JP3766630B2 - Brick holding structure for corner of rotary floor furnace - Google Patents

Brick holding structure for corner of rotary floor furnace Download PDF

Info

Publication number
JP3766630B2
JP3766630B2 JP2001379486A JP2001379486A JP3766630B2 JP 3766630 B2 JP3766630 B2 JP 3766630B2 JP 2001379486 A JP2001379486 A JP 2001379486A JP 2001379486 A JP2001379486 A JP 2001379486A JP 3766630 B2 JP3766630 B2 JP 3766630B2
Authority
JP
Japan
Prior art keywords
hearth
corner
bed furnace
brick
side edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001379486A
Other languages
Japanese (ja)
Other versions
JP2003185348A (en
Inventor
茂樹 樫尾
明 延本
広徳 仲
政志 山室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001379486A priority Critical patent/JP3766630B2/en
Publication of JP2003185348A publication Critical patent/JP2003185348A/en
Application granted granted Critical
Publication of JP3766630B2 publication Critical patent/JP3766630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Tunnel Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転床炉の炉床の側縁部に設けられているコーナー部煉瓦が回転床炉の側壁に接触して炉床の回転を妨げることを防止する構造に関する。
【0002】
【従来の技術】
粉鉄鉱石や、製鉄所などで発生する鉄分を含む、ダスト、スケールおよびスラッジなどを処理し、還元鉄を製造する方法として、炉床が水平に回転移動する加熱床炉(以下「回転床炉」という)を用いる方法が注目されている。この方法は一般的には、回転床炉の回転炉床面に、粉状酸化鉄原料と粉状の還元剤などを混合・成形した塊成物を敷き詰め、床炉内で塊成物を移動させながら加熱還元させ、還元鉄を得るというものである。
【0003】
図3は、回転床炉を用いて行う還元鉄の製造プロセスの一例である。また、図4には回転床炉の概観を示す。図と共に回転床炉による還元鉄の製造例を説明すると次の通りである。図3に示すように、粉鉄鉱石、ダスト、スケール、スラッジ、ステンレスを製造する工程で発生するダスト、スケール、スラッジなどの粉体酸化鉄原料および粉石炭などを混合し、混練機でさらに水分などを添加して混合する。この混合原料をペレタイザーまたはダブルロール圧縮機などの造粒機で塊成化させる。通常この後塊成物は水分量の調整のために乾燥機により乾燥処理される。乾燥後、塊成物は回転床炉1の原料装入部へ移送して炉内へ装入される。塊成物2は、ベルトコンベヤーなどにより回転床炉に送られ、そこから回転炉床上に幅広く分散するように装入シュート12などを用いて装入され、レベラーなどによりならされる。回転炉床の移動に伴って1回転させる間に塊成物2中の酸化鉄を高温還元して固体状金属鉄とする。得られた金属鉄は排出部から取り出される。
【0004】
回転床炉1内は、炉内に燃料ガスと空気を送り込み燃焼させることによっておよそ900〜1400℃の炉内温度が確保される。この回転床炉の炉床5上に上記の塊成化物2を10〜20mm程度の薄い厚みで敷き、主に炉の側壁(内壁101および外壁102)からのガスバーナーにより900℃以上に昇温し、炉床5が1回転する間に所定の金属化率に達するように炉床の回転速度を調整しつつ還元焼結させ、排出部からスクリューコンベア11(スクリューフィーダともいわれる)などの掻き出し装置により還元された塊成物2を排出する。
【0005】
【発明が解決しようとする課題】
回転床炉の炉床の側縁部には、炉床と回転床炉の間にコーナー部煉瓦が設けられる場合がある。炉床の側縁部は、内壁101寄りの側縁部と、外壁102寄りの側縁部とがある。コーナー部煉瓦を備えた回転床炉では、図5に示されるように、外壁寄りにコーナー部煉瓦3xおよび内壁寄りにコーナー部煉瓦3yが設けられるのが一般的である。コーナー部煉瓦は、炉床材の自由膨張を拘束し、側壁に炉床が接触しないことを主たる目的として設けられる。また、回転床炉での還元処理を行うにあたっては、鉄板などの炉床基板50上に鉄鉱石、耐火物などの炉床材といわれる敷物をするのが一般的である。炉床材51、52、53は、炉床基板50の保護、炉床に蓄積する融着物の除去を容易にするなどの目的で敷設される(図6)。
【0006】
回転床炉では、ガスバーナなどにより内部を加熱する。酸化鉄の還元の場合には、900〜1400℃程度に回転床炉内を加熱する。しばらく回転床炉の運転を継続すると、炉床材の熱膨張により炉床の側縁部上に設けられているコーナー部煉瓦が径方向に押圧されて、コーナー部煉瓦が回転床炉の側壁に接触し、炉床の回転を妨げてしまう。特に径外方への押圧が大きくなる傾向がある。具体的な例を挙げると、コーナー部煉瓦が径外方に倒れ外壁に接触し、床炉の回転を止めてしまうに至る(図6)。
【0007】
回転床炉において炉床の回転が止まるということはすなわち操業が止まるということであり、極めて重要な問題である。コーナー煉瓦部が側壁と接触して炉床の回転が止まると、そのたびに補修する必要があり、操業効率を低下させる原因となる。
【0008】
本発明は、炉床に備えられる炉床材の熱膨張により、コーナー部煉瓦が径方向に押されて当該煉瓦を介して回転床炉の側壁を押圧し、炉床の回転を妨げることを抑制する構造を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、コーナー部煉瓦の側壁への接触を抑制するために、炉床材膨張の機序、炉床の構成特に炉床材とコーナー部煉瓦との構造的な関係に着目し、課題解決のために下記の手段を採用した。
(1)加熱処理に用いられる回転床炉において、回転床炉の炉床が炉床基板の上に複数層の炉床材を敷き詰めて形成されており、最上層より下に備えられる炉床材の側縁部に、炉床の径方向側縁側に向かって上方へ傾斜し炉床材の熱膨張により生じる水平方向の力を上方へ分散させる傾斜耐火材を設け、炉床の側縁部上に設置されるコーナー部煉瓦を径方向に押圧する力を分散させる、コーナー部煉瓦保持構造。
(2) 前記炉床が炉床基板の上に複数層の炉床材を敷き詰めて形成されており、上から第2層目の炉床材が、粉状耐火物である(1)に記載のコーナー部煉瓦保持構造。
(3) 前記加熱処理に用いられる回転床炉において、炉床上に敷き詰められる炉床材の熱膨張によって、炉床の側縁部上に設置されるコーナー部煉瓦を径方向に押圧する力に抗してコーナー部煉瓦を保持する抗押圧手段を有し、該抗押圧手段が、コーナー部煉瓦が設置される設置台の炉床内側に対する面に設けられるコーナー部煉瓦倒れ防止板である、前記(1)に記載のコーナー部煉瓦保持構造。
(4) 前記炉床の側縁部上に設置されるコーナー部煉瓦の周方向長さを、回転床炉の円周角10°以上の長さにして、コーナー部煉瓦が倒れるのを抑制する(1)に記載のコーナー部煉瓦保持構造。
(5) (1)から(4)のいずれか一項に記載のコーナー部煉瓦保持構造を有する、回転床炉。
【0010】
【発明の実施の形態】
本発明では、炉床を構成する炉床材が熱膨張しコーナー部煉瓦を押して側壁に接触し、炉床の回転を妨げてしまうことを抑制するように、コーナー部煉瓦を保持する。コーナー部煉瓦を保持するとは、コーナー部煉瓦を側壁に接触させないように状態を保つことである。保持することについて具体的な例を挙げると、コーナー部煉瓦が側壁へ近づくように横にずれてしまわないよう保持すること、コーナー部煉瓦が倒れないように保持することなどが例示される。本発明の保持構造のより具体的な実施形態は、本発明はコーナー部煉瓦にかかわる構造について、炉床材の膨張により生じる水平方向の力を上方に逃がす構造、炉床材の膨張を抑制する構造、コーナー部煉瓦煉瓦自体を安定させる構造という形で具現化される。 以下、図面と共に本発明の各実施形態について順次説明する。図1に、回転床炉の平面図(a)及び断面図(b)を示す。また、図2に、図1(b)の一部を拡大した図を示す。図5、6の例では、コーナー部煉瓦3Aは回転床炉の外壁102寄りに、またコーナー部煉瓦3Bは内壁101寄りに設置されている。また、図5、図6の例では、最上層から順に鉄鉱石55、粉状耐火物56、耐火物57、耐火物58が、炉床基板としての鉄板50の上に敷き詰められている。
【0011】
〔第1の実施形態〕傾斜耐火材の設置
第1の実施形態としては、最上層の炉床材より下に敷設された炉床材の側縁部上に、炉床の径方向側縁側に向かって上方へ傾斜した傾斜耐火材を設ける。この傾斜耐火材は、炉床材の熱膨張方向を上方へと変え、熱膨張により生じる水平方向の力を上方へ分散させる。傾斜耐火材を設けることにより、コーナー部煉瓦を側壁へと押しつける力を弱め、コーナー部煉瓦が倒れるなどして側壁に接触することを抑制できる。径方向側縁側に向かってとは、外壁寄りの側縁部では径外方に向かってということであり、他方、内壁寄りの側縁部では径内方に向かってということである。傾斜耐火材の傾斜角度αは、好ましくは5〜30°、特に好ましくは15°程度である。傾斜耐火材は、炉床材の熱膨張を上方へと逃がすことができれば、最上層より下に敷設される炉床材のいずれかの部分に設けてよいが、好ましくは最上層の炉床材の下であって傾斜面が最上層の炉床材と接するように備えることが好ましい。
【0012】
図2に示される例では、傾斜耐火材7は耐火物57の上に設けられている。傾斜耐火材7の斜面7aは、耐火物57に対し、α=15°の角度で径外方に向かって上方に傾斜している。傾斜耐火材7の斜面7a上は、最上層を形成する鉄鉱石55で覆われている。鉄鉱石55は熱膨張により矢印の方向に膨張してくるが、傾斜耐火材7によって図2上では右上の方向へと導かれる。
【0013】
〔第2の実施形態〕粉状耐火物の敷設
第2の実施形態では、上から第2層目の炉床材として粉状耐火物を用いる。粉状耐火物としては、好ましくはアルミナポール用いられる。最も熱膨張しやすい最上層の下の層に粉状耐火物を介在させることにより、最上層の炉床材が熱によって融着し、熱膨張するのを緩和することができる。粉状耐火物の大きさは、好ましくは粒径1〜50mm、特に好ましくは粒径5〜30mmである。
【0014】
図1(b)の一部を拡大したものが図2である。図1、図2に示す例では、炉床は最上層から順に各種の炉床材が積層される。図1、2では、最上層から順に鉄鉱石55、アルミナポール56、耐火物57、耐火物58が鉄板50の上に敷き詰められている。アルミナポール56は粉状の耐火物であるのに対し、耐火物57、耐火物58は、定形耐火物もしくは不定形である。
【0015】
〔第3の実施形態〕抗押圧手段の設置
第3の実施形態では、炉床材の熱膨張により生じる水平方向の力に抗するように抗押圧手段を設ける。
【0016】
コーナー部煉瓦を備え付ける設置台座は、コーナー部煉瓦を設置台座に設置する作業のしやすさと位置決めの容易さから、一般に、図2に示すようなL字型の台座41が用いられている。このように、当初、L字型の設置台座41が備えられている場合には、炉床内側に対する面に、コーナー部倒れ防止板43を設置することによって、コーナー部煉瓦の倒れなどを防止することができる。炉床内側に対する面とは、より具体的には、外壁102寄りの側縁部においては径内方に対面する面であり、内壁101寄りの側縁部においては径外方に対面する面である。当初L字型の設置台座が備え付けられているような場合には、コーナー部煉瓦の設置台全体を交換するよりも上記のようなコーナー部煉瓦倒れ防止板を後付けする改造のほうが低コストであり、作業も簡便である。
【0017】
他方、最初から溝を有する設置台座41を設け、溝にコーナー部煉瓦を備えるようにしてもよい。
【0018】
〔第4の実施形態〕煉瓦の周方向長さの調製
第4の実施形態では、コーナー部煉瓦の周方向の長さを円周角10°以上とする。周方向長さを円周角10°以上とすることで、径方向にかかる力に対するコーナー部煉瓦の安定性が向上する。周方向長さは、コーナー部煉瓦の安定性という観点からは特に上限はないが、コーナー部煉瓦の設置作業のしやすさ及び周方向の熱膨張吸収などの観点からすると、20°程度を上限とすることが好ましい。
【0019】
図1に示される例では、コーナー部煉瓦3A、3Bはそれぞれ周方向の長さが円周角で10°である。周方向長さが円周角で10°以上になればよく、図1に示される例からも明らかなとおり、内壁寄りのコーナー部煉瓦と外壁寄りコーナー部煉瓦とでは周方向長さの絶対的長さは異なっていてもよい。
【0020】
上記の第1から第4の実施形態は、単独に実施してもよいし、一部を組み合わせて適用してもよいし、さらにはすべて適用してもよい。コーナー部煉瓦が側壁に接触することにより炉床の回転を妨げるという事態を抑制し、回転床炉の連続操業を行うためには、第1から第4の実施形態のすべてを適用することが特に好適である。
【0021】
また、本発明の保持構造は、回転床炉の炉床の内壁101寄りの側縁部及び外壁102寄りの側縁部のいずれか一方のみに適用しても、両側縁部に適用してもよい。両側縁部に設けるほうが、いずれか一方の設けるよりも、炉床の回転を妨げないようにするという点ではより好ましい。ただし、設置コストの低減などのためにいずれか一方だけとする場合であれば、炉床基板上の炉材は、通常、径外方へとより大きく膨張しやすいため、外壁寄りの側縁部に本発明の構造を適用することがより好ましい。
【0022】
本発明のコーナー部煉瓦保持構造の適用は、回転床炉の用途には限定されない。すなわち、本発明のコーナー部煉瓦保持構造は、酸化鉄を還元するための回転床炉に限らず、例えばバッチコイルの焼鈍用回転床炉などにも好適に用いることができる。
【0023】
【発明の効果】
本発明によれば、炉床材などの熱膨張により炉床の側縁部に設けられているコーナー部煉瓦が径方向に押圧されて、コーナー部煉瓦が回転床炉の側壁に接触し、炉床の回転を止めてしまうことを抑制することができる。このため本発明によって、回転床炉の連続操業時間を伸ばすことができる。さらに、コーナー部煉瓦と外壁の接触に起因する、回転床炉の損傷を補修する費用を大幅に軽減できるため、回転床炉のランニングコストを低減することに寄与する。
【図面の簡単な説明】
【図1】回転床炉の平面図(a)および断面図(b)である。
【図2】コーナー部煉瓦保持構造の実施形態を示す図である。
【図3】回転床炉を用いた還元鉄の製造プロセスの一例を示す図である。
【図4】回転床炉の概観を示す図である。
【図5】回転床炉の平面図(a)および断面図(b)である。
【図6】コーナー部煉瓦が倒れる様子を示す図である。
【符号の説明】
1・・・回転床炉
101・・・内壁
102・・・外壁
103・・・ガスバーナ炎
104・・・ガスバーナ及びエア導入機
11・・・スクリューコンベア
12・・・装入シュート
13、14・・・仕切壁
2・・・塊成物
3A、3B、3x、3y・・・コーナー部煉瓦
4、4’・・・設置台
41・・・設置台座
42・・・台座支柱
43・・・コーナー部煉瓦倒れ防止板
5・・・炉床
50・・・鉄板(炉床基板)
51、55・・・炉床材(第1層)
52、57・・・耐火物(第2層)
53、58・・・耐火物(第3層)
56・・・粉状耐火物
7・・・傾斜耐火材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure for preventing corner bricks provided at side edges of a hearth of a rotary bed furnace from coming into contact with a side wall of the rotary bed furnace and preventing the rotation of the hearth.
[0002]
[Prior art]
As a method of producing reduced iron by treating dust, scales, sludge, etc., including fine iron ore and iron generated in steelworks, etc., a heated floor furnace (hereinafter referred to as “rotary bed furnace”) ")" Is attracting attention. In this method, in general, an agglomerated mixture of powdered iron oxide raw material and powdered reducing agent is spread on the rotary hearth surface of the rotary bed furnace, and the agglomerate is moved in the floor furnace. Heat reduction is performed to obtain reduced iron.
[0003]
FIG. 3 is an example of a process for producing reduced iron performed using a rotary bed furnace. FIG. 4 shows an overview of the rotary bed furnace. An example of producing reduced iron by a rotary bed furnace will be described with reference to the drawings as follows. As shown in FIG. 3, powdered iron ore, dust, scale, sludge, dust generated in the process of producing stainless steel, powder, iron oxide raw materials such as scale, sludge, etc. and powdered coal are mixed and further mixed with a kneader. Etc. are added and mixed. This mixed raw material is agglomerated by a granulator such as a pelletizer or a double roll compressor. Usually, this agglomerate is dried by a drier to adjust the water content. After drying, the agglomerate is transferred to the raw material charging section of the rotary bed furnace 1 and charged into the furnace. The agglomerate 2 is sent to a rotary bed furnace by a belt conveyor or the like, and from there is charged using a charging chute 12 or the like so as to be widely dispersed on the rotary hearth, and leveled by a leveler or the like. During one rotation accompanying the movement of the rotary hearth, the iron oxide in the agglomerate 2 is reduced to high temperature to form solid metallic iron. The obtained metallic iron is taken out from the discharge part.
[0004]
In the rotary bed furnace 1, an in-furnace temperature of about 900 to 1400 ° C. is secured by sending fuel gas and air into the furnace and burning them. The agglomerate 2 is laid on the hearth 5 of the rotary bed furnace with a thin thickness of about 10 to 20 mm, and the temperature is raised to 900 ° C. or more mainly by a gas burner from the side walls (inner wall 101 and outer wall 102) of the furnace. Then, while the hearth 5 is rotated once, reduction sintering is performed while adjusting the rotation speed of the hearth so as to reach a predetermined metalization rate, and a scraping device such as a screw conveyor 11 (also referred to as a screw feeder) is discharged from the discharge unit. The agglomerate 2 reduced by is discharged.
[0005]
[Problems to be solved by the invention]
Corner bricks may be provided between the hearth and the rotary bed furnace at the side edge of the hearth of the rotary bed furnace. The side edge of the hearth has a side edge near the inner wall 101 and a side edge near the outer wall 102. In a rotary floor furnace provided with corner bricks, as shown in FIG. 5, it is common to provide corner brick 3x near the outer wall and corner brick 3y near the inner wall. The corner bricks are provided mainly for the purpose of restraining the free expansion of the hearth material and preventing the hearth from contacting the side wall. Moreover, when performing the reduction process in a rotary bed furnace, it is common to place a rug called a hearth material such as iron ore and refractory on a hearth substrate 50 such as an iron plate. The hearth materials 51, 52 and 53 are laid for the purpose of protecting the hearth substrate 50 and facilitating removal of the fusion material accumulated in the hearth (FIG. 6).
[0006]
In a rotary bed furnace, the inside is heated by a gas burner or the like. In the case of reduction of iron oxide, the inside of the rotary bed furnace is heated to about 900 to 1400 ° C. When the operation of the rotary bed furnace is continued for a while, the corner bricks provided on the side edges of the hearth are pressed in the radial direction by the thermal expansion of the hearth material, and the corner bricks are applied to the side walls of the rotary bed furnace. Contact and hinder the rotation of the hearth. In particular, the outward pressure tends to increase. If a specific example is given, a corner part brick will fall in diameter outward, will contact an outer wall, and will stop rotation of a floor furnace (FIG. 6).
[0007]
Stopping the rotation of the hearth in a rotary bed furnace means that the operation stops, which is a very important problem. When the corner brick portion comes into contact with the side wall and the hearth floor stops rotating, it must be repaired each time, which causes a decrease in operation efficiency.
[0008]
The present invention suppresses that the corner brick is pressed in the radial direction by the thermal expansion of the hearth material provided in the hearth and presses the side wall of the rotary floor furnace via the brick, thereby preventing the rotation of the hearth. It is an object of the present invention to provide a structure to perform.
[0009]
[Means for Solving the Problems]
The present invention focuses on the mechanism of hearth material expansion, the structure of the hearth, particularly the structural relationship between the hearth material and the corner brick, in order to suppress contact with the side wall of the corner brick. For this purpose, the following measures were adopted.
(1) In a rotary bed furnace used for heat treatment, the hearth of the rotary bed furnace is formed by laying a plurality of layers of a hearth material on a hearth substrate, and is provided below the uppermost layer. An inclined refractory material that is inclined upward toward the radial side edge side of the hearth and disperses the horizontal force generated by the thermal expansion of the hearth material upward is provided on the side edge of the hearth. A corner brick holding structure that disperses the radial pressing force of the corner brick installed in the corner.
(2) the hearth is formed by laying a hearth material a plurality of layers on a hearth substrate, a second layer of hearth material from the top, according to a powdery refractory (1) the corner brick retaining structure.
(3) In the rotary bed furnace used for the heat treatment, the thermal expansion of the hearth material laid on the hearth resists the force that presses the corner bricks installed on the side edges of the hearth in the radial direction. And having a pressure-resistant means for holding the corner brick, and the pressure-resistant means is a corner brick collapse prevention plate provided on a surface of the installation base on which the corner brick is installed with respect to the hearth inner side. Corner part brick holding structure as described in 1).
(4) the hearth the circumferential length of the corner bricks are placed on the side edges of, in the circumferential angle 10 ° or more in length of the rotating bed furnace, restrain the falling over corner brick The corner part brick holding structure as described in (1) .
(5) A rotary bed furnace having the corner brick holding structure according to any one of (1) to (4 ).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the corner brick is held so as to suppress that the hearth material constituting the hearth is thermally expanded and presses the corner brick to contact the side wall to prevent the hearth from rotating. Holding the corner bricks means keeping the corner bricks from contacting the side walls. Specific examples of the holding include holding the corner brick so as not to be shifted laterally so as to approach the side wall, holding the corner brick so as not to fall down, and the like. A more specific embodiment of the holding structure of the present invention is a structure in which the present invention relates to a corner brick, a structure in which the horizontal force generated by the expansion of the hearth material is released upward, and the expansion of the hearth material is suppressed. The structure is embodied in the form of a structure that stabilizes the corner brick itself. Hereinafter, each embodiment of the present invention will be described sequentially with reference to the drawings. FIG. 1 shows a plan view (a) and a sectional view (b) of the rotary bed furnace. FIG. 2 shows an enlarged view of a part of FIG. 5 and 6, the corner brick 3A is installed near the outer wall 102 of the rotary floor furnace, and the corner brick 3B is installed near the inner wall 101. 5 and 6, iron ore 55, powder refractory 56, refractory 57, and refractory 58 are laid on an iron plate 50 as a hearth substrate in order from the top layer.
[0011]
[First Embodiment] Installation of Inclined Refractory Material As a first embodiment, on the side edge of the hearth material laid below the uppermost hearth material, on the radial side edge side of the hearth An inclined refractory material inclined upward is provided. This inclined refractory material changes the thermal expansion direction of the hearth material upward and disperses the horizontal force generated by the thermal expansion upward. By providing the inclined refractory material, the force of pressing the corner brick against the side wall can be weakened, and the corner brick can be prevented from falling and coming into contact with the side wall. Toward the radial side edge means that the side edge near the outer wall faces outward in the radial direction, and on the other hand, the side edge near the inner wall faces toward the radially inner side. The inclination angle α of the inclined refractory material is preferably 5 to 30 °, particularly preferably about 15 °. The inclined refractory material may be provided in any part of the hearth material laid below the uppermost layer as long as the thermal expansion of the hearth material can be released upward, but preferably the uppermost hearth material. It is preferable that the inclined surface is in contact with the uppermost hearth material.
[0012]
In the example shown in FIG. 2, the inclined refractory material 7 is provided on the refractory 57. The inclined surface 7a of the inclined refractory material 7 is inclined upward and radially outward with respect to the refractory 57 at an angle of α = 15 °. The slope 7a of the inclined refractory material 7 is covered with an iron ore 55 that forms the uppermost layer. The iron ore 55 expands in the direction of the arrow due to thermal expansion, but is guided in the upper right direction in FIG. 2 by the inclined refractory material 7.
[0013]
[Second Embodiment] Laying Powdery Refractory In the second embodiment, powdery refractory is used as the second-layer hearth material from the top. As the powder refractory, an alumina pole is preferably used. By interposing a powder refractory in the layer below the uppermost layer that is most likely to be thermally expanded, it is possible to mitigate the fact that the uppermost hearth material is fused by heat and thermally expanded. The size of the powder refractory is preferably a particle size of 1 to 50 mm, particularly preferably a particle size of 5 to 30 mm.
[0014]
FIG. 2 is an enlarged view of a part of FIG. In the example shown in FIGS. 1 and 2, various hearth materials are laminated in order from the top layer. In FIGS. 1 and 2, iron ore 55, alumina pole 56, refractory 57, and refractory 58 are spread on iron plate 50 in order from the top layer. The alumina pole 56 is a powder refractory, whereas the refractory 57 and the refractory 58 are regular refractories or irregular shapes.
[0015]
[Third Embodiment] Installation of anti-pressing means In the third embodiment, anti-pressing means is provided so as to resist horizontal force generated by thermal expansion of the hearth material.
[0016]
An L-shaped pedestal 41 as shown in FIG. 2 is generally used as an installation pedestal provided with corner bricks because of the ease of work for positioning the corner bricks on the installation pedestal and the ease of positioning. Thus, when the L-shaped installation base 41 is initially provided, the corner part bricks are prevented from falling by installing the corner part fall prevention plate 43 on the surface with respect to the inner side of the hearth. be able to. More specifically, the surface facing the inside of the hearth is a surface facing radially inward at the side edge near the outer wall 102, and a surface facing radially outward at the side edge near the inner wall 101. is there. In the case where an L-shaped installation base is initially provided, it is cheaper to retrofit the corner brick fall prevention plate as described above than to replace the entire corner brick installation base. The work is also simple.
[0017]
On the other hand, an installation base 41 having a groove from the beginning may be provided, and a corner brick may be provided in the groove.
[0018]
[Fourth Embodiment] Preparation of Brick Circumferential Length In the fourth embodiment, the circumferential length of the corner brick is set to 10 ° or more. By setting the circumferential length to a circumferential angle of 10 ° or more, the stability of the corner brick with respect to the force applied in the radial direction is improved. The circumferential length is not particularly limited from the viewpoint of the stability of the corner brick, but is limited to about 20 ° from the viewpoint of ease of installation work of the corner brick and the absorption of thermal expansion in the circumferential direction. It is preferable that
[0019]
In the example shown in FIG. 1, each of the corner bricks 3A and 3B has a circumferential length of 10 ° in the circumferential angle. The circumferential length only needs to be 10 ° or more in terms of the circumferential angle, and as is clear from the example shown in FIG. 1, the absolute length of the circumferential length between the corner brick near the inner wall and the corner brick near the outer wall is clear. The length may be different.
[0020]
The first to fourth embodiments described above may be implemented independently, may be applied in combination with one another, or may be applied entirely. In order to suppress the situation where the corner bricks come into contact with the side walls and prevent the hearth from rotating, and to perform continuous operation of the rotary hearth, it is particularly preferable to apply all of the first to fourth embodiments. Is preferred.
[0021]
Further, the holding structure of the present invention may be applied to only one of the side edge portion near the inner wall 101 and the side edge portion near the outer wall 102 of the hearth of the rotary bed furnace, or may be applied to both side edge portions. Good. It is more preferable that it is provided on both side edges in that it does not hinder the rotation of the hearth, rather than either one. However, if only one of them is used to reduce the installation cost, etc., the furnace material on the hearth base plate usually tends to expand to a larger diameter outward, so the side edge near the outer wall. It is more preferable to apply the structure of the present invention to the above.
[0022]
The application of the corner brick holding structure of the present invention is not limited to the use of a rotary bed furnace. That is, the corner part brick holding structure of the present invention can be suitably used not only for a rotary bed furnace for reducing iron oxide but also for a rotary coil furnace for annealing a batch coil, for example.
[0023]
【The invention's effect】
According to the present invention, the corner brick provided on the side edge of the hearth is pressed in the radial direction by the thermal expansion of the hearth material and the corner brick contacts the side wall of the rotary floor furnace, Stopping rotation of the floor can be suppressed. Therefore, according to the present invention, the continuous operation time of the rotary bed furnace can be extended. Furthermore, since the cost of repairing the damage to the rotating bed furnace caused by the contact between the corner brick and the outer wall can be greatly reduced, it contributes to reducing the running cost of the rotating bed furnace.
[Brief description of the drawings]
FIG. 1 is a plan view (a) and a sectional view (b) of a rotary bed furnace.
FIG. 2 is a diagram showing an embodiment of a corner brick holding structure.
FIG. 3 is a diagram showing an example of a process for producing reduced iron using a rotary bed furnace.
FIG. 4 is a view showing an overview of a rotary bed furnace.
FIG. 5 is a plan view (a) and a sectional view (b) of a rotary bed furnace.
FIG. 6 is a diagram illustrating a state in which a corner brick is collapsed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotary bed furnace 101 ... Inner wall 102 ... Outer wall 103 ... Gas burner flame 104 ... Gas burner and air introduction machine 11 ... Screw conveyor 12 ... Charging chute 13,14 ... -Partition wall 2 ... Agglomerates 3A, 3B, 3x, 3y ... Brick 4, 4 '... Installation base 41 ... Installation base 42 ... Base column 43 ... Corner part Brick collapse prevention plate 5 ... hearth 50 ... iron plate (hearth substrate)
51, 55 ... hearth material (first layer)
52, 57 ... Refractory (2nd layer)
53, 58 ... Refractory (3rd layer)
56 ... Powdered refractory 7 ... Inclined refractory material

Claims (5)

加熱処理に用いられる回転床炉において、回転床炉の炉床が炉床基板の上に複数層の炉床材を敷き詰めて形成されており、最上層より下に備えられる炉床材の側縁部に、炉床の径方向側縁側に向かって上方へ傾斜し炉床材の熱膨張により生じる水平方向の力を上方へ分散させる傾斜耐火材を設け、炉床の側縁部上に設置されるコーナー部煉瓦を径方向に押圧する力を分散させる、コーナー部煉瓦保持構造。  In the rotary bed furnace used for heat treatment, the hearth of the rotary bed furnace is formed by laying a plurality of layers of the hearth material on the hearth substrate, and the side edge of the hearth material provided below the uppermost layer Is provided with an inclined refractory material that inclines upward toward the radial side edge of the hearth and disperses the horizontal force generated by the thermal expansion of the hearth material upward, and is installed on the side edge of the hearth A corner brick holding structure that disperses the radial pressing force of the corner brick. 前記炉床が炉床基板の上に複数層の炉床材を敷き詰めて形成されており、上から第2層目の炉床材が、粉状耐火物である請求項1に記載のコーナー部煉瓦保持構造。 The corner portion according to claim 1, wherein the hearth is formed by laying a plurality of layers of a hearth material on a hearth substrate, and the hearth material of the second layer from the top is a powder refractory. Brick holding structure. 前記加熱処理に用いられる回転床炉において、炉床上に敷き詰められる炉床材の熱膨張によって、炉床の側縁部上に設置されるコーナー部煉瓦を径方向に押圧する力に抗してコーナー部煉瓦を保持する抗押圧手段を有し、該抗押圧手段が、コーナー部煉瓦が設置される設置台の炉床内側に対する面に設けられるコーナー部煉瓦倒れ防止板である、請求項に記載のコーナー部煉瓦保持構造。 In the rotary bed furnace used for the heat treatment, the corner against the force of pressing the corner bricks installed on the side edge of the hearth in the radial direction by the thermal expansion of the hearth material spread on the hearth. It has anti pressing means for holding the parts bricks, antibody pressing means is a prevention plate fall corner brick provided on the surface with respect to the installation base of the hearth inner corner bricks are installed, according to claim 1 Corner brick holding structure. 前記炉床の側縁部上に設置されるコーナー部煉瓦の周方向長さを、回転床炉の円周角10°以上の長さにして、コーナー部煉瓦が倒れるのを抑制する請求項1に記載のコーナー部煉瓦保持構造。The circumferential length of the corner bricks are placed on the side edge of the hearth, and the circumferential angle 10 ° or more in length of the rotating bed furnace, inhibiting claim that the corner brick falls down 1 The corner brick holding structure described in 1 . 請求項1からのいずれか一項に記載のコーナー部煉瓦保持構造を有する、回転床炉。A rotary bed furnace comprising the corner brick holding structure according to any one of claims 1 to 4 .
JP2001379486A 2001-12-13 2001-12-13 Brick holding structure for corner of rotary floor furnace Expired - Lifetime JP3766630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001379486A JP3766630B2 (en) 2001-12-13 2001-12-13 Brick holding structure for corner of rotary floor furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001379486A JP3766630B2 (en) 2001-12-13 2001-12-13 Brick holding structure for corner of rotary floor furnace

Publications (2)

Publication Number Publication Date
JP2003185348A JP2003185348A (en) 2003-07-03
JP3766630B2 true JP3766630B2 (en) 2006-04-12

Family

ID=27591051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001379486A Expired - Lifetime JP3766630B2 (en) 2001-12-13 2001-12-13 Brick holding structure for corner of rotary floor furnace

Country Status (1)

Country Link
JP (1) JP3766630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438118B (en) 2006-04-03 2011-09-28 新日本制铁株式会社 Hearth structure of rotary hearth furnace
JP4879640B2 (en) * 2006-04-28 2012-02-22 新日本製鐵株式会社 Rotary hearth furnace

Also Published As

Publication number Publication date
JP2003185348A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
EP1053443B1 (en) Method for forming a moving hearth in a furnace for producing reduced iron agglomerates
EP1020535B1 (en) Method for manufacturing reduced iron agglomerates and rotary hearth apparatus therefor
EP0004756A2 (en) Rotary drum and method of mixing, drying, cooling, heating or calcining solid particles
JP6959590B2 (en) Sintered ore manufacturing method
JP3766630B2 (en) Brick holding structure for corner of rotary floor furnace
CN107208168B (en) The manufacturing method and device of reduced iron
JP3208385B2 (en) Method and apparatus for leveling granular reduced iron raw material
TW544465B (en) Moving-hearth heating furnace and method for making reduced metal agglomerates
JP3403091B2 (en) Method for reducing wet pellets by rotary bed type reduction furnace and rotary bed type reduction furnace
JP2001073020A (en) Apparatus for producing reduced iron
TWI230738B (en) Refractory lining inside the cone of metal refining converter and magnesia carbon fire brick
JP3075722B1 (en) Method for adjusting supply amount of granular reduced iron raw material and supply device therefor
JPH10317033A (en) Production of reduced iron
JP4879640B2 (en) Rotary hearth furnace
JP2001254114A (en) Rotary hearth furnace
RU2774518C1 (en) Method for obtaining sintered ore
US8057736B2 (en) Hearth structure of rotary furnace hearth
JP2001240909A (en) Rotary hearth furnace
JPH1161215A (en) Device for forming and charging raw material for producing reduced iron and method therefor
JP2002350065A (en) Hearth structure for rotary hearth furnace
JP2725498B2 (en) Sinter production method
JPH04168233A (en) Production of sintered ore
JP2019123919A (en) Manufacturing method of sintered ore
JP5434340B2 (en) Method for producing sintered ore
JPH0416532A (en) Production of quick lime

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R151 Written notification of patent or utility model registration

Ref document number: 3766630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term