JP4732888B2 - Red light emitting phosphor and light emitting module using the same - Google Patents

Red light emitting phosphor and light emitting module using the same Download PDF

Info

Publication number
JP4732888B2
JP4732888B2 JP2005365553A JP2005365553A JP4732888B2 JP 4732888 B2 JP4732888 B2 JP 4732888B2 JP 2005365553 A JP2005365553 A JP 2005365553A JP 2005365553 A JP2005365553 A JP 2005365553A JP 4732888 B2 JP4732888 B2 JP 4732888B2
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
red
emitting module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005365553A
Other languages
Japanese (ja)
Other versions
JP2007169345A (en
Inventor
久芳 大長
剛 岩崎
秀和 羽山
睦夫 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2005365553A priority Critical patent/JP4732888B2/en
Publication of JP2007169345A publication Critical patent/JP2007169345A/en
Application granted granted Critical
Publication of JP4732888B2 publication Critical patent/JP4732888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、赤色発光蛍光体およびそれを用いた発光モジュールに関し、詳細には、従来よりも耐光性が向上した赤色発光蛍光体、およびそれを用いた輝度低下・色度ずれが少ない発光モジュールに関する。   The present invention relates to a red light emitting phosphor and a light emitting module using the red light emitting phosphor, and more particularly, to a red light emitting phosphor having improved light resistance as compared with the conventional light emitting module and a light emitting module using the red light emitting phosphor with less luminance reduction and chromaticity deviation. .

環境問題や省電力の観点から水銀を使用しない、発光ダイオード(LED)や半導体レーザー(LD)を励起光源として蛍光体と組み合わせ、そのときの発光を光源とし、消費電力の少ない照明用光源が開発されている。
例えば、青色系の発光の一部を吸収して発光するCe付活希土類アルミン酸塩蛍光体からの黄色系の発光との加色混合によって全体として白色系の発光を呈する発光ダイオードが開示されている(特許文献1)。しかしながら、この組み合わせのタイプは、最終的に得られる白色光の発光色が限定され、また本光源の照明下での色の再現性が好ましい色に再現されず、演色性に問題があった。
Developed a light source for lighting that uses light emitting diodes (LEDs) and semiconductor lasers (LDs) that do not use mercury, combined with phosphors as excitation light sources, and uses light emission at that time as a light source. Has been.
For example, a light emitting diode that exhibits white light emission as a whole is disclosed by additive color mixing with yellow light emission from a Ce-activated rare earth aluminate phosphor that absorbs part of blue light emission and emits light. (Patent Document 1). However, this type of combination has a problem in color rendering properties because the emission color of white light finally obtained is limited, and color reproducibility under illumination of this light source is not reproduced in a preferable color.

近年、このような問題を解決するため、2色加色での白色合成の欠点を補う方法として、紫外又は短波長可視光を半導体素子からの一次光(励起光)とし、緑・青・赤3成分の蛍光体を混合することによる発光モジュールが紹介されている。しかし、半導体素子が450nm近辺の青色発光する場合に比べ、360〜420nmの紫外又は短波長可視光を一次光とした場合、その光エネルギーが高く、その直上に搭載される蛍光体自体の耐光性の確保が要求される。   In recent years, in order to solve such problems, as a method of compensating for the disadvantages of white synthesis by adding two colors, ultraviolet or short wavelength visible light is used as primary light (excitation light) from a semiconductor element, and green, blue, red A light emitting module by mixing three-component phosphors is introduced. However, compared with the case where the semiconductor element emits blue light around 450 nm, when ultraviolet light or short wavelength visible light of 360 to 420 nm is used as the primary light, its light energy is high, and the light resistance of the phosphor itself mounted immediately above it is high. Is required.

具体的には緑・青・赤3成分の蛍光体として、青色発光蛍光体としてBaMgAl10O17:Eu、(Sr,Ca,Ba)5(PO4)3Cl:Eu等、緑色発光蛍光体としてCa8Mg(SiO4)4Cl:Eu,Mn、BaMgAl10O17:Eu,Mn等、赤色発光蛍光体としてはY2O2S:EuまたはY2O3:Eu,Bi等が挙げられている。このとき、赤色発光成分の蛍光体の発光効率が他の成分のそれより大きく劣るため、赤成分の蛍光体の混合割合が多く必要になり、発光素子全体の発光効率を引き下げていた。近年、比較的高発光効率の赤色蛍光体として、LiEuW2O8が発見された(特許文献2)が、大光量の発光モジュールに対応する十分な耐光性を有していなかった。 Specifically, green, blue and red three-component phosphors, blue-emitting phosphors such as BaMgAl 10 O 17 : Eu, (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu, etc., green-emitting phosphors As Ca 8 Mg (SiO 4 ) 4 Cl: Eu, Mn, BaMgAl 10 O 17 : Eu, Mn, etc., and red emitting phosphors include Y 2 O 2 S: Eu or Y 2 O 3 : Eu, Bi etc. It has been. At this time, the luminous efficiency of the phosphor of the red light emitting component is greatly inferior to that of the other components, so that a large mixing ratio of the phosphor of the red component is required, and the luminous efficiency of the entire light emitting element is lowered. In recent years, LiEuW 2 O 8 was discovered as a red phosphor with relatively high luminous efficiency (Patent Document 2), but it did not have sufficient light resistance corresponding to a light emitting module with a large amount of light.

特許第2927279号公報Japanese Patent No. 2927279 特開2003−41252号公報JP 2003-41252 A

紫外又は短波長可視光を半導体発光素子の一次光(励起光)とし、青・緑・赤3成分の蛍光体で白色光を構成する発光モジュールが自動車照明光源に必要な輝度で発光するとき、半導体素子直上に設置された蛍光体は、太陽光の約1000倍クラスのエネルギー密度に相当する光に曝される。したがって、蛍光体自体にこのエネルギー密度レベルの紫外又は短波長可視光への耐性が要求される。現在青・緑・赤3成分の蛍光体のうち、青、緑については、紫外又は短波長可視光を効率よく変換し、かつUV耐性を持った蛍光体が存在するが、赤色蛍光体LiEuW2O8は 十分な耐光性がないため、白色発光モジュールを長時間点灯していると発光スペクトル中の赤色成分が減少し、発光色にブルーシフトが生じていた。 When UV or short wavelength visible light is used as the primary light (excitation light) of a semiconductor light emitting device, and a light emitting module that constitutes white light with blue, green and red three-component phosphors emits light with a luminance required for an automobile illumination light source, The phosphor placed immediately above the semiconductor element is exposed to light corresponding to an energy density about 1000 times that of sunlight. Therefore, the phosphor itself is required to have resistance to ultraviolet or short wavelength visible light at this energy density level. Currently, among blue, green, and red three-component phosphors, blue and green phosphors that convert UV or short wavelength visible light efficiently and have UV resistance exist, but the red phosphor LiEuW 2 Since O 8 does not have sufficient light resistance, when the white light-emitting module is lit for a long time, the red component in the emission spectrum is reduced and a blue shift occurs in the emission color.

本発明の目的は、上記問題点を解決することであり、耐光性が向上した赤色発光蛍光体を提供することである。また、本発明で得られる耐光性が向上した赤色発光蛍光体を用いることにより、輝度低下・色度ずれが少ない白色LED発光モジュールを製造することができる。   An object of the present invention is to solve the above-described problems and to provide a red light emitting phosphor having improved light resistance. Moreover, by using the red light-emitting phosphor with improved light resistance obtained in the present invention, a white LED light-emitting module with less luminance reduction and chromaticity deviation can be manufactured.

本発明者らは、鋭意検討を重ねた結果、以下の構成を採用することによって、上記目的が達成され、本発明を成すに至った。
(1) 下記一般式で表されることを特徴とする赤色発光蛍光体。
LiEuW2O8・1/xEuAO3
(x=2〜20であり、Aはホウ素、アルミニウム、ガリウムのいずれか1種類以上の元素)
(2) 励起ピーク波長が360〜420nmであることを特徴とする(1)記載の赤色発光蛍光体。
(3) 粒径が50μm以下であることを特徴とする(1)又は(2)に記載の赤色発光蛍光体。
(4) 発光ピーク波長が360〜420nmの半導体素子と(1)〜(3)のいずれか1項に記載の蛍光体を備える発光モジュール。
(5) さらに他の色を発光する蛍光体を構成物として用いたことを特徴とする(4)に記載の発光モジュール。
(6) 他の色を発光する蛍光体が、少なくとも緑色発光蛍光体及び青色発光蛍光体であり、白色発光することを特徴とする(5)に記載の発光モジュール。
(7) (4)〜(6)のいずれか1項に記載の発光モジュールを光源とした車両用灯具。
As a result of intensive studies, the present inventors have achieved the above object by adopting the following configuration, and have achieved the present invention.
(1) A red light emitting phosphor represented by the following general formula.
LiEuW 2 O 8・ 1 / xEuAO 3
(X = 2 to 20 and A is one or more elements selected from boron, aluminum and gallium)
(2) The red light emitting phosphor according to (1), wherein the excitation peak wavelength is 360 to 420 nm.
(3) The red light-emitting phosphor according to (1) or (2), wherein the particle size is 50 μm or less.
(4) A light emitting module comprising a semiconductor element having an emission peak wavelength of 360 to 420 nm and the phosphor according to any one of (1) to (3).
(5) The light emitting module according to (4), wherein a phosphor emitting another color is used as a constituent.
(6) The light emitting module according to (5), wherein the phosphors emitting other colors are at least a green light emitting phosphor and a blue light emitting phosphor and emit white light.
(7) A vehicular lamp using the light-emitting module according to any one of (4) to (6) as a light source.

従来の赤色発光蛍光体に比べて、本発明の赤色発光蛍光体は耐光性が向上しており、発光モジュールに用いた場合には輝度低下・色度ずれが少ない発光モジュールを得ることができる。   Compared with the conventional red light-emitting phosphor, the red light-emitting phosphor of the present invention has improved light resistance, and when used in a light-emitting module, it is possible to obtain a light-emitting module with less luminance reduction and chromaticity deviation.

本発明の赤色発光蛍光体は、下記一般式で表されることを特徴とするものである。   The red light emitting phosphor of the present invention is represented by the following general formula.

LiEuW2O8・1/xEuAO3 LiEuW 2 O 8・ 1 / xEuAO 3

(x=2〜20であり、Aはホウ素、アルミニウム、ガリウムのいずれか1種類以上の元素) (X = 2 to 20 and A is one or more elements selected from boron, aluminum and gallium)

このような上記一般式で表される赤色発光蛍光体は、励起ピーク波長が360〜420nmであり、その中でも、励起ピーク波長が390〜410nmであることが好ましい。   Such a red light emitting phosphor represented by the above general formula has an excitation peak wavelength of 360 to 420 nm, and among them, the excitation peak wavelength is preferably 390 to 410 nm.

本発明の赤色発光蛍光体は、粒径が50μm以下であることが好ましい。粒径が50μm以下であることにより、蛍光体の粒子表面における光の散乱を防ぐことができ、効率良く蛍光体を発光させることができる。   The red light-emitting phosphor of the present invention preferably has a particle size of 50 μm or less. When the particle size is 50 μm or less, scattering of light on the particle surface of the phosphor can be prevented, and the phosphor can emit light efficiently.

また、本発明の赤色発光蛍光体は、紫外線発光半導体素子と組み合わせて発光モジュールとすることができる。例えば、紫外線発光半導体素子と青・緑色発光蛍光体とを組み合わせて白色発光モジュールとすることができる。
この場合、白色発光モジュールは、本発明の赤色発光蛍光体以外に、基本的にはさらに青色発光蛍光体および緑色発光蛍光体をも用いるものであるが、より望ましい、所望の色度の白色を得るためには、さらに他蛍光体を用いることも可能である。
Moreover, the red light emitting phosphor of the present invention can be combined with an ultraviolet light emitting semiconductor element to form a light emitting module. For example, a white light emitting module can be formed by combining an ultraviolet light emitting semiconductor element and a blue / green light emitting phosphor.
In this case, the white light emitting module basically uses a blue light emitting phosphor and a green light emitting phosphor in addition to the red light emitting phosphor of the present invention. In order to obtain it, it is also possible to use other phosphors.

一方、蛍光体として、本発明の赤色発光蛍光体(R)と緑色発光蛍光体(G)と青色発光蛍光体(B)のみを用いる場合には、それらの配合比率は、スペクトル分率比で、(R)35〜75:(G)15〜50:(B)2〜30であることが好ましく、より好ましくは、(R)45〜74:(G)20〜45:(B)5〜15である。
本発明の赤色発光蛍光体以外の緑色蛍光体及び青色蛍光体としては、特に限定されないが、公知公用の蛍光体も適宜使用できる。
On the other hand, when only the red light emitting phosphor (R), the green light emitting phosphor (G), and the blue light emitting phosphor (B) of the present invention are used as the phosphor, the blending ratio thereof is a spectral fraction ratio. (R) 35-75: (G) 15-50: (B) 2-30, more preferably (R) 45-74: (G) 20-45: (B) 5 15.
Although it does not specifically limit as green fluorescent substance other than the red light emission fluorescent substance of this invention, and blue fluorescent substance, The well-known publicly used fluorescent substance can also be used suitably.

また、本発明の赤色発光蛍光体と併用して、公知公用の赤色発光蛍光体も適宜使用できる。
公知公用の蛍光体としては、本明細書の背景技術に記載のものが挙げられる。
そして、発光モジュールに必須に使用される本発明の、併用しうる青色発光蛍光体、緑色発光蛍光体、公知公用の赤色発光蛍光体は、紫外線耐性のものが好ましい。
Moreover, a publicly known and used red light-emitting phosphor can be used as appropriate in combination with the red light-emitting phosphor of the present invention.
Examples of the publicly known phosphor include those described in the background art of this specification.
The blue light-emitting phosphor, the green light-emitting phosphor, and the publicly known red light-emitting phosphor of the present invention that are essential for the light-emitting module are preferably UV-resistant.

本発明の赤色発光蛍光体を用いる発光モジュールに用いられる半導体発光素子としては、発光ピーク波長が360〜420nmであれば、特に限定されないが、紫外線を発光する半導体発光素子として一般的なInGaN/GaN系のものが好ましい。詳細には、特開2002−17100号公報に記載されているもの等が好適に使用できる。
InGaN/GaN系の半導体発光素子は、In量が多くなるほど発光ピーク波長が長くなり、In量が減るほど発光ピーク波長が短くなる。よって、InGaN/GaN系の半導体発光素子を発光モジュールに適用するためには、その発光ピーク波長が360〜420nmになるように、Inの量を適宜調整する。
The semiconductor light emitting device used in the light emitting module using the red light emitting phosphor of the present invention is not particularly limited as long as the emission peak wavelength is 360 to 420 nm. InGaN / GaN generally used as a semiconductor light emitting device that emits ultraviolet light. The system type is preferred. Specifically, those described in JP-A-2002-17100 can be suitably used.
In an InGaN / GaN-based semiconductor light emitting device, the emission peak wavelength becomes longer as the In amount increases, and the emission peak wavelength becomes shorter as the In amount decreases. Therefore, in order to apply the InGaN / GaN-based semiconductor light emitting device to the light emitting module, the amount of In is adjusted as appropriate so that the emission peak wavelength becomes 360 to 420 nm.

本発明の赤色発光蛍光体を用いる発光モジュールは、前記の半導体発光素子と本発明の赤色発光蛍光を含む蛍光体とから構成されるものであるが、より具体的には、該半導体発光素子上に該蛍光体の層を設ける構成が挙げられる。
その場合、半導体発光素子上に設ける該蛍光体層は、少なくとも1種以上の蛍光体を単層又は複数層を層状に積層配置しても良いし、複数の蛍光体を単一の層内に混合して配置しても良い。上記半導体発光素子上に蛍光体層を設ける形態としては、半導体発光素子の表面を被覆するコーティング部材に蛍光体を混合する形態、モールド部材に蛍光体を混合する形態、或いはモールド部材に被せる被覆体に蛍光体を混合する形態、更には半導体発光素子ランプの投光側前方に蛍光体を混合した透光可能なプレートを配置する形態等が挙げられる。
A light emitting module using the red light emitting phosphor of the present invention is composed of the above semiconductor light emitting element and the phosphor containing the red light emitting fluorescent light of the present invention. And a structure in which the phosphor layer is provided.
In that case, the phosphor layer provided on the semiconductor light emitting element may be a single layer or a plurality of layers in which at least one kind of phosphor is laminated and a plurality of phosphors are arranged in a single layer. You may mix and arrange | position. As a form in which the phosphor layer is provided on the semiconductor light emitting element, a form in which the phosphor is mixed with a coating member that covers the surface of the semiconductor light emitting element, a form in which the phosphor is mixed with the mold member, or a covering that covers the mold member And a mode in which a translucent plate in which the phosphor is mixed is disposed in front of the light emitting side of the semiconductor light emitting element lamp.

また、半導体発光素子上のモールド部材に、前述の蛍光体の少なくとも1種以上が添加されていても良い。更に、前述の蛍光体の少なくとも1種以上からなる蛍光体層を、発光モジュールの外側に設けても良い。発光モジュールの外側に設ける形態としては、発光モジュールのモールド部材の外側表面に蛍光体を層状に塗布する形態、或いは蛍光体をゴム、樹脂、エラストマー等に分散させた成形体(例えば、キャップ状)を作製し、これを半導体発光素子に被覆する形態、又は前記成形体を平板状に加工し、これを半導体発光素子の前方に配置する形態等が挙げられる。   In addition, at least one of the aforementioned phosphors may be added to the mold member on the semiconductor light emitting device. Furthermore, you may provide the fluorescent substance layer which consists of at least 1 sort (s) or more of the above-mentioned fluorescent substance on the outer side of a light emitting module. As a form provided on the outside of the light emitting module, a form in which the phosphor is applied in layers on the outer surface of the mold member of the light emitting module, or a molded body in which the phosphor is dispersed in rubber, resin, elastomer or the like (for example, cap shape) The form which coats this to a semiconductor light emitting element, or the form which processes the above-mentioned fabrication object in the shape of a plate, and arranges this in front of a semiconductor light emitting element, etc. are mentioned.

本発明の赤色発光蛍光体を用いる発光モジュールの具体的な形態の1例を図10に示す。図10に示す発光モジュールは、1のチップはInGaN活性層を有する中心波長が395nm付近の短波長可視光LEDチップであり、この短波長可視光LEDチップ1は接着剤層を介してリードフレーム2に固定されている。短波長可視光LEDチップ1とリードフレーム2は金線ワイヤー3により電気的に接続されている。前記短波長可視光LEDチップ1は、バインダー樹脂に蛍光体粉末を混練した蛍光体ペースト4で覆われている。この蛍光体ペースト4のバインダー樹脂は、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ノルボルネン系樹脂、フッ素樹脂、金属アルコキシド、ポリシラザン、アクリル樹脂等が挙げられる。また、この発光モジュールは、この蛍光体ペースト4の周囲を覆う封止材5を有している。封止材5には、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ノルボルネン系樹脂、フッ素樹脂、アクリル樹脂、低融点ガラス等の可視光に対し透明な材料が挙げられる。
なお、発光モジュール用の形態はこの発光モジュール構造に限定されるものではなく、例えば短波長可視光LEDチップ1の発光面に蛍光体層としてコーティングする等など、種々の形態がある。
An example of a specific form of a light emitting module using the red light emitting phosphor of the present invention is shown in FIG. In the light emitting module shown in FIG. 10, one chip is a short wavelength visible light LED chip having an InGaN active layer and a center wavelength of around 395 nm. This short wavelength visible light LED chip 1 is connected to a lead frame 2 via an adhesive layer. It is fixed to. The short wavelength visible light LED chip 1 and the lead frame 2 are electrically connected by a gold wire 3. The short wavelength visible light LED chip 1 is covered with a phosphor paste 4 in which a phosphor powder is kneaded with a binder resin. Examples of the binder resin of the phosphor paste 4 include silicone resin, epoxy resin, urethane resin, norbornene resin, fluorine resin, metal alkoxide, polysilazane, and acrylic resin. In addition, the light emitting module has a sealing material 5 that covers the periphery of the phosphor paste 4. Examples of the sealing material 5 include materials that are transparent to visible light, such as silicone resin, epoxy resin, urethane resin, norbornene resin, fluorine resin, acrylic resin, and low-melting glass.
In addition, the form for light emitting modules is not limited to this light emitting module structure, For example, there exist various forms, such as coating the light emission surface of the short wavelength visible light LED chip 1 as a fluorescent substance layer.

本発明の赤色発光蛍光体を用いる白色発光モジュールは、所定の白色度を有するものであるが、好ましくは、JIS D 5500の車両用灯具の白色規定である、以下の数値規定範囲の通りであり、色度図で示すならば図11の網掛部に相当するものである。   The white light emitting module using the red light emitting phosphor of the present invention has a predetermined whiteness, and is preferably in accordance with the following numerical prescription range, which is the white prescription of the vehicle lamp of JIS D 5500. The chromaticity diagram corresponds to the shaded portion in FIG.

黄方向 x≦0.50
青方向 x≧0.31
緑方向 y≦0.44 及び y≦0.15+0.64x
紫方向 y≧0.05+0.75x 及び y≧0.382
Yellow direction x ≦ 0.50
Blue direction x ≧ 0.31
Green direction y ≦ 0.44 and y ≦ 0.15 + 0.64x
Purple direction y ≧ 0.05 + 0.75x and y ≧ 0.382

より好ましい白色度規定範囲は、以下の通りであり、色度図で示すならば図12の網掛部に相当するものである。   A more preferable whiteness defining range is as follows, and corresponds to the shaded portion in FIG.

0.310≦x≦0.405、 かつ、 黒体放射軌跡≦y≦0.15+0.64x   0.310 ≦ x ≦ 0.405 and blackbody radiation locus ≦ y ≦ 0.15 + 0.64x

以下に本発明を実施例によって更に具体的に説明するが、勿論本発明の範囲は、これらによって限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited to these examples.

[実施例1]
LiEuW2O8・1/6EuBO3の調製
炭酸リチウム;0.37g、酸化ユウロピウム;2.05g、タングステン酸アンモニウム;5.22g、ホウ酸;0.10gを秤量し、乳鉢で約20分間均一に混合する。
混合済原料をアルミナ坩堝に入れ、電気炉で空気中700℃で6時間焼成した。得られた焼成物を微粉砕し、温純水でよく洗浄し、更にろ過・乾燥することによって、目的蛍光体を調製した。
[Example 1]
Preparation of LiEuW 2 O 8 · 1 / 6EuBO 3 Lithium carbonate; 0.37 g, europium oxide; 2.05 g, ammonium tungstate; 5.22 g, boric acid; 0.10 g, weighed uniformly in a mortar for about 20 minutes Mix.
The mixed raw material was put into an alumina crucible and baked in an electric furnace at 700 ° C. for 6 hours. The obtained fired product was finely pulverized, thoroughly washed with warm pure water, and further filtered and dried to prepare a target phosphor.

[実施例2]
LiEuW2O8・1/6EuAlO3の調製
炭酸リチウム;0.37g、酸化ユウロピウム;2.05g、タングステン酸アンモニウム;5.22g、アルミナ;0.085gを秤量し、乳鉢で約20分間均一に混合する。
混合済原料をアルミナ坩堝に入れ、電気炉で空気中700℃で6時間焼成した。得られた焼成物を微粉砕し、温純水でよく洗浄し、更にろ過・乾燥することによって、目的蛍光体を調製した。
[Example 2]
Preparation of LiEuW 2 O 8・ 1 / 6EuAlO 3
Lithium carbonate; 0.37 g, europium oxide; 2.05 g, ammonium tungstate; 5.22 g, alumina; 0.085 g are weighed and mixed uniformly in a mortar for about 20 minutes.
The mixed raw material was put into an alumina crucible and baked in an electric furnace at 700 ° C. for 6 hours. The obtained fired product was finely pulverized, thoroughly washed with warm pure water, and further filtered and dried to prepare a target phosphor.

[実施例3]
LiEuW2O8・1/6EuGaO3の調製
炭酸リチウム;0.37g、酸化ユウロピウム;2.05g、タングステン酸アンモニウム;5.22g、酸化ガリウム;0.156gを秤量し、乳鉢で約20分間均一に混合する。
混合済原料をアルミナ坩堝に入れ、電気炉で空気中700℃で6時間焼成した。得られた焼成物を微粉砕し、温純水でよく洗浄し、更にろ過・乾燥することによって、目的蛍光体を調製した。
[Example 3]
Preparation of LiEuW 2 O 8 · 1 / 6EuGaO 3 Lithium carbonate; 0.37 g, europium oxide; 2.05 g, ammonium tungstate; 5.22 g, gallium oxide; Mix.
The mixed raw material was put into an alumina crucible and baked in an electric furnace at 700 ° C. for 6 hours. The obtained fired product was finely pulverized, thoroughly washed with warm pure water, and further filtered and dried to prepare a target phosphor.

[実施例4]
LiEuW2O8・1/15EuBO3の調製
炭酸リチウム;0.37g、酸化ユウロピウム;1.88g、タングステン酸アンモニウム;5.22g、ホウ酸;0.04gを秤量し、乳鉢で約20分間均一に混合する。
混合済原料をアルミナ坩堝に入れ、電気炉で空気中700℃で6時間焼成した。得られた焼成物を微粉砕し、温純水でよく洗浄し、更にろ過・乾燥することによって、目的蛍光体を調製した。
[Example 4]
Preparation of LiEuW 2 O 8 · 15 / 15EuBO 3 Lithium carbonate; 0.37 g, europium oxide; 1.88 g, ammonium tungstate; 5.22 g, boric acid; 0.04 g are weighed and uniformly in a mortar for about 20 minutes Mix.
The mixed raw material was put into an alumina crucible and baked in an electric furnace at 700 ° C. for 6 hours. The obtained fired product was finely pulverized, thoroughly washed with warm pure water, and further filtered and dried to prepare a target phosphor.

[実施例5]
LiEuW2O8・1/8EuBO3の調製
炭酸リチウム;0.37g、酸化ユウロピウム;1.98g、タングステン酸アンモニウム;5.22g、ホウ酸;0.077gを秤量し、乳鉢で約20分間均一に混合する。
混合済原料をアルミナ坩堝に入れ、電気炉で空気中700℃で6時間焼成した。得られた焼成物を微粉砕し、温純水でよく洗浄し、更にろ過・乾燥することによって、目的蛍光体を調製した。
[Example 5]
Preparation of LiEuW 2 O 8 · 1 / 8EuBO 3 Lithium carbonate; 0.37 g, europium oxide; 1.98 g, ammonium tungstate; 5.22 g, boric acid; 0.077 g, weighed uniformly in a mortar for about 20 minutes Mix.
The mixed raw material was put into an alumina crucible and baked in an electric furnace at 700 ° C. for 6 hours. The obtained fired product was finely pulverized, thoroughly washed with warm pure water, and further filtered and dried to prepare a target phosphor.

[実施例6]
LiEuW2O8・1/3EuBO3の調製
炭酸リチウム;0.37g、酸化ユウロピウム;2.35g、タングステン酸アンモニウム;5.22g、ホウ酸;0.21gを秤量し、乳鉢で約20分間均一に混合する。
混合済原料をアルミナ坩堝に入れ、電気炉で空気中700℃で6時間焼成した。得られた焼成物を微粉砕し、温純水でよく洗浄し、更にろ過・乾燥することによって、目的蛍光体を調製した。
[Example 6]
Preparation of LiEuW 2 O 8 · 1 / 3EuBO 3 Lithium carbonate; 0.37 g, europium oxide; 2.35 g, ammonium tungstate; 5.22 g, boric acid; 0.21 g are weighed and uniformly in a mortar for about 20 minutes Mix.
The mixed raw material was put into an alumina crucible and baked in an electric furnace at 700 ° C. for 6 hours. The obtained fired product was finely pulverized, thoroughly washed with warm pure water, and further filtered and dried to prepare a target phosphor.

[比較例1]
LiEuW2O8の調製
炭酸リチウム;0.37g、酸化ユウロピウム;1.76g、タングステン酸アンモニウム;5.22gを秤量し、乳鉢で約20分間均一に混合する。
混合済原料をアルミナ坩堝に入れ、電気炉で空気中700℃で6時間焼成した。得られた焼成物を微粉砕し、温純水でよく洗浄し、更にろ過・乾燥することによって、目的蛍光体を調製した。
[Comparative Example 1]
Preparation of LiEuW 2 O 8 Lithium carbonate; 0.37 g, europium oxide; 1.76 g, ammonium tungstate; 5.22 g are weighed and mixed uniformly in a mortar for about 20 minutes.
The mixed raw material was put into an alumina crucible and baked in an electric furnace at 700 ° C. for 6 hours. The obtained fired product was finely pulverized, thoroughly washed with warm pure water, and further filtered and dried to prepare a target phosphor.

[比較例2]
LiEuW2O8・1/1.5EuBO3の調製
炭酸リチウム;0.37g、酸化ユウロピウム;2.89g、タングステン酸アンモニウム;5.22g、ホウ酸;0.41gを秤量し、乳鉢で約20分間均一に混合する。
原料混合物をアルミナ坩堝に収容し、大気中にて700℃で6時間焼成した。得られた焼成物を微粉砕し、温純水でよく洗浄し、更にろ過・乾燥することによって、目的蛍光体を調製した。
[Comparative Example 2]
Preparation of lithium carbonate LiEuW 2 O 8 · 1 / 1.5EuBO 3; 0.37g, europium oxide; 2.89 g, ammonium tungstate; 5.22 g, boric acid; weighed 0.41 g, uniform about 20 minutes in a mortar To mix.
The raw material mixture was placed in an alumina crucible and fired at 700 ° C. for 6 hours in the atmosphere. The obtained fired product was finely pulverized, thoroughly washed with warm pure water, and further filtered and dried to prepare a target phosphor.

[蛍光体の特性]
実施例1〜6及び比較例1及び2の発光ピーク波長及び360〜420nmでの励起ピーク波長を表1に示す。
[Characteristics of phosphor]
The emission peak wavelengths of Examples 1 to 6 and Comparative Examples 1 and 2 and the excitation peak wavelength at 360 to 420 nm are shown in Table 1.

Figure 0004732888
Figure 0004732888

上記実施例1〜3及び比較例1の蛍光体の励起スペクトルを図1〜4に示す。各図の縦軸の目盛りの幅は、等しい強度の幅を表している。これらの励起スペクトルは、ほぼ同様な励起特性を示している。また、その他の実施例についても同様の形状を示した。   The excitation spectra of the phosphors of Examples 1 to 3 and Comparative Example 1 are shown in FIGS. The width of the scale on the vertical axis in each figure represents the width of equal strength. These excitation spectra show almost the same excitation characteristics. Moreover, the same shape was shown also about the other Example.

次に実施例1〜3及び比較例1の蛍光体の励起ピーク付近(395nm)での発光スペクトルを示す(図5〜8)。各図の縦軸の目盛りの幅は、等しい強度の幅を表している。これらの発光スペクトルは、ほぼ同様な発光スペクトル分布をを示している。また、その他の実施例についても同様の形状を示した。
そのときの輝度を比較したデータを表2に示す。発光スペクトル(図5〜8)の縦軸は、同じ尺度の相対強度であり、表2は比較例1の積分発光強度を100としたときの各蛍光体の相対積分強度を示したものである。その結果、実施例1〜3は比較例1に対し、3〜26%赤色発光の積分発光強度が向上することを見出した。
Next, emission spectra in the vicinity of the excitation peak (395 nm) of the phosphors of Examples 1 to 3 and Comparative Example 1 are shown (FIGS. 5 to 8). The width of the scale on the vertical axis in each figure represents the width of equal strength. These emission spectra show almost the same emission spectrum distribution. Moreover, the same shape was shown also about the other Example.
Table 2 shows data comparing the luminance at that time. The vertical axis of the emission spectrum (FIGS. 5 to 8) is the relative intensity of the same scale, and Table 2 shows the relative integrated intensity of each phosphor when the integrated emission intensity of Comparative Example 1 is 100. . As a result, Examples 1 to 3 were found to have an improved integrated emission intensity of 3 to 26% red light emission as compared with Comparative Example 1.

Figure 0004732888
Figure 0004732888

[蛍光体の耐光性]
車両前照灯用の光源には、遠方視認性を確保するために高輝度の光源が要求される。その為には発光面積を小さくする必要がある。紫外又は短波長可視光を発光する半導体発光素子を用いた白色発光モジュールの場合、半導体発光素子に近接して蛍光体を配置することが求められる。白色発光モジュールの一例を図10に示す。よって、蛍光体は半導体発光素子からの高エネルギー密度の紫外又は短波長可視光に曝されることになり、その耐性が必要になる。車両用前照灯の輝度としては、20cd/mm2以上必要となる。そのためには、半導体発光素子直上の紫外又は短波長可視光エネルギー密度は3〜10W/cm2と太陽光の約1000倍クラスに相当する。
[Light resistance of phosphor]
As a light source for a vehicle headlamp, a high-luminance light source is required in order to ensure distant visibility. For this purpose, it is necessary to reduce the light emitting area. In the case of a white light-emitting module using a semiconductor light-emitting element that emits ultraviolet or short-wavelength visible light, it is required to place a phosphor close to the semiconductor light-emitting element. An example of the white light emitting module is shown in FIG. Therefore, the phosphor is exposed to ultraviolet or short wavelength visible light having a high energy density from the semiconductor light emitting device, and its resistance is required. The luminance of the vehicle headlamp needs to be 20 cd / mm 2 or more. For this purpose, the ultraviolet or short-wavelength visible light energy density directly above the semiconductor light emitting device is 3 to 10 W / cm 2 , which corresponds to about 1000 times that of sunlight.

そこで、高圧水銀ランプ発光からバンドパスフィルターと集光レンズを用いi線(365nm)を分離・集光させ、7 W/cm2のスポット光を形成した。このスポット光を蛍光体に照射し、蛍光体の耐光性を評価した。その結果を図9に示す。比較例1が紫外線照射200時間で積分発光強度60%程度に減少するのに対し、実施例1〜3は80%以上の積分発光強度を維持し優れた耐光性を確保できることを見出した。 Therefore, i-line (365 nm) was separated and condensed from the high-pressure mercury lamp light emission using a bandpass filter and a condenser lens to form 7 W / cm 2 spot light. The phosphor was irradiated with this spot light, and the light resistance of the phosphor was evaluated. The result is shown in FIG. While Comparative Example 1 decreased to about 60% of the integrated emission intensity after 200 hours of UV irradiation, Examples 1 to 3 found that the integrated emission intensity of 80% or more was maintained and excellent light resistance could be secured.

[加色混合の白色光の耐光劣化による色ずれ]
上記のように良好な耐光性が得られた実施例1と比較例1の効果を確認するため、青・緑蛍光体と混合してできる白色光について性能を評価した。評価は以下の方法で行った。
[Color shift due to light-resistant deterioration of white light of additive color mixture]
In order to confirm the effects of Example 1 and Comparative Example 1 in which good light resistance was obtained as described above, performance was evaluated for white light formed by mixing with blue and green phosphors. Evaluation was performed by the following method.

[白色光の調整]
青色蛍光体にBaMgAl10O17:Eu、緑色蛍光体にBaMgAl10O17:Eu,Mnを用い、前記実施例1及び比較例1の赤色蛍光体と混合し、加色混合による色度(x,y=0.360,0.365)の白色光を合成した。そのスペクトル分率比による配合比は、表3に記す。
[Adjust white light]
Using BaMgAl 10 O 17 : Eu as the blue phosphor and BaMgAl 10 O 17 : Eu, Mn as the green phosphor, the red phosphors of Example 1 and Comparative Example 1 are mixed, and the chromaticity (x , y = 0.360,0.365). The blending ratio based on the spectral fraction ratio is shown in Table 3.

Figure 0004732888
Figure 0004732888

[白色光変換フィルターの作製]
前記混合蛍光体をバインダー(信越化学製シリコーン樹脂KE106)に蛍光体:バインダー比率1:1で混合し、蛍光体ペーストを作製した。10mm、厚さ1mmの石英板に厚さ100μmで蛍光体ペーストを塗布し、150℃で1時間、硬化させ、白色光変換フィルターを作製した。本フィルターを前記蛍光体耐光性評価に用いたi線スポット光(7 W/cm2)に200時間曝した。評価は、白色光変換フィルターに395nmの1次光を照射し、生成される白色光の色度・輝度を測定した。その結果を表4に記す。その結果、比較例1は輝度低下・色度ずれが大きく生じるのに対し、実施例1を用いたフィルターは色ずれ・光束低下が殆どないことが確認できた。
[Production of white light conversion filter]
The mixed phosphor was mixed with a binder (silicone resin KE106 manufactured by Shin-Etsu Chemical Co., Ltd.) at a phosphor: binder ratio of 1: 1 to prepare a phosphor paste. A phosphor paste was applied to a 10 mm 2 , 1 mm thick quartz plate with a thickness of 100 μm and cured at 150 ° C. for 1 hour to produce a white light conversion filter. This filter was exposed to the i-line spot light (7 W / cm 2 ) used for the phosphor light resistance evaluation for 200 hours. In the evaluation, the white light conversion filter was irradiated with primary light of 395 nm, and the chromaticity / luminance of the generated white light was measured. The results are shown in Table 4. As a result, it was confirmed that the brightness loss and chromaticity shift greatly occurred in Comparative Example 1, whereas the filter using Example 1 had almost no color shift and light flux decrease.

Figure 0004732888
Figure 0004732888

※輝度比:比較例1を用いた白色変換フィルターの初期の輝度を100としたときの値   * Luminance ratio: Value when the initial luminance of the white conversion filter using Comparative Example 1 is 100

[効果]
上記発明により、新規赤色蛍光体LiEuW2O8・1/xEuAO3の耐光性が、青色蛍光体BaMgAl10O17:Eu、(Sr,Ca,Ba)5(PO4)3Cl:Eu、緑色蛍光体Ca8Mg(SiO4)4Cl:Eu,Mn、BaMgAl10O17:Eu,Mnと同等の性能に向上したため、紫外または短波長可視光を発する半導体発光素子を用いた白色発光モジュールに用いた場合、長時間点灯しても、輝度低下、発光色のずれのないモジュールの構成が期待できる。
[effect]
According to the above invention, the light resistance of the new red phosphor LiEuW 2 O 8 · 1 / xEuAO 3 is the blue phosphor BaMgAl 10 O 17 : Eu, (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu, green Phosphor Ca 8 Mg (SiO 4 ) 4 Cl: Eu, Mn, BaMgAl 10 O 17 : Eu, Mn performance has been improved to a white light emitting module using a semiconductor light emitting element that emits ultraviolet or short wavelength visible light. When used, it is possible to expect a module configuration that does not decrease in luminance and does not shift in emission color even when lit for a long time.

本発明の赤色発光蛍光体は、例えば、紫外線発光半導体素子と組み合わせて発光モジュールを構成することが可能であり、該発光モジュールは、例えば車両用灯具等へ適用が期待できる。   The red light emitting phosphor of the present invention can constitute a light emitting module in combination with, for example, an ultraviolet light emitting semiconductor element, and the light emitting module can be expected to be applied to, for example, a vehicle lamp.

実施例1の赤色発光蛍光体の励起スペクトル分布を表す図である。2 is a diagram illustrating an excitation spectrum distribution of a red light-emitting phosphor of Example 1. FIG. 実施例2の赤色発光蛍光体の励起スペクトル分布を表す図である。6 is a diagram illustrating an excitation spectrum distribution of a red light-emitting phosphor of Example 2. FIG. 実施例3の赤色発光蛍光体の励起スペクトル分布を表す図である。6 is a diagram illustrating an excitation spectrum distribution of a red light-emitting phosphor of Example 3. FIG. 比較例1の赤色発光蛍光体の励起スペクトル分布を表す図である。It is a figure showing the excitation spectrum distribution of the red light emission fluorescent substance of the comparative example 1. 実施例1の赤色発光蛍光体の発光スペクトル分布を表す図である。FIG. 4 is a diagram illustrating an emission spectrum distribution of the red light-emitting phosphor of Example 1. 実施例2の赤色発光蛍光体の発光スペクトル分布を表す図である。It is a figure showing the emission spectrum distribution of the red light emission fluorescent substance of Example 2. FIG. 実施例3の赤色発光蛍光体の発光スペクトル分布を表す図である。FIG. 6 is a diagram illustrating an emission spectrum distribution of a red light-emitting phosphor of Example 3. 比較例1の赤色発光蛍光体の発光スペクトル分布を表す図である。It is a figure showing the emission spectrum distribution of the red light emission fluorescent substance of the comparative example 1. 実施例1〜3及び比較例1の赤色発光の蛍光体の耐光性を表す図である。It is a figure showing the light resistance of the fluorescent substance of the red light emission of Examples 1-3 and the comparative example 1. FIG. 白色発光モジュールの一例を示す図である。It is a figure which shows an example of a white light emitting module. 本発明の赤色発光蛍光体を用いる白色発光モジュールが発光する光の白色度の、好ましい範囲を示す色度図である。It is a chromaticity diagram which shows the preferable range of the whiteness of the light which the white light emitting module using the red light emission fluorescent substance of this invention light-emits. 本発明の赤色発光蛍光体を用いる白色発光モジュールが発光する光の白色度の、より好ましい範囲を示す色度図である。It is a chromaticity diagram which shows the more preferable range of the whiteness of the light which the white light emitting module using the red light emission fluorescent substance of this invention light-emits.

符号の説明Explanation of symbols

1 LEDチップ
2 リードフレーム
3 金属ワイヤー
4 蛍光体ペースト
5 封止材
1 LED chip 2 Lead frame 3 Metal wire 4 Phosphor paste 5 Sealing material

Claims (7)

下記一般式で表されることを特徴とする赤色発光蛍光体。
LiEuW2O8・1/xEuAO3
(x=2〜20であり、Aはホウ素、アルミニウム、ガリウムのいずれか1種類以上の元素)
A red light-emitting phosphor represented by the following general formula.
LiEuW 2 O 8・ 1 / xEuAO 3
(X = 2 to 20 and A is one or more elements selected from boron, aluminum and gallium)
励起ピーク波長が360〜420nmであることを特徴とする請求項1記載の赤色発光蛍光体。   The red light-emitting phosphor according to claim 1, wherein an excitation peak wavelength is 360 to 420 nm. 粒径が50μm以下であることを特徴とする請求項1又は2に記載の赤色発光蛍光体。   3. The red light-emitting phosphor according to claim 1, wherein the particle size is 50 μm or less. 発光ピーク波長が360〜420nmの半導体素子と請求項1〜3のいずれか1項に記載の蛍光体を備える発光モジュール。   A light emitting module comprising a semiconductor element having an emission peak wavelength of 360 to 420 nm and the phosphor according to any one of claims 1 to 3. さらに他の色を発光する蛍光体を構成物として用いたことを特徴とする請求項4に記載の発光モジュール。   The light emitting module according to claim 4, wherein a phosphor emitting another color is used as a constituent. 他の色を発光する蛍光体が、少なくとも緑色発光蛍光体及び青色発光蛍光体であり、白色発光することを特徴とする請求項5に記載の発光モジュール。   6. The light emitting module according to claim 5, wherein the phosphors emitting other colors are at least a green light emitting phosphor and a blue light emitting phosphor, and emit white light. 請求項4〜6のいずれか1項に記載の発光モジュールを光源とした車両用灯具。   A vehicular lamp using the light-emitting module according to claim 4 as a light source.
JP2005365553A 2005-12-19 2005-12-19 Red light emitting phosphor and light emitting module using the same Expired - Fee Related JP4732888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365553A JP4732888B2 (en) 2005-12-19 2005-12-19 Red light emitting phosphor and light emitting module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365553A JP4732888B2 (en) 2005-12-19 2005-12-19 Red light emitting phosphor and light emitting module using the same

Publications (2)

Publication Number Publication Date
JP2007169345A JP2007169345A (en) 2007-07-05
JP4732888B2 true JP4732888B2 (en) 2011-07-27

Family

ID=38296348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365553A Expired - Fee Related JP4732888B2 (en) 2005-12-19 2005-12-19 Red light emitting phosphor and light emitting module using the same

Country Status (1)

Country Link
JP (1) JP4732888B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334956B1 (en) * 2018-11-01 2021-12-02 주식회사 엘지화학 Ramp for vehicle and manufacturing method of same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223879B2 (en) * 2003-06-18 2009-02-12 化成オプトニクス株式会社 Sm-activated red light emitting phosphor and light emitting device using the same
JP2006348262A (en) * 2005-05-17 2006-12-28 Fine Rubber Kenkyusho:Kk Light emitting device and red-emitting phosphor particle
JP5009792B2 (en) * 2005-05-23 2012-08-22 学校法人慶應義塾 Fine particles and red fluorescence conversion medium using the same

Also Published As

Publication number Publication date
JP2007169345A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US7768189B2 (en) White LEDs with tunable CRI
TWI415923B (en) Illumination system comprising a radiation source and a fluorescent material
US7229573B2 (en) Ce3+ and Eu2+ doped phosphors for light generation
TWI383035B (en) A phosphor and a light-emitting device using the same, and a method for manufacturing the phosphor
JP5721921B2 (en) White light emitting device and lighting device
EP2574653B1 (en) Light emitting module and phosphor
JP5323308B2 (en) Light emitting module
JP4238980B2 (en) Red light emitting phosphor and light emitting device
JP2008013592A (en) White light-emitting phosphor and light-emitting module comprised of the same
JP4890017B2 (en) Blue light emitting phosphor and light emitting module using the same
JP4535236B2 (en) Fluorescent member, fluorescent member manufacturing method, and semiconductor light emitting device
US20090079327A1 (en) Green light emitting phosphor and light emitting device using the same
JP4732888B2 (en) Red light emitting phosphor and light emitting module using the same
JP4890018B2 (en) White light emitting phosphor and light emitting module using the same
JP2006233052A (en) Red light-emitting phosphor and light-emitting module using the same
JP5063938B2 (en) Orange phosphor
WO2009093611A1 (en) Light emitting module using phosphor and lighting fixture for vehicle using same
JP7464959B1 (en) Light-emitting device, lighting device, image display device, and vehicle indicator light
JP4699047B2 (en) Light emitting module
WO2024142450A1 (en) Light-emitting device, lighting device, image display device, and indicator lamp for vehicles
JP2006156505A (en) White light emitting module and lighting fixture for vehicle
WO2020246395A1 (en) Fluorescent material, wavelength conversion member, and lighting device
JP2006307089A (en) Green light emitting phosphor and light emitting device using the same
JP2024094221A (en) Light-emitting device, lighting device, image display device, and vehicle indicator light
JP2024093665A (en) Light-emitting device, lighting device, image display device, and vehicle indicator light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees