JP5027697B2 - Sewage sludge treatment method - Google Patents

Sewage sludge treatment method Download PDF

Info

Publication number
JP5027697B2
JP5027697B2 JP2008063583A JP2008063583A JP5027697B2 JP 5027697 B2 JP5027697 B2 JP 5027697B2 JP 2008063583 A JP2008063583 A JP 2008063583A JP 2008063583 A JP2008063583 A JP 2008063583A JP 5027697 B2 JP5027697 B2 JP 5027697B2
Authority
JP
Japan
Prior art keywords
sewage sludge
sludge
scrubber
heated
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008063583A
Other languages
Japanese (ja)
Other versions
JP2009214087A (en
Inventor
博澄 渡辺
隆昭 金川
知也 井上
正將 井上
聡 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008063583A priority Critical patent/JP5027697B2/en
Publication of JP2009214087A publication Critical patent/JP2009214087A/en
Application granted granted Critical
Publication of JP5027697B2 publication Critical patent/JP5027697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Description

本発明は、下水処理場から発生する下水汚泥を脱水したうえ焼却処理する下水汚泥処理方法の改良に関するものである。   The present invention relates to an improvement of a sewage sludge treatment method for dewatering and incinerating sewage sludge generated from a sewage treatment plant.

下水処理場から発生する下水汚泥の処理方法としては、特許文献1に示すように、脱水汚泥を流動炉などの焼却炉で焼却して焼却灰を取り出すとともに、焼却排ガスは集塵機とスクラバ(排ガス処理塔)を含む排ガス処理装置により処理する方法が、従来から広く知られている。   As shown in Patent Document 1, a method for treating sewage sludge generated from a sewage treatment plant is to incinerate dehydrated sludge in an incinerator such as a fluidized furnace to take out incineration ash, and the incineration exhaust gas is a dust collector and a scrubber (exhaust gas treatment). A method of treating with an exhaust gas treatment apparatus including a tower is widely known.

また汚泥の脱水方法に関しても多数の開発がなされているが、基本的には下水処理場から発生した下水濃縮汚泥に高分子凝集剤や無機凝集剤などを添加してフロックを形成し、凝集性を高めたうえで脱水する方法が採用されている。   In addition, many developments have been made on sludge dewatering methods. Basically, flocs are formed by adding polymer flocculants and inorganic flocculants to sewage-concentrated sludge generated from sewage treatment plants. A method of dehydration after increasing the viscosity is adopted.

ところが脱水機による脱水性能には限界があり、汚泥によっては脱水後の水分含有率を十分に低減することができないという状況がある。このために脱水汚泥を焼却炉に投入して焼却させようとしても水分が多いために自燃させることができず、都市ガスや重油等の補助燃料を焼却炉に供給しなければならなかった。地球温暖化防止が叫ばれている現在の状況下においては、本来は可燃物である下水汚泥を焼却するために新たな燃料を投入することは、単に水を蒸発させるために多くのエネルギを消費していることとなり、好ましくないことであった。
特許第3821432号公報
However, there is a limit to the dewatering performance by the dehydrator, and there is a situation in which the water content after dewatering cannot be sufficiently reduced depending on the sludge. For this reason, even if dehydrated sludge was put into the incinerator and incinerated, it could not be self-combusted because of the high water content, and auxiliary fuel such as city gas and heavy oil had to be supplied to the incinerator. In the current situation where global warming prevention is screamed, injecting new fuel to incinerate sewage sludge, which is essentially combustible, simply consumes a lot of energy to evaporate water. This is undesirable.
Japanese Patent No. 3812432

したがって本発明の目的は上記した従来技術の欠点を解決し、余分な燃料を必要とすることなく、脱水汚泥の含水率を焼却炉の自燃が可能なレベルまで低下させ、地球温暖化ガスの排出量を抑制することができる下水汚泥処理方法を提供することである。   Therefore, the object of the present invention is to solve the above-mentioned drawbacks of the prior art, and reduce the moisture content of dewatered sludge to a level at which incinerators can self-combust without the need for extra fuel, thereby discharging global warming gas. It is providing the sewage sludge processing method which can suppress the quantity.

上記の課題を解決するためになされた本発明は、下水汚泥に凝集剤を添加して脱水したうえ焼却し、焼却排ガスを集塵機とスクラバを含む排ガス処理装置により処理する下水汚泥処理方法において、スクラバで発生する温排水を焼却排ガスにより加熱された白煙防止用空気との熱交換により昇温したうえ、加温器に供給することにより下水汚泥を40〜90℃に加温し、脱水性を向上させることを特徴とするものである。なお、加温器の種類は特に限定されるものではない。
In order to solve the above problems, the present invention provides a sewage sludge treatment method in which a flocculant is added to a sewage sludge, dehydrated and incinerated, and the incineration exhaust gas is treated by an exhaust gas treatment apparatus including a dust collector and a scrubber. In addition to raising the temperature of the hot effluent generated in the air by heat exchange with the white smoke prevention air heated by the incineration exhaust gas, the sewage sludge is heated to 40-90 ° C. by supplying it to the heater, and the dehydrating property is improved. It is characterized by improving. In addition, the kind of warmer is not specifically limited.

なお、下水汚泥を50〜80℃に加温することが好ましい。
In addition, it is preferable to heat a sewage sludge to 50-80 degreeC .

本発明においては、スクラバ排水を脱水機の汚泥投入前に設置した加温器に供給し、凝集剤が添加された下水濃縮汚泥を40〜90℃、より好ましくは50〜80℃に加温する。これによって下水汚泥の主体を占める微生物の細胞膜に熱的変質あるいは熱的破壊が発生し、細胞内水分が外部に移動できるようになるので脱水性が向上し、脱水機出口の脱水汚泥の水分を従来よりも2〜4%程度低下させることができる。これにより焼却炉における熱的負担が軽減され、補助燃料を供給しなくても自燃させることが可能となる。しかもスクラバ排水は50〜70℃程度の低温水であってエネルギ源としての利用価値に乏しいものであったが、本発明によればその有効利用が可能となる。   In the present invention, the scrubber wastewater is supplied to a heater installed before the sludge of the dehydrator is added, and the sewage concentrated sludge to which the flocculant is added is heated to 40 to 90 ° C, more preferably 50 to 80 ° C. . As a result, thermal alteration or thermal destruction occurs in the cell membrane of the microorganism that occupies the main part of sewage sludge, and the intracellular moisture can be transferred to the outside. It can be reduced by about 2 to 4% compared to the conventional case. As a result, the thermal burden in the incinerator is reduced, and self-combustion can be achieved without supplying auxiliary fuel. Moreover, although the scrubber wastewater is low temperature water of about 50 to 70 ° C. and has a low utility value as an energy source, the present invention can be effectively used.

なお、下水汚泥を高温高圧で加熱脱水する先行技術も存在するが、本発明は常圧で加温するだけでよいので耐圧装置は不要であり、機器を簡素化することができる。さらに、先行技術では、下水汚泥中の微生物の細胞膜が完全に破壊されるため、脱水ろ液の性状が極端に悪化するという問題があったが、本発明では加温温度が40〜90℃であって細胞膜を完全に破壊することがないため、脱水機から排出される脱水ろ液の性状の悪化も抑えられる。   In addition, although there is a prior art in which sewage sludge is heated and dehydrated at a high temperature and a high pressure, the present invention only needs to be heated at normal pressure, so a pressure device is not required, and the apparatus can be simplified. Furthermore, in the prior art, since the cell membrane of microorganisms in the sewage sludge is completely destroyed, there has been a problem that the properties of the dehydrated filtrate are extremely deteriorated. In the present invention, the heating temperature is 40 to 90 ° C. In addition, since the cell membrane is not completely destroyed, deterioration of the properties of the dehydrated filtrate discharged from the dehydrator can be suppressed.

スクラバ排水または、スクラバ排水により昇温した清水はそのまま加温器に供給してもよいが、焼却排ガスの排熱を利用して昇温したうえで加温器に供給するようにすれば、スクラバ排水または、スクラバ排水により昇温した清水の温度が低い場合にも支障なく運転が可能である。   The scrubber drainage or the fresh water heated by the scrubber drainage may be supplied to the heater as it is. However, if the temperature is raised using the exhaust heat of the incineration exhaust gas and then supplied to the heater, the scrubber drainage Even when the temperature of fresh water raised by drainage or scrubber drainage is low, operation is possible without any problem.

以下に本発明の好ましい実施形態を示す。
図1は本発明の実施形態を示すブロック図であり、この種の下水汚泥処理システムにおいて従来から広く用いられている最も基本的な装置は、脱水機1、焼却炉2、集塵機3、スクラバ4、煙突5である。まず脱水機1は下水処理場から発生する汚泥を脱水する装置である。脱水機1の種類は特に限定されるものではなく、従来から汚泥の脱水に利用されている各種の脱水機を利用することができるが、この実施形態では出願人会社製の回転加圧脱水機を使用した。汚泥の固形分濃度は約3%(水分含有率97%)であるが、回転加圧脱水機によれば水分含有率が80%程度にまで脱水することができるとする。
Preferred embodiments of the present invention are shown below.
FIG. 1 is a block diagram showing an embodiment of the present invention. The most basic devices conventionally used in this type of sewage sludge treatment system are a dehydrator 1, an incinerator 2, a dust collector 3, and a scrubber 4. , Chimney 5. First, the dehydrator 1 is a device for dewatering sludge generated from a sewage treatment plant. The type of the dehydrator 1 is not particularly limited, and various dehydrators conventionally used for sludge dehydration can be used. In this embodiment, a rotary pressure dehydrator manufactured by the applicant company is used. It was used. The solid content concentration of the sludge is about 3% (water content 97%). However, according to the rotary pressure dehydrator, the water content can be dehydrated to about 80%.

脱水機1により脱水された脱水汚泥は、焼却炉2に投入されて焼却される。脱水汚泥の焼却炉2にも各種の形式があるが、最近ではダイオキシンの発生防止や設備小型化の観点から、流動焼却炉が普及している。しかし脱水汚泥の水分含有率が80%のままでは自燃させることができず、補助燃料を要することは前述のとおりである。なお、焼却炉2の直後には熱交換器6が配置され、焼却炉2で使用する空気を高温の焼却排ガスによって予熱している。流動焼却炉の場合には熱交換器6は流動用空気を予熱する。   The dewatered sludge dehydrated by the dehydrator 1 is put into the incinerator 2 and incinerated. There are various types of dewatered sludge incinerator 2, but recently, fluid incinerators have become widespread from the viewpoint of preventing dioxin generation and downsizing of facilities. However, if the moisture content of the dewatered sludge remains at 80%, it cannot be self-combusted, and auxiliary fuel is required as described above. A heat exchanger 6 is disposed immediately after the incinerator 2, and the air used in the incinerator 2 is preheated by high-temperature incineration exhaust gas. In the case of a fluidized incinerator, the heat exchanger 6 preheats the fluidizing air.

焼却炉2から排出される高温の焼却排ガス中には、多量の焼却灰が含まれているとともに、SOXなどの有害成分が含有されているため、集塵機3により焼却灰を除去し、さらにスクラバ4により洗浄水と気液接触させてSOXなどを除去したうえで、煙突5から放出される。なおスクラバ4を通過した焼却排ガスは飽和濃度の水蒸気を含むため、そのまま煙突5から大気中に放出すると水蒸気の凝結による白煙を生じる。そこで従来から白煙防止用熱交換器7が設けられ、空気を加熱して煙突5に供給し、白煙を防止している。 The high-temperature incineration exhaust gas discharged from the incinerator 2 contains a large amount of incineration ash and contains harmful components such as SO X , so the incineration ash is removed by the dust collector 3 and the scrubber is further removed. After 4 is brought into gas-liquid contact with the washing water to remove SO X and the like, it is discharged from the chimney 5. The incineration exhaust gas that has passed through the scrubber 4 contains water vapor with a saturated concentration, so that when it is directly discharged from the chimney 5 into the atmosphere, white smoke is generated due to condensation of the water vapor. Therefore, a white smoke prevention heat exchanger 7 is conventionally provided, and air is heated and supplied to the chimney 5 to prevent white smoke.

上記の構成は従来と同様であるが、本発明においては脱水機1の汚泥投入前に加温器8を設置し、スクラバ4から排出される温水をポンプにより加温器8に供給して汚泥を加温する。加温の温度は40〜90℃、より好ましくは50〜80℃とする。下水汚泥の主体は微生物の集合体であり、このような加温によって微生物の細胞膜に熱的変質あるいは熱的破壊が発生して脱水時に細胞内水分が外部に移動できるようになるので、脱水性が向上する。   The above configuration is the same as that of the prior art, but in the present invention, the warmer 8 is installed before the sludge is added to the dehydrator 1, and the warm water discharged from the scrubber 4 is supplied to the warmer 8 by a pump. Warm up. The heating temperature is 40 to 90 ° C, more preferably 50 to 80 ° C. The main component of sewage sludge is a collection of microorganisms, and this heating causes thermal alteration or thermal destruction of the microbial cell membrane, allowing intracellular moisture to move outside during dehydration. Will improve.

後記するデータに示すように、温度が40℃よりも低いと脱水性の向上が不十分となり、特に50℃以上で好ましい効果が得られる。逆に90℃を越えるような高温に加温すると、微生物の細胞膜が完全に破壊されて細胞液が流出し、脱水機1の脱水ろ液中の濁質濃度が上昇したり、細胞内に取り込まれていたリンの溶出が高まったりするなどの問題が生じるので好ましくない。   As shown in data to be described later, when the temperature is lower than 40 ° C., the improvement of dewaterability is insufficient, and a favorable effect is obtained particularly at 50 ° C. or higher. Conversely, when heated to a high temperature exceeding 90 ° C, the cell membrane of the microorganism is completely destroyed and the cell fluid flows out, and the turbidity concentration in the dehydrated filtrate of the dehydrator 1 increases or is taken into the cell. This is not preferable because it causes problems such as increased dissolution of phosphorus.

設備によって多少のばらつきはあるものの、スクラバ排水は50〜70℃程度の温水である。そのためスクラバ排水をそのまま加温器8に供給することもできるが、図1に示すようにスクラバ排水用加温器9により焼却排ガスの排熱を利用して昇温したうえで加温器に供給するようにすれば、スクラバ排水の温度が低い場合にも支障なく運転が可能である。この実施形態ではスクラバ排水用加温器9は、白煙防止用熱交換器7により加熱された白煙防止用空気との熱交換により、80〜90℃にまで昇温されたうえで加温器8に供給されている。なお図2に示す参考形態においては、熱交換器10によって清水をスクラバ4で発生する温排水との熱交換により昇温した後、焼却排ガスにより加熱された白煙防止用空気との熱交換により昇温している。
Although there is some variation depending on the equipment, the scrubber drainage is hot water of about 50-70 ° C. Therefore, the scrubber wastewater can be supplied to the heater 8 as it is, but as shown in FIG. 1, the scrubber wastewater heater 9 raises the temperature using the exhaust heat of the incineration exhaust gas and supplies it to the heater. By doing so, even when the temperature of the scrubber drainage is low, operation is possible without any problem. In this embodiment, the scrubber drain heater 9 is heated after being heated to 80 to 90 ° C. by heat exchange with the white smoke prevention air heated by the white smoke prevention heat exchanger 7. Is supplied to the vessel 8. In the reference embodiment shown in FIG. 2, the temperature of the fresh water is raised by heat exchange with the warm waste water generated in the scrubber 4 by the heat exchanger 10 and then heat exchange with the white smoke prevention air heated by the incineration exhaust gas. The temperature is rising .

このようにして加温された濃縮汚泥を脱水機1で脱水すれば、脱水性が向上しているため、従来よりも水分含有率が2〜4%低い脱水汚泥を得ることができる。本実施形態のように回転加圧脱水機によれば、従来は水分含有率が80%であったが、本発明によれば水分含有率が76〜78%程度の脱水汚泥を得ることができる。この程度の水分含有率となれば焼却炉2で自燃させることが可能となり、補助燃料が全く不要となるか、必要な場合にもごく少量で済むようになる。したがって余分な燃料を必要とすることなく、脱水汚泥の含水率を焼却炉の自燃が可能なレベルまで低下させ、地球温暖化ガスの排出量を抑制することが可能となる。   If the concentrated sludge heated in this way is dehydrated by the dehydrator 1, the dewaterability is improved, so that a dehydrated sludge having a moisture content of 2 to 4% lower than the conventional one can be obtained. According to the rotary pressure dehydrator as in this embodiment, the moisture content is conventionally 80%, but according to the present invention, a dewatered sludge having a moisture content of about 76 to 78% can be obtained. . If the moisture content reaches such a level, it is possible to cause the incinerator 2 to self-combust, so that no auxiliary fuel is required at all or only a small amount is required when necessary. Therefore, it becomes possible to reduce the water content of the dewatered sludge to a level at which the incinerator can self-combust without reducing the amount of global warming gas without requiring extra fuel.

本発明においては加温器8の前段において濃縮汚泥に凝集剤を添加するのであるが、汚泥の性状によっては、加温器の後段にて凝集剤を添加することも有効である。凝集剤の種類としては高分子凝集剤または、無機系の凝集剤または両者の組合せとなる。   In the present invention, the flocculant is added to the concentrated sludge before the heater 8. However, depending on the properties of the sludge, it is also effective to add the flocculant after the heater. The type of the flocculant is a polymer flocculant, an inorganic flocculant, or a combination of both.

以下に本発明の作用効果を具体的な数値を挙げて説明する。ここでは焼却炉2の規模を100トン/日と設定する。従来は水分含有率が80%の脱水汚泥を焼却するために補助燃料として43m /hの都市ガスを必要としており、そのエネルギ原単位は464MJ/トン−汚泥であった。このときスクラバからは水温が50℃のスクラバ排水が無駄に放出されていた。 The operation and effect of the present invention will be described below with specific numerical values. Here, the scale of the incinerator 2 is set to 100 tons / day. In the past, 43 m 3 N / h city gas was required as auxiliary fuel to incinerate dehydrated sludge with a moisture content of 80%, and its energy intensity was 464 MJ / tonne-sludge. At this time, scrubber wastewater having a water temperature of 50 ° C. was discharged from the scrubber.

これに対して本発明では、スクラバ排水を図1に示すスクラバ排水用加温器9により87℃まで昇温し、予め高分子凝集剤が添加された濃縮汚泥を20℃から60℃にまで加温したうえ、脱水機1に送り込んで水分含有率が78%の脱水汚泥とする。この脱水汚泥は補助燃料を使用することなく自燃させることができ、464MJ/トン−汚泥(1935MJ/h)の省エネルギが可能となる。しかも焼却炉2の能力が同一である場合、処理可能な濃縮汚泥量が従来の27.7トン/hから30.6トン/hにまで増加することとなる。また、上記の100トン/日の焼却炉を年間330日運転として、補助燃料由来の温室効果ガスの排出量に換算すると、従来システムの708トン−CO/年が本発明のシステムでは0トン−CO/年となり、大幅な削減が可能となった。 In contrast, in the present invention, the scrubber drainage is heated to 87 ° C. by the scrubber drainage heater 9 shown in FIG. 1, and the concentrated sludge to which the polymer flocculant has been added in advance is heated from 20 ° C. to 60 ° C. After warming, it is sent to the dehydrator 1 to obtain dehydrated sludge having a moisture content of 78%. This dewatered sludge can be burned without using auxiliary fuel, and energy saving of 464 MJ / ton-sludge (1935 MJ / h) becomes possible. In addition, when the incinerator 2 has the same capacity, the amount of concentrated sludge that can be treated increases from 27.7 ton / h to 30.6 ton / h. In addition, when the above-mentioned 100 ton / day incinerator is operated for 330 days a year and converted into the amount of greenhouse gas emissions derived from auxiliary fuel, 708 ton-CO 2 / year of the conventional system is 0 ton in the system of the present invention. -CO 2 / year, enabling significant reduction.

また凝集剤の添加率が0.6%である濃縮汚泥を用い、室温のまま加温しない場合、40℃に加温した場合、60℃に加温した場合、80℃に加温した場合について実験室において脱水試験を行ったところ、表1のとおりの結果が得られた。このように加温温度を上げると脱水汚泥の水分含有率は低下するが、脱水ろ液中の濁質濃度が高まるため、90℃が限界であり、実用的には80℃以下とすることが好ましい。   In addition, using concentrated sludge with an addition rate of flocculant of 0.6%, when not heating at room temperature, when heated to 40 ° C, when heated to 60 ° C, when heated to 80 ° C When a dehydration test was performed in the laboratory, the results shown in Table 1 were obtained. When the heating temperature is raised in this way, the moisture content of the dewatered sludge decreases, but the turbidity concentration in the dehydrated filtrate increases, so 90 ° C is the limit, and practically 80 ° C or less. preferable.

Figure 0005027697
Figure 0005027697

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 本発明の参考形態を示すブロック図である。It is a block diagram which shows the reference form of this invention.

符号の説明Explanation of symbols

1 脱水機
2 焼却炉
3 集塵機
4 スクラバ
5 煙突
6 熱交換器
7 白煙防止用熱交換器
8 加温器
9 スクラバ排水用加温器
10 熱交換器
DESCRIPTION OF SYMBOLS 1 Dehydrator 2 Incinerator 3 Dust collector 4 Scrubber 5 Chimney 6 Heat exchanger 7 Heat exchanger for white smoke prevention 8 Heater 9 Heater for scrubber drainage 10 Heat exchanger

Claims (2)

下水汚泥に凝集剤を添加して脱水したうえ焼却し、焼却排ガスを集塵機とスクラバを含む排ガス処理装置により処理する下水汚泥処理方法において、スクラバで発生する温排水を焼却排ガスにより加熱された白煙防止用空気との熱交換により昇温したうえ、加温器に供給することにより下水汚泥を40〜90℃に加温し、脱水性を向上させることを特徴とする下水汚泥処理方法。 By adding a coagulant to the sewage sludge incinerated after having dehydrated, the sewage sludge processing method for processing the incineration exhaust gas by the exhaust gas treatment apparatus including a dust collector and scrubber was heated hot wastewater generated in the scrubber by incineration exhaust white smoke A sewage sludge treatment method characterized by heating the sewage sludge to 40 to 90 ° C. by raising the temperature by heat exchange with the air for prevention and supplying it to a heater to improve dewaterability . 下水汚泥を50〜80℃に加温することを特徴とする請求項1記載の下水汚泥処理方法。   The sewage sludge treatment method according to claim 1, wherein the sewage sludge is heated to 50 to 80 ° C.
JP2008063583A 2008-03-13 2008-03-13 Sewage sludge treatment method Active JP5027697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063583A JP5027697B2 (en) 2008-03-13 2008-03-13 Sewage sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063583A JP5027697B2 (en) 2008-03-13 2008-03-13 Sewage sludge treatment method

Publications (2)

Publication Number Publication Date
JP2009214087A JP2009214087A (en) 2009-09-24
JP5027697B2 true JP5027697B2 (en) 2012-09-19

Family

ID=41186534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063583A Active JP5027697B2 (en) 2008-03-13 2008-03-13 Sewage sludge treatment method

Country Status (1)

Country Link
JP (1) JP5027697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338389A (en) * 2011-05-23 2012-02-01 上海电力学院 Sewage and sludge joint treatment system
US11946642B2 (en) 2019-05-28 2024-04-02 Lg Chem, Ltd. Waste water incineration method and apparatus for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086944B2 (en) * 2015-06-12 2017-03-01 三菱重工環境・化学エンジニアリング株式会社 Sludge incineration plant
JP6701401B1 (en) * 2019-03-01 2020-05-27 月島機械株式会社 Treatment equipment and treatment method for organic sludge

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101796A (en) * 1981-12-14 1983-06-17 Ebara Infilco Co Ltd Treatment for organic sludge
JPS58224215A (en) * 1982-06-24 1983-12-26 Ebara Infilco Co Ltd Processing of organic sludge
JPH0771676B2 (en) * 1988-03-25 1995-08-02 日本碍子株式会社 Pumping method of dehydrated sludge in sludge treatment equipment
JP2843762B2 (en) * 1994-06-14 1999-01-06 日本碍子株式会社 How to use waste heat from scrubber wastewater
JPH09299996A (en) * 1996-05-14 1997-11-25 Toshiba Corp Sludge drier
JPH10238725A (en) * 1996-10-25 1998-09-08 Mitsui Eng & Shipbuild Co Ltd Waste treatment method and device
JPH10337596A (en) * 1997-06-05 1998-12-22 Osaka Gas Eng Kk Dehydration method of sludge and treating method thereof
JP4466996B2 (en) * 2004-03-26 2010-05-26 月島機械株式会社 Sludge incineration equipment and sludge incineration method
JP4040035B2 (en) * 2004-06-17 2008-01-30 住友重機械工業株式会社 Sewage sludge treatment method and apparatus
JP4594344B2 (en) * 2007-03-16 2010-12-08 三菱重工環境・化学エンジニアリング株式会社 Carbonizer for high water content organic matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338389A (en) * 2011-05-23 2012-02-01 上海电力学院 Sewage and sludge joint treatment system
US11946642B2 (en) 2019-05-28 2024-04-02 Lg Chem, Ltd. Waste water incineration method and apparatus for the same

Also Published As

Publication number Publication date
JP2009214087A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP4365425B2 (en) Waste and sewage treatment method and equipment
JP2010174845A (en) Waste heat power generation method by exhaust gas of incinerator
JP2009045612A (en) Waste recycling method and recycling facility
JP5027697B2 (en) Sewage sludge treatment method
JP2005319374A (en) Method and apparatus for converting sludge into fuel
CN102701564A (en) Sludge drying method
JP2011036781A (en) Sludge digestion system
CN206207438U (en) The carbonization of sludge two-part plus CIU
KR101154826B1 (en) Sewage sludge processing equipment using direct buring deo-dorization device
JP2005321131A (en) Sludge incinerating system
JP2012207617A (en) Exhaust heat recovery method and exhaust heat recovery system
JP2010247111A (en) Sludge drying system
JP2010149079A (en) Treatment method of waste containing highly hydrous waste and treatment device used for the same
JP2007187392A (en) Waste heat recovery system
CN103359906A (en) Method for sludge drying and incineration by swill-cooked dirty oil
CN110953594A (en) System for multistage desiccator and fluidized bed incinerator handle mud and recovery energy
CN109293212A (en) The joint processing system and processing method of municipal sludge and desulfurization wastewater
FI108960B (en) Method and apparatus for burning of highly combustible substances
JP2002102647A (en) Treatment method for incineration flue gas
CN211260824U (en) System for sludge and hazardous waste co-dispose
CN204022626U (en) Paper waste recycling treatment system
CN112880382A (en) Sludge steam drying system utilizing recycled flue gas
JPS58114800A (en) Treatment for sludge
JP3501702B2 (en) Wastewater treatment from waste disposal site
JPS6154129B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250