JP4888632B2 - Evaluation method of crystal defects - Google Patents

Evaluation method of crystal defects Download PDF

Info

Publication number
JP4888632B2
JP4888632B2 JP2005313539A JP2005313539A JP4888632B2 JP 4888632 B2 JP4888632 B2 JP 4888632B2 JP 2005313539 A JP2005313539 A JP 2005313539A JP 2005313539 A JP2005313539 A JP 2005313539A JP 4888632 B2 JP4888632 B2 JP 4888632B2
Authority
JP
Japan
Prior art keywords
defect
anisotropic etching
crystal
single crystal
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005313539A
Other languages
Japanese (ja)
Other versions
JP2007123542A (en
Inventor
幸治 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2005313539A priority Critical patent/JP4888632B2/en
Publication of JP2007123542A publication Critical patent/JP2007123542A/en
Application granted granted Critical
Publication of JP4888632B2 publication Critical patent/JP4888632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating crystal defects capable of detecting/evaluating the crystal defects precisely even if a by-product is generated by anisotropic etching in the formation of a defect emphasis protrusion. <P>SOLUTION: After an anisotropic etching process, by-product removal is executed, where the by-product CG in anisotropic etching adhering to the peripheral region of the defect emphasis protrusion Q is removed before a detection/evaluation process, thus greatly reducing detection noise originating from the by-product and enhancing the detection precision of the crystal defect, when detecting the defect emphasis protrusion Q. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、半導体単結晶基板に形成された結晶欠陥の評価方法に関する。   The present invention relates to a method for evaluating crystal defects formed in a semiconductor single crystal substrate.

特許第3451955号公報Japanese Patent No. 3451955

半導体単結晶基板中の微小な結晶欠陥を、深さ方向の分解能を付与しつつ評価する方法として、特許文献1に開示された方法が知られている。この方法は、基板の主表面に対して、反応性イオンエッチング(RIE)などの高選択性の異方性エッチングを一定の厚さで施し、残ったエッチング残渣を検出することにより結晶欠陥の評価を行なうものである。結晶欠陥の形成領域と被形成領域とではエッチングの速度が相違するので(前者の方がエッチング速度が小さい)、上記の異方性エッチングを施すと、基板の主表面には結晶欠陥を頂点とした円錐状の突起が残留する。結晶欠陥が異方性エッチングによる突起部の形で強調され、微小な欠陥であっても容易に検出することができる。   As a method for evaluating minute crystal defects in a semiconductor single crystal substrate while providing resolution in the depth direction, a method disclosed in Patent Document 1 is known. In this method, the main surface of the substrate is subjected to anisotropic etching with high selectivity such as reactive ion etching (RIE) at a certain thickness, and the remaining etching residue is detected to evaluate crystal defects. Is to do. Since the etching rate is different between the formation region of the crystal defect and the formation region (the former has a lower etching rate), when the anisotropic etching is performed, the main surface of the substrate has a crystal defect as a vertex. Conical protrusions remain. Crystal defects are emphasized in the form of protrusions by anisotropic etching, and even minute defects can be easily detected.

しかし、本発明者らが検討したところ、欠陥強調突起部を得るために基板主表面を異方性エッチングすると、残渣の周囲に相当の高さを有する多量の副生成物が付着し、例えば光散乱プロファイル測定を行ったときに、結晶欠陥由来の突起状残渣からの検出シグナルと副生成物の検出シグナルとを識別できなくなってしまい、欠陥検出精度が著しく低下する問題があった。   However, as a result of studies by the present inventors, when the main surface of the substrate is anisotropically etched in order to obtain a defect-enhancing protrusion, a large amount of by-products having a considerable height adhere to the periphery of the residue. When the scattering profile measurement is performed, the detection signal from the projection residue derived from the crystal defect cannot be distinguished from the detection signal of the by-product, and there is a problem that the defect detection accuracy is remarkably lowered.

本発明の課題は、欠陥強調突起部形成時の異方性エッチングにより副生成物が発生する場合でも、結晶欠陥を高精度に検出・評価することができる結晶欠陥の評価方法を提供することにある。   An object of the present invention is to provide a crystal defect evaluation method capable of detecting and evaluating a crystal defect with high accuracy even when a by-product is generated by anisotropic etching at the time of forming a defect-enhancing protrusion. is there.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、半導体単結晶基板中に形成された結晶欠陥の評価方法に係り、上記の課題を解決するために、
半導体単結晶基板の主表面を含む表層部に、結晶欠陥の非形成領域に対するエッチング速度が結晶欠陥の形成領域に対するエッチング速度よりも大きい選択性の、エッチング深さ0.1μm以上1μm以下である異方性エッチングを施すことにより、結晶欠陥にて頂面部が形成される欠陥強調突起部を主表面に形成する異方性エッチング工程と、
該異方性エッチングを施した主表面において、欠陥強調突起部の周囲領域に付着した異方性エッチングの副生成物を除去する副生成物除去工程と、
該副生成物の除去された主表面において欠陥強調突起部を検出し、その検出結果に基づいて結晶欠陥を評価する検出・評価工程と、をこの順序にて実施し、
検出・評価工程において、欠陥強調突起部をレーザー散乱式検出装置にて検出し、
副生成物除去工程において、異方性エッチングの半導体単結晶基板の主表面を、副生成物の除去が可能な洗浄液にて洗浄し、
半導体単結晶基板はシリコン単結晶ウェーハであり、洗浄液はアンモニア−過酸化水素水溶液であり、
洗浄液は、さらに弗酸を含有することを特徴とする。
The present invention relates to a method for evaluating crystal defects formed in a semiconductor single crystal substrate, and in order to solve the above problems,
In the surface layer portion including the main surface of the semiconductor single crystal substrate, the etching depth with respect to the non-formation region of the crystal defect is higher than the etching rate with respect to the formation region of the crystal defect, and the etching depth is 0.1 μm or more and 1 μm or less. Anisotropic etching process for forming a defect-enhanced protrusion on the main surface where a top surface portion is formed by crystal defects by performing isotropic etching;
A by-product removing step of removing the anisotropic etching by-product attached to the peripheral region of the defect-enhancing protrusion on the anisotropic etched main surface;
A detection / evaluation step of detecting a defect emphasis protrusion on the main surface from which the by-product has been removed and evaluating a crystal defect based on the detection result is performed in this order,
In the detection / evaluation process, the defect-enhancing protrusion is detected by a laser scattering detection device ,
In the by-product removal step, the main surface of the anisotropic single-crystal semiconductor substrate is washed with a cleaning solution capable of removing by-products,
The semiconductor single crystal substrate is a silicon single crystal wafer, the cleaning liquid is an ammonia-hydrogen peroxide aqueous solution,
The cleaning liquid further contains hydrofluoric acid .

上記本発明結晶欠陥の評価方法によると、異方性エッチング工程の後、検出・評価工程を行なうのに先立って、欠陥強調突起部の周囲領域に付着した異方性エッチングの副生成物を除去する副生成物除去工程を実施する。これにより、欠陥強調突起部を検出する際に、副生成物に由来した検出ノイズを大幅に軽減でき、結晶欠陥の検出精度を高めることができる。   According to the above crystal defect evaluation method of the present invention, after the anisotropic etching step, before performing the detection / evaluation step, the by-product of the anisotropic etching attached to the peripheral region of the defect emphasis protrusion is removed. A by-product removing step is performed. Thereby, when detecting a defect emphasis projection part, the detection noise originating in a by-product can be reduced significantly, and the detection accuracy of a crystal defect can be raised.

異方性エッチング工程は、結晶欠陥に対する選択エッチング性を有するエッチング液を用いた湿式エッチングにて行なうことも可能であるが、より顕著な欠陥強調突起部を形成するには、反応性イオンエッチングを採用することが望ましい。反応性イオンエッチングはドライエッチングであり、エッチングに伴う副生成物の基板主表面への飛散・付着が特に著しいので、本発明の適用による波及効果が大きい。   The anisotropic etching process can be performed by wet etching using an etchant having selective etching properties for crystal defects. However, in order to form a more prominent defect emphasis protrusion, reactive ion etching is performed. It is desirable to adopt. Reactive ion etching is dry etching, and scattering and adhesion of by-products to the main surface of the substrate accompanying the etching are particularly remarkable, so that the ripple effect by application of the present invention is great.

副生成物除去工程においては、異方性エッチングの半導体単結晶基板の主表面を、副生成物の除去が可能な洗浄液にて洗浄することができる。この方法によると、副生成物を洗浄液で洗い流すことができ、欠陥強調突起部を残しつつ副生成物のみを選択的に除去する効果に優れる。半導体単結晶基板がシリコン単結晶ウェーハである場合、洗浄液としては、アンモニア−過酸化水素水溶液を用いることが有効であり、これにさらに弗酸を含有するものを使用すれば、副生成物の除去効果が一層顕著になる。   In the by-product removing step, the main surface of the semiconductor single crystal substrate subjected to anisotropic etching can be washed with a cleaning solution capable of removing by-products. According to this method, the by-product can be washed away with the cleaning liquid, and the effect of selectively removing only the by-product while leaving the defect emphasizing protrusion is excellent. When the semiconductor single crystal substrate is a silicon single crystal wafer, it is effective to use an ammonia-hydrogen peroxide aqueous solution as the cleaning liquid, and if it further contains hydrofluoric acid, removal of by-products The effect becomes even more remarkable.

なお、副生成物除去工程においては、洗浄以外の方法を採用することも可能である。例えば、半導体単結晶基板の主表面に電子線又は紫外線を照射することにより、副生成物を除去することができる。この方法は洗浄液を使用せず、乾式にて副生成物を除去できるので、乾燥等の工程が不要であり簡便である。また、半導体単結晶基板の主表面を200℃以上に加熱することにより、副生成物を除去することも可能である。   In the byproduct removal step, a method other than cleaning can be employed. For example, by-products can be removed by irradiating the main surface of the semiconductor single crystal substrate with an electron beam or ultraviolet rays. Since this method can remove a by-product by a dry method without using a cleaning solution, a step such as drying is unnecessary and is convenient. Further, by-products can be removed by heating the main surface of the semiconductor single crystal substrate to 200 ° C. or higher.

次に、検出・評価工程においては、欠陥強調突起部をレーザー散乱式検出装置にて検出することができる。この方法であると、基板主表面上での散乱光分布に基づいて非破壊にて欠陥強調突起部を検出することができ、またレーザー光ビームを主表面上で走査することにより、該主表面上の欠陥分布の情報も容易に得ることができる。   Next, in the detection / evaluation step, the defect emphasis protrusion can be detected by a laser scattering type detection device. With this method, it is possible to detect the defect-enhancing protrusions nondestructively based on the scattered light distribution on the main surface of the substrate, and by scanning the main surface with a laser light beam, Information on the upper defect distribution can also be obtained easily.

以下、本発明の実施の形態について説明する。
本実施形態では、半導体単結晶基板としてシリコン単結晶ウェーハを製造する場合を例に取るが、これに限定されるものではない。まず、CZ法あるいはFZ法等の公知の方法にてシリコン単結晶インゴットを製造する。こうして得られる単結晶インゴットは、一定の抵抗率範囲のブロックに切断され、さらに外径研削が施される。外径研削後の各ブロックには、オリエンテーションフラットあるいはオリエンテーションノッチが形成される。このように仕上げられたブロックは、内周刃切断等のスライサーによりスライシングされる。スライシング後のシリコン単結晶ウェーハの両面外周縁にはベベル加工により面取りが施される。
Embodiments of the present invention will be described below.
In this embodiment, a case where a silicon single crystal wafer is manufactured as a semiconductor single crystal substrate is taken as an example, but the present invention is not limited to this. First, a silicon single crystal ingot is manufactured by a known method such as CZ method or FZ method. The single crystal ingot thus obtained is cut into blocks having a certain resistivity range, and further subjected to outer diameter grinding. An orientation flat or an orientation notch is formed in each block after outer diameter grinding. The block thus finished is sliced by a slicer such as an inner peripheral cutting. Chamfering is performed on the outer peripheral edges of the silicon single crystal wafer after slicing by beveling.

面取り終了後のシリコン単結晶ウェーハは、遊離砥粒を用いて両面がラッピングされ、ラップウェーハとなる。そして、そのラップウェーハをエッチング液に浸漬することにより、両面が化学エッチング処理され、化学エッチウェーハとなる。化学エッチング工程は、それまでの機械加工工程においてシリコン単結晶ウェーハの表面に生じたダメージ層を除去するために行われる。化学エッチング工程の後には鏡面研磨工程が行われ、鏡面ウェーハ(シリコン単結晶ウェーハ)となる。   The silicon single crystal wafer after chamfering is lapped on both sides using loose abrasive grains to form a lapped wafer. Then, by immersing the lap wafer in an etching solution, both surfaces are chemically etched to form a chemically etched wafer. The chemical etching process is performed in order to remove a damaged layer generated on the surface of the silicon single crystal wafer in the previous machining process. After the chemical etching process, a mirror polishing process is performed to obtain a mirror wafer (silicon single crystal wafer).

得られるシリコン単結晶ウェーハ中には、種々の要因により結晶欠陥が形成される。まず、シリコン単結晶の育成においては、結晶育成時に内部に取り込まれる結晶成長起因の欠陥、すなわちグローンイン欠陥(Grown−in Defect)と呼ばれる内部欠陥が形成される。このグローンイン欠陥の形成状態は、単結晶の成長速度やシリコン融液から引き上げられた単結晶の冷却条件により違いを生ずる。例えば、引上速度を比較的大きく設定して単結晶を育成した場合には、単結晶内のシリコン原子に不足が生じやすくなる。この不足部分が凝集すると、シリコン単結晶をウェーハ状に加工した際に凹部あるいは穴のような形となって表面に現れる。このように、このシリコン単結晶において、シリコン原子に不足が生じ、原子間に空孔として存在している点欠陥をベイカンシー(略号:V)と呼ぶ。また、シリコン単結晶内部において、ベイカンシーの凝集により生じた、空孔起因のグローンイン欠陥が優勢となる領域をV領域と称する。このような空孔起因のグローンイン欠陥には、FPD(Flow Pattern Defects)、COP(Crystal Originated Particle)あるいはLSTD(Laser Scattering Tomography Defects)等があり、シリコン単結晶を基板(ウェーハ)に加工した際に、ウェーハ表面に八面体のボイド状の欠陥等として観察される。ボイドの内面はシリコン酸化物で覆われているのが通常であり、選択異方性エッチングによる欠陥強調突起部を容易に形成でき、本発明の方法により評価することができる。   Crystal defects are formed in the obtained silicon single crystal wafer due to various factors. First, in the growth of a silicon single crystal, a defect due to crystal growth taken into the inside during crystal growth, that is, an internal defect called a Grown-in Defect is formed. The formation state of this grow-in defect differs depending on the growth rate of the single crystal and the cooling conditions of the single crystal pulled up from the silicon melt. For example, when a single crystal is grown with a relatively high pulling speed, shortage of silicon atoms in the single crystal is likely to occur. When this deficient portion aggregates, it appears on the surface in the form of a recess or a hole when the silicon single crystal is processed into a wafer shape. Thus, in this silicon single crystal, a shortage of silicon atoms occurs, and a point defect existing as a vacancy between atoms is called vacancy (abbreviation: V). In addition, a region in which a grown-in defect due to vacancies caused by vacancy agglomeration becomes dominant in the silicon single crystal is referred to as a V region. Such Grow-in defects due to vacancies include FPD (Flow Pattern Defects), COP (Crystal Originated Particles), and LSTD (Laser Scattering Tomography Defects), which are produced when a silicon single crystal is processed into a substrate (wafer). It is observed as an octahedral void defect on the wafer surface. The inner surface of the void is usually covered with silicon oxide, and a defect-enhanced protrusion by selective anisotropic etching can be easily formed and can be evaluated by the method of the present invention.

これに対し、シリコン単結晶の引上速度を極力抑えて、例えば結晶成長速度を0.4mm/min程度以下として単結晶成長を行った場合には、シリコン単結晶の格子間に余分にシリコン原子が存在するインタースティシアル−シリコン(Interstitial−Si:格子間シリコン原子(略号:I))と称される点欠陥が生じやすくなる。インタースティシアル−シリコンが優勢となるシリコン単結晶内部の領域には、転位ループ起因と考えられるL/D(Large Dislocation:格子間転位ループの略号であり、LSPDやLFPD等の結晶欠陥の総称)と称される格子間型シリコン欠陥が低密度に存在するようになる。このインタースティシアル−シリコンが優勢となるシリコン単結晶内部の領域をI領域と呼んでいる。ただし、この種の欠陥はシリコン酸化物の生成を伴わず、選択異方性エッチングによる欠陥強調突起部の形成が困難であり、本発明の方法による評価対象としては適さない。   On the other hand, when the single crystal growth is performed while suppressing the pulling rate of the silicon single crystal as much as possible, for example, the crystal growth rate is about 0.4 mm / min or less, an extra silicon atom is present between the lattices of the silicon single crystal. Point defects called interstitial-Si (interstitial-Si: interstitial silicon atoms (abbreviation: I)) tend to occur. In the region inside the silicon single crystal where interstitial silicon is dominant, L / D (Large Dislocation: an abbreviation for interstitial dislocation loop, a generic term for crystal defects such as LSPD and LFPD) Interstitial type silicon defects called as exist at low density. A region inside the silicon single crystal where the interstitial silicon is dominant is called an I region. However, this type of defect is not accompanied by generation of silicon oxide, and it is difficult to form a defect-enhanced protrusion by selective anisotropic etching, which is not suitable as an evaluation target by the method of the present invention.

また、V領域が優勢となる条件とI領域が優勢となる条件との中間の単結晶育成条件が成立する領域は、シリコン原子間に原子の不足や余分な原子の存在することのない、あるいは存在しても僅かであるニュートラルな状態となり、このようなシリコン単結晶内部の領域をN領域と呼ぶ。そして、シリコン単結晶内部に形成されるN領域とV領域との間には、OSF(Oxidation Induced Stacking Fault、酸化誘起積層欠陥)と呼ばれる酸素起因の欠陥やその核が高密度に存在する領域が存在する。シリコン単結晶をウェーハに加工すると、該領域はリング状となって観察されることから、シリコン単結晶のOSFあるいはその核が高密度に存在する領域をOSFリング域と称している。このOSFの核は、シリコン酸化物が主体となる結晶欠陥であり、選択異方性エッチングによる欠陥強調突起部を容易に形成でき、本発明の方法により評価することができる。   In addition, in the region where the single crystal growth condition is intermediate between the condition where the V region is dominant and the condition where the I region is dominant, there is no shortage of atoms or no extra atoms between the silicon atoms, or Even if it exists, it becomes a neutral state that is slight, and such a region inside the silicon single crystal is called an N region. Between the N region and the V region formed inside the silicon single crystal, there is a region where defects due to oxygen called OSF (Oxidation Induced Stacking Fault) and nuclei thereof exist at high density. Exists. When a silicon single crystal is processed into a wafer, the region is observed in a ring shape. Therefore, a region where the OSF of the silicon single crystal or its nuclei exist at high density is referred to as an OSF ring region. The core of the OSF is a crystal defect mainly composed of silicon oxide, and a defect-enhanced protrusion can be easily formed by selective anisotropic etching, and can be evaluated by the method of the present invention.

なお、上記のようにして得られたシリコン単結晶ウェーハ(鏡面ウェーハ)は、さらにデバイス化に先立って、ゲッタリング用の酸素析出物を形成するための熱処理(例えば、750℃以上1100℃以下)を施すことができる。この酸素析出物は、BMD(Bulk Micro Defect)と称される一種の結晶欠陥であり、一般的にCOP等のグローンイン欠陥よりも寸法は小さい。この欠陥も選択異方性エッチングによる欠陥強調突起部を容易に形成でき、本発明の方法により評価することができる。   In addition, the silicon single crystal wafer (mirror surface wafer) obtained as described above is further subjected to heat treatment (for example, 750 ° C. or higher and 1100 ° C. or lower) for forming oxygen precipitates for gettering prior to device formation. Can be applied. This oxygen precipitate is a kind of crystal defect called BMD (Bulk Micro Defect) and is generally smaller in size than a grown-in defect such as COP. This defect can also be easily formed with a defect-enhancing protrusion by selective anisotropic etching, and can be evaluated by the method of the present invention.

シリコン単結晶ウェーハの表層部に存在する結晶欠陥は、本発明の方法に基づいて、以下のように検出・評価することができる。まず、図1の工程1では、結晶欠陥Pを有したシリコン単結晶ウェーハ1に対し、表面に形成された自然酸化膜を弗酸水溶液等により洗浄して除去する。次に、工程2では、自然酸化膜が除去されたシリコン単結晶ウェーハ1の主表面に対し、例えば反応性イオンエッチング(RIE:reactive ion etching)により、異方性エッチングを行なう。異方性エッチングの詳細については、特許文献1により公知であるが、概略は以下の通りである。すなわち、エッチングガスとしては、シリコン酸化物系の結晶欠陥については、例えば、一般的なマグネトロンRIE装置を用いてエッチングを行なう場合、ハロゲン系混合ガス(例えば、HBr/NF3/He+O混合ガス)を用いることが好適である。このハロゲン系のエッチングガスは、シリコン酸化物系の結晶欠陥に対し、そのエッチング選択比がF、Cl、Brの順で選択比が高くなる。従って、検出感度、つまり、この異方性エッチングによってより多くの欠陥強調突起部を発生させるためには、Br系ガスが最も好ましく、以下Cl、Fの順となる。
Based on the method of the present invention, crystal defects existing in the surface layer portion of the silicon single crystal wafer can be detected and evaluated as follows. First, in step 1 of FIG. 1, the natural oxide film formed on the surface of the silicon single crystal wafer 1 having the crystal defects P is removed by washing with a hydrofluoric acid aqueous solution or the like. Next, in step 2, anisotropic etching is performed on the main surface of the silicon single crystal wafer 1 from which the natural oxide film has been removed, for example, by reactive ion etching (RIE). Details of the anisotropic etching are known from Patent Document 1, but the outline is as follows. That is, as an etching gas, for a silicon oxide-based crystal defect, for example, when etching is performed using a general magnetron RIE apparatus, a halogen-based mixed gas (for example, an HBr / NF 3 / He + O 2 mixed gas) is used. It is preferable to use it. This halogen-based etching gas has a higher etching selectivity with respect to silicon oxide-based crystal defects in the order of F, Cl, and Br. Therefore, in order to generate more defect emphasis protrusions by detection sensitivity, that is, by this anisotropic etching, Br-based gas is most preferable, and Cl and F are in the following order.

上記の異方性エッチングを適当な深さ(例えば0.1μm以上1μm以下)で実施することで、結晶欠陥の周囲がエッチオフされて段差が生じ、欠陥強調突起部が形成される。その結果、プローブとなるレーザー光を入射したとき、その散乱光が、欠陥強調突起部の頂面位置で生じやすくなり、該頂面部に存在する結晶欠陥を識別しやすくなる。異方性エッチング深さが0.1μm未満では、結晶欠陥の識別性向上効果が十分達成されなくなる場合があり、異方性エッチング深さが1μmを超えると、欠陥強調突起部の頂面部寸法が拡大し、結晶欠陥の寸法測定が必要な場合に、測定誤差が大きくなりやすい。   By performing the anisotropic etching at an appropriate depth (for example, 0.1 μm or more and 1 μm or less), the periphery of the crystal defect is etched off, a step is generated, and a defect emphasizing protrusion is formed. As a result, when the laser beam to be a probe is incident, the scattered light is likely to be generated at the top surface position of the defect emphasizing protrusion, and the crystal defects existing on the top surface portion can be easily identified. If the anisotropic etching depth is less than 0.1 μm, the crystal defect discrimination improving effect may not be sufficiently achieved. If the anisotropic etching depth exceeds 1 μm, the top surface portion dimension of the defect emphasizing protrusion is small. When the size of the crystal defect is enlarged and measurement of the crystal defect is necessary, the measurement error tends to increase.

異方性エッチングの結果、シリコン単結晶ウェーハ1の表面には、円錐状の欠陥強調突起部Qが露出する。しかし、この段階では、欠陥強調突起部の周囲領域には、異方性エッチングの副生成物CGが大量に付着している。本発明者は、副生成物CGの存在状態を走査型電子顕微鏡(SEM)観察により確かめる実験を行なったが、試料上の副生成物は、顕微鏡内での電子線照射を受けて観察中に縮小し、ついには消滅してしまうことを見出した。これは、シリコン表面に付着している酸化物被膜などと異なり、減圧下での昇温によって蒸発・消滅する極めて蒸気圧の高い物質であると推測される(例えばSiOBrやSiBrなど)。このような副生成物は、シリコン基板用の通常の洗浄液により、比較的短時間の洗浄でほぼ完全に溶解・除去することができる。   As a result of the anisotropic etching, a conical defect-enhancing protrusion Q is exposed on the surface of the silicon single crystal wafer 1. However, at this stage, a large amount of anisotropic etching by-product CG adheres to the peripheral region of the defect-enhancing protrusion. The present inventor conducted an experiment to confirm the existence state of the by-product CG by observation with a scanning electron microscope (SEM), but the by-product on the sample was subjected to electron beam irradiation in the microscope during observation. I found it to shrink and eventually disappear. This is presumed to be a substance having a very high vapor pressure (e.g., SiOBr, SiBr, etc.) that evaporates and disappears when the temperature is increased under reduced pressure, unlike an oxide film attached to the silicon surface. Such a by-product can be almost completely dissolved and removed by a normal cleaning solution for a silicon substrate in a relatively short cleaning time.

具体的には、工程3に示すように、エッチング後のシリコン単結晶ウェーハ1を洗浄液SCに浸漬することにより洗浄する。洗浄液SCは、アンモニア−過酸化水素水溶液を使用することができ、特に、SC−1洗浄液を好適に使用できる。溶液組成としては、体積比にて、アンモニア水溶液(NH濃度:29重量%)を5%以上50%以下、過酸化水素水(H濃度:31重量%)を5%以上50%以下、残部水としたものを採用することができる。具体的なSC−1洗浄の洗浄液組成は、例えば体積比で、アンモニア水溶液:過酸化水素水:水=1:1:5である。なお、水の一部を弗酸水溶液で置換した洗浄液を使用すると、副生成物CGの洗浄除去効果がさらに高められる。この場合、弗酸水溶液(HF濃度:50重量%)を1%以上30%以下の範囲で添加するのが適当である。 Specifically, as shown in step 3, the silicon single crystal wafer 1 after etching is cleaned by immersing it in the cleaning liquid SC. As the cleaning liquid SC, an ammonia-hydrogen peroxide aqueous solution can be used, and in particular, the SC-1 cleaning liquid can be preferably used. The solution composition is 5% to 50% ammonia aqueous solution (NH 3 concentration: 29% by weight) and 5% to 50% hydrogen peroxide solution (H 2 O 2 concentration: 31% by weight) by volume ratio. Hereinafter, the remaining water can be used. A specific cleaning liquid composition of SC-1 cleaning is, for example, volume ratio, aqueous ammonia solution: hydrogen peroxide water: water = 1: 1: 5. If a cleaning solution in which a part of water is replaced with a hydrofluoric acid aqueous solution is used, the cleaning removal effect of the by-product CG is further enhanced. In this case, it is appropriate to add a hydrofluoric acid aqueous solution (HF concentration: 50% by weight) in the range of 1% to 30%.

異方性エッチングにより欠陥強調突起部が形成され、かつ、エッチングの副生成物が洗浄により除去されたシリコン単結晶基板は、工程4に示すように、欠陥強調突起部が形成されている側の表面をレーザー光により走査し、その入射光をIBに対する欠陥強調突起部からの散乱光RBの強度を測定する。このとき、もし副生成物が残留していると、図2Aに示すように、この副生成物による凸部においても欠陥強調突起部と同様の散乱光ピークを生じ、真の欠陥強調突起部(つまり、結晶欠陥)に由来した散乱光ピークと区別がつかなくなってしまう。   The silicon single crystal substrate in which the defect emphasizing protrusions are formed by anisotropic etching and the etching by-products are removed by cleaning is formed on the side where the defect emphasizing protrusions are formed as shown in step 4. The surface is scanned with laser light, and the intensity of the scattered light RB from the defect emphasizing protrusion with respect to IB is measured for the incident light. At this time, if the by-product remains, as shown in FIG. 2A, a scattered light peak similar to that of the defect-enhancing protrusion is generated even on the convex portion due to this by-product, and the true defect-enhancing protrusion ( That is, it becomes indistinguishable from the scattered light peak derived from crystal defects.

例えば、ウェーハ表層部のBMD(もしくはその核)は、上記のBMDを析出させるための熱処理時に酸素が外方拡散して消滅し、ウェーハの表層部にいわゆるDZ(Denuded Zone)層が形成される。このDZ層内の欠陥数は通常5〜20個/ウェーハ程度と少数であり、副生成物の一部、例えば10%程度が除去できない場合においても、残存した副生成物の数が実際の結晶欠陥の数と同程度あるいはそれ以上となってしまい、欠陥評価方法としては明らかに不適格である。   For example, the BMD (or its nucleus) in the wafer surface layer part is extinguished and diffused out of oxygen during the heat treatment for precipitating the BMD, and a so-called DZ (Denuded Zone) layer is formed in the surface layer part of the wafer. . The number of defects in the DZ layer is usually as small as about 5 to 20 wafers / wafer, and even when a part of the by-product, for example, about 10% cannot be removed, the number of the remaining by-products remains the actual crystal defects. It is almost equal to or more than the number, and is clearly unsuitable as a defect evaluation method.

しかし、図2Bに示すように、異方性エッチングのウェーハ主表面から副生成物が洗浄等により予め除去されていれば真の欠陥強調突起部に由来した散乱光ピークのみが残り、結晶欠陥の検出精度を高めることができる。欠陥強調突起部による散乱光ピークが検出されれば、これに対応するレーザー光の走査位置の座標データを、結晶欠陥検出点データとして取得することができる。   However, as shown in FIG. 2B, if the by-product is previously removed from the main surface of the anisotropically etched wafer by cleaning or the like, only the scattered light peak derived from the true defect-enhancing protrusion remains, and the crystal defect Detection accuracy can be increased. If the scattered light peak due to the defect emphasizing protrusion is detected, the coordinate data of the scanning position of the laser beam corresponding to this can be acquired as crystal defect detection point data.

なお、副生成物は、真空雰囲気中にて電子線照射するか、あるいは200℃以上(かつ、ウェーハの融点以下)に昇温して蒸発させることにより、除去することも可能である。   The by-product can be removed by irradiating with an electron beam in a vacuum atmosphere or evaporating by raising the temperature to 200 ° C. or higher (and lower than the melting point of the wafer).

図3は、異方性エッチングを施した後、洗浄処理を行なう前の鏡面ウェーハのSEM観察画像である(倍率2000倍)。結晶欠陥(欠陥強調突起部)の存在領域が明るく表れている一方、その周囲には副生成物に由来する無数の凹凸が白っぽい背景を形成している。このように、SEM観察画像上では結晶欠陥と副生成物との識別は比較的容易であるが、SEMは視野面積が狭いため、ウェーハ全体の結晶欠陥評価を行なうために、その主表面の全面を画像走査するような方法は、測定工数の著しい増大を招くので凡そ現実的でない。   FIG. 3 is an SEM observation image of the mirror surface wafer after performing anisotropic etching and before performing a cleaning process (magnification 2000 times). While the existence area of crystal defects (defect emphasizing protrusions) appears brightly, innumerable irregularities derived from by-products form a whitish background around it. As described above, it is relatively easy to distinguish between crystal defects and by-products on the SEM observation image. However, since the field of view of the SEM is narrow, the entire surface of the main surface is used for evaluating crystal defects of the entire wafer. Such an image scanning method is not practical because it causes a significant increase in the number of measurement steps.

図4は、異方性エッチング前(PW)、異方性エッチング後であって洗浄前(AS RIE)、及び異方性エッチング後であってSC−1洗浄後(RIE+SC1 Cleaning)の、各鏡面ウェーハの主表面に対し、レーザー散乱式検出装置にて欠陥検出を行なった結果を示すマッピング画像である。異方性エッチング前のものは、ウェーハ中心領域(V領域)に存在するサイズの比較的大きいCOPのみが検出されている。異方性エッチング後であって洗浄前のものは、大量の副生成物が欠陥として誤検出された結果、測定により得られた欠陥座標を格納する装置側のメモリが測定途中でオーバーフローしてしまい、ウェーハの全面を評価することができなかった。SC−1洗浄後のものは、中心部ではCOPに由来する欠陥が密集して検出される一方、寸法の小さいOSFの核(寸法30nm程度の板状の酸素析出物であるといわれている)も、副生成物に埋没することなく精度よく検出され、COPの密集したV領域の周囲を取り囲むようにOSFリングが形成されているのがはっきりわかる。なお、OSFリングの外側の領域はI領域である。   FIG. 4 shows mirror surfaces before anisotropic etching (PW), after anisotropic etching and before cleaning (AS RIE), and after anisotropic etching and after SC-1 cleaning (RIE + SC1 Cleaning). It is a mapping image which shows the result of having detected the defect with the laser scattering type detection apparatus with respect to the main surface of a wafer. Before the anisotropic etching, only a relatively large COP existing in the wafer center region (V region) is detected. After anisotropic etching and before cleaning, as a result of erroneous detection of a large amount of by-products as a defect, the memory on the device side that stores the defect coordinates obtained by measurement overflows during measurement. The entire surface of the wafer could not be evaluated. In the center after the SC-1 cleaning, defects derived from COP are densely detected at the center, while OSF nuclei with small dimensions (which are said to be plate-like oxygen precipitates with dimensions of about 30 nm). However, it is clearly detected that the OSF ring is formed so as to surround the periphery of the dense C region of the COP without being buried in the by-product. The area outside the OSF ring is the I area.

本発明の結晶欠陥の評価方法の一例に係る工程説明図。Process explanatory drawing which concerns on an example of the evaluation method of the crystal defect of this invention. 結晶欠陥検出に対する副生成物残留の影響を説明する図。The figure explaining the influence of the by-product residue with respect to a crystal defect detection. 副生成物を除去することによる効果説明図。Explanatory drawing by the effect by removing a by-product. RIEによる異方性エッチング後の鏡面ウェーハのSEM観察画像。The SEM observation image of the mirror surface wafer after anisotropic etching by RIE. 異方性エッチング前、異方性エッチング後であって洗浄前、及び異方性エッチング後であってSC−1洗浄後の、各鏡面ウェーハの主表面に対して、レーザー散乱式検出装置にて欠陥検出した結果を示すマッピング画像。Using a laser scattering detector on the main surface of each mirror wafer before anisotropic etching, after anisotropic etching and before cleaning, and after anisotropic etching and after SC-1 cleaning A mapping image showing the result of defect detection.

符号の説明Explanation of symbols

1 シリコン単結晶ウェーハ(半導体単結晶ウェーハ)
P 結晶欠陥
Q 欠陥強調突起部
CG 副生成物
1 Silicon single crystal wafer (semiconductor single crystal wafer)
P Crystal defect Q Defect emphasis protrusion CG Byproduct

Claims (2)

半導体単結晶基板中に形成された結晶欠陥の評価方法であって、
前記半導体単結晶基板の主表面を含む表層部に、前記結晶欠陥の非形成領域に対するエッチング速度が前記結晶欠陥の形成領域に対するエッチング速度よりも大きい選択性の、エッチング深さ0.1μm以上1μm以下である異方性エッチングを施すことにより、前記結晶欠陥にて頂面部が形成される欠陥強調突起部を前記主表面に形成する異方性エッチング工程と、
該異方性エッチングを施した前記主表面において、前記欠陥強調突起部の周囲領域に付着した前記異方性エッチングの副生成物を除去する副生成物除去工程と、
該副生成物の除去された主表面において前記欠陥強調突起部を検出し、その検出結果に基づいて前記結晶欠陥を評価する検出・評価工程と、
をこの順序にて実施し、
前記検出・評価工程において、前記欠陥強調突起部をレーザー散乱式検出装置にて検出し、
前記副生成物除去工程において、前記異方性エッチングの前記半導体単結晶基板の主表面を、前記副生成物の除去が可能な洗浄液にて洗浄し、
前記半導体単結晶基板はシリコン単結晶ウェーハであり、前記洗浄液はアンモニア−過酸化水素水溶液であり、
前記洗浄液は、さらに弗酸を含有することを特徴とする結晶欠陥の評価方法。
A method for evaluating crystal defects formed in a semiconductor single crystal substrate,
Etching depth of 0.1 μm or more and 1 μm or less with a selectivity that the etching rate for the crystal defect non-formation region is larger than the etching rate for the crystal defect formation region in the surface layer portion including the main surface of the semiconductor single crystal substrate An anisotropic etching step of forming, on the main surface, a defect-enhancing protrusion that forms a top surface portion due to the crystal defect by performing anisotropic etching,
A by-product removing step of removing the by-product of the anisotropic etching attached to a peripheral region of the defect-enhancing protrusion on the main surface subjected to the anisotropic etching;
Detecting and evaluating the defect-enhancing protrusion on the main surface from which the by-product has been removed, and evaluating and evaluating the crystal defect based on the detection result;
In this order,
In the detection / evaluation step, the defect-enhancing protrusion is detected by a laser scattering detection device ,
In the by-product removal step, the main surface of the semiconductor single crystal substrate of the anisotropic etching is washed with a cleaning solution capable of removing the by-product,
The semiconductor single crystal substrate is a silicon single crystal wafer, and the cleaning liquid is an ammonia-hydrogen peroxide aqueous solution,
The method for evaluating crystal defects , wherein the cleaning liquid further contains hydrofluoric acid .
前記異方性エッチング工程を反応性イオンエッチングにて行なう請求項1記載の結晶欠陥の評価方法。   The crystal defect evaluation method according to claim 1, wherein the anisotropic etching step is performed by reactive ion etching.
JP2005313539A 2005-10-27 2005-10-27 Evaluation method of crystal defects Active JP4888632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313539A JP4888632B2 (en) 2005-10-27 2005-10-27 Evaluation method of crystal defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313539A JP4888632B2 (en) 2005-10-27 2005-10-27 Evaluation method of crystal defects

Publications (2)

Publication Number Publication Date
JP2007123542A JP2007123542A (en) 2007-05-17
JP4888632B2 true JP4888632B2 (en) 2012-02-29

Family

ID=38147060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313539A Active JP4888632B2 (en) 2005-10-27 2005-10-27 Evaluation method of crystal defects

Country Status (1)

Country Link
JP (1) JP4888632B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912342B1 (en) * 2008-02-14 2009-08-14 주식회사 실트론 Evaluation method of defect in wafer using reactive ion etching and wafer structure for the same
US8771415B2 (en) 2008-10-27 2014-07-08 Sumco Corporation Method of manufacturing silicon single crystal, silicon single crystal ingot, and silicon wafer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451955B2 (en) * 1998-08-13 2003-09-29 株式会社豊田中央研究所 Crystal defect evaluation method and crystal defect evaluation device
JP4382438B2 (en) * 2002-11-14 2009-12-16 株式会社東芝 Semiconductor wafer inspection method, semiconductor device development method, semiconductor device manufacturing method, and semiconductor wafer processing apparatus
JP4254584B2 (en) * 2004-03-15 2009-04-15 信越半導体株式会社 Evaluation method of crystal defects

Also Published As

Publication number Publication date
JP2007123542A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US9343379B2 (en) Method to delineate crystal related defects
JP5268314B2 (en) Classification method of crystal defect region of single crystal silicon using metal contamination and heat treatment
US10513798B2 (en) Method for determining defect region
JP2006208314A (en) Method for evaluating crystal defect of silicon single-crystal wafer
JP2008222505A (en) Method for evaluating silicon single crystal wafer and method for producing silicon single crystal
JP4254584B2 (en) Evaluation method of crystal defects
JP4888632B2 (en) Evaluation method of crystal defects
JP4797576B2 (en) Evaluation method of crystal defects
US20190170661A1 (en) Method of identifying defect regions in wafer
JP2010275147A (en) Method for evaluating crystal defect of silicon wafer
KR100818670B1 (en) Method of identifying crystal defect region in crystalline silicon using metal contamination and heat treatment
JP6536502B2 (en) Method of manufacturing wafer for particle counter calibration
JP5521775B2 (en) Single crystal silicon wafer evaluation method
JP5565079B2 (en) Manufacturing method of SOI wafer
JP3651440B2 (en) Silicon wafer evaluation method and etching solution thereof
JP2004119446A (en) Annealed wafer and method for manufacturing the same
JP2000208578A (en) Evaluation method for silicon wafer and silicon wafer
JP6011930B2 (en) Silicon wafer evaluation method and etching solution thereof
TWI694183B (en) Semiconductor wafer made of single-crystal silicon
JP6731161B2 (en) Method for identifying defect region of silicon single crystal
KR100384680B1 (en) A Method for detecting micro defects
JP4003943B2 (en) Evaluation method of octahedral voids in silicon wafer
JP4211643B2 (en) Evaluation method of crystal defects
JP2894154B2 (en) Method for measuring the depth of the affected layer on the silicon wafer surface
JP4370571B2 (en) Annealing wafer evaluation method and quality assurance method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Ref document number: 4888632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250