JP4879640B2 - Rotary hearth furnace - Google Patents
Rotary hearth furnace Download PDFInfo
- Publication number
- JP4879640B2 JP4879640B2 JP2006125020A JP2006125020A JP4879640B2 JP 4879640 B2 JP4879640 B2 JP 4879640B2 JP 2006125020 A JP2006125020 A JP 2006125020A JP 2006125020 A JP2006125020 A JP 2006125020A JP 4879640 B2 JP4879640 B2 JP 4879640B2
- Authority
- JP
- Japan
- Prior art keywords
- hearth
- rotary hearth
- clearance
- refractory layer
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture Of Iron (AREA)
- Tunnel Furnaces (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
本発明は、主として、粉状の鉄酸化物と粉状の炭素質物質を混合した塊成化物を加熱処理するために用いられる回転炉床炉において、特に、回転炉床の側縁部が炉の側壁に接触して炉床の回転を妨げることを防止する炉床構造に関する。 The present invention mainly relates to a rotary hearth furnace used for heat-treating an agglomerate in which powdered iron oxide and powdered carbonaceous material are mixed. In particular, the side edge of the rotary hearth is a furnace. It is related with the hearth structure which prevents contacting with the side wall of this and preventing rotation of a hearth.
還元鉄を製造する方法として、粉状の鉄酸化物と粉状の炭素質物質を混合した塊成化物を回転炉床炉を用いて加熱処理する方法が注目されている。
図1に、そのような方法で用いられる回転炉床炉を示す。回転炉床炉1は、加熱処理物としての上記塊成化物2を載置するための回転炉床3と、炉床全体を上方から覆うフード4を備えている。フード4は、天井5と側壁6、6とからなり、回転炉床3の外周および内周縁部近傍に、側壁6が配置されている。フードの側壁6には塊成化物2を加熱するためのガスバーナ7や雰囲気ガスの吹込みノズル8などが設けられている。回転炉床3は、その下面に取り付けられたレール9を介して台座に取り付けられた車輪10によって支持されており、車輪10が回転することにより一定速度で回転するようになっている。回転炉床3の回転中に炉内を外気から遮断するため、通常、回転炉床3と側壁6との間に水封手段11が設けられている。
As a method for producing reduced iron, a method of heat-treating an agglomerate obtained by mixing powdered iron oxide and powdered carbonaceous material using a rotary hearth furnace has attracted attention.
FIG. 1 shows a rotary hearth furnace used in such a method. The
回転炉床3は、耐火物や酸化鉄系物質の層とそれらを支持するための金属板により構成されており、その幅方向中央部から外周縁部までの詳細を図2に示す。
回転炉床3の幅方向中央部の炉床最上面は、塊成化物の粉化により生成した酸化鉄系物質や事前に施工した酸化鉄系物質の層よりなる岩盤炉床12で構成されており、その下部は、耐火レンガなどの耐火物層13により構成されている。
回転炉床3の幅方向の内周側および外周縁部は、下面の金属板14の上部から炉床上面にわたって、不定形耐火物層15となっている。不定形耐火物層15の角部は金属板14とは別体の補強版16により補強されている。
The
The uppermost surface of the hearth of the
The inner peripheral side and the outer peripheral edge of the
また、回転炉床の周縁部の別の構造として、図3aに示すように、炉床上層部の自由膨張を拘束し、炉床側縁部が炉の側壁に接触しないようにするために、不定形耐火物層中に台座17を介してコーナー部レンガ18を設け、周縁部をより強化したものがある。この場合、上記台座は、コーナー部レンガを設置台座に設置する作業のしやすさと位置決めの容易さから、一般に、図3に示すようなL字型の台座17が用いられている。
なお、図2、3では、塊成化物が載置されない回転炉床の周縁部を保護するため、フードの側壁6が周縁部を覆う例を示している。
Further, as another structure of the peripheral part of the rotary hearth, as shown in FIG. 3a, in order to restrain the free expansion of the upper part of the hearth and prevent the hearth side edge from contacting the side wall of the furnace, There is a non-standard refractory layer in which a
2 and 3 show an example in which the
このような、回転炉床炉で、酸化鉄を含む塊成化物を加熱処理物として加熱還元するような場合、炉内は900〜1400℃程度に加熱される。そのような加熱により、岩盤炉床や耐火物などの炉床材が膨張し、それにより図2の矢印で示すように回転炉床の側縁部が押圧されて、炉の側壁6に接触し、炉床の回転を阻害する場合があった。
また、コーナー部レンガを用いる場合は、膨張による接触に加え、図3bに示すようにコーナー部レンガが外方に倒れ側壁に接触することがあった。
さらに、処理後の塊成化物は、スクリュー式やプッシャ式の排出装置により炉外に排出されるが、このときスクリューやプッシャのブレードとの機械的な干渉により、耐火物が炉の側壁側にずれたり、コーナー部レンガが外方に倒れ側壁に接触したりすることがあった。
In such a rotary hearth furnace, when the agglomerate containing iron oxide is heated and reduced as a heat-treated product, the inside of the furnace is heated to about 900 to 1400 ° C. By such heating, the hearth materials such as the rock hearth and the refractory expand, thereby pressing the side edge of the rotary hearth as shown by the arrow in FIG. In some cases, the rotation of the hearth was obstructed.
Moreover, when using a corner part brick, in addition to the contact by expansion | swelling, as shown in FIG. 3b, the corner part brick might fall outside and may contact a side wall.
Further, the agglomerated material after the treatment is discharged out of the furnace by a screw type or pusher type discharge device. At this time, due to mechanical interference with the blade of the screw or pusher, the refractory is placed on the side wall of the furnace. The corner bricks may fall outward and come into contact with the side walls.
このような炉床材の熱膨張による不具合を防止するための手段として、特許文献1〜3のような手段が知られている。
特許文献1では、鋼材ビレットの加熱用の回転炉床炉において、最上層の不定形耐火物層を、膨張代を介して中央部と周縁部に分割し、膨張代に無機繊維系断熱材を介挿させた例が記載されている。しかし、特許文献1では、この例は、断熱材によって膨張代がスケールなどによって埋まる恐れはないが、従来の膨張代の長さは十分でなく、周縁部の不定形耐火物層が押しだされる問題があるとされている。特許文献1では、この例を改良したものとして、最上層の不定形耐火物層とその下の耐火レンガの間に膨張代を設けた例も示されているが、炉床上面に膨張代がないため、岩盤炉床を用いる場合には適用できない問題がある。
As means for preventing such problems due to thermal expansion of the hearth material, means as described in
In
また、特許文献2には、回転炉床の内周縁と外周縁を耐火キャスタブルにより成形した枠体で構成し、これら枠体を周方向の複数個所で間隙をあけて分割し、間隙内にセラミックシートを充填することにより、炉床内外周縁の膨張を吸収してその変形を防止した炉床構造が記載されているが、間隔は炉床幅方向に平行に設置されており、炉床幅方向の線膨張を吸収するものではない。
In
さらに、特許文献3には、回転炉床の周縁部にコーナー煉瓦を設ける場合に、炉床材の熱膨張によって生じるコーナー部レンガを径方向に押圧する力を分散させる手段やコーナー部レンガを強固に保持する手段を設けることにより、コーナー部レンガが径方向に押圧されて回転床炉の側壁に接触することを防止するコーナー部レンガの保持構造が記載されているが、特別な手段を別途必要とするものであり、その効果も充分とはいえないものであった。
Furthermore, in
しかも、加熱処理後の塊成化物が炉外に排出される時の、スクリューやプッシャのブレードとの機械的な干渉による上記のような問題については、これら従来技術では何ら考慮されていなかった。 Moreover, the above-mentioned problems due to mechanical interference with the screw and the pusher blade when the agglomerated material after the heat treatment is discharged out of the furnace have not been taken into consideration in these conventional techniques.
本発明は、回転炉床の最上層が岩盤炉床であるような回転炉床炉において、回転炉床の側縁部が炉の側壁に接触して炉床の回転を妨げることを、簡単な構造で効果的に防止する炉床構造を提供することを課題とする。 In the rotary hearth furnace in which the uppermost layer of the rotary hearth is a rock hearth, it is easy to prevent the side edge of the rotary hearth from contacting the side wall of the furnace to prevent the rotation of the hearth. It is an object of the present invention to provide a hearth structure that is effectively prevented by the structure.
上記の課題を解決するために、本発明は次のようにしたことを特徴とする。
請求項1の回転炉床炉の発明は、幅方向中央部が、金属または酸化物系物質によって形成される最上層の岩盤炉床とその下部の耐火物層とからなり、周縁部が、前記耐火物層より厚みが厚い不定形耐火物層からなる回転炉床を有する回転炉床炉であって、前記回転炉床の少なくとも岩盤炉床と不定形耐火物層との間にクリアランス部を設け、該クリアランス部の幅方向長さを、昇温したときの金属や酸化物系物質層の熱膨張量に組成変化に伴う膨張量を加えた長さ以上とするとともに、該クリアランス部に伸縮可能な耐火性物質を充填したことを特徴とする。
In order to solve the above problems, the present invention is characterized as follows.
In the rotary hearth furnace according to
請求項2の回転炉床炉の発明は、該請求項に記載されているように、前記周縁部の不定形耐火物層の外周部に、その外面が炉の側壁に面するようにコーナー部レンガを設けたことを特徴とする。
請求項3の回転炉床炉の発明は、該請求項に記載されているように、前記クリアランス部の幅方向長さを、昇温したときの金属や酸化物系物質層の熱膨張量と組成変化に伴う膨張量に、さらに加熱処理物の径を加えた合計長さ以下としたことを特徴とする。
請求項4の回転炉床炉の発明は、該請求項に記載されているように、回転炉床の周縁部の最上面高さが、加熱処理物の排出手段の最下部の高さより加熱処理物の径以上低く設定されていることを特徴とする。
請求項5の回転炉床炉の発明は、該請求項に記載されているように、前記幅方向中央部の耐火物層と前記周縁部の不定形耐火物層の間にもクリアランス部を設けたことを特徴とする。
The invention of the rotary hearth furnace according to
The invention of the rotary hearth furnace according to
In the rotary hearth furnace according to claim 4, as described in the claim, the uppermost surface height of the peripheral portion of the rotary hearth is higher than the lowermost height of the discharge means for the heat-treated product. It is characterized by being set lower than the diameter of the object.
According to a fifth aspect of the rotary hearth furnace according to the present invention, a clearance portion is also provided between the refractory layer at the central portion in the width direction and the irregular refractory layer at the peripheral portion. It is characterized by that.
請求項1の発明によれば、回転炉床の最上層が岩盤炉床であるような回転炉床炉において、加熱に伴う岩盤炉床の膨張量を正確に予測でき、クリアランス幅を必要以上に大きくすることなく、簡単な構造で炉床側縁部が炉の側壁に接触することを防止することができ、かつ、クリアランス部に充填された伸縮可能な耐火性物質により、塊成化物などの加熱処理物によるクリアランス部の詰まりを防止することができる。 According to the first aspect of the present invention, in the rotary hearth furnace in which the uppermost layer of the rotary hearth is the rock hearth, the amount of expansion of the rock hearth accompanying heating can be accurately predicted, and the clearance width is more than necessary. It is possible to prevent the hearth side edge from coming into contact with the side wall of the furnace with a simple structure without increasing the size, and the stretchable refractory material filled in the clearance part can be used for agglomerates and the like. The clogging of the clearance portion due to the heat-treated product can be prevented.
請求項2の発明によれば、コーナー部レンガによって周縁部をより強化した回転炉床炉において、請求項1の発明を実施することができる。
請求項3の発明によれば、加熱温度まで昇温した後、クリアランスの幅が上記塊成化物などの加熱処理物の径よりも小さくなっているから、新たに装入された加熱処理物がクリアランス部上を通過するときに、クリアランス部内の伸縮可能な物質を剥ぎ取って、加熱処理物がクリアランス部に埋没するのを防止することができる。
請求項4の発明によれば、加熱処理後の塊成化物が炉外に排出される際、回転炉床の周縁部とスクリューなどとの機械的な干渉がなくなるので、耐火物が炉の側壁側にずれたり、コーナー部レンガが外方に倒れ側壁に接触することが防止できる。
請求項5の発明によれば、さらに確実に炉床側縁部が炉の側壁に接触することを防止することができる。
According to invention of
According to the invention of
According to the invention of claim 4, when the agglomerated material after the heat treatment is discharged out of the furnace, mechanical interference between the peripheral portion of the rotary hearth and the screw is eliminated, so that the refractory becomes the side wall of the furnace. It is possible to prevent the corner bricks from falling sideways and coming into contact with the side walls.
According to invention of
本発明者らは、図2、3に示されているような、幅方向中央部が、耐火物層と金属または酸化物系物質層によって形成される最上層の岩盤炉床とからなり、外周縁部が、上記耐火物より厚みが厚い不定形耐火物層からなる構造の回転炉床を有する回転炉床炉において、中央部の岩盤炉床の膨張を周縁部の不定形耐火物層に伝えないようにするための簡単な構成でかつ有効な手段として、特許文献1のように、両者の間にクリアランス部を設けて炉床材の膨張を吸収する手段について検討した。
As shown in FIGS. 2 and 3, the present inventors have a center part in the width direction composed of a refractory layer and an uppermost rock hearth formed by a metal or oxide-based material layer. In a rotary hearth furnace with a rotary hearth having a structure composed of an amorphous refractory layer whose peripheral part is thicker than the above refractory, the expansion of the bedrock hearth in the central part is transmitted to the amorphous refractory layer in the peripheral part. As a simple configuration and effective means for avoiding this problem, as in
従来、クリアランス部の幅方向長さ(以下、クリアランス幅という)A’については、炉床の熱膨張のみを考慮し、必要幅として 下記式(1)のように決めているのが一般的である。また、クリアランス幅はできるだけ小さいほうが望ましいことから、特に、クリアランス幅の上限をどの程度とするかについては明確に規定されていない。
A’=γa・R・t ・・・(1)
ここで、
A’:従来における必要クリアランス幅(m)
γa:炉床材質a(aは、岩盤炉床ではFe)の温度変化に対する
線膨張率(m/m・℃)
R :回転炉床の幅(m)
t :操業時の炉床温度(℃)
である。
Conventionally, the width direction length of the clearance portion (hereinafter referred to as clearance width) A ′ is generally determined as the required width as shown in the following formula (1) in consideration of only the thermal expansion of the hearth. is there. In addition, since it is desirable that the clearance width be as small as possible, there is no specific provision regarding how much the upper limit of the clearance width is to be set.
A ′ = γa · R · t (1)
here,
A ': Conventional required clearance width (m)
γa: for temperature change of hearth material a (a is Fe for rock hearth)
Linear expansion coefficient (m / m · ° C)
R: width of the rotary hearth (m)
t: hearth temperature (° C) during operation
It is.
しかし、このような考えに基づいたクリアランス幅では、特許文献1で問題とされているように炉床材の膨張による炉床周縁部のずれを十分に防止することができず、特に、岩盤炉床を用いた回転炉床では、炉床周縁部と炉の側壁との干渉の問題が生じることがあった。
これに対し、クリアランス幅を充分大きくすれば、上記問題を解決できることが予想できるが、単に大きくするだけでは、有効な炉床面積の減少や加熱処理物がクリアランス部に埋没するなどの問題があり適当でなく、炉床材の材質に応じて必要なクリアランス幅を設定するための基準が必要である。
However, with the clearance width based on such an idea, as described in
On the other hand, if the clearance width is sufficiently large, it can be expected that the above problem can be solved. However, if the clearance width is simply increased, there are problems such as a reduction in the effective hearth area and the heat-treated material being buried in the clearance portion. It is not appropriate, and a standard for setting a necessary clearance width according to the material of the hearth material is necessary.
そこで、岩盤炉床では、被加熱原料である塊成化物の昇温の過程において、炉床上面の物質が酸化する等、組成変化することに着目した。そして、考慮しなければならない膨張として、通常の温度変化による炉床材の熱膨張に加え、(a)組成変化(例えば酸化)による膨張と(b)組成変化後の温度変化による熱膨張、があるとの考えに基づき、最低必要なクリアランス幅として、式(1)に、上記(a)と(b)の膨張を加えた下記の式(2)を開発した。 Therefore, in the bedrock hearth, attention was paid to the compositional change such as oxidation of the material on the upper surface of the hearth in the process of increasing the temperature of the agglomerated material to be heated. As expansion that must be taken into account, in addition to the thermal expansion of the hearth material due to a normal temperature change, (a) expansion due to composition change (for example, oxidation) and (b) thermal expansion due to temperature change after the composition change, Based on this idea, the following formula (2) was developed by adding the expansions (a) and (b) to the formula (1) as the minimum required clearance width.
A=γa・(1−θ)・R・t+η・θ・R+γa’・(1+η)・θ・R・t
・・・・(2)
ここで、
A :必要クリアランス幅(m)
γa :炉床材質a(組成変化前)の温度変化に対する線膨張率(m/m・℃)
γa’:炉床材質a(組成変化後)の温度変化に対する線膨張率(m/m・℃)
※a、a’はそれぞれ組成変化する前後の材質の種類をあらわす。
岩盤炉床では、aはFeであり、a’はFeOである)
R :炉床幅(m)
t :炉床温度(℃)
θ :炉床材質aのうち、組成変化してa’になるものの比率
η :炉床材質aがa’に組成変化することによる線膨張率(m/m)
である。
A = γa · (1−θ) · R · t + η · θ · R + γa ′ · (1 + η) · θ · R · t
(2)
here,
A: Required clearance width (m)
γa: Linear expansion coefficient (m / m · ° C) with respect to temperature change of hearth material a (before composition change)
γa ′: Linear expansion coefficient (m / m · ° C.) with respect to temperature change of hearth material a (after composition change)
* A and a 'indicate the type of material before and after the composition change.
In the rock hearth, a is Fe and a 'is FeO)
R: hearth width (m)
t: hearth temperature (° C)
θ: Ratio of the hearth material a whose composition changes to a ′ η: Linear expansion coefficient (m / m) due to the compositional change of the hearth material a to a ′
It is.
上記式(2)で用いられる変数のうち、γa、γa’、R、t、ηは、使用する炉の仕様や操業条件から求めることができ、γa、γa’、ηのそれぞれの値は、次の範囲にある。
岩盤炉床に用いられる金属または酸化物系物質層の材質としては、Fe、FeO、Fe2O3、Fe3O4、Zn、ZnO、Al、Al2O3、CaO、MgOであり、γaとγa’の範囲は、1.0×10−6≦γa、γa’≦70.0×10−6(m/m・℃)である。
上記金属または酸化物系物質層の組成変化としては、Fe→FeO、Fe→Fe2O3、Fe→Fe3O4、Zn→ZnO、Al→Al2O3があり、ηの範囲としては、0≦η≦0.4(m/m)である。
炉床材質aのうち、組成変化してa’になるものの比率θは、実験的に定める必要があるが、岩盤炉床では通常30%以下と考えられるので、θ≦0.3である。
Among the variables used in the above equation (2), γa, γa ′, R, t, and η can be obtained from the specifications and operating conditions of the furnace to be used, and the respective values of γa, γa ′, and η are It is in the following range.
The material of the metal or oxide material layer used for the rock hearth is Fe, FeO, Fe 2 O 3 , Fe 3 O 4 , Zn, ZnO, Al, Al 2 O 3 , CaO, MgO, and γa And γa ′ are 1.0 × 10 −6 ≦ γa and γa ′ ≦ 70.0 × 10 −6 (m / m · ° C.).
The composition change of the metal or oxide-based material layer includes Fe → FeO, Fe → Fe 2 O 3 , Fe → Fe 3 O 4 , Zn → ZnO, Al → Al 2 O 3 , and the range of η is 0 ≦ η ≦ 0.4 (m / m).
The ratio θ of the hearth material a whose composition changes to a ′ needs to be determined experimentally. However, in a rock hearth, it is generally considered to be 30% or less, and θ ≦ 0.3.
また、クリアランス幅は、上記のように上限が必要である。
回転炉床では、加熱温度まで昇温された後、操業開始にともない新たに装入された塊成化物が、炉床上面の酸化鉄系物質層または耐火物層の上を通過する。このときクリアランス部の幅が大きすぎると、充填している伸縮可能な物質が剥ぎ取られて塊成化物がクリアランス部内に落ち込み、その内部に埋まり、その後緻密化されて膨張の要因となる可能性がある。そのため、昇温後のクリアランス幅が塊成化物の径以下になっていることが望ましい。
最初Xであったクリアランスの幅は、昇温完了後、炉床材の膨張によりX−Aまで短縮されるため、クリアランス幅の上限Bとして、下記式(3)のように規定するのが望ましい。
B=A+塊成化物の径 ・・・・(3)
Further, the clearance width needs to have an upper limit as described above.
In the rotary hearth, after the temperature is raised to the heating temperature, the agglomerate newly charged with the start of operation passes over the iron oxide-based material layer or the refractory layer on the upper surface of the hearth. At this time, if the width of the clearance part is too large, the filled stretchable material is peeled off and the agglomerate falls into the clearance part and is buried in the clearance part, which is then densified and may cause expansion. There is. Therefore, it is desirable that the clearance width after the temperature rise is equal to or less than the diameter of the agglomerated material.
Since the clearance width that was initially X is shortened to X-A due to expansion of the hearth material after completion of the temperature rise, it is desirable to define the upper limit B of the clearance width as in the following formula (3). .
B = A + Agglomerate diameter (3)
次に、以上のようなクリアランス部を形成した本発明の回転炉床炉の一実施の形態を図4を用いて説明する。
図4は、回転炉床3の外周側を示しており、回転炉床の幅方向中央部の炉床上面は、図2の炉床と同様に主として酸化鉄よりなる岩盤炉床12で構成されており、その下部は、耐火レンガなどの耐火物層13により構成されている。
回転炉床の幅方向端部は、下面の金属板14の上部から炉床上面にわたって、不定形耐火物層15となっている。不定形耐火物層15の角部は金属板14とは別体の補強板16により補強されている。また、不定形耐火物層15は上下に分割されており、下側の不定形耐火物層15bの外周部に、コーナー部レンガ18がその外面が炉の側壁に面するように配置され、図3と同様にL型金具17によって保持されている。
Next, an embodiment of the rotary hearth furnace of the present invention in which the above clearance portion is formed will be described with reference to FIG.
FIG. 4 shows the outer peripheral side of the
An end portion in the width direction of the rotary hearth is an amorphous
上部の不定形耐火物層15aはコーナー部レンガ18の上面を一部覆うように配置されており、その上面の位置19は、排出用スクリュー20の最下部の高さ21より塊成化物の径以上の高さYだけ低くなっており、加熱処理済みの塊成化物が排出する際、塊成化物を介して不定形耐火物層15aの上面と排出装置とが機械的に干渉するのを防止できるようになっている。
The upper amorphous
不定形耐火物層15と岩盤炉床12の間には、上記で説明したように、昇温したときの酸化鉄系物質層の熱膨張量に組成変化に伴う膨張量を加えた長さA以上の幅Xで、クリアランス部22が形成されており、炉床材の熱膨張により炉床の側縁部が径方向に押圧されて、炉の側壁に接触したり、処理済みの塊成化物が排出する際の機械的な干渉を防止することができるので、炉床の回転を阻害することを防止できる。
As described above, the length A between the amorphous
また、クリアランス部22内には、セラミックファイバーなどの伸縮可能な耐火性物質23が充填されており、塊成化物がこのクリアランス部22に落ち込むのを防止する。
なお、図4には図示していないが、耐火物層13と下側の不定形耐火物層15bの間にもクリアランス部を設け、そこにも同様にセラミックファイバーなどの伸縮可能な耐火物質を配置してもよい。
In addition, the
Although not shown in FIG. 4, a clearance portion is also provided between the
以下に、本発明のクリアランス幅の決定する手順を実施例により説明する。
なお、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一実施の態様であり、本発明はこれに限定されるものではない。
Hereinafter, the procedure for determining the clearance width of the present invention will be described with reference to examples.
The conditions adopted in the examples are one embodiment for confirming the feasibility and effect of the present invention, and the present invention is not limited to this.
(i)γa、γa’、R、t、ηの決定
岩盤炉床の主成分はFeであるので、γaはFeの、γa’はFeOの線膨張係数であり、次の値である。
γa=11.6×10−6m/m・℃
γa’=13.2×10−6m/m・℃
Rは回転炉床炉に固有の値で、R=3.75mである。
ηは、FeがFeOに変化するときの密度変化より求める。それぞれの分子量はFe=55.85、FeO=71.85および密度はFe=7.860t/m3、FeO=5.870t/m3であるから、下記式(4)よりη=0.199m/mと計算される。
η={(71.85/5.870)/(55.85/7.860)}1/3−1=0.199m/m ・・・・(4)
(I) Determination of γa, γa ′, R, t, η Since the main component of the bedrock hearth is Fe, γa is the linear expansion coefficient of Fe, and γa ′ is the linear expansion coefficient of FeO.
γa = 11.6 × 10 −6 m / m · ° C.
γa ′ = 13.2 × 10 −6 m / m · ° C.
R is a value inherent to the rotary hearth furnace, and R = 3.75 m.
η is obtained from density change when Fe changes to FeO. The respective molecular weights are Fe = 55.85, FeO = 71.85, and the densities are Fe = 7.860 t / m 3 and FeO = 5.870 t / m 3. Therefore, from the following formula (4), η = 0.199 m / M.
η = {(71.85 / 5.870) / (55.85 / 7.860)} 1 / 3-1 = 0.199 m / m (4)
(ii)θの決定
炉床材質aのうち、組成変化してa’になるものの比率θは、炉床温度tに比例して変化するものであり、実験的に求める必要がある。
そこで、まず、炉床温度を上昇させていったときの岩盤炉床の実際の膨張量を実験によって測定した。その結果を図5に示す。図5に示されるように、炉床温度が600℃で酸化反応が開始され、その後、炉床温度の上昇とともにその上昇に比例して膨張量が増大する結果が得られた。
また、炉床温度tが1000℃のときの、実際の膨張量Aを実測し、A=130mmという実測値を得た。以上の値を上記式(2)に代入し、炉床温度tが1000℃のときのθの値として、θ=0.1135を得た。
炉床温度tが600℃以上では、θとtの間には比例関係があることから、下記式(5)を求めた。
θ=0.1135/(1000−600)・(t−600) ・・・・(5)
(Ii) Determination of θ Of the hearth material a, the ratio θ of the composition change to a ′ changes in proportion to the hearth temperature t and needs to be obtained experimentally.
Therefore, first, the actual expansion amount of the rock hearth when the hearth temperature was raised was measured by experiments. The result is shown in FIG. As shown in FIG. 5, the oxidation reaction was started at the hearth temperature of 600 ° C., and then the expansion amount increased in proportion to the rise in the hearth temperature.
Further, when the hearth temperature t was 1000 ° C., the actual expansion amount A was measured, and an actual measurement value A = 130 mm was obtained. The above value was substituted into the above formula (2), and θ = 0.1135 was obtained as the value of θ when the hearth temperature t was 1000 ° C.
When the hearth temperature t is 600 ° C. or higher, there is a proportional relationship between θ and t, and thus the following equation (5) was obtained.
θ = 0.1135 / (1000−600) (t−600) (5)
(iii)クリアランス幅の決定
使用する回転炉床炉は、炉床温度が1200℃程度まで上昇する。
式(5)を用いて、 炉床温度t=1200℃ のときのθの値をθ=0.170と求め、この値を上記の他の値とともに式(2)に代入して、 最低必要なクリアランス幅がA=182mmと求められた。
炉に装入されるブリケット径は20〜25mmであるので、さらに 式(3)より、 クリアランス幅の上限Bとして、182+20=202mmが求められた。
これより、 必要なクリアランス幅を200mmと決定した。
(Iii) Determination of clearance width In the rotary hearth furnace to be used, the hearth temperature rises to about 1200 ° C.
Using equation (5), the value of θ when the hearth temperature t = 1200 ° C. is obtained as θ = 0.170, and this value is substituted into equation (2) together with the other values described above. Clearance width was determined as A = 182 mm.
Since the briquette diameter charged in the furnace is 20 to 25 mm, 182 + 20 = 202 mm was obtained as the upper limit B of the clearance width from the equation (3).
From this, the necessary clearance width was determined to be 200 mm.
(iV)結果
この値を回転炉床炉に適用し実施したところ、15ヶ月の運転では、炉の回転の不都合は発生せず、本発明の有効性が確認された。
(IV) Results When this value was applied to a rotary hearth furnace, it was confirmed that the 15-month operation did not cause inconvenience of the rotation of the furnace and the effectiveness of the present invention was confirmed.
1 回転炉床炉
2 塊成化物(加熱処理物)
3 回転炉床
4 フード
6 フードの側壁
12 岩盤炉床
13 耐火物層
15 不定形耐火物
18 コーナー部レンガ
19 不定形耐火物15の上面高さ
20 排出用スクリュー(排出手段)
21 排出用スクリューの最下部の高さ
22 クリアランス部
23 セラミックファイバー(伸縮可能な耐火性物質)
1
DESCRIPTION OF
21 Lowermost height of
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006125020A JP4879640B2 (en) | 2006-04-28 | 2006-04-28 | Rotary hearth furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006125020A JP4879640B2 (en) | 2006-04-28 | 2006-04-28 | Rotary hearth furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007298202A JP2007298202A (en) | 2007-11-15 |
JP4879640B2 true JP4879640B2 (en) | 2012-02-22 |
Family
ID=38767836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006125020A Active JP4879640B2 (en) | 2006-04-28 | 2006-04-28 | Rotary hearth furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4879640B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110079757A (en) * | 2019-05-07 | 2019-08-02 | 河南天利热工装备股份有限公司 | A kind of novel carburizing jar structure |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4913767Y1 (en) * | 1970-12-30 | 1974-04-05 | ||
JPH0464097A (en) * | 1990-07-02 | 1992-02-28 | Toshiba Corp | Frame for transport of fast breeder shield plug and its transport method |
JP2001324274A (en) * | 2000-05-17 | 2001-11-22 | Sanyo Special Steel Co Ltd | Rotary hearth heating furnace for steel billets |
JP4337271B2 (en) * | 2001-04-06 | 2009-09-30 | 大同特殊鋼株式会社 | Hearth structure of rotary hearth furnace |
JP4337272B2 (en) * | 2001-04-06 | 2009-09-30 | 大同特殊鋼株式会社 | Hearth structure of rotary hearth furnace |
JP3766630B2 (en) * | 2001-12-13 | 2006-04-12 | 新日本製鐵株式会社 | Brick holding structure for corner of rotary floor furnace |
-
2006
- 2006-04-28 JP JP2006125020A patent/JP4879640B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007298202A (en) | 2007-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1053443B1 (en) | Method for forming a moving hearth in a furnace for producing reduced iron agglomerates | |
EP2189547B1 (en) | Process for producing reduced iron pellets | |
US8163230B2 (en) | Rotary hearth furnace for treating metal oxide materials | |
WO2007049822A1 (en) | Monolithic refractory | |
US8021460B2 (en) | System and method for producing metallic iron nodules | |
CA2322935A1 (en) | Method and apparatus for producing reduced metal | |
US4597564A (en) | Rotary hearth | |
US3452972A (en) | Furnace hearth | |
CN101528952A (en) | Briquette iron by hot molding and process for producing the same | |
TW574373B (en) | Rotary hearth furnace for producing reduced metal and method of producing reduced metal | |
EP0370677B2 (en) | Magnesite-carbon refractories | |
JP4879640B2 (en) | Rotary hearth furnace | |
US3687437A (en) | Metallurgical furnaces or vessels | |
KR20120031080A (en) | Carbon composite briquette for producing reduced iron and method for producing reduced iron employing the same | |
JP4337271B2 (en) | Hearth structure of rotary hearth furnace | |
JPH10317033A (en) | Production of reduced iron | |
JP3766630B2 (en) | Brick holding structure for corner of rotary floor furnace | |
JP2005126732A (en) | Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus | |
JP5494071B2 (en) | Method for producing reduced iron | |
EP1263994B1 (en) | Method for sintering ferroalloy materials | |
JP4337272B2 (en) | Hearth structure of rotary hearth furnace | |
RU2810436C1 (en) | Mixer for accumulating liquid cast iron | |
Roy et al. | Improving Health and Productivity of Calcining Kiln Through Several Innovations in Refractory Maintenance Practices at Rourkela Steel Plant | |
JP2706333B2 (en) | High temperature processing equipment for materials | |
EP2006624B1 (en) | Hearth structure of rotary hearth furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111130 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4879640 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |