JP4893213B2 - 磁場計測装置 - Google Patents

磁場計測装置 Download PDF

Info

Publication number
JP4893213B2
JP4893213B2 JP2006273566A JP2006273566A JP4893213B2 JP 4893213 B2 JP4893213 B2 JP 4893213B2 JP 2006273566 A JP2006273566 A JP 2006273566A JP 2006273566 A JP2006273566 A JP 2006273566A JP 4893213 B2 JP4893213 B2 JP 4893213B2
Authority
JP
Japan
Prior art keywords
cryostat
measurement apparatus
cryostats
field measurement
biomagnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006273566A
Other languages
English (en)
Other versions
JP2008086675A (ja
Inventor
悠介 関
明彦 神鳥
満 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006273566A priority Critical patent/JP4893213B2/ja
Priority to EP20070019302 priority patent/EP1911398B1/en
Priority to US11/905,682 priority patent/US8010178B2/en
Publication of JP2008086675A publication Critical patent/JP2008086675A/ja
Application granted granted Critical
Publication of JP4893213B2 publication Critical patent/JP4893213B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/245Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetoencephalographic [MEG] signals

Description

本発明は、主に脳から発生する磁場を検出することを目的とした生体磁場計測装置に関する。
脳から発生する磁場(脳磁場)を計測する脳磁計においては、多数の検出コイルを頭表面全体に渡って配置し、脳神経の電気生理的活動をマッピングすることを目的として利用されている。この種の脳磁計は、頭部全体を覆うように検出コイルを配置して計測することから、全頭型脳磁計と呼ばれている(例えば、特許文献1を参照)。全頭型脳磁計の長所として、脳半球全体の信号を同時に計測できることがある。すなわち、興奮部位のマッピングが可能となる。興奮部位をマッピングすることにより、例えば、てんかんの異常興奮部位を特定することが可能となる。
また、SQUIDセンサなどの生体磁気を測定する手段を具備した断熱機構を、被検体の頭部の周囲に複数個配置し、各断熱機構をそれぞれ単独に駆動させる例もある(特許文献2)。
従来、心磁計測や脳磁計測に用いられる生体磁場計測装置は、対象となる生体の磁気信号を超伝導線から構成される検出コイルによって検出し、超伝導量子干渉素子(Superconducting Quantum Interference Device:以後SQUIDと略す)に伝達するという方法が採用されている。検出コイルは、環境磁場によるノイズを除去し、S/N(Signal/Noise)比を高める役割を担う。生体磁気計測及び検出コイルについては、非特許文献1に詳しい説明がある。
特開平07−297456号公報 特開2002−336211号公報 S. J. Williamson and L. Kaufman、 J. Magn. Magn. Mater. 22、 129 (1981).
全頭型脳磁計においては、脳全体を多数の磁気センサにより広い領域を一度に計測できるという特長がある。ここで、SQUID磁束計を固定し、低温に保持するクライオスタットは標準的な人間の頭部に合うように設計されている。このため、センサと頭表面との距離を調節できず、その結果として信号強度が減少してしまう、あるいは測定できないという問題があった。また、複数のセンサを個別に駆動させても一部の情報を断片的に得られるだけであって、十分な計測を行うことができないという問題点があった。
また、従来の微分型磁気検出コイルは、非特許文献1(Fig. 5)に示すように、ある1方向に微分された磁場を検出する構成しかなかった。この方法では、磁気シールドレス環境など、環境磁場が大きい場合において環境磁場が十分に低減されないという課題があった。環境磁場を低減するためには、微分型磁気検出コイルの次数を高くするという方法があるが、この方法では、環境磁場は低減するものの、一方で検出対象である磁気信号も同時に低減してしまうという問題がある。
前記問題に対して、本発明では、脳磁場を従来よりも高感度かつ簡易に検出する生体磁場計測装置を提供する。具体的には、2個の独立したクライオスタットが鏡像の関係を保って連動することにより、センサ面を被験者の頭表面に容易に近づけることが可能で、更に右脳と左脳の脳磁場を高感度かつ同時に検出可能な生体磁場計測装置を提供することを目的とする。
本発明の生体磁場計測装置では、SQUID磁束計を保持する2個の独立したクライオスタットが、互いに鏡像の関係にあるように配置されることを特徴とする。また、それぞれのクライオスタットには、検出センサが、クライオスタット内部から側面方向に少なくとも一部を突出させて設けられていることを特徴とする。
この2個のクライオスタットは、互いに鏡像の関係を保ったまま、連動して上下及び左右の方向に移動し、かつ回転する。
クライオスタットを保持するガントリは、クライオスタットの振動を抑えることを目的として、門型である。
ガントリは電動でクライオスタットを駆動させる機構を持つが、常時手動により2個のクライオスタットの間隔を広げることを可能にする退避レバーを有する。
ガントリは6つの支持体によって構成される。第1の支持体はガントリ全体を支持する門型支持体である。第2の支持体は第1の支持体によって支持され、上下方向に駆動される。第3及び第4の支持体は第2の支持体によって支持され、第2の支持体からみて水平方向に移動可能であり、第3及び第4の支持体は互いに反対方向に連動して駆動される。第5の支持体は第3の支持体によって支持され、第1のクライオスタットを支持し、第1のクライオスタットの軸を中心に回転駆動される。第6の支持体は第4の支持体によって支持され、第2のクライオスタットを支持し、第2のクライオスタットの軸を中心に回転駆動される。ここで、第5及び第6の支持体は、互いに反対方向に連動して回転するものとする。
液体ヘリウム補給、クライオスタットの真空引き、及びセンサ交換等のメンテナンス作業を効率良く行うために、ガントリ正面のカバーはヒンジ構造により開閉可能である。
2個のクライオスタットには、電磁波を遮蔽するために、表面に導電性塗料が塗布される。
2個のクライオスタットにおいて、磁気センサの検出面に近いクライオスタット表面間の距離を感知する距離センサを有する。
2個のクライオスタットにおいて、磁気センサの検出面に近いクライオスタット表面には、クライオスタット表面にかかる圧力を検知する圧力センサを有する。
本発明によれば、脳磁場を従来よりも高感度かつ簡易に検出する生体磁場計測装置を提供することが可能となる。
以下、本発明の実施形態について、図面を参照して詳細に説明する。以下の図面においては、同一機能を持つ構成要素には同じ参照番号を付している。
以下の実施形態における装置で使用される検出コイルを構成する超伝導材料として、低温(例えば、液体ヘリウム温度)において超伝導体として作用する低温の超伝導転移温度を持つ低温超伝導材料、または高温(例えば、液体窒素温度)で超伝導体として作用する高温の超伝導転移温度を持つ高温超伝導材料が使用できる。液体ヘリウム温度と液体窒素温度の間の超伝導転移温度とを持つ超伝導材料、液体窒素温度より高い超伝導転移温度を持つ超伝導材料を使用してもよい。また、検出コイルを構成する部材は、銅等の電気伝導率の高い金属も使用できるものとする。
図1は、本実施形態における磁場計測装置を示す斜視図である。図2は、本実施形態における磁場計測装置を示す六面図である。図2(a)〜(f)はそれぞれ、(a)正面、(b)背面、(c)左側面(正面から見て左側)、(d)右側面(正面から見て右側)、(e)上面、(f)下面を示す。図3は、本実施形態における磁場計測装置を示す断面図である。図3(a)は図2(a)のA−A断面における断面図であり、図3(b)は図3(a)のガントリ前面カバー105付近を拡大した断面図であり、図3(c)は図2(a)のB−B断面における断面図である。
磁場計測装置101は、SQUID磁束計を低温に保持、固定するクライオスタット103aおよび103bと、クライオスタット103aおよび103bを支持かつ駆動するガントリによって構成される。門型支持体102はガントリの構造体の一部であり、ガントリ全体を支持する。門型支持体102は門型構造により、ガントリの振動を抑えることができる。ガントリの振動を抑えることによって、クライオスタット103aおよび103bの中に保持されているSQUID磁束計の振動が抑えられ、振動に起因する磁気雑音が低減されるという効果がある。レバー104は、クライオスタット103bを手動で左右に移動させる手段である。
ガントリ前面カバー105は、ガントリの構造体の一部であり、ヒンジ構造によって開閉可能である。通常、ガントリ前面カバー105を閉じた状態で磁場計測装置101を使用するが、クライオスタット103aおよび103bのメンテナンス作業を行う際はガントリ前面カバー105を開いた状態にする。ヒンジ構造を採用しているので、ガントリ前面カバー105全体を取り外す必要がないので、メンテナンス作業を効率的に行うことができるという効果がある。
また、クライオスタット位置表示107はガントリ前面カバー105の水平方向の中心位置に設置され、クライオスタット103aおよび103bの上下方向の運動と連動して上下方向に移動する。この構成により、クライオスタット位置表示107は、クライオスタット103aおよび103bの上下方向の位置を表示する機能を持つ。さらに、クライオスタット位置表示107は、2つのクライオスタット103aおよび103bの水平方向の中心を示す機能も果たしている。通常、被験者は測定時には2つのクライオスタット103aおよび103bの水平方向の中心位置に配置される。したがって、2つのクライオスタット103aおよび103bの水平方向の中心位置を容易に確認できれば、被験者の位置合わせが容易になるという効果がある。なお、図1の斜視図において、透明部材108の平行斜線は、外観として現れる線ではなく、便宜上、その部分が透明であることを表しているものである。
ここで、磁場計測装置101を構成するガントリやクライオスタットは全て非磁性材料で形成されることが望ましい。本実施形態では、ガントリはアルミニウムや真鍮によって形成され、クライオスタットはFRP(繊維強化プラスチック)によって形成される。
図4および図5は、本実施形態におけるガントリの詳細構造を示す図である。門型支持体102は床面に固定され、ガントリ全体を支持する。第1の支持体(門型支持体)102は、駆動手段501によって第2の支持体106を鉛直方向(上または下の方向)に駆動する。第2の支持体106の両端にはガイド機構401aおよび401bが固定されている。ガイド機構401aおよび401bは、門型支持体102の両足部に固定されたレール402aおよび402bに沿って移動する。その結果、第2の支持体106は円滑に鉛直方向に移動することができる。さらに、第2の支持体106は、駆動手段502aによって第3の支持体504aを水平方向(左または右の方向)に駆動すると共に、駆動手段502bによって第4の支持体504bを水平方向(左または右の方向)に駆動する。ここで、第3の支持体504aおよび第4の支持体504bは連動して互いに反対の方向に駆動されるものとする。すなわち、第3の支持体504aおよび第4の支持体504bは、水平方向に互いに近づく方向、または互いに遠ざかる方向に連動して同じ速度で駆動されるものとする。さらに、第3の支持体504aは、駆動手段503aによって第5の支持体505aを水平面内で回転駆動(右回転または左回転)する。同様に、第4の支持体504bは、駆動手段503bによって第6の支持体505bを水平面内で回転駆動(右回転または左回転)する。ここで、第5の支持体505aおよび第6の支持体505bは連動して同じ回転速度で互いに反対の方向に回転駆動されるものとする。さらに、クライオスタット103aは第5の支持体505aによって固定され、クライオスタット103bは第6の支持体505bによって固定される。
また、駆動手段501、502a、502b、503a、503bには、それぞれ駆動量を計測するセンサを有しており、クライオスタット103aおよび103bの位置および回転角度をモニタリングできるものとする。また、ある計測時における各駆動手段の駆動量を記録しておくことにより、その測定時におけるクライオスタット103aおよび103bの配置を再現できる。
以上の構成により、2つのクライオスタット103aおよび103bは、互いに左右対称の関係を保持しながら同期して上下(鉛直)方向、左右(水平)方向に平行移動すると共に、クライオスタットの鉛直方向の軸を中心に回転することができる。このように、2個のクライオスタット103aおよび103bが、互いに左右対称の関係を保ちながら、同期して上下・左右・回転のそれぞれの方向に連動することにより、計測面604aおよび604bも常に互いに左右対称の関係を保ちながら連動する。その結果、2つの計測面604aおよび604bを個別に被測定部(通常は被験者の頭部)に位置合わせする必要がなくなる。また、クライオスタットが必ず左右対称の関係にあるので、頭部において互いに左右対称となる部位に計測面604aおよび604bを容易に位置合わせすることが可能となる。この構成によれば、右脳と左脳の対応する部位における脳磁気信号を同時に計測することが可能となる。すなわち、本構成によれば、計測面と被測定部との位置合わせに要する時間が短くなるだけでなく、位置合わせの精度も向上するという効果がある。
レバー104はクライオスタット103bを手動で左右に移動させる手段である。通常は、レバー104は奥に押し込んだ状態で使用されるが、必要に応じてレバー104を手前に引くことによって、手動で第3の支持体504aを右方向に移動することができる。反対に、レバー104が手前に引かれた状態から奥に押すことによって、手動で第3の支持体504aを左方向に移動することができる。すなわち、レバー104を手前に引くと、クライオスタット103bは右方向が移動し、その結果クライオスタット103aと103bとの間隔が広がり、レバー104を奥に押すと、クライオスタット103bは左方向に移動し、その結果クライオスタット103aと103bとの間隔が狭まる。レバー104によって、クライオスタット103aと103bとの間隔を手動で微調整したり、クライオスタット103aと103bとの間隔を手動で広げたりすることができる。
図6は本実施形態におけるクライオスタットを示す斜視図であり、図7は本実施形態におけるクライオスタットを示す六面図である。図6および図7では、1対のクライオスタットのうち、正面から見て右側に配置されるクライオスタット103bを示す。正面から見て左側に配置されるクライオスタット103aはクライオスタット103bと左右対称の関係にある構造を持つものとする。また、図7(a)〜(f)はそれぞれ、(a)正面、(b)背面、(c)左側面(左側から見た面)、(d)右側面(右側から見た面)、(e)上面、(f)下面を示す。
クライオスタット103bは真空断熱容器であり、液体ヘリウムを内部に充填し、SQUID磁束計を低温に保持する目的で使用される。SQUID磁束計を駆動するFLL回路601bはクライオスタット103bの側面に固定される。SQUID磁束計とFLL回路とを接続するケーブルが長いと、信号が減衰してしまう上に雑音が乗りやすいため、ケーブルはなるべく短い方が望ましい。本実施例では、クライオスタット103bの側面にFLL回路601bを固定することによって、SQUID磁束計とFLL回路とを接続するケーブルを短くすることができる。真空引き口602bはクライオスタット103bがガントリに固定された状態で正面の位置にくるように配置される。その結果、クライオスタット103bをガントリの上に固定した状態で真空引き作業を行うことができる。クライオスタット103bは中間フランジ603bを第6の支持体505b(図5参照)に固定することによって、ガントリに固定され、かつ駆動される。
また、SQUID磁束計の検出コイルはクライオスタット103b内部の検出面604b付近に固定される。図6に示されるように、検出面604bがクライオスタット103bの側面に対して突起した形状にすることにより、検出面604bを容易に頭部の計測位置に合わせることが可能となる上に、被験者への圧迫感も軽減するという効果がある。また、計測面604bの面積を小さくすることにより、検出コイルと計測面604bとの間の真空層、デュワ外層、デュワ内層の厚みを薄くすることができる。その結果、信号源と検出コイルとの距離が小さくなり、信号強度が大きくなるという効果がある。
また、クライオスタット103bの表面には銀などの電気伝導性の良い金属を含んだ導電性塗料が塗布されている。この導電性塗料は電磁波を遮蔽する効果がある。電磁波は環境雑音となるだけでなく、SQUIDの検出感度を劣化させてしまうという悪影響をもたらす。従来は、クライオスタットをパーマロイやアルミニウムで構成された磁気シールドルームの内部に置くことによって電磁波を遮蔽していた。一方で、本実施形態ではクライオスタットそれ自体に電磁波を遮蔽する機能を持たせることによって、磁気シールドルームを用いることなく電磁波を遮蔽することが可能となる。また、FLL回路601bを真鍮やSUS等の非磁性の金属のネジを用いてクライオスタット103bに固定することにより、クライオスタット103bに塗布された導電性塗料をFLL回路601bのグラウンドに接地することができる。その結果、導電性塗料は電磁波遮蔽体として安定に機能することが可能となる。
図8は、本実施形態における検出コイルを示す斜視図である。
検出コイル1は、ボビン11aに超伝導線材を第1の方向に1ターン巻きつけて形成したコイル1aと、コイル1aから垂直方向に所定の距離だけ離れた箇所に第1の方向とは逆向きの第2の方向に1ターン巻きつけて形成したコイル1bと、コイル1aから水平方向に所定の距離だけ離れた箇所に存在するボビン11bに超伝導線材を第2の方向に1ターン巻きつけて形成したコイル1cと、コイル1cから垂直方向に所定の距離だけ離れた箇所に第1の方向に1ターン巻きつけて形成したコイル1dとを持つ。すなわち、検出コイル1は、1本の線材からなる。ここで、コイル1aとコイル1cはそれぞれ同一平面上に存在し、またコイル1bとコイル1dはそれぞれ同一平面上に存在する。つまり、1次微分型コイルが、所定の間隔で複数並列に配置されている。この構成により、検出コイル1が検出する下記(式1)の磁束ΦP1は、コイル1aを貫く磁束Φ1aとコイル1bを貫く磁束Φ1bとコイル1cを貫く磁束Φ1cとコイル1dを貫く磁束Φ1dとを用いて、次のように表すことができる。

ΦP1=(Φ1a−Φ1b)−(Φ1c−Φ1d) ・・・(式1)
つまり、本実施形態の検出コイル1は、ボビン11a(第1項)、11b(第2項)の軸方向(垂直方向)に1次微分すると同時に、水平方向に1次微分する検出コイルである。このように、検出コイル1は、垂直方向に1次微分され、さらに水平方向に1次微分された磁気信号を検出するため、1次微分型検出コイルを用いた場合よりも環境磁場を低減することができる。
図9は、本実施形態における検出コイルを示す斜視図である。
本実施形態の検出コイル2は、ボビン21aに超伝導線材を第1の方向に1ターン巻きつけて形成したコイル2aと、コイル2aから垂直方向に所定の距離だけ離れた箇所に第1の方向と反対の第2の方向に2ターン巻きつけて形成したコイル2bと、コイル2bから、さらに垂直方向に所定の距離だけ離れた箇所に第1の方向に1ターン巻きつけて形成したコイル2cと、コイル2aから水平方向に所定の距離だけ離れた箇所に存在するボビン21bに超伝導線材を第2の方向に1ターン巻きつけて形成したコイル2dと、コイル2dから垂直方向に所定の距離だけ離れた箇所に第1の方向に2ターン巻きつけて形成したコイル2eと、コイル2eから、さらに垂直方向に所定の距離だけ離れた箇所に第2の方向に1ターン巻きつけて形成したコイル2fとを持つ。すなわち、検出コイル2は、1本の線材からなる。ここで、コイル2aとコイル2dはそれぞれ同一平面上に存在し、またコイル2bとコイル2eはそれぞれ同一平面上に存在し、またコイル2cとコイル2fはそれぞれ同一平面上に存在する。つまり、2次微分型コイルが、所定の間隔で複数並列に配置されている。この構成により、検出コイル2が検出する下記(式2)の磁束ΦP2は、コイル2aを貫く磁束Φ2aとコイル2bを貫く磁束Φ2bとコイル2cを貫く磁束Φ2cとコイル2dを貫く磁束Φ2dとコイル2eを貫く磁束Φ2eとコイル2fを貫く磁束Φ2fとを用いて、次のように表すことができる。

ΦP2=(Φ2a−2Φ2b+Φ2c)−(Φ2d−2Φ2e+Φ2f) ・・・(式2)
つまり、本実施形態の検出コイル2は、ボビン21a(第1項)、21b(第2項)の軸方向(垂直方向)に2次微分すると同時に、水平方向に1次微分する検出コイルである。このように、検出コイル2は、垂直方向に2次微分され、さらに水平方向に1次微分された磁気信号を検出するため、2次微分型検出コイルを用いた場合よりも環境磁場を低減することができる。
なお、図8および図9に示す検出コイルは、コイルの形状が円形状であるとしているが、これに限らず、例えば多角形状のコイルを用いてもよい。
次に、図9を参照しつつ、図10および図11を参照して本実施形態における検出コイルの配置方法の一例を説明する。
図10は、本実施形態における検出コイルの配置を示す斜視図である。
検出コイル12a,12bは、図10に示される検出コイル2と同じ構成を持つ。すなわち、検出コイル12aも12bも、微分型コイルをそれぞれ1対備えた構成となっている。検出コイル12aは、2次微分型検出コイルの構成を有するコイル1201、およびコイル1201と逆向きの巻き方向を有するコイル1202からなり、同様に、検出コイル12bは、2次微分型検出コイルの構成を有するコイル1203、およびコイル1201と逆向きの巻き方向を有するコイル1204からなる。検出コイル12a,12bの組のことを検出コイル組12と記載することにする。ここで、検出コイル組12は、検出コイル12a,12bを互いに水平方向における1次微分の方向が直交するように配置されていることが特徴である。
図11(a)は、図11に示される検出コイル組を模式的に表した上面図である。図11(b)は、磁場源である電流ベクトルと、検出コイル12aによって検出されるx軸方向に1次微分されたz方向の磁束密度Bおよび検出コイル12bによって検出されるy軸方向に1次微分されたz方向の磁束密度Bとの関係を示す図である。
一般に、心筋電流等の電流が、x軸方向の向きに流れている場合、その電流の発生する磁場を検出するには、図11(a)のy軸方向に微分した検出コイルを用いることにより、磁気信号を検出することができる。一方で、x軸方向に微分した検出コイルを用いた場合は、ほとんど信号が検出されない。このように、水平方向で微分する検出コイルを用いる場合には、磁場源となる電流の向きと直交する方向に微分した検出コイルを用いることが望ましい。しかしながら、心筋電流のように、計測対象の電流の向きが予め分からない場合は、図10に示される検出コイル組12のように、本実施形態の検出コイル2つを直交させる形で配置することが望ましい。
さらに、検出コイル12aによって検出された磁束密度をB、検出コイル12bによって検出された磁束密度をBとすると、それらのベクトル和である次式を算出することが可能である。

=√(B +B ) ・・・(式3)

(式3)を算出することによって、計測対象である電流源の向きによらず、確実に電流源の発生する磁場を検出することが可能となる。
また、磁場源である電流ベクトルをI=(I,I)とすると、電流のx成分I、および電流のy成分Iはそれぞれ、x軸方向に1次微分されたz方向の磁束密度の変化
ΔB/Δx、およびy軸方向に1次微分されたz方向の磁束密度の変化ΔB/Δyを用いて近似的に以下の式で表される。(H. Hosaka and D. Cohen, “Visual determination of generators of the magnetocardiogram”, Journal of Electrocardiology (米国),1976年,第9巻,p. 426-432 参照)。

(I,I)∝(−ΔB/Δy,ΔB/Δx) ・・・(式4)
したがって、検出コイル12aによって検出されるx軸方向に1次微分されたz方向の磁束密度Bおよび検出コイル12bによって検出されるy軸方向に1次微分されたz方向の磁束密度Bを用いて、磁場源である電流のx成分Iおよび電流のy成分
は近似的に以下の式で表される。

(I,I)∝(−B,B) ・・・(式5)
このことから、検出コイル組12は、磁場源である電流を近似的に電流ベクトルとして検出することができる。すなわち、図11(b)に示されるように、検出コイル12a,12bから検出される磁束密度BとBを用いて電流をベクトルとして表現することができる。
このように、検出コイル組12を複数配置することにより、磁場分布を検出することが可能となる。さらに、(式5)を用いることにより、磁場源である電流ベクトルの分布(電流ベクトル場)を検出することが可能となる。これにより、脳磁計測に関しては、神経電流が流れている方向を気にすることなく、神経電流が流れている箇所を推定することが可能となる。
図12は、図7(c)のC−C断面における断面図であり、本実施形態におけるクライオスタットを示す。クライオスタット103bの内部には、液体ヘリウムが充填され、外界と真空層で断熱されている。検出コイル組701bは、図10に示される検出コイル組12と同じ構成である。ここで、各検出コイルは、検出コイル面がクライオスタット103bの検出面604bと平行となるように配置される。また、クライオスタット103bは、検出面604bにおいて他の部分に比べて内層、外層、真空層がそれぞれ薄く加工されている。その結果、検出コイル面と信号源との距離を小さくなり、信号強度が大きくなる効果がある。
また、検出面604bには圧力センサ605bを備えており、被験者の体表面と検出面604との圧力を計測することができる。この構成により、例えば検出面が体表面に接触したことを検出することが可能となる。また、予めしきい値を設定しておくことで、しきい値以上の圧力がかかった時に警報を鳴らしたり、装置を自動停止したりすることができる。
図13および図14はそれぞれ、本実施形態における脳磁計測時において、頭部とクライオスタットとの位置関係を示す図である。
図13は被験者1301が座位または立位の状態で脳磁計測する場合における頭部とクライオスタットとの位置関係を示している。図13(a)は被験者1301の側頭部付近の脳磁計測時における頭部とクライオスタットとの位置関係を示す斜視図である。図13(b)〜(d)はそれぞれ、脳磁計測時における頭部とクライオスタットとの位置関係を上方から見た図である。図13(b)は被験者1301の後頭部付近の脳磁計測時における頭部とクライオスタットとの位置関係を示す。図13(c)は被験者1301の側頭部付近の脳磁計測時における頭部とクライオスタットとの位置関係を示す。図13(d)は被験者1301の前頭部付近の脳磁計測時における頭部とクライオスタットとの位置関係を示す。
図14は被験者1401が仰臥位または伏臥位の状態で脳磁計測する場合における頭部とクライオスタットとの位置関係を示している。図14(a)は被験者1401の側頭部付近の脳磁計測時における頭部とクライオスタットとの位置関係を示す斜視図である。図14(b)および(c)はそれぞれ、脳磁計測時における頭部とクライオスタットとの位置関係を上から見た図である。図14(b)は被験者1401の頭頂部付近の脳磁計測時における頭部とクライオスタットとの位置関係を示す。図14(c)は被験者1401の側頭部付近の脳磁計測時における頭部とクライオスタットとの位置関係を示す。
このように、2個のクライオスタットを103aおよび103bを互いに左右対称の関係を保って上下・左右・回転のそれぞれの方向に連動させることによって、被験者の頭部のあらゆる位置にクライオスタットの計測面を合わせることが可能となる。また、クライオスタットが必ず左右対称の関係にあるので、頭部において互いに左右対称となる部位に計測面604aおよび604bを容易に位置合わせすることが可能となる。この構成によれば、右脳と左脳の対応する部位における脳磁気信号を同時に計測することが可能となる。
図15は本実施形態におけるクライオスタット103a、103bのメンテナンス時におけるガントリの動きを示す斜視図である。図15(a)は第2の支持体106(図5参照)を最も下げた状態を示した図である。図15(b)はガントリ前面カバー105を開いた状態を示した図である。クライオスタット103a、103bのメンテナンスには、主に真空排気作業と液体ヘリウム充填作業がある。本実施形態では、ガントリ前面カバー105を取り外さなくても済むように、蝶番によってガントリ前面カバー105を門型支持体102に固定し、ヒンジ式でガントリ前面カバー105を開く構造とした。このヒンジ式構造により、クライオスタット103a、103bのメンテナンスをより簡便に行うことができる。
また、本実施形態では、クライオスタットをガントリから取り外す場合には、クライオスタット103a、103bを上方向に引き出す必要がある。ここで、クライオスタット103a、103bを上方向に引き出すためには、図15(b)に示されるように第2の支持体106を下げる必要がある。第2の支持体106を十分に下げることによって、容易にクライオスタット103a、103bをガントリから取り外すことができる。
図16は本実施形態における脳磁計測装置を示す斜視図である。
図8に示される検出コイル1、あるいは図9に示される検出コイル2、およびSQUIDはクライオスタット103a、103b内でSQUIDを形成する超伝導物質の超伝導転移温度以下に保持される。具体的には、クライオスタット103a、103b内には液体ヘリウムが充填され、外界と真空層で断熱されている。本実施形態では、図9に示される2個の検出コイル2を1組として、図10に示される検出コイル組12として配置される。ここで、各検出コイルは、検出コイル面がクライオスタット103a、103bの検出面604a、604bと平行となるように配置される。
クライオスタット103a、103bはガントリによって支持される。また、クライオスタット103a、103bはガントリによって上下方向に駆動される。また、水平方向に互いに近づく方向、または互いに遠ざかる方向に連動して同じ速度で駆動される。また、水平面内で回転駆動(右回転または左回転)される。ここで、クライオスタット103a、103bは連動して同じ回転速度で互いに反対の方向に回転駆動されるものとする。クライオスタット103a、103bの駆動は油圧ポンプの制御により行う。具体的には、コントローラ1601によって、油圧制御装置1604内の電磁弁を制御することによって、ガントリに設置された油圧シリンダに圧力を伝達させ、図5に示すガントリの駆動手段501、502a、502b、503a、503bを駆動させる。
計測時に被験者が座る椅子1602には、被験者の頭部を固定するために、ヘッドレスト1603が設置されている。コントローラ1601によって、クライオスタット103a、103bの計測面604a、604bを被験者の頭部に近づけるように調整する。また、レバー104を手前に引くことによって、計測面間604aと604bとの間隔を素早く広げることができる。
クライオスタット103a、103bに固定したFLL回路601a、601bによって、SQUID磁束計を制御し、検出コイルにて検出した磁気信号を電圧信号に変換して、信号処理装置1605に伝達する。信号処理装置1605では、DSPを用いて雑音信号を除去する処理を行い、被検者の脳磁信号を検出して表示装置1606にリアルタイムで脳磁波形を表示する。また、神経の伝達時間を計測するために、聴覚刺激装置を用いて被検者の耳に音声刺激を行い、その反応をリアルタイムにモニタリングし、さらに、脳磁波形より、それぞれピークの時間差を計算して、伝達時間をリアルタイムに表示することができる。ここで、上記の聴覚刺激や視覚刺激、体性感覚刺激等の応答に起因する感覚刺激誘発脳磁場の他に、自発脳磁場や事象関連脳磁場も計測することができる。
図17は本実施形態におけるガントリを操作するコントローラ1601を示す斜視図である。測定時には、ONスイッチ1601−1を押下させ、油圧制御装置1604の電源をONにする。クライオスタット103a、103bは、操作ボタン1601−3を押下することにより連動して上方に駆動され、操作ボタン1601−4を押下することにより、連動して下方に駆動される。また、クライオスタット103a、103bは、操作ボタン1601−5を押下することにより、水平方向に互いに遠ざかる方向に連動して駆動され、操作ボタン1601−6を押下することにより、水平方向に互いに近づく方向に連動して駆動される。また、操作ボタン1601−7を押下することにより、クライオスタット103aは右回り、103bは左回りにそれぞれ連動して同じ回転速度で回転駆動される。反対に、操作ボタン1601−8を押下することにより、クライオスタット103aは左回り、103bは右回りにそれぞれ連動して同じ回転速度で回転駆動される。測定を終了する場合には、OFFスイッチ1601−2を押下することにより、油圧制御装置1604の電源をOFFにする。
図18は本実施形態における脳磁計測装置を示す斜視図である。ここで、図18に示される脳磁計測装置は、図16に示される脳磁計測装置において、椅子1602を、レール1803aおよび1803b上を水平移動する椅子1801に置き換えた構成を持つ。ここで、椅子1801は、2つのクライオスタット103aおよび103bの中心を通り、前後方向、すなわち図2(a)において紙面と垂直な方向にレール1803aおよび1803b上を移動する機構を持つ。本構成によれば、被験者の頭部を2つのクライオスタット103aおよび103bの中心に容易に位置合わせすることができるという効果がある。
図19は本実施形態における脳磁計測装置を示す斜視図である。ここで、図19に示される脳磁計測装置は、図16に示される脳磁計測装置において、椅子1602を、ベッド1901に置き換えた構成を持つ。ここで、ベッド1901は、2つのクライオスタット103aおよび103bの中心を通り、前後方向、すなわち図2(a)において紙面と垂直な方向に移動する機構と、上下方向にベッド天板を移動する機構、およびリクライニング機構とを持つ。本構成によれば、被験者1902のように被験者が仰臥位の状態で計測可能であり、図14に示される状態での計測が可能である。また、リクライニング機構によりベッド天板の一部を起こすことによって、被験者が座位の状態でも計測可能である。さらに、いずれの状態においても、被験者の頭部を2つのクライオスタット103aおよび103bの中心に容易に位置合わせすることができるという効果がある。
図20〜23は本実施形態における脳磁計測装置において得られた信号を表示する画面を示す図である。
図20は4個のセンサから得られる時間波形を表示したグラフである。各グラフの横軸は時間を示し、縦軸は各SQUID磁束計の出力信号(磁場)を示す。波形2001、2002はそれぞれ、クライオスタット103a内に保持されている第1の検出コイルが検出する磁場(Right1)と、第2の検出コイルが検出する磁場(Right2)である。また、波形2003、2004はそれぞれ、クライオスタット103b内に保持されている第3の検出コイルが検出する磁場(Left1)と、第4の検出コイルが検出する磁場(Left2)である。この表示により、最も単純な磁場変化を表すことができる。
図21は各クライオスタット内に保持される2個のセンサの出力をベクトル和することによって得られる信号の時間波形を表示したグラフである。各グラフの横軸は時間を示し、縦軸は各クライオスタットに保持される2個のSQUID磁束計の出力信号(磁場)のベクトル和を示す。波形2101はクライオスタット103a内に保持されている第1の検出コイルが検出する磁場(Right1)と、第2の検出コイルが検出する磁場(Right2)を(式3)の式を用いて合成したベクトル和である。波形2102はクライオスタット103b内に保持されている第3の検出コイルが検出する磁場(Left1)と、第4の検出コイルが検出する磁場(Left2)を(式3)の式を用いて合成したベクトル和である。この表示方法は、波形のピークを検出するのに適している。例えば、ピークの時刻を検出したり、波形の周期を求めたり、あるいは加算平均のトリガ信号として検出することが容易になる。
図22は各クライオスタット内に保持される2個のセンサの出力から電流ベクトルとして表示したグラフと、電流ベクトルの大きさと位相の時間波形を表示したグラフである。電流ベクトル2201は(式5)とクライオスタット103a内に保持されている2個の検出コイルが検出する磁場(Right1およびRight2)を用いて算出した電流の向きと大きさを表すベクトルである。波形2202は図21の波形2101と同じ波形であり、電流ベクトル2201の大きさに相当する。また、波形2203は電流ベクトル2201の位相を示す。波形2202および波形2203のグラフの横軸はいずれも時間を示す。
同様に、電流ベクトル2204は(式5)とクライオスタット103b内に保持されている2個の検出コイルが検出する磁場(Left1およびLeft2)を用いて算出した電流の向きと大きさを表すベクトルである。波形2205は図21の波形2102と同じ波形であり、電流ベクトル2204の大きさに相当する。また、波形2206は電流ベクトル2204の位相を示す。波形2205および波形2206のグラフの横軸はいずれも時間を示す。電流ベクトル表示により、直感的に神経電流の大きさや向きを確認することができる。また、電流ベクトルの大きさと位相を定量的に表示することにより、神経電流の大きさや向きを定量的に計測することができる。すなわち、本表示法を用いれば、被験者ごとの神経電流の大きさや向きの違いを数値化して比較できるという効果がある。
図23は各クライオスタット内に保持される2個のセンサの出力から得られた信号を加算平均することにより得られた波形を表示したグラフである。各クライオスタット103a、103bから得られる信号を、聴覚刺激信号の入力をトリガとして加算平均して表記したグラフである。ここでは、クライオスタット103aの検出面604aを被験者の右側頭部に近づけ、クライオスタット103bの検出面604bを被験者の左側頭部に近づけて脳磁計測を行った例を示す。図23では、それぞれ図21のベクトル和波形を加算平均して得られたグラフを示す。時刻2302および2305は、被験者にパルス音を聞かせて聴覚刺激を行った時刻であり、時刻2303および2306は、得られた波形のピーク時刻を表す。このように、加算平均することによって、S/N比の高い信号を検出することができる。更に、クライオスタット103a内のSQUID磁束計から得られる右脳の磁気信号とクライオスタット103b内のSQUID磁束計から得られる左脳の磁気信号を比較することにより、脳神経の伝達時間を検出することが可能となる。脳神経の伝達時間を検出することによって、脳疾患や老化に伴う脳機能の変化を定量化することが期待される。
以上で説明した本実施形態の検出コイルの実施形態では、垂直方向に1次微分又は2次微分する検出コイルを例として説明したが、本実施形態の検出コイルでは、異なる2方向に微分された信号を検出する構成を持っており、例えば垂直方向に3次以上微分する検出コイルでもよい。
また、以上で説明した実施形態では、検出コイルの検出した磁束を電圧値に変換する磁束計としてSQUID磁束計を例にとったが、その他にも磁束計として、磁気抵抗素子、巨大磁気抵抗素子、フラックスゲート磁束計、光ポンピング磁束計等の他の磁束計を用いてもよい。また、SQUIDとして、液体ヘリウムを用いて冷却する例を説明したが、冷凍機や、高温超電導部材から構成されるSQUIDであれば液体窒素を用いて冷却してもよい。
本実施形態によれば、容易に被験者の頭部と計測面との位置合わせを行うことが可能となり、さらに頭部の左右対象の関係にある2点の脳磁計測を行うことにより、右脳と左脳の関連する領域から発生する脳磁気信号を簡易に検出することが可能な生体磁場計測装置を実現できる。
本実施形態における磁場計測装置を示す斜視図。 本実施形態における磁場計測装置を示す六面図。(a)は正面、(b)は背面、(c)は左側面(正面から見て左側)、(d)は右側面(正面から見て右側)、(e)は上面、(f)は下面を示す。 本実施形態における磁場計測装置を示す断面図。 本実施形態におけるガントリの詳細構造を示す図。 本実施形態におけるガントリの詳細構造を示す図。 本実施形態におけるクライオスタットを示す斜視図。 本実施形態におけるクライオスタットを示す六面図。 本実施形態における検出コイルを示す斜視図である(その1)。 本実施形態における検出コイルを示す斜視図である(その2)。 本実施形態における検出コイルの配置を示す斜視図である。 (a)は、図10に示される検出コイル組を模式的に表した上面図である。 (b)は、磁気源である電流ベクトルと、検出コイルによって検出されるx軸方向に1次微分されたz方向の磁束密度およびy軸方向に1次微分されたz方向の磁束密度との関係を示す図である。 本実施形態におけるクライオスタットを示す断面図。 本実施形態における脳磁計測時において、頭部とクライオスタットとの位置関係を示す図。 本実施形態における脳磁計測時において、頭部とクライオスタットとの位置関係を示す図。 本実施形態におけるクライオスタットのメンテナンス時におけるガントリの動きを示す斜視図。(a)は第2の支持体106を最も下げた状態を示した図である。(b)はガントリ前面カバー105を開いた状態を示した図である。 本実施形態における脳磁計測装置を示す斜視図。 本実施形態におけるガントリを操作するコントローラを示す斜視図。 本実施形態における脳磁計測装置を示す斜視図。 本実施形態における脳磁計測装置を示す斜視図。 4個のセンサから得られる時間波形を表示したグラフ。 各クライオスタット内に保持される2個の検出コイルが検出する磁場をベクトル和することによって得られる信号の時間波形を表示したグラフ。 各クライオスタット内に保持される2個の検出コイルが検出する磁場から電流ベクトルとして表示したグラフと、電流ベクトルの大きさと位相の時間波形を表示したグラフ。 各クライオスタット内に保持される2個の検出コイルが検出する磁場から得られた信号を加算平均することにより得られた波形を表示したグラフ。
符号の説明
1、2、12a、12b、1701 検出コイル
12、701a、701b 検出コイル組
101 磁場計測装置
102 第1の支持体(門型支持体)
103a、103b クライオスタット
104 レバー
105 ガントリ前面カバー
106 第2の支持体
107 クライオスタット位置表示
108 透明部材
109 ガントリ後面カバー
504a 第3の支持体
504b 第4の支持体
505a 第5の支持体
505b 第6の支持体
401a、401b ガイド機構
402a、402b レール
501、502a、502b、503a、503b 駆動手段
601a、601b FLL回路
602a、602b 真空引き口
603a、603b 中間フランジ
604a、604b 検出面
1301、1401、1902 被験者
1601 コントローラ
1602、1801 椅子
1603、1802 ヘッドレスト
1604 油圧制御装置
1605 信号処理装置
1606 表示装置
1601−1 ONスイッチ
1601−2 OFFスイッチ
1601−3、1601−4、1601−5、
1601−6、1601−7、1601−8 操作ボタン
1803a、1803b レール
1901 ベッド
2001、2002、2003、3004 各センサから得られる時間波形
2101、2102 各クライオスタット内に保持される2個の検出コイルが検出する磁場をベクトル和することによって得られる信号の時間波形
2201、2204 電流ベクトル
2202、2205 電流ベクトルの大きさ
2205、2206 電流ベクトルの位相
2301、2304 各クライオスタット内に保持される2個の検出コイルが検出する磁場を加算平均することにより得られた波形
2302、2305 聴覚刺激信号の入力時刻
2303、2306 各波形のピーク時刻。

Claims (15)

  1. 2つの足部と、前記2つの足部の上部を繋ぐ繋ぎ部とを有する門型の第1の支持体と、
    前記2つの足部の間であって前記繋ぎ部の下に並んで設けられた第1、第2の筒型のクライオスタットと、
    前記第1、第2のクライオスタットそれぞれについて、前記クライオスタットの内部から前記筒型の側面方向に少なくとも一部を突出させ、互いに鏡像の位置となるように設けられた生体磁場を検出する検出センサと、
    前記第1、第2のクライオスタットの軸方向にスライド可能に前記第1の支持体に支持される第2の支持体と、
    前記第2の支持体に前記2つの足部を繋ぐ水平方向に移動可能に支持され、且つ前記第1、第2のクライオスタットを各クライオスタットの軸を中心として回転可能にそれぞれ支持する第3、第4の支持体と、
    前記第1の支持体の上で前記第2の支持体を前記第1、第2のクライオスタットの軸方向に駆動する第1の駆動手段と、
    前記第2の支持体の上で前記第3、第4の支持体を連動して駆動し、もって前記第1、第2のクライオスタットの相互の間隔を制御する第2の駆動手段と、
    それぞれ前記第3、第4の支持体上で、前記第1、第2のクライオスタットを回転駆動する第3、第4の駆動手段とを有することを特徴とする生体磁場計測装置。
  2. 請求項1に記載の生体磁場計測装置において、前記第3、第4の駆動手段は、前記第1、第2のクライオスタットを互いに反対の回転方向に連動して回転駆動することを特徴とする生体磁場計測装置。
  3. 請求項1に記載の生体磁場計測装置において、前記検出センサは超伝導体または金属部材によって構成される磁気検出コイルで検出した磁気信号を、超伝導量子干渉素子に伝達することを特徴とする生体磁場計測装置。
  4. 前記磁気検出コイルは、超伝導体または金属部材によって構成され、互いに異なるループ方向を有する複数の微分型コイルを、所定の間隔で並列に配置し、互いに接続することを特徴とする請求項3に記載の生体磁場計測装置。
  5. 前記複数の微分型コイルとは、2つの微分型コイルであることを特徴とする請求項に記載の生体磁場計測装置。
  6. 前記微分型コイルとは、2次微分型コイルであることを特徴とする請求項に記載の生体磁場計測装置。
  7. 前記微分型コイルとは、1次微分型コイルであることを特徴とする請求項に記載の生体磁場計測装置。
  8. 前記超伝導体または金属部材が、線材であることを特徴とする請求項3に記載の生体磁場計測装置。
  9. 2つの前記磁気検出コイルが、互いに交差している磁気検出コイル組を備えることを特徴とする請求項3に記載の生体磁場計測装置。
  10. 前記交差とは、直交であることを特徴とする請求項9に記載の生体磁場計測装置。
  11. 請求項10に記載の生体磁場計測装置において、前記第1のクライオスタットに内蔵される第1の磁気検出コイルと、前記第2のクライオスタットに内蔵される第3の磁気検出コイルが左右対称の位置関係で配置され、前記第1のクライオスタットに内蔵される第2の磁気検出コイルと、前記第2のクライオスタットに内蔵される第4の磁気検出コイルが左右対称の位置関係で配置されることを特徴とする生体磁場計測装置。
  12. 請求項1に記載の生体磁場計測装置において、前記第1、第2のクライオスタットの相互の間隔更に手動で制御するレバーを前記第3の支持体に有することを特徴とする生体磁場計測装置。
  13. 請求項1に記載の生体磁場計測装置において、前記2つのクライオスタットの配置を計測するセンサを有することを特徴とする生体磁場計測装置。
  14. 請求項1に記載の生体磁場計測装置において、前記クライオスタットの突出部の表面に、圧力を計測するセンサを有することを特徴とする生体磁場計測装置。
  15. 請求項1に記載の生体磁場計測装置において、前記駆動手段は、シリンジであることを特徴とする生体磁場計測装置。
JP2006273566A 2006-10-05 2006-10-05 磁場計測装置 Expired - Fee Related JP4893213B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006273566A JP4893213B2 (ja) 2006-10-05 2006-10-05 磁場計測装置
EP20070019302 EP1911398B1 (en) 2006-10-05 2007-10-01 Biomagnetic field measurement apparatus
US11/905,682 US8010178B2 (en) 2006-10-05 2007-10-03 Biomagnetic field measurement apparatus having a plurality of magnetic pick-up coils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273566A JP4893213B2 (ja) 2006-10-05 2006-10-05 磁場計測装置

Publications (2)

Publication Number Publication Date
JP2008086675A JP2008086675A (ja) 2008-04-17
JP4893213B2 true JP4893213B2 (ja) 2012-03-07

Family

ID=38988330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273566A Expired - Fee Related JP4893213B2 (ja) 2006-10-05 2006-10-05 磁場計測装置

Country Status (3)

Country Link
US (1) US8010178B2 (ja)
EP (1) EP1911398B1 (ja)
JP (1) JP4893213B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022660B2 (ja) * 2006-10-06 2012-09-12 株式会社日立ハイテクノロジーズ 磁場計測装置
EP2142090A4 (en) * 2007-05-04 2011-07-20 California Inst Of Techn LOW FIELD SQUID MRI DEVICES, COMPONENTS AND METHODS
JP2013124873A (ja) 2011-12-13 2013-06-24 Seiko Epson Corp 磁場測定装置及びセルアレイ
CN103549957A (zh) * 2013-11-14 2014-02-05 江苏麦格思频仪器有限公司 核磁共振成像系统及其使用方法
US10772520B2 (en) 2015-06-25 2020-09-15 DePuy Synthes Products, Inc. Intraoperative magnetometry monitoring system
CN105640538B (zh) * 2016-04-01 2018-04-17 中国科学院上海微系统与信息技术研究所 一种全张量心磁图仪探头及其制造方法
CA3056330C (en) * 2017-05-12 2023-06-27 Compumedics Limited Multi-sensor magneto-monitoring-imaging system
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359864B1 (de) * 1988-09-23 1993-12-01 Siemens Aktiengesellschaft Einrichtung und Verfahren zur Messung von schwachen, orts- und zeitabhängigen Magnetfeldern
JP2751408B2 (ja) * 1989-05-31 1998-05-18 株式会社島津製作所 脳磁計測装置
JPH0634783B2 (ja) * 1990-02-28 1994-05-11 株式会社島津製作所 生体磁気計測法
JPH06335462A (ja) * 1993-05-28 1994-12-06 Takenaka Komuten Co Ltd スクイッド架台装置
JP2654497B2 (ja) 1994-04-26 1997-09-17 工業技術院長 デュワー装置
JPH08103420A (ja) * 1994-09-09 1996-04-23 Ctf Syst Inc 微弱磁界測定装置
JPH0984777A (ja) * 1995-09-25 1997-03-31 Toshiba Corp 生体磁場計測装置
JP3194695B2 (ja) * 1995-12-14 2001-07-30 学校法人金沢工業大学 磁気計測装置、その組立方法及び修理方法、並びに磁気計測用診断装置
JP3239780B2 (ja) * 1996-11-27 2001-12-17 株式会社日立製作所 生体磁気計測システム及びそれに用いるデュワ
JP3094988B2 (ja) * 1997-06-20 2000-10-03 株式会社日立製作所 生体磁場計測装置
JP3237590B2 (ja) * 1997-10-24 2001-12-10 株式会社日立製作所 磁場計測装置
WO1999037206A1 (en) * 1998-01-23 1999-07-29 Ctf Systems Inc. System and method for measuring, estimating and displaying rms current density maps
JP3546686B2 (ja) * 1998-03-17 2004-07-28 株式会社日立製作所 生体磁場計測装置
US6275719B1 (en) * 1998-09-09 2001-08-14 Hitachi, Ltd. Biomagnetic field measurement apparatus
JP3451213B2 (ja) * 1998-09-09 2003-09-29 株式会社日立製作所 生体磁場計測装置
JP2002336211A (ja) * 2001-05-18 2002-11-26 Shimadzu Corp 生体磁気測定装置
JP4571570B2 (ja) * 2005-10-14 2010-10-27 株式会社日立ハイテクノロジーズ 磁気検出コイルおよび磁場計測装置

Also Published As

Publication number Publication date
EP1911398A2 (en) 2008-04-16
JP2008086675A (ja) 2008-04-17
EP1911398A3 (en) 2009-03-04
EP1911398B1 (en) 2015-04-29
US8010178B2 (en) 2011-08-30
US20080084204A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4893213B2 (ja) 磁場計測装置
JP4571570B2 (ja) 磁気検出コイルおよび磁場計測装置
Okada et al. BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research
JP3642061B2 (ja) 磁場計測装置
US8155726B2 (en) Magnetic detection coil and apparatus for magnetic field measurement
JP2012095939A (ja) 生体磁気計測装置および方法
JP4521239B2 (ja) 磁場遮蔽装置及び生体磁場計測装置
JP5022660B2 (ja) 磁場計測装置
JP3379488B2 (ja) 磁場計測装置
Schneiderman et al. On-scalp MEG
Wei et al. Nested magnetic field compensation with regulated coefficients for bio-magnetic field measurement
Lee et al. Instrumentation for measuring MEG signals
Lee et al. 64-channel second-order axial gradiometer system based on DROS for magnetocardiogram in a thin shielded room
Nowak et al. A 16-channel SQUID-device for biomagnetic investigations of small objects
JP3651540B2 (ja) 生体磁場計測装置
Faley et al. Integration Issues of Graphoepitaxial High-${\rm T} _ {\rm c} $ SQUIDs Into Multichannel MEG Systems
Oyama et al. Evaluation of an isosceles-triangle-coil phantom for magnetoencephalography
JP3451193B2 (ja) 生体磁場計測装置
JP4391129B2 (ja) 環境磁気雑音遮蔽装置
JP2006075378A (ja) 生体磁場計測装置
Carmina et al. First-order SQUID gradiometer with electronic subtraction for magnetocardiography
Lee et al. Tangential cardiomagnetic field measurement system based on double relaxation oscillation SQUID planar gradiometers
JP5253926B2 (ja) 脳磁計
Oyama et al. Dry Phantoms With Deep Signal Sources for Magnetoencephalography
JP3454236B2 (ja) 生体磁場計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees