-19 Scrubber wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2008200578A JP2008200578A (en) 2008-09-04
JP4895855B2 true JP4895855B2 (en) 2012-03-14

Family

ID=39778609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037912A Active JP4895855B2 (en) 2007-02-19 2007-02-19 Scrubber wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4895855B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104609539B (en) * 2013-11-05 2016-04-27 中国石油化工股份有限公司 The treatment process of aeration tank, sewage farm discharge gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888067A (en) * 1972-02-24 1973-11-19
JPS5674513A (en) * 1979-11-24 1981-06-20 Toyo Tire & Rubber Co Ltd Processing method for making waste liquid containing cyan completely harmless
JPH07148493A (en) * 1993-11-29 1995-06-13 Mitsubishi Heavy Ind Ltd Method for treating waste liquid from cleaning of exhaust gas from incinerator for excess sludge of night soil treatment
JP2001107707A (en) * 1999-10-07 2001-04-17 Osaka Gas Co Ltd Digestive gas combustion treatment system
JP2002256884A (en) * 2001-02-26 2002-09-11 Tsukishima Kikai Co Ltd Power system for thermal decomposition and gasification of sewage sludge
JP4568573B2 (en) * 2004-10-15 2010-10-27 三菱重工業株式会社 Biomass gasification gas processing system

Also Published As

Publication number Publication date
JP2008200578A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
US20140309475A1 (en) Waste to Energy By Way of Hydrothermal Decomposition and Resource Recycling
JP5499645B2 (en) Gasification gas purification wastewater treatment method and treatment equipment
CN1170116A (en) Heat recovery system and power generation system
JP4364022B2 (en) Energy recovery method from organic waste
KR20060121899A (en) Method and apparatus for treating organic matter
JP6475584B2 (en) Organic waste treatment system and organic waste treatment method
JP4597099B2 (en) Gas purification system and gas purification method
JP2005319373A (en) Method and apparatus for converting sludge into fuel
JP4702715B2 (en) Complex waste incineration treatment system and method
JP2005319374A (en) Method and apparatus for converting sludge into fuel
CN112898999A (en) Catalytic pyrolysis-oxidation multi-stage furnace treatment integrated device and method for waste salt containing organic pollutants
JP2008212860A (en) Waste disposal facility
JP2006348302A (en) Method and apparatus for converting sludge into fuel
JP2006212523A (en) Fluidized layer gasification furnace, composite gasification system and method for waste
KR101807244B1 (en) Apparatus for preparing biogas
JP4895855B2 (en) Scrubber wastewater treatment method
JP5392988B2 (en) Biomass gasification method and biomass gasification apparatus
JP2009096888A (en) Gasification system effectively utilizing steam produced during drying of high-water content fuel
JP5027697B2 (en) Sewage sludge treatment method
JP2009228958A (en) Gasification power generating device
RU2012132493A (en) METHOD FOR DISPOSAL OF PHOSPHORUS-CONTAINING ALTERNATIVE FUEL IN CEMENT PRODUCTION
JP2011147843A (en) Apparatus and method for making incineration ash of waste harmless
WO2014112640A1 (en) System for treating nitrogen-containing water, and method for treating nitrogen-containing water
KR100989388B1 (en) Device for treating food waste
KR100554009B1 (en) Method and apparatus for removing organic sludge

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4895855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250