JP4890017B2 - Blue light emitting phosphor and light emitting module using the same - Google Patents

Blue light emitting phosphor and light emitting module using the same Download PDF

Info

Publication number
JP4890017B2
JP4890017B2 JP2005362492A JP2005362492A JP4890017B2 JP 4890017 B2 JP4890017 B2 JP 4890017B2 JP 2005362492 A JP2005362492 A JP 2005362492A JP 2005362492 A JP2005362492 A JP 2005362492A JP 4890017 B2 JP4890017 B2 JP 4890017B2
Authority
JP
Japan
Prior art keywords
light emitting
phosphor
light
blue light
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005362492A
Other languages
Japanese (ja)
Other versions
JP2006233183A (en
Inventor
剛 岩崎
久芳 大長
秀和 羽山
睦夫 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2005362492A priority Critical patent/JP4890017B2/en
Publication of JP2006233183A publication Critical patent/JP2006233183A/en
Application granted granted Critical
Publication of JP4890017B2 publication Critical patent/JP4890017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、青色発光蛍光体およびそれを用いた発光モジュールに関し、詳細には、従来よりも発光効率が高い青色発光蛍光体およびそれを用いた高輝度の発光モジュールに関する。   The present invention relates to a blue light-emitting phosphor and a light-emitting module using the same, and more particularly, to a blue light-emitting phosphor having higher light emission efficiency than the conventional one and a high-luminance light-emitting module using the same.

環境問題や省電力の観点から水銀を使用しない、発光ダイオード(LED)や半導体レーザー(LD)を励起光源として蛍光体と組み合わせ、そのときの発光を光源とし、消費電力の少ない照明用光源が開発されている。
例えば、特許文献1には、青色系の発光の一部を吸収して発光するCe付活希土類アルミン酸塩蛍光体からの黄色系の発光との加色混合によって全体として白色系の発光を呈する発光ダイオードが開示されている。しかしながら、この組み合わせのタイプは、最終的に得られる白色光の発光色が限定され、また本光源の照明下での色の再現性が好ましい色に再現されず、演色性に問題があった。
In light of environmental issues and power savings, light source diodes (LEDs) and semiconductor lasers (LDs) that do not use mercury are combined with phosphors as excitation light sources, and light sources at that time are used as light sources. Has been.
For example, Patent Document 1 exhibits white light emission as a whole by additive mixing with yellow light emission from a Ce-activated rare earth aluminate phosphor that emits light by absorbing part of blue light emission. A light emitting diode is disclosed. However, this type of combination has a problem in color rendering properties because the emission color of white light finally obtained is limited, and color reproducibility under illumination of this light source is not reproduced in a preferable color.

近年、このような問題を解決するため、2色加色での白色合成の欠点を補う方法として、紫外又は短波長可視光を半導体発光素子からの一次光(励起光)とし、緑・青・赤3成分の蛍光体を混合する手法が紹介されている。この際に使用する青色発光蛍光体としては、例えば、特許文献2および特許文献3等に記載のものが挙げられ、BaMgAl1017:Eu2+ 、Sr5(PO43Cl:Eu2+等が代表的なものとして挙げられる。 In recent years, in order to solve such problems, as a method for compensating for the disadvantages of white synthesis by adding two colors, ultraviolet or short-wavelength visible light is used as primary light (excitation light) from a semiconductor light emitting device, and green, blue, A technique for mixing red three-component phosphors is introduced. Examples of the blue light emitting phosphor used in this case include those described in Patent Document 2 and Patent Document 3, and the like. BaMgAl 10 O 17 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2 A typical example is + .

しかし、広帯域で吸収のある赤・緑色を発光する蛍光体は青色光を吸収し、青色の発光が不安定になり、安定した白色光が得られない、という問題点があった。   However, phosphors emitting red and green light that have absorption in a broad band have a problem in that they absorb blue light, blue light emission becomes unstable, and stable white light cannot be obtained.

特許第2927279号明細書Japanese Patent No. 2927279 特開2003−160785号公報JP 2003-160785 A 特開2004−127988号公報Japanese Patent Laid-Open No. 2004-127988

本発明の目的は、上記問題点を解決することであり、発光強度が向上した青色発光蛍光体を提供することである。また、本発明で得られる発光強度が向上した青色発光蛍光体を用いることにより、高輝度の白色LED発光モジュールを製造することができる。   An object of the present invention is to solve the above-mentioned problems and to provide a blue-emitting phosphor having improved emission intensity. Moreover, a high-intensity white LED light-emitting module can be manufactured by using the blue light-emitting phosphor with improved light emission intensity obtained in the present invention.

本発明者らは、鋭意検討を重ねた結果、以下の構成を採用することによって、上記目的が達成され、本発明を成すに至った。   As a result of intensive studies, the present inventors have achieved the above object by adopting the following configuration, and have achieved the present invention.

(1) 下記一般式で表されることを特徴とする青色発光蛍光体。
Ca5−X−YMg(PO43Cl:Eu2+
(0.5≦X≦2.5、0<Yで、かつ、0.5<X+Y<5である。)
(2) 励起ピーク波長が390〜410nmであることを特徴とする(1)記載の青色発光蛍光体。
(3) 少なくとも、発光ピーク波長が390〜410nmの半導体発光素子と(1)または(2)記載の青色発光蛍光体とから構成されることを特徴とする発光モジュール。
(4) さらに、他の色を発光する蛍光体を構成物として用いたことを特徴とする(3)記載の発光モジュール。
(5) 他の色を発光する蛍光体が、少なくとも赤色発光蛍体および緑色発光蛍光体であり、白色発光することを特徴とする(4)記載の発光モジュール。
(1) A blue light-emitting phosphor represented by the following general formula.
Ca 5-X-Y Mg X (PO 4) 3 Cl: Eu 2+ Y
(0.5 ≦ X ≦ 2.5, 0 <Y, and 0.5 <X + Y <5)
(2) The blue light-emitting phosphor according to (1), wherein the excitation peak wavelength is 390 to 410 nm.
(3) A light emitting module comprising at least a semiconductor light emitting element having an emission peak wavelength of 390 to 410 nm and the blue light emitting phosphor described in (1) or (2).
(4) The light emitting module according to (3), wherein a phosphor that emits another color is used as a constituent.
(5) The light emitting module according to (4), wherein the phosphors emitting other colors are at least a red light emitting phosphor and a green light emitting phosphor and emit white light.

本発明によれば、既存の青色発光蛍光体の一つであるSr5(PO4)Cl:Eu2+のSrをCaに置き換え、Mgの元素を存在させ、Ca、MgおよびEuの比率を調整することで、従来のものと比較して、発光強度の向上した青色発光蛍光体を提供することができる。 According to the present invention, Sr 5 (PO 4 ) Cl: Eu 2+ , which is one of the existing blue light-emitting phosphors, is replaced with Ca, the Mg element is present, and the ratio of Ca, Mg and Eu is changed. By adjusting, it is possible to provide a blue light-emitting phosphor having improved emission intensity as compared with the conventional one.

本発明の青色蛍光体は、近紫外から短波長可視光線(350〜420nm)を励起光源とする三波長型白色発光LEDに用いられる青色発光蛍光体BaMgAl1017:Euより発光強度が大きい。本発明の青色発光蛍光体を用いることで、白色LEDの発光効率向上が期待される。 The blue phosphor of the present invention has a light emission intensity higher than that of the blue light-emitting phosphor BaMgAl 10 O 17 : Eu used in the three-wavelength white light-emitting LED using near ultraviolet to short-wavelength visible light (350 to 420 nm) as an excitation light source. By using the blue light-emitting phosphor of the present invention, the luminous efficiency of the white LED is expected to be improved.

本発明の青色発光蛍光体は、下記一般式で表されることを特徴とするものである。   The blue light-emitting phosphor of the present invention is represented by the following general formula.

Ca5−X−YMg(PO43Cl:Eu2+ Ca 5-X-Y Mg X (PO 4) 3 Cl: Eu 2+ Y

(0.5≦X≦2.5、0<Y、かつ、0.5<X+Y<5である。) (0.5 ≦ X ≦ 2.5, 0 <Y, and 0.5 <X + Y <5)

このような上記一般式で表される青色発光蛍光体は、励起ピーク波長が350〜420nmであり、その中でも、励起ピーク波長が390〜410nmであることが好ましい。また、上記一般式において、Y≦0.5であることが好ましい。   Such a blue light-emitting phosphor represented by the above general formula has an excitation peak wavelength of 350 to 420 nm, and among them, the excitation peak wavelength is preferably 390 to 410 nm. In the above general formula, it is preferable that Y ≦ 0.5.

また、本発明の青色発光蛍光体は、紫外線発光半導体素子と組み合わせて発光モジュールとすることができる。例えば、紫外線発光半導体素子と赤・緑色発光蛍光体とを組み合わせて白色発光モジュールとすることができる。
この場合、白色発光モジュールは、本発明の青色発光蛍光体以外に、基本的にはさらに赤色発光蛍光体および緑色発光蛍光体をも用いるものであるが、より望ましい、所望の色度の白色を得るためには、さらに他蛍光体を用いることも可能である。
Moreover, the blue light emitting phosphor of the present invention can be combined with an ultraviolet light emitting semiconductor element to form a light emitting module. For example, a white light emitting module can be obtained by combining an ultraviolet light emitting semiconductor element and a red / green light emitting phosphor.
In this case, the white light emitting module basically uses a red light emitting phosphor and a green light emitting phosphor in addition to the blue light emitting phosphor of the present invention. In order to obtain it, it is also possible to use other phosphors.

一方、蛍光体として、赤色発光蛍光体(R)と緑色発光蛍光体(G)と本発明の青色発光蛍光体(B)のみを用いる場合には、それらの配合比率(質量)は、スペクトル分率比で(R)35〜75:(G)15〜50:(B)2〜30であることが好ましく、より好ましくは、(R)45〜74:(G)20〜45:(B)5〜15である。
本発明の青色発光蛍光体以外の蛍光体としては、特に限定されないが、公知公用の蛍光体も適宜使用できる。
On the other hand, when only the red light-emitting phosphor (R), the green light-emitting phosphor (G), and the blue light-emitting phosphor (B) of the present invention are used as the phosphor, their blending ratio (mass) (R) 35-75: (G) 15-50: (B) 2-30, more preferably (R) 45-74: (G) 20-45: (B) 5-15.
Although it does not specifically limit as fluorescent substance other than the blue light emission fluorescent substance of this invention, A well-known publicly used fluorescent substance can also be used suitably.

また、本発明の青色発光蛍光体と併用して、公知公用の青色発光蛍光体も適宜使用できる。
公知公用の蛍光体としては、本明細書の背景技術に記載のものが挙げられる。
そして、発光モジュールに必須に使用される本発明の、併用しうる青色発光蛍光体以外の蛍光体、公知公用の青色発光蛍光体は、紫外線耐性のものが好ましい。
In addition, a publicly known and commonly used blue light-emitting phosphor can also be used in combination with the blue light-emitting phosphor of the present invention.
Examples of the publicly known phosphor include those described in the background art of this specification.
The phosphor other than the blue light-emitting phosphor that can be used in combination with the present invention, which is essential for the light-emitting module, and the publicly known blue light-emitting phosphor are preferably UV-resistant.

本発明の青色発光蛍光体を用いる発光モジュールに用いられる半導体発光素子としては、発光ピーク波長が350〜420nmであれば、特に限定されないが、紫外線を発光する半導体発光素子として一般的なInGaN/GaN系のものが好ましい。詳細には、特開2002−17100号公報に記載されているもの等が好適に使用できる。
InGaN/GaN系の半導体発光素子は、In量が多くなるほど発光ピーク波長が長くなり、In量が減るほど発光ピーク波長が短くなる。よって、InGaN/GaN系の半導体発光素子を発光モジュールに適用するためには、その発光ピーク波長が350〜420nmになるように、Inの量を適宜調整する。
The semiconductor light-emitting device used in the light-emitting module using the blue light-emitting phosphor of the present invention is not particularly limited as long as the emission peak wavelength is 350 to 420 nm. InGaN / GaN generally used as a semiconductor light-emitting device that emits ultraviolet light. The system type is preferred. Specifically, those described in JP-A-2002-17100 can be suitably used.
In an InGaN / GaN-based semiconductor light emitting device, the emission peak wavelength becomes longer as the In amount increases, and the emission peak wavelength becomes shorter as the In amount decreases. Therefore, in order to apply the InGaN / GaN-based semiconductor light emitting device to the light emitting module, the amount of In is adjusted as appropriate so that the emission peak wavelength becomes 350 to 420 nm.

本発明の青色発光蛍光体を用いる発光モジュールは、前記の半導体発光素子と本発明の青色発光蛍光を含む蛍光体とから構成されるものであるが、より具体的には、該半導体発光素子上に該蛍光体の層を設ける構成が挙げられる。
その場合、半導体発光素子上に設ける該蛍光体層は、少なくとも1種以上の蛍光体を単層又は複数層を層状に積層配置しても良いし、複数の蛍光体を単一の層内に混合して配置しても良い。上記半導体発光素子上に蛍光体層を設ける形態としては、半導体発光素子の表面を被覆するコーティング部材に蛍光体を混合する形態、モールド部材に蛍光体を混合する形態、或いはモールド部材に被せる被覆体に蛍光体を混合する形態、更には半導体発光素子ランプの投光側前方に蛍光体を混合した透光可能なプレートを配置する形態等が挙げられる。
A light emitting module using the blue light emitting phosphor of the present invention is composed of the semiconductor light emitting element and the phosphor containing the blue light emitting fluorescence of the present invention. More specifically, on the semiconductor light emitting element. And a structure in which the phosphor layer is provided.
In that case, the phosphor layer provided on the semiconductor light emitting element may be a single layer or a plurality of layers in which at least one kind of phosphor is laminated and a plurality of phosphors are arranged in a single layer. You may mix and arrange | position. As a form in which the phosphor layer is provided on the semiconductor light emitting element, a form in which the phosphor is mixed with a coating member that covers the surface of the semiconductor light emitting element, a form in which the phosphor is mixed with the mold member, or a covering that covers the mold member And a mode in which a translucent plate in which the phosphor is mixed is disposed in front of the light emitting side of the semiconductor light emitting element lamp.

また、半導体発光素子上のモールド部材に、前述の蛍光体の少なくとも1種以上が添加されていても良い。更に、前述の蛍光体の少なくとも1種以上からなる蛍光体層を、発光モジュールの外側に設けても良い。発光モジュールの外側に設ける形態としては、発光モジュールのモールド部材の外側表面に蛍光体を層状に塗布する形態、或いは蛍光体をゴム、樹脂、エラストマー等に分散させた成形体(例えば、キャップ状)を作製し、これを半導体発光素子に被覆する形態、又は前記成形体を平板状に加工し、これを半導体発光素子の前方に配置する形態等が挙げられる。   In addition, at least one of the aforementioned phosphors may be added to the mold member on the semiconductor light emitting device. Furthermore, you may provide the fluorescent substance layer which consists of at least 1 sort (s) or more of the above-mentioned fluorescent substance on the outer side of a light emitting module. As a form provided on the outside of the light emitting module, a form in which the phosphor is applied in layers on the outer surface of the mold member of the light emitting module, or a molded body in which the phosphor is dispersed in rubber, resin, elastomer or the like (for example, cap shape) The form which coats this to a semiconductor light emitting element, or the form which processes the above-mentioned fabrication object in the shape of a plate, and arranges this in front of a semiconductor light emitting element, etc. are mentioned.

本発明の青色発光蛍光体を用いる発光モジュールの具体的な形態の1例を図4に示す。図4に示す発光モジュールは、1のチップはInGaN活性層を有する中心波長が395nm付近の短波長可視光LEDチップであり、この短波長可視光LEDチップ1は接着剤層を介してリードフレーム2に固定されている。短波長可視光LEDチップ1とリードフレーム2は金線ワイヤー3により電気的に接続されている。前記短波長可視光LEDチップ1は、バインダー樹脂に蛍光体粉末を混練した蛍光体ペースト4で覆われている。この蛍光体ペースト4のバインダー樹脂は、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ノルボルネン系樹脂、フッ素樹脂、金属アルコキシド、ポリシラザン、アクリル樹脂等が挙げられる。また、この発光モジュールは、この蛍光体ペースト4の周囲を覆う封止材5を有している。封止材5には、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ノルボルネン系樹脂、フッ素樹脂、アクリル樹脂、低融点ガラス等の可視光に対し透明な材料が挙げられる。
なお、発光モジュール用の形態はこの発光モジュール構造に限定されるものではなく、例えば短波長可視光LEDチップ1の発光面に蛍光体層としてコーティングする等など、種々の形態がある。
An example of a specific form of a light emitting module using the blue light emitting phosphor of the present invention is shown in FIG. In the light emitting module shown in FIG. 4, one chip is a short wavelength visible light LED chip having an InGaN active layer and a center wavelength of about 395 nm. This short wavelength visible light LED chip 1 is connected to a lead frame 2 via an adhesive layer. It is fixed to. The short wavelength visible light LED chip 1 and the lead frame 2 are electrically connected by a gold wire 3. The short wavelength visible light LED chip 1 is covered with a phosphor paste 4 in which a phosphor powder is kneaded with a binder resin. Examples of the binder resin of the phosphor paste 4 include silicone resin, epoxy resin, urethane resin, norbornene resin, fluorine resin, metal alkoxide, polysilazane, and acrylic resin. In addition, the light emitting module has a sealing material 5 that covers the periphery of the phosphor paste 4. Examples of the sealing material 5 include materials that are transparent to visible light, such as silicone resin, epoxy resin, urethane resin, norbornene resin, fluorine resin, acrylic resin, and low-melting glass.
In addition, the form for light emitting modules is not limited to this light emitting module structure, For example, there exist various forms, such as coating the light emission surface of the short wavelength visible light LED chip 1 as a fluorescent substance layer.

本発明の青色発光蛍光体を用いる白色発光モジュールは、所定の白色度を有するものであるが、好ましくは、JIS D 5500の車両用灯具の白色規定である、以下の数値規定範囲の通りであり、色度図で示すならば図5の網掛部に相当するものである。   The white light emitting module using the blue light emitting phosphor of the present invention has a predetermined whiteness, and is preferably in accordance with the following numerical prescription range which is the white prescription of the vehicle lamp of JIS D 5500. In the chromaticity diagram, this corresponds to the shaded portion in FIG.

黄方向 x≦0.50
青方向 x≧0.31
緑方向 y≦0.44 及び y≦0.15+0.64x
紫方向 y≧0.05+0.75x 及び y≧0.382
Yellow direction x ≦ 0.50
Blue direction x ≧ 0.31
Green direction y ≦ 0.44 and y ≦ 0.15 + 0.64x
Purple direction y ≧ 0.05 + 0.75x and y ≧ 0.382

より好ましい白色度規定範囲は、以下の通りであり、色度図で示すならば図6の網掛部に相当するものである。   A more preferable whiteness defining range is as follows, and if shown in the chromaticity diagram, it corresponds to the shaded portion of FIG.

0.310≦x≦0.405、 かつ、 黒体放射軌跡≦y≦0.15+0.64x   0.310 ≦ x ≦ 0.405 and blackbody radiation locus ≦ y ≦ 0.15 + 0.64x

以下に本発明を実施例によって更に具体的に説明するが、勿論本発明の範囲は、これらによって限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited to these examples.

〔実施例1〕
Ca5−X−YMg(PO43Cl:Eu2+ (X=1.5,Y=0.1)の調製
CaCO、MgCO、EuO、CaClおよび(NH)H(PO)を2.9:1.5:0.05:0.5:3.0のモル比で計量し、均一混合後アルミナルツボ中で800〜1000℃、3時間、焼成した。その後、焼成品を乳鉢で粉砕し、粉砕品と(NH)Clを乳鉢で混合後、フタ付きのアルミナルツボにて2〜5%Hを含むN雰囲気中で、900〜1100℃、3時間焼成することで蛍光体を合成した。
[Example 1]
Ca 5-X-Y Mg X (PO 4) 3 Cl: Preparation of Eu 2+ Y (X = 1.5, Y = 0.1)
CaCO 3 , MgCO 3 , Eu 2 O 3 , CaCl 2 and (NH 4 ) H 2 (PO 4 ) were weighed in a molar ratio of 2.9: 1.5: 0.05: 0.5: 3.0, and after homogeneous mixing, 800-800 in an alumina crucible. Firing was performed at 1000 ° C. for 3 hours. Thereafter, the fired product is pulverized in a mortar, and after the pulverized product and (NH 4 ) Cl are mixed in a mortar, the alumina crucible with a lid is 900 to 1100 ° C. in an N 2 atmosphere containing 2 to 5% H 2 . The phosphor was synthesized by firing for 3 hours.

〔実施例2〕
Ca5−X−YMg(PO43Cl:Eu2+ (X=1.0,Y=0.1)の調製
CaCO、MgCO、EuO、CaClおよび(NH)H(PO)を3.4:1.0:0.05:0.5:3.0のモル比で計量した以外は、実施例1と同じ方法で蛍光体を合成した。
[Example 2]
Ca 5-X-Y Mg X (PO 4) 3 Cl: Preparation of Eu 2+ Y (X = 1.0, Y = 0.1)
Except that CaCO 3 , MgCO 3 , Eu 2 O 3 , CaCl 2 and (NH 4 ) H 2 (PO 4 ) were weighed in a molar ratio of 3.4: 1.0: 0.05: 0.5: 3.0, the same method as in Example 1 was used. A phosphor was synthesized.

〔実施例3〕
Ca5−X−YMg(PO43Cl:Eu2+ (X=0.5,Y=0.1)の調製
CaCO、MgCO、EuO、CaClおよび(NH)H(PO)を3.9:0.5:0.05:0.5:3.0のモル比で計量した以外は、実施例1と同じ方法で蛍光体を合成した。
Example 3
Ca 5-X-Y Mg X (PO 4) 3 Cl: Preparation of Eu 2+ Y (X = 0.5, Y = 0.1)
Except that CaCO 3 , MgCO 3 , Eu 2 O 3 , CaCl 2 and (NH 4 ) H 2 (PO 4 ) were weighed in a molar ratio of 3.9: 0.5: 0.05: 0.5: 3.0, the same method as in Example 1 was used. A phosphor was synthesized.

〔実施例4〕
Ca5−X−YMg(PO43Cl:Eu2+ (X=2.5,Y=0.1)の調製
CaCO、MgCO、EuO、CaClおよび(NH)H(PO)を1.9:2.5:0.05:0.5:3.0のモル比で計量した以外は、実施例1と同じ方法で蛍光体を合成した。
Example 4
Ca 5-X-Y Mg X (PO 4) 3 Cl: Preparation of Eu 2+ Y (X = 2.5, Y = 0.1)
Except that CaCO 3 , MgCO 3 , Eu 2 O 3 , CaCl 2 and (NH 4 ) H 2 (PO 4 ) were measured at a molar ratio of 1.9: 2.5: 0.05: 0.5: 3.0, the same method as in Example 1 was used. A phosphor was synthesized.

〔比較例1〕
青色発光蛍光体であるBaMgAl1017:Eu(商品名:LP−B4、化成オプトニクス株式会社製)について、励起スペクトル、発光スペクトルを測定し、発光積分強度を算出した。
[Comparative Example 1]
With respect to BaMgAl 10 O 17 : Eu (trade name: LP-B4, manufactured by Kasei Optonics Co., Ltd.) which is a blue light emitting phosphor, an excitation spectrum and an emission spectrum were measured, and an integrated emission intensity was calculated.

〔比較例2〕
青色発光蛍光体であるSr10(POCl:Eu(商品名:LP−B3,化成オプトニクス社製)について、励起スペクトル、発光スペクトルを測定し、発光積分強度を算出した。
[Comparative Example 2]
With respect to Sr 10 (PO 4 ) 6 Cl 2 : Eu (trade name: LP-B3, manufactured by Kasei Optonics Co., Ltd.) which is a blue light emitting phosphor, an excitation spectrum and an emission spectrum were measured, and an emission integrated intensity was calculated.

〔比較例3〕
Ca5−X−YMg(PO43Cl:Eu2+ (X=0.3,Y=0.1)の調製
CaCO、MgCO、EuO、CaClおよび(NH)H(PO)を4.1:0.3:0.05:0.5:3.0のモル比で計量した以外は、実施例1と同じ方法で蛍光体を合成した。
[Comparative Example 3]
Ca 5-X-Y Mg X (PO 4) 3 Cl: Preparation of Eu 2+ Y (X = 0.3, Y = 0.1)
Except that CaCO 3 , MgCO 3 , Eu 2 O 3 , CaCl 2 and (NH 4 ) H 2 (PO 4 ) were weighed in a molar ratio of 4.1: 0.3: 0.05: 0.5: 3.0, the same method as in Example 1 was used. A phosphor was synthesized.

〔比較例4〕
Ca5−X−YMg(PO43Cl:Eu2+ (X=3.0,Y=0.1)の調製
CaCO、MgCO、EuO、CaClおよび(NH)H(PO)を1.4:3.0:0.05:0.5:3.0のモル比で計量した以外は、実施例1と同じ方法で蛍光体を合成した。
[Comparative Example 4]
Ca 5-X-Y Mg X (PO 4) 3 Cl: Preparation of Eu 2+ Y (X = 3.0, Y = 0.1)
Except that CaCO 3 , MgCO 3 , Eu 2 O 3 , CaCl 2 and (NH 4 ) H 2 (PO 4 ) were weighed in a molar ratio of 1.4: 3.0: 0.05: 0.5: 3.0, the same method as in Example 1 was used. A phosphor was synthesized.

実施例および比較例で得られた蛍光体について、励起スペクトル、発光スペクトルを測定し、発光積分強度を算出した。   For the phosphors obtained in the examples and comparative examples, the excitation spectrum and emission spectrum were measured, and the emission integrated intensity was calculated.

[励起スペクトル]
図1に示す励起スペクトル分布が得られた。
BaMgAl10O17:Eu(比較例1)の励起スペクトルはピーク波長の360nm以上の波長域では、長波長になるほど発光効率が低下する。しかし、本発明蛍光体(実施例2)は、400nmをピークとしており、InGaN/GaN系半導体素子が最大の外部量子効率を示す390〜410nmの波長域で強く発光する。また、400nmを励起ピークとする、(Sr、Ca、Ba)(POCl:Eu(比較例2)より発光強度は高い(図1)。
[Excitation spectrum]
The excitation spectrum distribution shown in FIG. 1 was obtained.
In the excitation spectrum of BaMgAl 10 O 17 : Eu (Comparative Example 1), the emission efficiency decreases as the wavelength increases in the wavelength range of 360 nm or more of the peak wavelength. However, the phosphor of the present invention (Example 2) has a peak at 400 nm, and the InGaN / GaN-based semiconductor device emits light strongly in a wavelength range of 390 to 410 nm showing the maximum external quantum efficiency. Further, the emission intensity is higher than that of (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu (Comparative Example 2) having an excitation peak at 400 nm (FIG. 1).

[発光スペクトル]
また、図2に発光スペクトル分布を示す。発光ピーク波長450nmの発光スペクトルであるBaMgAl10O17:Euに対して本発明蛍光体(実施例2)の発光ピーク波長は460nmと長波長側でかつブロードな発光スペクトルである。また、半導体素子からの400nmの光で励起した場合、本発明蛍光体は、比較例1の1.8倍、比較例2の1.5倍の発光強度が得られた(図2)。
[Emission spectrum]
FIG. 2 shows the emission spectrum distribution. The emission peak wavelength of the phosphor of the present invention (Example 2) is 460 nm, which is a broad emission spectrum with respect to BaMgAl 10 O 17 : Eu, which is an emission spectrum with an emission peak wavelength of 450 nm. In addition, when excited by light of 400 nm from a semiconductor element, the phosphor of the present invention obtained a light emission intensity 1.8 times that of Comparative Example 1 and 1.5 times that of Comparative Example 2 (FIG. 2).

実施例蛍光体の組成、発光ピーク波長、励起ピーク波長及び発光強度を表1にまとめた。比較例4では、蛍光体がガラス化して発光特性の測定は不可であった。   Table 1 shows the composition, emission peak wavelength, excitation peak wavelength, and emission intensity of the example phosphors. In Comparative Example 4, it was impossible to measure the light emission characteristics because the phosphor was vitrified.

尚、実施例1〜4の発光スペクトル及び励起スペクトルはほぼ同じ形状を示したため、図1には最も発光強度の高い実施例2及び比較例を記載し、実施例1、3及び4は省略した。   Since the emission spectra and excitation spectra of Examples 1 to 4 showed substantially the same shape, FIG. 1 shows Example 2 and the comparative example with the highest emission intensity, and Examples 1, 3 and 4 were omitted. .

Figure 0004890017
Figure 0004890017

400nmにおける比較例1の蛍光体の発光積分強度を1とした場合の、マグネシウム量Xと発光積分強度の関係を図3に示す。図3より、1.0<X<1.5の範囲で、発光強度の最高値をとる。また、0.5≦X≦2.5の範囲で、比較例1より発光強度が大きいことが明らかとなった。   FIG. 3 shows the relationship between the amount of magnesium X and the integrated emission intensity when the integrated emission intensity of the phosphor of Comparative Example 1 at 400 nm is 1. From FIG. 3, the maximum value of the emission intensity is obtained in the range of 1.0 <X <1.5. Further, it was revealed that the emission intensity was higher than that of Comparative Example 1 in the range of 0.5 ≦ X ≦ 2.5.

発光モジュールの作製
半導体発光素子として、発光波長が395nm、外部量子効率が18%のInGaN/GaN系LEDチップを、赤色発光蛍光体として、LaS:Eu3+を、緑色発光蛍光体として、BaMgAl1017:Eu2+,Mn2+を、青色発光蛍光体として、実施例1の蛍光体を用いた。
上記のLEDチップおよび各色発光蛍光体を用いて、車両用照明として所望の色度範囲である図6中のAGDCに囲まれた領域の発光特性を検討するために、図6のF座標(x,y=0.36,0.365)によって示される色度で発光する発光モジュールを作製した。
Production of Light Emitting Module As a semiconductor light emitting device, an InGaN / GaN LED chip having an emission wavelength of 395 nm and an external quantum efficiency of 18% is used as a red light emitting phosphor, and La 2 O 2 S: Eu 3+ is used as a green light emitting phosphor. The phosphor of Example 1 was used as BaMgAl 10 O 17 : Eu 2+ , Mn 2+ as a blue light-emitting phosphor.
In order to study the light emission characteristics of the region surrounded by AGDC in FIG. 6, which is a desired chromaticity range for vehicle lighting, using the LED chip and each color light emitting phosphor, the F coordinate (x , Y = 0.36, 0.365).

具体的には、上記の各色発光蛍光体(赤・緑・青)を70:25:5のスペクトル分率比でボールミルで混合し、混合蛍光体を調整した。前記混合蛍光体とシリコーン樹脂(東レダウコーニングシリコーン(株)製JCR−6125)を1:1で混合し、蛍光体ペーストを作製した。前記蛍光体ペーストは、カップ状に賦型したリードフレーム内に固定した前記LEDチップを覆うようにポッティングし、150℃、1時間で硬化させ前記LEDチップ上に前記混合蛍光体を固定化した。   Specifically, each of the above-described light emitting phosphors (red, green, and blue) was mixed with a ball mill at a spectral fraction ratio of 70: 25: 5 to prepare a mixed phosphor. The mixed phosphor and a silicone resin (JCR-6125 manufactured by Toray Dow Corning Silicone Co., Ltd.) were mixed at 1: 1 to prepare a phosphor paste. The phosphor paste was potted to cover the LED chip fixed in a lead frame shaped like a cup and cured at 150 ° C. for 1 hour to immobilize the mixed phosphor on the LED chip.

発光モジュールの発光
作製した発光モジュールを、駆動電流20mA、駆動電圧3.5VでLEDチップに通電し、発光させた。
Light Emitting of Light-Emitting Module The produced light-emitting module was made to emit light by energizing the LED chip with a driving current of 20 mA and a driving voltage of 3.5 V.

発光モジュールにした場合の全光束の比較を表2に示す。実施例1は、比較例1、2何れよりも全光束が大きくなった。   Table 2 shows a comparison of the total luminous flux when the light emitting module is used. In Example 1, the total luminous flux was larger than those of Comparative Examples 1 and 2.

Figure 0004890017
Figure 0004890017

本発明の青色発光蛍光体は、例えば、紫外線発光半導体素子と組み合わせて発光モジュールを構成することが可能であり、該発光モジュールは、例えば車両用灯具等へ適用が期待できる。   The blue light emitting phosphor of the present invention can be combined with, for example, an ultraviolet light emitting semiconductor element to constitute a light emitting module, and the light emitting module can be expected to be applied to, for example, a vehicle lamp.

実施例2及び比較例1〜3の青色発光蛍光体の励起スペクトル分布を表す図である。It is a figure showing the excitation spectrum distribution of the blue light emission fluorescent substance of Example 2 and Comparative Examples 1-3. 実施例2及び比較例1〜3の青色発光蛍光体の発光スペクトル分布を表す図である。It is a figure showing the emission spectrum distribution of the blue light emission fluorescent substance of Example 2 and Comparative Examples 1-3. マグネシウム量と青色発光蛍光体の発光強度との関係を表す図である。It is a figure showing the relationship between the amount of magnesium and the emitted light intensity of a blue light emission fluorescent substance. 本発明の青色発光蛍光体を用いる発光モジュールの形態の1例を示す図である。It is a figure which shows one example of the form of the light emitting module using the blue light emission fluorescent substance of this invention. 本発明の青色発光蛍光体を用いる白色発光モジュールが発光する光の白色度の、好ましい範囲を示す色度図である。It is a chromaticity diagram which shows the preferable range of the whiteness of the light which the white light emitting module using the blue light emission fluorescent substance of this invention light-emits. 本発明の青色発光蛍光体を用いる白色発光モジュールが発光する光の白色度の、より好ましい範囲を示す色度図である。It is a chromaticity diagram which shows the more preferable range of the whiteness of the light which the white light emitting module using the blue light emission fluorescent substance of this invention light-emits.

符号の説明Explanation of symbols

1 LEDチップ
2 リードフレーム
3 金属ワイヤー
4 蛍光体ペースト
5 封止材
1 LED chip 2 Lead frame 3 Metal wire 4 Phosphor paste 5 Sealing material

Claims (5)

下記一般式で表されることを特徴とする青色発光蛍光体。
Ca5−X−YMg(PO43Cl:Eu2+
1.0<<1.5、0<Yで、かつ、0.5<X+Y<5である。)
A blue light-emitting phosphor represented by the following general formula:
Ca 5-X-Y Mg X (PO 4) 3 Cl: Eu 2+ Y
( 1.0 < X <1.5 , 0 <Y, and 0.5 <X + Y <5)
励起ピーク波長が390〜410nmであることを特徴とする請求項1記載の青色発光蛍光体。   The blue light-emitting phosphor according to claim 1, wherein an excitation peak wavelength is 390 to 410 nm. 少なくとも、発光ピーク波長が390〜410nmの半導体発光素子と請求項1または2記載の青色発光蛍光体とから構成されることを特徴とする発光モジュール。   A light emitting module comprising at least a semiconductor light emitting element having an emission peak wavelength of 390 to 410 nm and the blue light emitting phosphor according to claim 1. さらに、他の色を発光する蛍光体を構成物として用いたことを特徴とする請求項3記載の発光モジュール。   4. The light emitting module according to claim 3, wherein phosphors emitting other colors are used as constituents. 他の色を発光する蛍光体が、少なくとも赤色発光蛍体および緑色発光蛍光体であり、白色発光することを特徴とする請求項4記載の発光モジュール。
5. The light emitting module according to claim 4, wherein the phosphors emitting other colors are at least a red light emitting phosphor and a green light emitting phosphor and emit white light.
JP2005362492A 2005-01-26 2005-12-15 Blue light emitting phosphor and light emitting module using the same Expired - Fee Related JP4890017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362492A JP4890017B2 (en) 2005-01-26 2005-12-15 Blue light emitting phosphor and light emitting module using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005018830 2005-01-26
JP2005018830 2005-01-26
JP2005362492A JP4890017B2 (en) 2005-01-26 2005-12-15 Blue light emitting phosphor and light emitting module using the same

Publications (2)

Publication Number Publication Date
JP2006233183A JP2006233183A (en) 2006-09-07
JP4890017B2 true JP4890017B2 (en) 2012-03-07

Family

ID=37041187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362492A Expired - Fee Related JP4890017B2 (en) 2005-01-26 2005-12-15 Blue light emitting phosphor and light emitting module using the same

Country Status (1)

Country Link
JP (1) JP4890017B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030042A (en) * 2007-06-29 2009-02-12 Mitsubishi Chemicals Corp Phosphor, method for producing phosphor, phosphor-containing composition, and light-emitting device
EP2175007A4 (en) * 2007-06-29 2011-10-19 Mitsubishi Chem Corp Phosphor, method for producing phosphor, phosphor-containing composition, and light-emitting device
JP4999783B2 (en) * 2007-07-12 2012-08-15 株式会社小糸製作所 Light emitting device
JP2011096685A (en) * 2008-01-25 2011-05-12 Koito Mfg Co Ltd Light-emitting module using phosphor and lighting fixture for vehicle using same
JP5872828B2 (en) * 2011-09-28 2016-03-01 株式会社小糸製作所 Light emitting module and phosphor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100468789C (en) * 2002-02-15 2009-03-11 三菱化学株式会社 Light emitting device and illuminating device using it
JP4389513B2 (en) * 2003-08-08 2009-12-24 三菱化学株式会社 Light emitting device, lighting device, and image display device

Also Published As

Publication number Publication date
JP2006233183A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4543250B2 (en) Phosphor mixture and light emitting device
TWI415923B (en) Illumination system comprising a radiation source and a fluorescent material
JP4543253B2 (en) Phosphor mixture and light emitting device
EP2269207B1 (en) Multiple-chip excitation systems for white light emitting diodes (leds)
US7274045B2 (en) Borate phosphor materials for use in lighting applications
US7229573B2 (en) Ce3+ and Eu2+ doped phosphors for light generation
JP4559496B2 (en) Light emitting device
JP2006524425A (en) White semiconductor light emitting device
JP2004505470A (en) Illumination unit with at least one LED as light source
JP2008546196A (en) Lighting system with luminescent material to compensate for color shortage
JP5323308B2 (en) Light emitting module
US8497625B2 (en) Light emitting module and phosphor
US8519611B2 (en) Hybrid illumination system with improved color quality
JP4890017B2 (en) Blue light emitting phosphor and light emitting module using the same
JP2008013592A (en) White light-emitting phosphor and light-emitting module comprised of the same
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
JP6428245B2 (en) Light emitting device
JP2007131794A (en) Nitride-based phosphor and light emitting device using the same
JP4890018B2 (en) White light emitting phosphor and light emitting module using the same
JP2008007564A (en) Oxynitride fluorescent body and light emitting device using this
JP2006233052A (en) Red light-emitting phosphor and light-emitting module using the same
JP4732888B2 (en) Red light emitting phosphor and light emitting module using the same
JP5063938B2 (en) Orange phosphor
JP4699047B2 (en) Light emitting module
WO2009093611A1 (en) Light emitting module using phosphor and lighting fixture for vehicle using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees