JP4337272B2 - Hearth structure of rotary hearth furnace - Google Patents

Hearth structure of rotary hearth furnace Download PDF

Info

Publication number
JP4337272B2
JP4337272B2 JP2001108656A JP2001108656A JP4337272B2 JP 4337272 B2 JP4337272 B2 JP 4337272B2 JP 2001108656 A JP2001108656 A JP 2001108656A JP 2001108656 A JP2001108656 A JP 2001108656A JP 4337272 B2 JP4337272 B2 JP 4337272B2
Authority
JP
Japan
Prior art keywords
hearth
expansion
castable
refractory
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001108656A
Other languages
Japanese (ja)
Other versions
JP2002310565A (en
Inventor
達夫 湯浅
誠二 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001108656A priority Critical patent/JP4337272B2/en
Publication of JP2002310565A publication Critical patent/JP2002310565A/en
Application granted granted Critical
Publication of JP4337272B2 publication Critical patent/JP4337272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は回転炉床炉の炉床構造に関し、特に、製鋼ダストペレット等の還元処理を行うための回転炉床炉の、炉床構造の改良に関する。
【0002】
【従来の技術】
製鋼ダストや粉鉱等の再利用を図るために、製鋼ダスト等にバインダや還元材を混入して混練した後、生ペレットに造粒し、これを回転炉床炉へ供給して、加熱・還元等の熱処理をすることが行なわれている。その一例を図4に示す。回転炉床炉1は同心円形の内外の周壁11,12を有し、これら周壁11,12と図略の底壁および頂壁によって矩形閉断面の炉内空間Sが円環状に形成されている。底壁上には内外の周壁11,12との間に小間隙を形成して炉床2が位置し、この炉床2は炉内空間Sに沿う円環状をなすとともに、図略の駆動機構によって矢印方向へ回転移動させられている。回転炉床炉1の炉内空間Sは周方向の複数位置に設けたカーテンウォール31〜35によって周方向へ複数の領域に区画されており、図4に示す例では、炉床2の回転方向へそれぞれ給排室41、予熱帯42、加熱帯43、中間帯44、還元帯45に区画されている。加熱帯43、中間帯44、および還元帯45にはそれぞれ内外の周壁11,12に必要数のバーナ61〜63が設けられている。
【0003】
装入口51から炉内へ装入された製鋼ダスト等を原料とする球形の生ペレットPは炉床2上へ落下供給され、炉床2の移動に伴ってカーテンウォール31の下端縁で均されて、炉床2上面全体にほぼ均一に積層載置される。生ペレットPは予熱帯42へ搬送されて、ここで600℃以下の低温で加熱され、内部の水分やガス化成分が緩やかに蒸発気化して、爆裂等を生じることなく乾燥させられる。乾燥したペレットPは加熱帯43で加熱されてその温度が十分に上昇し、中間帯44を経て還元帯45へ至って、その還元性雰囲気とペレットPに含まれる還元材とによって、ペレットP中の金属酸化物が金属に還元される。還元処理を終えたペレットPは給排室41へ戻り、スクリューコンベア53によって外周壁に設けた排出口52から炉外へ排出される。
【0004】
【発明が解決しようとする課題】
ところで、上記回転炉床炉において、炉床の内外中間部を成形が容易な耐火キャスタブルで形成すると、熱膨張によって耐火キャスタブル層が拡大変形して浮き上がりを生じるおそれがある。これに対する対策として、耐火キャスタブル層の適宜個所に膨張変形を吸収するための一定間隙を形成することが考えられるが、十分な間隙寸法を確保しようとすると、小径のペレットが上記間隙に侵入してこれを埋め、膨張吸収の機能が阻害されるおそれがあった。
【0005】
そこで本発明はこのような課題を解決するもので、ペレットによって阻害されることなく炉床耐火キャスタブル層の膨張を効果的に吸収してその浮き上がり等を防止できる回転炉床炉の炉床構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本第1発明では、内周壁(11)と外周壁(12)の間に配設された円環状の回転炉床(2)の、内外方向の中間部を耐火キャスタブル層(45)で構成するとともに、耐火キャスタブル層(45)に隣接する内周側と外周側の少なくとも一方に内外方向へ複数列の耐火レンガ(73,74)を配置して、これら耐火レンガ(73,74)の列間に耐火キャスタブル層(45)の径方向の膨張を吸収する膨張代となる間隙(57,58)を形成し、かつ耐火キャスタブル層(45)を周方向で複数に分割して、各分割部に、周方向への耐火キャスタブル層(45)の膨張を吸収する膨張代となる間隙(56)を形成する複数列の耐火レンガ(72)を配設する。
【0007】
本第1発明においては、耐火キャスタブル層に隣接する内周側と外周側の少なくとも一方に内外方向へ配置した上記耐火レンガの列間の間隙を小径のペレットが侵入しない程度の大きさとしても、これら間隙の和として十分に大きな膨張代を炉床の径方向へ確保することができる。これにより、ペレットにより阻害されることなく耐火キャスタブル層の膨張を吸収して、その浮き上がり等を防止することができる。 また、上記分割部における耐火レンガの列間の間隙を、小径のペレットが侵入しない程度の大きさとしても、これら間隙の和として周方向への十分に大きな膨張代を確保できるから、ペレットに阻害されることなく、キャスタブル層の膨張変形を吸収して、その浮き上がり等を回避することができる。
【0009】
本第発明では、上記耐火キャスタブル層(45)を、複数のキャスタブルシート(451)に分割してこれらの周囲に当該キャスタブルシート(451)の膨張を吸収する膨張代となる間隙(55)を形成する。本第発明においては、小径のペレットが侵入しない程度の大きさとした周囲の間隙によってキャスタブルシートの膨張が吸収されて、耐火キャスタブル層の浮き上がり等がさらに効果的に防止される。
【0010】
なお、上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0011】
【発明の実施の形態】
図1には回転炉床炉1の炉床2の垂直断面を示し、図2には内周側から見た炉床2の部分斜視図を示す。内周壁11と外周壁12の間に位置する一定幅の炉床2はその下半が上下二段の金属フレーム21,22となっており、上側フレーム22上に、詳細を後述する耐熱炉床部23が載設されている。図1において、下側フレーム21の下面の、内周位置と外周位置にはそれぞれ全周にわたって延びるレール部材31,32が設けられて、これらレール部材31,32に、フロア側に設けた支持ローラ33が下方から当接して炉床2が支持されている。
【0012】
下側フレーム21の内周に近い下面中間部には全周にわたって延びるガイド部材34が突設してあり、その内周垂直面に水平姿勢に支持されたガイドローラ35が当接して炉床2が径方向へ位置決めされている。下側フレーム21下面の外周に近い下面中間部には全周にわたって延びるラックレール36が設けられて、そのレール面に形成された歯形にピニオン歯車37が噛合している。ピニオン歯車37は外周壁12の下方を水平に貫通挿入された回転軸38に装着されており、図略の駆動手段で回転軸38を回転させることにより、炉床2が回転移動させられる。
【0013】
耐熱炉床部23には上側フレーム22上に一定厚で形成された断熱キャスタブルよりなる断熱層41が設けられ、これは上側フレーム22の上面全面を覆うとともに、断熱層41の内外周部は下方へ屈曲して上側フレーム22の内外周面を覆っている。上側フレーム22の内外周縁上面には周方向へ間隔をおいて、断熱層41を上方へ貫通するインサート金具411が突設されており、これらインサート金具411を覆って耐火キャスタブルが所定断面形状に成形されて枠体42,43となっている。内外周の枠体42,43間の環状空間内には上記断熱層41上に断熱レンガを複数層(本実施形態では4層)積層したレンガ層44が設けられている。レンガ層44上には内外周の中間位置に一定厚の耐火キャスタブル層45が形成され、これに隣接する内周側と外周側に、二層に耐火レンガ73,74を積層した一定幅のレンガ層46,47が設けられている。そして、耐火キャスタブル層45とレンガ層46,47を覆って、内外周の枠体42,43上面と面一になるようにドロマイト層48が形成されている。ペレットはドロマイト層48上に供給積層されて従来技術で説明したように給排室41(図4)から、予熱帯42、加熱帯43、中間帯44、還元帯45へ順次搬送される。
【0014】
内外周の各枠体42,43は、図3に示すように、周方向へ一定の間隔で分割されて複数の枠ブロック421,431より構成されており、隣接する枠ブロック421,431間には所定の間隙51,52が形成されている。そして、これら各間隙51,52にはセラミックファイバー製のセラミックシート6ないしセラミックブランケットが充填してある。ここで、外周枠体43においては、間隙52に臨む各枠ブロック431の周方向の両端部が一定量凹陥させられて、平面視で外方へ向けて漸次左右辺が接近する台形状の凹所432が形成されており、これら凹所432内に複数の耐火レンガ71が埋設されている。各耐火レンガ71は外方へ漸次幅が小さくなる扇形に形成されて径方向へ複数設けられるとともに、周方向へ複数列(本実施形態では3列)並べられており、耐火レンガ71の隣接する列の間には所定の間隙53(図3)が形成されている。
【0015】
図2において、上記上側フレーム22は枠体42,43と同一位置で周方向へ複数に分割されており、これら分割枠体221間には所定の間隙54が形成されるとともに、間隙54を上方から覆うように一定幅の金属製シールプレート222が径方向へ延設されている。これらシールプレート222は一方の側縁が溶接されることなくフリーとしてある。また、上記レンガ層44上に形成された耐火キャスタブル層45は平面視で略四角形のキャスタブルプレート451に内外方向および周方向で分割され、これらキャスタブルプレート451の周囲には互いに所定の間隙55が形成されて、これら間隙55内にセラミックシート(図示略)が充填されている。キャスタブルプレート451は周方向で一定間隔毎に大きく離間させられて、この離間部分に、周方向へ複数列(本実施形態では2列)で、径方向へ多数の耐火レンガ72が配設されている。そして、これら耐火レンガ72の周囲や、耐火レンガ72とキャスタブルプレート451との間に所定の間隙56が形成されるとともに、間隙56内にはセラミックシート(図示略)が充填されている。
【0016】
内周側のレンガ層46の耐火レンガ73は、平面視で図3に示すように内外二列で周方向へ多数設けられて、各列間、枠体42との間、キャスタブルプレート451との間、および最内周の耐火レンガ72との間にそれぞれ所定の間隙57が形成されて、これら間隙57内にセラミックシート(図示略)が充填されている。外周側のレンガ層47の耐火レンガ74は、平面視で内外4列に設けられて、各列間、枠体43との間、キャスタブルプレート451との間、および最外周の耐火レンガ72との間にそれぞれ所定の間隙58が形成されて、これら間隙58内にセラミックシート(図示略)が充填されている。また、上記各レンガ層46,47には周方向へ一定間隔で相対的に大きい間隙81,82が形成されて、これら間隙81,82内にセラミックシート6が充填されている。
【0017】
このような炉床構造において、炉床中間部の耐火キャスタブル層45と内外の枠体42,43との間にレンガ層46,47を設けて、内周側のレンガ層46を内外二列の耐火レンガ73で構成するとともに、熱膨張変形の大きい外周側のレンガ層47を内外4列の耐火レンガ74でそれぞれ構成して、各列間に間隙57,58を形成するようにしたから、小径のペレットが侵入しない程度の大きさの間隙57,58の和として十分に大きな膨張代を特に炉床2の径方向へ確保することができる。これにより、耐火キャスタブル層45の膨張を吸収して、その浮き上がり等を防止することができる。
【0018】
また、耐火キャスタブル層45を略四角形のキャスタブルシート451に分割してこれらの周囲に間隙55を形成したから、これら間隙55によってキャスタブルシート451の膨張が吸収されて、耐火キャスタブル層45の浮き上がり等がさらに効果的に防止される。加えて、周方向の複数列のキャスタブルシート451毎に、周方向へ所定の間隙56を形成する複数列の耐火レンガ72を配設したから、これによっても、小径のペレットの侵入を防止しつつ周方向への十分に大きな膨張代を確保して、キャスタブルシート451の膨張変形を吸収し、その浮き上がり等を回避することができる。
【0019】
本実施形態において、炉内の熱を受けて内周側および外周側の各枠体42,43では枠ブロック421,431が周方向へ膨張し伸長するが、枠ブロック421,431間に形成された間隙51,52が膨張代となって膨張変形が吸収される。この結果、枠体43の径方向外方への拡大が防止されて、外周壁12との接触が回避される。同様に枠体42の浮き上がりも防止されて、内周壁11との接触も回避される。この際、間隙51,52内に充填されたセラミックシート6ないしセラミックブランケットは枠ブロック421,431の伸長変形に伴う間隙51,52の縮小に応じて容易に収縮してその変形を妨げることがない上に、小径のペレットが間隙51,52内に侵入するのを防止して、当該間隙51,52による膨張吸収機能を保証する。
【0020】
本実施形態では、上側フレーム22を枠体42,43と同一位置で周方向へ分割して所定の間隙54を形成したから、上側フレーム22が上記間隙54を膨張代として枠体42と一体に伸長変形し、これによって枠体42の浮き上がりがさらに効果的に防止される。また、上記上側フレーム22の間隙54をシールプレート222で上方から遮蔽したから、炉内の雰囲気ガスが外気に放出されることはない。
【0021】
本実施形態ではさらに、外周側枠体43において、間隙52に臨む各枠ブロック431の周方向の両端部に凹所432を形成して、ここに、周方向へ複数列で耐火レンガ71を埋設し、耐火レンガ71の隣接する列の間に間隙53を形成したことにより、複数の間隙53の和で間隙52の大きさにほぼ等しい膨張代を形成すれば良いから、各間隙53を小径のペレットが侵入しない小さなものにすることができる。また、上記凹所432は平面視で外方へ向けて漸次左右辺が接近する台形状としてあるから、スクリューコンベア53(図4)によって炉外へ送り出されるペレットPが耐火レンガ71上を径方向外方へ通過しても、これら耐火レンガ71がペレットPの動きにつられて凹所432から脱出することはない。なお、本実施形態では、一定厚の断熱キャスタブルよりなる断熱層41で上側フレーム22の上面全面を覆うようにしたから、上側フレーム22の温度上昇とこれに伴う膨張変形を可及的に小さくすることができる。
【0022】
【発明の効果】
以上のように、本発明の回転炉床炉の炉床構造によれば、ペレットによって阻害されることなく炉床内外周縁の膨張を効果的に吸収してその変形を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す回転炉床炉の炉床の垂直断面図である。
【図2】回転炉床炉の炉床の部分斜視図である。
【図3】回転炉床炉の炉床の部分平面図である。
【図4】回転炉床炉の全体水平断面図である。
【符号の説明】
1…回転炉床炉、11…内周壁、12…外周壁、2…回転炉床、22…上側フレーム、222…シールプレート、45…耐火キャスタブル層、451…キャスタブルシート、55,56,57,58…間隙。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hearth structure of a rotary hearth furnace, and more particularly to an improvement of the hearth structure of a rotary hearth furnace for reducing steelmaking dust pellets and the like.
[0002]
[Prior art]
In order to reuse steelmaking dust and fine ore, binder and reducing material are mixed into steelmaking dust and kneaded, and then granulated into raw pellets, which are supplied to a rotary hearth furnace for heating and heating. A heat treatment such as reduction is performed. An example is shown in FIG. The rotary hearth furnace 1 has concentric circular inner and outer peripheral walls 11 and 12, and a rectangular closed cross-section in-furnace space S is formed in an annular shape by the peripheral walls 11 and 12 and a bottom wall and a top wall (not shown). . On the bottom wall, a small gap is formed between the inner and outer peripheral walls 11 and 12, and the hearth 2 is positioned. The hearth 2 forms an annular shape along the inner space S and a drive mechanism (not shown). Is rotated in the direction of the arrow. The in-furnace space S of the rotary hearth furnace 1 is divided into a plurality of regions in the circumferential direction by curtain walls 31 to 35 provided at a plurality of positions in the circumferential direction. In the example shown in FIG. Each is divided into a supply / discharge chamber 41, a pre-tropical zone 42, a heating zone 43, an intermediate zone 44, and a reduction zone 45. The heating zone 43, the intermediate zone 44, and the reduction zone 45 are provided with the necessary number of burners 61 to 63 on the inner and outer peripheral walls 11 and 12, respectively.
[0003]
Spherical raw pellets P made of steelmaking dust or the like charged into the furnace from the charging port 51 are dropped onto the hearth 2 and leveled at the lower edge of the curtain wall 31 as the hearth 2 moves. Thus, the stack is placed almost uniformly on the entire upper surface of the hearth 2. The raw pellets P are transported to the pre-tropical zone 42 where they are heated at a low temperature of 600 ° C. or lower, and the internal moisture and gasification components are gradually evaporated and dried without causing explosion or the like. The dried pellet P is heated in the heating zone 43 and its temperature rises sufficiently, reaches the reduction zone 45 through the intermediate zone 44, and the pellet P contains the reducing atmosphere and the reducing material contained in the pellet P. Metal oxide is reduced to metal. The pellet P that has been subjected to the reduction process returns to the supply / discharge chamber 41 and is discharged out of the furnace from the discharge port 52 provided on the outer peripheral wall by the screw conveyor 53.
[0004]
[Problems to be solved by the invention]
By the way, in the rotary hearth furnace, if the inner and outer intermediate parts of the hearth are formed of a fire-resistant castable that can be easily molded, the fire-resistant castable layer may be expanded and deformed due to thermal expansion. As a countermeasure against this, it is conceivable to form a fixed gap for absorbing expansion deformation at an appropriate place in the refractory castable layer. However, if a sufficient gap size is to be secured, a small-diameter pellet penetrates into the gap. There was a possibility that the function of the expansion absorption could be hindered.
[0005]
Accordingly, the present invention solves such problems, and provides a hearth structure of a rotary hearth furnace that can effectively absorb the expansion of the hearth refractory castable layer and prevent its floating without being hindered by pellets. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the intermediate portion in the inner and outer directions of the annular rotary hearth (2) disposed between the inner peripheral wall (11) and the outer peripheral wall (12) is refractory. A plurality of refractory bricks (73, 74) are arranged in the inner and outer directions on at least one of the inner peripheral side and the outer peripheral side adjacent to the refractory castable layer (45). A gap (57, 58) serving as an expansion allowance for absorbing the expansion in the radial direction of the refractory castable layer (45) is formed between the rows of (73, 74) , and a plurality of refractory castable layers (45) are provided in the circumferential direction. A plurality of rows of refractory bricks (72) that form gaps (56) serving as expansion allowances for absorbing expansion of the refractory castable layer (45) in the circumferential direction are arranged in each divided portion.
[0007]
In the first invention, even if the size of the small-diameter pellets do not penetrate the gap between the rows of the refractory bricks arranged in the inner and outer direction at least one of the inner peripheral side and the outer peripheral side adjacent to the refractory castable layer , A sufficiently large expansion allowance can be ensured in the radial direction of the hearth as the sum of these gaps. As a result, the expansion of the refractory castable layer can be absorbed without being hindered by the pellets, and the lifting thereof can be prevented. In addition, even if the gap between the fire bricks in the divided portion is large enough not to allow small-diameter pellets to enter, a sufficiently large expansion allowance in the circumferential direction can be secured as the sum of these gaps. Therefore, it is possible to absorb the expansion deformation of the castable layer and to avoid the lifting or the like.
[0009]
In the second invention, the fireproof castable layer (45) is divided into a plurality of castable sheets (451), and a gap (55) serving as an expansion allowance for absorbing the expansion of the castable sheets (451) is formed around these layers. Form. In the second aspect of the present invention, the expansion of the castable sheet is absorbed by the surrounding gap that has a size that does not allow the small-diameter pellets to enter, and the refractory castable layer is more effectively prevented from being lifted.
[0010]
In addition, the code | symbol in the said parenthesis shows the correspondence with the specific means as described in embodiment mentioned later.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a vertical section of a hearth 2 of a rotary hearth furnace 1, and FIG. 2 shows a partial perspective view of the hearth 2 viewed from the inner peripheral side. The hearth 2 having a constant width located between the inner peripheral wall 11 and the outer peripheral wall 12 has upper and lower metal frames 21 and 22 in the lower half, and a heat-resistant hearth to be described in detail later on the upper frame 22. The part 23 is placed. In FIG. 1, rail members 31 and 32 extending over the entire circumference are provided at the inner circumferential position and the outer circumferential position of the lower surface of the lower frame 21, respectively, and support rails provided on the floor side are provided on these rail members 31 and 32. The hearth 2 is supported by contacting 33 from below.
[0012]
A guide member 34 extending over the entire circumference protrudes from a lower surface intermediate portion near the inner circumference of the lower frame 21, and a guide roller 35 supported in a horizontal posture is brought into contact with the inner circumference vertical surface to contact the hearth 2. Are positioned in the radial direction. A rack rail 36 extending over the entire circumference is provided at the lower surface intermediate portion near the outer periphery of the lower surface of the lower frame 21, and a pinion gear 37 meshes with a tooth profile formed on the rail surface. The pinion gear 37 is mounted on a rotating shaft 38 that is horizontally inserted and inserted below the outer peripheral wall 12, and the hearth 2 is rotated by rotating the rotating shaft 38 by a driving unit (not shown).
[0013]
The heat-resistant hearth 23 is provided with a heat insulating layer 41 made of heat insulating castable formed on the upper frame 22 with a constant thickness, which covers the entire upper surface of the upper frame 22, and the inner and outer peripheral portions of the heat insulating layer 41 are located below. Is bent to cover the inner and outer peripheral surfaces of the upper frame 22. Insert metal fittings 411 are provided on the upper surface of the inner and outer peripheral edges of the upper frame 22 at intervals in the circumferential direction so as to project upward through the heat insulating layer 41. A fireproof castable is formed in a predetermined cross-sectional shape covering the metal inserts 411. Thus, the frame bodies 42 and 43 are formed. In the annular space between the inner and outer peripheral frame bodies 42 and 43, a brick layer 44 is provided in which a plurality of layers (four layers in this embodiment) of heat insulating bricks are stacked on the heat insulating layer 41. On the brick layer 44, a fire-resistant castable layer 45 having a constant thickness is formed at an intermediate position between the inner and outer peripheries. Layers 46 and 47 are provided. A dolomite layer 48 is formed so as to cover the refractory castable layer 45 and the brick layers 46 and 47 and to be flush with the upper surfaces of the inner and outer peripheral frame bodies 42 and 43. The pellets are supplied and laminated on the dolomite layer 48 and are sequentially conveyed from the supply / discharge chamber 41 (FIG. 4) to the pre-tropical zone 42, the heating zone 43, the intermediate zone 44, and the reduction zone 45 as described in the prior art.
[0014]
As shown in FIG. 3, each of the inner and outer frame bodies 42, 43 is divided into a plurality of frame blocks 421, 431 divided at a constant interval in the circumferential direction, and between adjacent frame blocks 421, 431. A predetermined gap 51, 52 is formed. The gaps 51 and 52 are filled with a ceramic sheet 6 or a ceramic blanket made of ceramic fibers. Here, in the outer peripheral frame 43, both end portions in the circumferential direction of each frame block 431 facing the gap 52 are recessed by a certain amount, and trapezoidal concaves whose left and right sides gradually approach outward in a plan view. A place 432 is formed, and a plurality of refractory bricks 71 are embedded in these recesses 432. Each of the refractory bricks 71 is formed in a sector shape with a gradually decreasing width and is provided in a plurality in the radial direction, and is arranged in a plurality of rows (three rows in the present embodiment) in the circumferential direction. A predetermined gap 53 (FIG. 3) is formed between the rows.
[0015]
In FIG. 2, the upper frame 22 is divided into a plurality of portions in the circumferential direction at the same position as the frame bodies 42, 43. A predetermined gap 54 is formed between the divided frame bodies 221, and the gap 54 A metal seal plate 222 having a constant width is extended in the radial direction so as to cover from the outside. These seal plates 222 are free without welding one side edge. The fire-resistant castable layer 45 formed on the brick layer 44 is divided into a substantially square castable plate 451 in a plan view in the inner and outer directions and the circumferential direction, and a predetermined gap 55 is formed around the castable plate 451. Then, a ceramic sheet (not shown) is filled in the gaps 55. The castable plate 451 is largely separated at regular intervals in the circumferential direction, and a plurality of refractory bricks 72 are arranged in the radial direction in a plurality of rows (two rows in this embodiment) in the circumferential direction. Yes. A predetermined gap 56 is formed around the refractory bricks 72 and between the refractory bricks 72 and the castable plate 451, and the gap 56 is filled with a ceramic sheet (not shown).
[0016]
A large number of refractory bricks 73 of the brick layer 46 on the inner peripheral side are provided in the circumferential direction in two rows inside and outside, as shown in FIG. 3, between each row, between the frame body 42, and the castable plate 451. A predetermined gap 57 is formed between the innermost refractory brick 72 and the innermost refractory brick 72, and a ceramic sheet (not shown) is filled in the gap 57. The refractory bricks 74 of the outer peripheral side brick layer 47 are provided in four rows inside and outside in plan view, between each row, between the frame body 43, between the castable plate 451, and with the outermost refractory brick 72. Predetermined gaps 58 are respectively formed therebetween, and the ceramic sheets (not shown) are filled in the gaps 58. The brick layers 46 and 47 have relatively large gaps 81 and 82 formed at regular intervals in the circumferential direction, and the gaps 81 and 82 are filled with the ceramic sheet 6.
[0017]
In such a hearth structure, brick layers 46 and 47 are provided between the refractory castable layer 45 in the center of the hearth and the inner and outer frames 42 and 43, and the inner brick layer 46 is arranged in two rows. Since the brick layer 47 on the outer peripheral side having a large thermal expansion deformation is constituted by four rows of refractory bricks 74 inside and outside, and the gaps 57 and 58 are formed between the rows. A sufficiently large expansion allowance can be ensured especially in the radial direction of the hearth 2 as the sum of the gaps 57 and 58 having such a size that no pellets can enter. Thereby, the expansion | swelling of the fireproof castable layer 45 can be absorbed and the floating etc. can be prevented.
[0018]
Further, since the fireproof castable layer 45 is divided into substantially rectangular castable sheets 451 and gaps 55 are formed around these, the expansion of the castable sheet 451 is absorbed by the gaps 55, and the fireproof castable layer 45 is lifted. Further effectively prevented. In addition, since a plurality of rows of refractory bricks 72 that form predetermined gaps 56 in the circumferential direction are provided for each of the plurality of rows of castable sheets 451 in the circumferential direction, this also prevents the intrusion of small-diameter pellets. A sufficiently large expansion allowance in the circumferential direction can be secured, the expansion deformation of the castable sheet 451 can be absorbed, and the lifting or the like can be avoided.
[0019]
In the present embodiment, the frame blocks 421 and 431 expand and expand in the circumferential direction in the inner and outer frame bodies 42 and 43 in response to heat in the furnace, but are formed between the frame blocks 421 and 431. The gaps 51 and 52 serve as expansion allowances to absorb expansion deformation. As a result, the frame 43 is prevented from expanding radially outward, and contact with the outer peripheral wall 12 is avoided. Similarly, the frame body 42 is prevented from being lifted, and contact with the inner peripheral wall 11 is also avoided. At this time, the ceramic sheet 6 or the ceramic blanket filled in the gaps 51 and 52 is easily contracted in accordance with the reduction of the gaps 51 and 52 due to the expansion and deformation of the frame blocks 421 and 431 and does not hinder the deformation. In addition, the small diameter pellets are prevented from entering the gaps 51 and 52, and the expansion absorption function by the gaps 51 and 52 is ensured.
[0020]
In the present embodiment, since the upper frame 22 is divided in the circumferential direction at the same position as the frame bodies 42 and 43 to form the predetermined gap 54, the upper frame 22 is integrated with the frame body 42 using the gap 54 as an expansion allowance. This elongates and deforms, thereby preventing the frame body 42 from rising more effectively. Further, since the gap 54 of the upper frame 22 is shielded from above by the seal plate 222, the atmospheric gas in the furnace is not released to the outside air.
[0021]
Further, in the present embodiment, in the outer peripheral side frame body 43, recesses 432 are formed at both ends in the circumferential direction of each frame block 431 facing the gap 52, and refractory bricks 71 are embedded in a plurality of rows in the circumferential direction here. In addition, since the gaps 53 are formed between adjacent rows of the refractory bricks 71, an expansion allowance approximately equal to the size of the gaps 52 may be formed by adding the gaps 53, so that each gap 53 has a small diameter. It can be made small so that the pellets do not enter. Moreover, since the said recessed part 432 is made into the trapezoid shape from which a right-and-left side gradually approaches outward in planar view, the pellet P sent out of a furnace by the screw conveyor 53 (FIG. 4) is radial direction on the firebrick 71 Even if it passes outward, these refractory bricks 71 are not escaped from the recess 432 by the movement of the pellets P. In this embodiment, since the entire upper surface of the upper frame 22 is covered with the heat insulating layer 41 made of a heat insulating castable having a constant thickness, the temperature rise of the upper frame 22 and the accompanying expansion deformation are made as small as possible. be able to.
[0022]
【The invention's effect】
As described above, according to the hearth structure of the rotary hearth furnace of the present invention, it is possible to effectively absorb the expansion of the inner and outer peripheral edges of the hearth and prevent the deformation without being inhibited by the pellets.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a hearth of a rotary hearth furnace showing one embodiment of the present invention.
FIG. 2 is a partial perspective view of a hearth of a rotary hearth furnace.
FIG. 3 is a partial plan view of a hearth of a rotary hearth furnace.
FIG. 4 is an overall horizontal sectional view of a rotary hearth furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotary hearth furnace, 11 ... Inner peripheral wall, 12 ... Outer peripheral wall, 2 ... Rotary hearth, 22 ... Upper frame, 222 ... Seal plate, 45 ... Refractory castable layer, 451 ... Castable sheet, 55, 56, 57, 58 ... Gap.

Claims (2)

内周壁と外周壁の間に配設された円環状の回転炉床の、内外方向の中間部を耐火キャスタブル層で構成するとともに、当該耐火キャスタブル層に隣接する内周側と外周側の少なくとも一方に内外方向へ複数列の耐火レンガを配置して、これら耐火レンガの列間に前記耐火キャスタブル層の径方向の膨張を吸収する膨張代となる間隙を形成し、かつ前記耐火キャスタブル層を周方向で複数に分割して、各分割部に、周方向への前記耐火キャスタブル層の膨張を吸収する膨張代となる間隙を形成する複数列の耐火レンガを配設したことを特徴とする回転炉床炉の炉床構造。The middle part of the annular rotary hearth disposed between the inner peripheral wall and the outer peripheral wall is configured with a fireproof castable layer, and at least one of the inner peripheral side and the outer peripheral side adjacent to the fireproof castable layer. A plurality of rows of refractory bricks are arranged in the inner and outer directions, a gap serving as an expansion margin is formed between the rows of refractory bricks to absorb the expansion in the radial direction of the refractory castable layer, and the refractory castable layer is circumferentially disposed. A rotary hearth characterized in that a plurality of rows of refractory bricks forming gaps serving as expansion allowances for absorbing expansion of the refractory castable layer in the circumferential direction are disposed in each of the divided portions. The hearth structure of the furnace. 前記耐火キャスタブル層を、複数のキャスタブルシートに分割してこれらの周囲に当該キャスタブルシートの膨張を吸収する膨張代となる間隙を形成した請求項に記載の回転炉床炉の炉床構造。The hearth structure of a rotary hearth furnace according to claim 1 , wherein the refractory castable layer is divided into a plurality of castable sheets, and a gap serving as an expansion allowance for absorbing expansion of the castable sheets is formed around them.
JP2001108656A 2001-04-06 2001-04-06 Hearth structure of rotary hearth furnace Expired - Fee Related JP4337272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108656A JP4337272B2 (en) 2001-04-06 2001-04-06 Hearth structure of rotary hearth furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108656A JP4337272B2 (en) 2001-04-06 2001-04-06 Hearth structure of rotary hearth furnace

Publications (2)

Publication Number Publication Date
JP2002310565A JP2002310565A (en) 2002-10-23
JP4337272B2 true JP4337272B2 (en) 2009-09-30

Family

ID=18960753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108656A Expired - Fee Related JP4337272B2 (en) 2001-04-06 2001-04-06 Hearth structure of rotary hearth furnace

Country Status (1)

Country Link
JP (1) JP4337272B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866195B2 (en) 2005-10-11 2012-02-01 株式会社神戸製鋼所 Rotary hearth furnace
JP4069138B2 (en) * 2006-03-03 2008-04-02 株式会社神戸製鋼所 Rotary hearth
JP4879640B2 (en) * 2006-04-28 2012-02-22 新日本製鐵株式会社 Rotary hearth furnace
JP2008076049A (en) * 2007-11-30 2008-04-03 Kobe Steel Ltd Refractory structure of rotary hearth type furnace

Also Published As

Publication number Publication date
JP2002310565A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP4337271B2 (en) Hearth structure of rotary hearth furnace
JP4337272B2 (en) Hearth structure of rotary hearth furnace
JP4866195B2 (en) Rotary hearth furnace
CA2789603C (en) Hot blast stove dome and hot blast stove
JPS6349151B2 (en)
JP2001073020A (en) Apparatus for producing reduced iron
JP4069138B2 (en) Rotary hearth
US5033959A (en) Kiln liner
US3419254A (en) High temperature multiple hearth furnace structures
US5090610A (en) Kiln liner
JP2008076049A (en) Refractory structure of rotary hearth type furnace
US3142482A (en) Carbon body baking furnace
US3091832A (en) Kiln
JP4879640B2 (en) Rotary hearth furnace
SU648808A1 (en) Ring shaft furnace
CN202558779U (en) Vertical interlayer eddy flow branch burning limestone kiln
GB2032081A (en) Rotary hearth construction
JP2002350065A (en) Hearth structure for rotary hearth furnace
JPH0238907Y2 (en)
SU1553811A1 (en) Fancy brick and lining of furnace with internal recuperation
JPH0416159Y2 (en)
JPS5926234Y2 (en) Furnace wall protection structure
US508063A (en) strushqlm
JPH0519323Y2 (en)
RU2300065C2 (en) Guard for movable bottom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4337272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees