JP4874592B2 - Spacer for floor base material and manufacturing method thereof - Google Patents

Spacer for floor base material and manufacturing method thereof Download PDF

Info

Publication number
JP4874592B2
JP4874592B2 JP2005207088A JP2005207088A JP4874592B2 JP 4874592 B2 JP4874592 B2 JP 4874592B2 JP 2005207088 A JP2005207088 A JP 2005207088A JP 2005207088 A JP2005207088 A JP 2005207088A JP 4874592 B2 JP4874592 B2 JP 4874592B2
Authority
JP
Japan
Prior art keywords
fiber
resin foam
resin
foam
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005207088A
Other languages
Japanese (ja)
Other versions
JP2007021879A (en
Inventor
文剛 永森
章平 川崎
典孝 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005207088A priority Critical patent/JP4874592B2/en
Publication of JP2007021879A publication Critical patent/JP2007021879A/en
Application granted granted Critical
Publication of JP4874592B2 publication Critical patent/JP4874592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、床下地材用スペーサー及びその製造方法に関し、詳しくは、発泡体の表面に繊維集合体を積層した、軽量かつ切断性、耐水性、耐荷重性に優れ、リサイクル、リフォームに適した床下地材用複合樹脂発泡体からなる床下地材用スペーサー及びその製造方法に関する。 The present invention relates to a spacer for a floor base material and a method for producing the same , and more specifically, is lightweight and excellent in cutability, water resistance, and load resistance, in which a fiber assembly is laminated on the surface of a foam, and suitable for recycling and reforming. The present invention relates to a spacer for a floor base material comprising a composite resin foam for a floor base material and a method for producing the same .

従来から、数多くの樹脂発泡体が建築用資材として用いられてきている。また、集合住宅や戸建て住宅、公共施設、商業施設などの床仕上材においては、主に木質系フローリングや高分子系床材が床表面仕上材として使用されている。さらに、スラブ直張り構造や二重床構造、根太組みの場合、近年のバリアフリー構造を意識して、各フロアの床面の段差を解消する工法や構造の検討が進んでいることは周知である。   Conventionally, many resin foams have been used as building materials. Further, in floor finishing materials for apartment houses, detached houses, public facilities, commercial facilities, etc., wooden flooring and polymer flooring are mainly used as floor surface finishing materials. Furthermore, in the case of slab direct stretch structure, double floor structure, and joist, it is well known that construction methods and structures are being studied to eliminate the level difference between floors in consideration of the recent barrier-free structure. is there.

バリアフリー構造等における段差解消の方法として使用されるのは、例えば、スラブの落とし込みや、繊維板や合板をスペーサー材と使用する方法(例えば、特許文献1参照。)、または二重床システムを利用することにより、二重床の脚長を調整することで段差を解消する方法等が採られている。
しかし、上記のようにスペーサー材として、合板や繊維板を使用する場合は、次のような課題がある。(i)重量が重くハンドリングが悪く、例えば、12mm厚さの合板ではせいぜい2枚/人程度しか一度に運べない。(ii)現場でのカット調整が困難であり、電動ノコ等が必要で安全性や騒音の問題がある。(iii)仕上材が高分子床材の場合は、通常クロス職人が施工を行なうが、下地に合板を用いるとクロス職人が使用する工具類(カッターが主)では施工できず、木質床施工職人が必要となり、施工現場に異業種の職人が複数必要となり、工事単価が高くなる。(iv)耐水合板であっても、完全な耐吸水性能を維持することはできず、腐食による変形、反り等が発生しやすい。(v)厚み公差の不安定さから目違いが起こりやすく仕上げ材にクッションフロアなどの高分子系仕上げ材を施した場合、外観に影響を及ぼす。(vi)近年の建築基準法の改正により防虫剤の使用量が規制され、合板に含まれる防虫剤成分が低減されているため虫が食いやすい。また防虫剤成分が配合されている場合は、揮発性有害物質の室内放散の可能性が高くなり、ハウスシック症候群の原因になり得る。(vii)釘を使用して固定する場合は、釘との摩擦により経年変化で釘なりの可能性が発生する。また、二重床システムに関しては、二重床の段差調整は脚の長さを調整することで解消できるが、重量が重いために調整工数の負担増を招いているためスペーサーで段差調整するほうがむしろ簡易的である。また、仕上げ材にクッションフロアを用いる場合は二重床のパーティクルボードの目違いが発生するため、合板や専用のスペーサー材を下地に使用する必要があり、床仕上げ材を接着剤で固定した場合、リフォーム等で床を改装する場合、スペーサー材と仕上材の分離がしにくい等の問題が発生する。
As a method for eliminating a step in a barrier-free structure or the like, for example, dropping a slab, a method using a fiberboard or plywood as a spacer material (for example, refer to Patent Document 1), or a double floor system is used. A method of eliminating the level difference by adjusting the leg length of the double floor is used.
However, when plywood or fiberboard is used as the spacer material as described above, there are the following problems. (I) The weight is heavy and the handling is poor. For example, a plywood with a thickness of 12 mm can carry only about 2 sheets / person at a time. (Ii) It is difficult to perform cut adjustment on site, and an electric saw or the like is required, which causes safety and noise problems. (Iii) When the finishing material is a polymer flooring, the cloth craftsman usually performs the construction, but if the plywood is used as the base, the tools used by the cloth craftsman (mainly the cutter) cannot be constructed, and the wooden floor construction craftsman Is required, and multiple craftsmen from different industries are required at the construction site, resulting in a high construction unit price. (Iv) Even if it is a water-resistant plywood, complete water-absorbing performance cannot be maintained, and deformation, warpage, and the like due to corrosion tend to occur. (V) When the finishing material is subjected to a polymer finishing material such as a cushion floor, the appearance is affected. (Vi) The amount of insect repellent used is regulated by the recent revision of the Building Standards Law, and the insect repellent components contained in the plywood are reduced, so that insects are easy to eat. In addition, when an insect repellent component is blended, the possibility of indoor emission of volatile harmful substances is increased, which can cause house sick syndrome. (Vii) When fixing using a nail, the possibility of becoming a nail occurs due to secular change due to friction with the nail. In addition, for the double floor system, the step adjustment of the double floor can be eliminated by adjusting the length of the legs, but since the weight is heavy, the burden of adjustment man-hours is increased, so it is better to adjust the step with a spacer. It is rather simple. In addition, when using a cushion floor as the finishing material, a double-floor particle board will be mistaken, so it is necessary to use plywood or a special spacer material for the base, and when the floor finishing material is fixed with an adhesive When renovating the floor by renovation or the like, problems such as difficulty in separating the spacer material and the finishing material occur.

このような問題点を解決する方法として、例えば、下地材の上面に接着剤によって床材を張付けてなる構造を有する床のリフォーム工法において、簡易剥離手段によって下地材を破壊することなく古い接着剤層を剥離除去し、新しい接着剤を塗布し、床材を下地材表面に張付ける方法(例えば、特許文献2参照。)が提案されているが、工程が多数あることと工具が必要な点は解消されていない。   As a method for solving such problems, for example, in a floor renovation method having a structure in which a floor material is attached to the upper surface of a base material with an adhesive, an old adhesive without destroying the base material by simple peeling means A method of peeling off and removing a layer, applying a new adhesive, and sticking a flooring to the surface of a base material (for example, see Patent Document 2) has been proposed. Has not been resolved.

このような問題に対して、軽量かつ必要な圧縮強度も備え、施工性も良い樹脂発泡体が注目されつつある。建築分野で、床下地スペーサー用途として樹脂発泡体を用いる場合、樹脂発泡体の熱収縮により発生すると考えられるせん断方向に発生する応力を相殺できる接着強度が重要視され、せん断方向に対する接着強度が安定的に必要になることは勿論ではあるが、改装時や補修時に表面の仕上材を仕上材や下地材を破損することなく垂直方向へ剥がし易くする機能も接着界面には必要となる。例えばポリオレフィン系樹脂を用い、内在する気泡のアスペクト比Dz/Dxyの平均値が1.1〜4.0、発泡倍率が3〜20倍、及び圧縮弾性率が5MPa以上である表面に不織布を積層した床下地材(例えば、特許文献3参照。)が提案されている。この手法を用いることで、最低限必要な接着強度さえ満たしておけば、樹脂発泡体に接合された表面仕上材を剥がす場合、不織布層で剥離を起こし仕上材をほとんど壊すことなく剥がせる効果が期待できる。しかし、床用接着剤を通常の塗布時に用いられる接着剤用の刷毛等で全面塗りを行なった場合、摩擦で表面が磨耗し毛玉が発生する。そして、他素材との接着の際に毛玉が挟まり隙間を生じさせ面積あたりの接着強度を低下させたり、ゴミが発生し作業環境の悪化を招くなど著しく着工性を低下させる問題がある。
これは床下地スペーサー用途に限った問題でなく、接着剤による固定が必要な不織布が積層された発泡体全般の使用に関する課題でもある。例えば、壁材や天井材に発泡体を固定する場合は、同様の課題が生じることが容易に考えられる。例えば、壁材や天井材に発泡体を固定する場合は同様の問題が生じることが容易に考えられる。
特開2003−293563号公報 特開平10−88818号公報 特開2004−339757号公報
For such problems, resin foams that are lightweight and have the necessary compressive strength and good workability are attracting attention. In the building field, when resin foam is used as a floor base spacer, the adhesive strength that can cancel the stress generated in the shear direction, which is thought to be generated by heat shrinkage of the resin foam, is regarded as important, and the adhesive strength in the shear direction is stable. Of course, the adhesive interface also needs a function to easily peel off the surface finish material in the vertical direction without damaging the finish material or the base material during refurbishment or repair. For example, using a polyolefin resin, a nonwoven fabric is laminated on the surface where the average aspect ratio Dz / Dxy of the internal bubbles is 1.1 to 4.0, the expansion ratio is 3 to 20 times, and the compression modulus is 5 MPa or more. A floor base material (for example, refer to Patent Document 3) has been proposed. By using this method, as long as the minimum necessary adhesive strength is satisfied, when peeling off the surface finishing material joined to the resin foam, the non-woven fabric layer is peeled off, and the finishing material is hardly broken. I can expect. However, when the entire surface of the floor adhesive is applied with an adhesive brush used at the time of normal application, the surface is worn due to friction, and pills are generated. Further, there is a problem that the workability is remarkably lowered, such as a fuzzy ball being pinched during bonding with another material to create a gap and lowering the adhesive strength per area, or generating dust and causing deterioration of the working environment.
This is not a problem limited to the use as a floor base spacer, but also a problem related to the use of foams in general laminated with non-woven fabric that needs to be fixed with an adhesive. For example, when fixing a foam to a wall material or a ceiling material, it can be easily considered that the same problem occurs. For example, when a foam is fixed to a wall material or a ceiling material, it can be easily considered that the same problem occurs.
JP 2003-293563 A Japanese Patent Laid-Open No. 10-88818 JP 2004-339757 A

樹脂発泡体の主原料によっては極性の違いにより接着剤による化学的接着力が発現しないケースが多々あり、例えば、汎用的に使用される樹脂原料の中でオレフィン系樹脂にぞくするポリエチレン、ポリプロピレン等は、製品接着綿の改良、例えばコロナ処理や加熱(燃焼)処理、塩酸、硫酸などを用いた化学処理などを行なわない限り化学的接着力が発生し難い部類になり、接着面の改質を行なわない場合、特殊配合接着剤を使用しなければならず、単価が高く多くの接着剤を要する建材分野等での施工には現実的でない。また、単価の安いホットメルト系接着剤を使用することも想定できるが、実用上、建築現場では溶融機器、塗布機器が必要となり、施工が複雑になる。また熱処理により素材自体を溶かして融着させる方法も工程上複雑になることや、熟練された技術が必要である為、現場施工においては現実的ではない。本発明の目的は、上記従来技術の問題点に鑑み、建材用として使用可能な、軽量かつ切断性、耐水性、耐荷重性に優れ、接着剤を塗布する際に毛玉の発生を抑え、安定かつ機能上必要な接着強度と剥離性を兼ね備えた複合樹脂発泡体からなる床下地材用スペーサー及びその製造方法を提供することにある。 Depending on the main raw material of the resin foam, there are many cases in which the chemical adhesive force due to the adhesive does not appear due to the difference in polarity. For example, polyethylene and polypropylene that are excluded from olefin resins among the resin raw materials used for general purposes Is a class that is unlikely to generate chemical adhesive force unless it is improved by product cotton, such as corona treatment, heating (burning) treatment, chemical treatment using hydrochloric acid, sulfuric acid, etc. Otherwise, a special blended adhesive must be used, which is unrealistic for construction in the building material field where the unit price is high and requires a large amount of adhesive. Moreover, although it can be assumed that a hot-melt adhesive with a low unit price is used, in practice, a melting device and a coating device are required at a construction site, and the construction becomes complicated. Also, the method of melting and fusing the material itself by heat treatment is complicated in the process and requires a skillful technique, so that it is not practical in field construction. The purpose of the present invention is to reduce the generation of pills when applying an adhesive, in light of the light and cutting properties, water resistance, and load resistance that can be used for building materials in view of the above-mentioned problems of the prior art. and to provide a underfloor member for spacers and a manufacturing method thereof comprising a composite resin foam which has both stable and functionally required adhesive strength and removability.

本発明者らは、上記課題を解決すべく鋭意検討した結果、樹脂発泡体の表面に特定の拘束点密度、繊維拘束部を有する繊維集合体を積層することにより、建材用として使用可能な、軽量かつ切断性、耐水性、耐荷重性に優れ、接着剤を塗布する際に毛玉の発生を抑え、安定かつ機能上必要な接着強度と剥離性を兼ね備えた複合樹脂発泡体からなる床下地材用スペーサーが得られることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors can use as a building material by laminating a fiber assembly having a specific restraint point density and a fiber restraint portion on the surface of the resin foam, lightweight cutting resistance, water resistance, load capacity superior bearing properties, suppress the occurrence of pill when applying the adhesive, combines stable and functionally required adhesive strength and removability floor comprising a composite resin foam The present inventors have found that a spacer for ground materials can be obtained and completed the present invention.

すなわち、本発明の第1の発明によれば、樹脂発泡体の少なくとも一面に、繊維拘束部が存在する繊維集合体が積層されてなる複合樹脂発泡体からなる床下地材用スペーサーであって、
前記複合樹脂発泡体において、前記繊維集合体は、任意の点から上記繊維拘束部までの平均最短距離が0.5mm以下、該繊維拘束部の点密度(以下「拘束点密度」という)が30点/cm以上であり、
前記樹脂発泡体は、内在する気泡のアスペクト比のDz/Dxの平均値が1.1〜4.0、発泡倍率が3〜20倍であることを特徴とする床下地材用スペーサーが提供される。
That is, according to the first aspect of the present invention, at least one surface of the resin foam, a spacer underfloor member of fiber aggregate is present the fiber restraining portion is made of a composite resin foam ing is laminated ,
In the composite resin foam, the fiber assembly has an average shortest distance from an arbitrary point to the fiber restraint portion of 0.5 mm or less, and a point density of the fiber restraint portion (hereinafter referred to as “constraint point density”) of 30. Point / cm 2 or more,
The resin foam is provided with a spacer for a floor base material characterized in that the average value of Dz / Dx of the aspect ratio of the air bubbles is 1.1 to 4.0 and the expansion ratio is 3 to 20 times. The

また、本発明の第2の発明によれば、第1の発明において、繊維集合体が不織布であることを特徴とする床下地材用スペーサーが提供される。 According to a second aspect of the present invention, there is provided a spacer for a floor base material characterized in that, in the first aspect, the fiber assembly is a nonwoven fabric.

また、本発明の第3の発明によれば、第1又は2の発明において、樹脂発泡体が、オレフィン系樹脂を主原料として用いた発泡体であることを特徴とする床下地材用スペーサーが提供される。 According to the third invention of the present invention, there is provided a floor base material spacer characterized in that, in the first or second invention, the resin foam is a foam using an olefin resin as a main raw material. Provided.

また、本発明の第4の発明によれば、第1〜3のいずれかの床下地材用スペーサーの製造方法であって、
前記樹脂発泡体の発泡前の原反の少なくとも片面に、前記繊維集合体を積層する工程と、
前記積層体を、前記原反の発泡温度以上の温度で加熱することにより、該原反を厚み方向に発泡させる工程とを含むことを特徴とする床下地材用スペーサーの製造方法が提供される。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a spacer for a floor base material according to any one of the first to third aspects,
A step of laminating the fiber assembly on at least one side of the raw fabric before foaming of the resin foam;
And heating the laminated body at a temperature equal to or higher than the foaming temperature of the original fabric to foam the original fabric in the thickness direction. .

本発明の床下地材用スペーサー及びその製造方法における複合樹脂発泡体は、樹脂発泡体の表面に特定の拘束点密度、繊維拘束部を有する繊維集合体を積層しているため、接着強度を低下させることなく、接着施工性を向上させ、かつ面材の層間剥離性を保持することで樹脂発泡体の再利用が可能な安価な複合樹脂発泡体である。また、樹脂発泡体の気泡の形状は紡錘型であり、主原料にオレフィン系樹脂を使用することで、圧縮強度が高く、リサイクルが簡単な性能を持ち合わせた複合樹脂発泡体であり、建材分野、特に床下地材用スペーサーとして用いることができる。 Since the composite resin foam in the spacer for floor base material of the present invention and the method for producing the same is formed by laminating a fiber assembly having specific restraint point density and fiber restraint portion on the surface of the resin foam, the adhesive strength is lowered. Therefore, it is an inexpensive composite resin foam that can be reused by improving adhesion workability and maintaining the peelability of the face material. In addition, the foam shape of the foam of the resin foam is a spindle type, and by using an olefin resin as the main raw material, it is a composite resin foam with high compressive strength and easy to recycle performance. In particular, it can be used as a spacer for a floor base material.

本発明は、樹脂発泡体の少なくとも一面に繊維集合体を積層した複合樹脂発泡体からなる床下地材用スペーサー及びその製造方法である。以下、繊維集合体、樹脂発泡体、複合樹脂発泡体について、詳細に説明する。 The present invention relates to a spacer for a floor base material comprising a composite resin foam in which a fiber assembly is laminated on at least one surface of a resin foam and a method for producing the same. Hereinafter, the fiber assembly, the resin foam, and the composite resin foam will be described in detail.

本発明で用いることのできる繊維集合体とは、繊維素材の集合体を意味し、特に限定するものではないが、例えば、ガラス繊維を抄造して得られるサーフェイスマット、ガラスロービングが織られてなるもの等が挙げられる。なお、サーフェイマットにあっては、ガラス短繊維同士を結着するためのバインダーが含まれていてもよく、バインダーとしては、ポリビニルアルコール樹脂、飽和ポリエステル樹脂、アクリル系樹脂などの熱硬化性樹脂が挙げられる。さらに、ガラス繊維、カーボン繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、アラミド繊維等の長繊維状物を樹脂バインダーなどでシート状に固めてなるプリプレグシート、ポリプロピレン等の熱可塑性樹脂とガラス長繊維マットを組み合わせたスタンパブルシート、寒冷紗、織布または不織布、ニードルパンチ等が挙げられる。なお、寒冷紗、織布または不織布、ニードルパンチの材料としては、主に、木綿、羊毛、絹などの天然繊維、レーヨンなどの半合成繊維、ポリエステル、ポリアミド、ポリオレフィン、PVA、ビニロンなどの合成繊維、高強力ポリエチレン繊維、アラモド系繊維などのハイモジュラス繊維などが挙げられる。織布には、一般的な天然繊維や合成繊維からなるものが含まれる。また、紙も繊維集合体の一つとして含まれる。 The fiber aggregate that can be used in the present invention means an aggregate of fiber materials, and is not particularly limited. For example, a surface mat obtained by making glass fibers and glass roving are woven. And the like. Incidentally, in the Safei scan mat may contain a binder for binding the glass short fibers, as the binder, polyvinyl alcohol resins, saturated polyester resins, thermosetting resins such as an acrylic resin Is mentioned. Furthermore, glass fiber, carbon fiber, polyester fiber, acrylic fiber, nylon fiber, aramid fiber and other long fiber materials are consolidated into a sheet with a resin binder or the like, a prepreg sheet, polypropylene or other thermoplastic resin and a glass long fiber mat. A stampable sheet, a cold chill, a woven or non-woven fabric, a needle punch, and the like. In addition, as a material for cold chill, woven or non-woven fabric, needle punch, mainly natural fibers such as cotton, wool, silk, semi-synthetic fibers such as rayon, synthetic fibers such as polyester, polyamide, polyolefin, PVA, vinylon, Examples thereof include high modulus fibers such as high-strength polyethylene fibers and alamod fibers. The woven fabric includes those made of general natural fibers and synthetic fibers. Paper is also included as one of the fiber assemblies.

上記繊維集合体の中でも、積層する際の投錨(アンカー効果)効果に優れる点で不織布が好ましく、人や環境に対し悪い影響を及ぼすことの殆どないポリエチレンテレフタレート等のポリエステル系繊維の不織布がより好適に用いられる。
ポリエステル系繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどはもとより、イソフタル酸、アジピン酸、ジエチレングリコール、トリメチレングリコールなどの共重合成分の共重合ポリエステル、ポリエチレンナフタレート及びこれらの共重合物からなる繊維でも、芯鞘構造又はサイドバイサイド等の複合繊維であっても良い。
Among the above fiber aggregates, nonwoven fabrics are preferable in that they are excellent in anchoring (anchor effect) effect at the time of lamination, and nonwoven fabrics of polyester fibers such as polyethylene terephthalate that hardly adversely affect people and the environment are more preferable. Used for.
Polyester fibers include not only polyethylene terephthalate, polybutylene terephthalate, but also copolyesters of copolymerization components such as isophthalic acid, adipic acid, diethylene glycol, trimethylene glycol, and fibers made of these copolymers. Further, it may be a composite fiber such as a core-sheath structure or side-by-side.

さらに、本発明で用いる繊維集合体の繊維拘束部は、任意の点から上記繊維拘束部までの平均最短距離が0.5mm以下である必要がある。繊維拘束部が繊維集合体の任意の点から0.5mm以内に存在すると複合樹脂発泡体を床下地材として用い、接着剤を塗布する際に、摩擦による面材摩擦現象に伴う毛玉の発生が抑制される。
ここで、繊維拘束部とは、繊維集合体が点状の部分的熱圧接等を受けて繊維同士が熱融着、または接着剤等で固定されている部分のことを言い、繊維材料がある角度で二次元もしくは三次元配列が重なり、その重なった部分で固定されている範囲のことをいう。
Furthermore, the fiber restraint part of the fiber assembly used in the present invention needs to have an average shortest distance from an arbitrary point to the fiber restraint part of 0.5 mm or less. When the fiber restraint part is within 0.5 mm from any point of the fiber assembly, the composite resin foam is used as the floor base material, and when applying adhesive, the generation of fuzz due to the friction of the face material due to friction Is suppressed.
Here, the fiber restraint portion refers to a portion in which the fiber aggregate is subjected to point-like partial heat pressure welding or the like and the fibers are fixed to each other by heat fusion or adhesive, and there is a fiber material. A range where two-dimensional or three-dimensional arrays overlap at an angle and are fixed at the overlapping part.

本発明で用いる繊維集合体の拘束点密度は、30点/cm以上であり、好ましくは50点/cm以上である。拘束点密度が30点/cm未満では複合樹脂発泡体を床下地材として用い、接着剤を塗布する際に毛玉が発生しやすくなり、施工性を阻害する。
ここで、繊維集合体の拘束点密度とは、繊維集合体が点状の部分的熱圧接等を受け、その点状拘束区域の全表面積における密度、すなわち拘束点密度Bとして次式で表される。
B(点/cm)=拘束点の数(点)/繊維集合体の全表面積(cm)]
The restraint point density of the fiber assembly used in the present invention is 30 points / cm 2 or more, preferably 50 points / cm 2 or more. When the density of restraint points is less than 30 points / cm 2 , the composite resin foam is used as a floor base material, and fluff is likely to occur when an adhesive is applied, which impairs workability.
Here, the restraint point density of the fiber assembly is expressed by the following equation as the density at the entire surface area of the point constrained area, that is, the restraint point density B, when the fiber assembly is subjected to point-like partial heat pressure welding or the like. The
B (points / cm 2 ) = number of restraint points (points) / total surface area of the fiber assembly (cm 2 )]

また、本発明で繊維集合体の繊維拘束部の面積率(以下、「拘束面積率」という)は、特に限定されないが、5〜80%であることが好ましい。拘束面積率が5%未満では複合樹脂発泡体を床下地材として用い、接着剤を塗布する際に毛玉が発生しやすくなり、80%を超えると接着強度を発現させるに必要なアンカー効果が小さくなり、単位面積あたりに必要な接着強度に達しない可能性がある。
ここで、繊維集合体の拘束面積率は、繊維集合体が部分的熱圧接等を受け、その熱拘束部の全表面積に対する全拘束区域の面積比すなわち拘束面積率Aとして次式で表される。
A(%)=[繊維集合体の全融着区域の面積(cm)/繊維集合体の全表面積(cm)]×100
In the present invention, the area ratio (hereinafter referred to as “restrained area ratio”) of the fiber restraint portion of the fiber assembly is not particularly limited, but is preferably 5 to 80%. When the restraint area ratio is less than 5%, the composite resin foam is used as a floor base material, and fluff is likely to occur when the adhesive is applied, and when it exceeds 80%, the anchor effect necessary to develop the adhesive strength is obtained. There is a possibility that the required adhesive strength per unit area will not be reached.
Here, the restraint area ratio of the fiber assembly is expressed by the following expression as an area ratio of the entire restraint area to the total surface area of the heat restraint portion, that is, the restraint area ratio A, when the fiber assembly undergoes partial heat pressure welding or the like. .
A (%) = [area of total fusion area of fiber assembly (cm 2 ) / total surface area of fiber assembly (cm 2 )] × 100

さらにまた、本発明で用いる繊維集合体の厚みは、特に限定されないが、接着施工性を考えた場合、厚みが厚すぎると繊維集合体内で不用意に剥離が発生する可能性が大きくなるので、0.5mm以内が好ましい。   Furthermore, the thickness of the fiber assembly used in the present invention is not particularly limited, but when considering the adhesive workability, if the thickness is too thick, the possibility of inadvertent peeling in the fiber assembly increases. Within 0.5 mm is preferable.

また、本発明で用いる繊維集合体として不織布を用いる場合は、その目付量が10〜100g/mが好ましい。不織布の目付量が10g/m未満では、アンカー効果が発揮されず、100g/mを超えると複合樹脂発泡体を床下地スペーサー材として用いる接着施工の際に毛玉が発生し著しく施工性を悪化させ好ましくない。 Moreover, when using a nonwoven fabric as a fiber assembly used by this invention, the basis weight is 10-100 g / m < 2 >. When the basis weight of the non-woven fabric is less than 10 g / m 2 , the anchor effect is not exhibited, and when it exceeds 100 g / m 2 , pills are generated during the bonding work using the composite resin foam as a floor base spacer material, and the workability is remarkably improved. This is undesirable.

本発明の複合樹脂発泡体における樹脂発泡体は、内在する気泡のアスペクト比Dz/Dxyの平均値が1.1〜4.0が好ましい。気泡のアスペクト比Dz/Dxyの平均値が1.1未満であると、気泡がほぼ球形となり、紡錘形に起因する圧縮弾性率、圧縮強度の向上が得られず、床下地材として用いた場合、良好な歩行感が得られにくくなる。アスペクト比Dz/Dxyの平均値が4.0を超えると、発泡体が衝撃を受けたときに破壊が起こり易くなり、割れや欠けが発生しやすくなる。
樹脂発泡体内に内在する気泡のアスペクト比が上記の範囲にすることによって、本発明における樹脂発泡体は、その厚み方向に圧縮力を受けると、厚み方向に長い紡錘形の気泡の長軸方向に力がかかることになるので厚み方向に高い圧縮強度を示す。
また、上記樹脂発泡体に内在する気泡のDxyの平均値は、500μm以上であることが好ましい。
The resin foam in the composite resin foam of the present invention preferably has an average value of the aspect ratio Dz / Dxy of the internal bubbles of 1.1 to 4.0. When the average value of the aspect ratio Dz / Dxy of the bubbles is less than 1.1, the bubbles are almost spherical, and the improvement in compression modulus and compressive strength due to the spindle shape cannot be obtained. It becomes difficult to obtain a good walking feeling. When the average value of the aspect ratio Dz / Dxy exceeds 4.0, the foam tends to break when subjected to an impact, and cracks and chips are likely to occur.
By setting the aspect ratio of the bubbles contained in the resin foam within the above range, when the resin foam in the present invention receives a compressive force in the thickness direction, a force is exerted in the major axis direction of the spindle-shaped bubbles that are long in the thickness direction. Therefore, high compressive strength is shown in the thickness direction.
Moreover, it is preferable that the average value of Dxy of the bubble inherent in the said resin foam is 500 micrometers or more.

ここで、アスペクト比は、発泡体中の気泡における定方向最大径の比の個数(算術)平均値であり、シート厚み方向の直径Dzと面内方向の直径Dxyとの比Dz/Dxyとして表される。
すなわち、図1に示すように、発泡体(a)のシート厚み方向(z方向と呼ぶ)に平行な任意な断面(b)の10倍の拡大写真をとり、この写真中で無作為に選ばれる少なくとも50個の気泡における下記の2つの定方向最大径(Dz、Dxy)を測り、個数平均値を算出することにより求めることができる。
Dz:硬質発泡体中の気泡のz方向に平行な最大径
Dxy:硬質発泡体中の気泡のシート幅または長さ方向、すなわちz方向に垂直な面方向(xy方向と呼ぶ)に平行な最大径
Here, the aspect ratio is the number (arithmetic) average value of the ratio of the maximum diameter in the fixed direction in the bubbles in the foam, and is expressed as the ratio Dz / Dxy between the diameter Dz in the sheet thickness direction and the diameter Dxy in the in-plane direction. Is done.
That is, as shown in FIG. 1, an enlarged photograph 10 times the arbitrary cross section (b) parallel to the sheet thickness direction (referred to as z direction) of the foam (a) is taken and randomly selected in this photograph. It can be obtained by measuring the following two maximum directional diameters (Dz, Dxy) in at least 50 bubbles and calculating a number average value.
Dz: Maximum diameter parallel to z direction of bubbles in hard foam Dxy: Maximum sheet width or length direction of bubbles in hard foam, that is, maximum parallel to plane direction perpendicular to z direction (referred to as xy direction) Diameter

また、本発明で用いる樹脂発泡体は、発泡倍率が3〜20倍が好ましい。発泡倍率が3倍未満では十分な気泡の長軸と短軸の比が得られず、所望強度が得られことがあり、20倍を超えると個々の気泡における気泡壁が薄くなって、十分な圧縮強度を発現し得ないことがある。
ここで、発泡倍率は、JIS K6767に準拠して見掛け密度を測定し、その逆数発泡倍率(倍)とする値である。
In addition, the resin foam used in the present invention preferably has an expansion ratio of 3 to 20 times. If the expansion ratio is less than 3 times, a sufficient ratio between the major axis and the minor axis of the bubbles cannot be obtained, and the desired strength may be obtained. If the expansion ratio exceeds 20, the cell walls in the individual bubbles become thin and sufficient. Compressive strength may not be expressed.
Here, the expansion ratio is a value obtained by measuring the apparent density according to JIS K6767 and setting the reciprocal expansion ratio (times).

さらに、本発明で用いる樹脂発泡体は、圧縮弾性率が5MPa以上が好ましい。圧縮弾性率が5Mpa未満であると床下地材としての十分な剛性が得られないことがある。圧縮弾性率の上限は特に認められないが、50MPaを超える場合は脆くなって、施工時などに欠けや割れが起こりやすくなることがあるので注意を要する。
ここで、圧縮弾性率は、JIS K7220に準拠して測定する値である。
Furthermore, the resin foam used in the present invention preferably has a compression modulus of 5 MPa or more. If the compression modulus is less than 5 Mpa, sufficient rigidity as a floor base material may not be obtained. The upper limit of the compressive elastic modulus is not particularly recognized. However, if it exceeds 50 MPa, it becomes brittle, and care must be taken because chipping and cracking may easily occur during construction.
Here, the compression modulus is a value measured according to JIS K7220.

また、本発明の樹脂発泡体に用いられる樹脂材料としては、特に限定されないが、例えば、ポリオレフィン、ポリスチレン、ポリウレタン、ポリフェノール、ポリ塩化ビニル、塩化ビニル共重合体、ポリ塩化ビニリデン、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリイミド、ポリアクリル、EVA、ABS、エポキシ樹脂、不飽和ポリエステル、メラミン樹脂、ユリア樹脂、ジアリルフタレート樹脂、キシレン樹脂等の熱可塑性、熱硬化性樹脂が挙げられるが、好ましくはポリオレフィン系樹脂であるポリエチレン、ポリプロピレン樹脂が防音性に優れ、しかもリサイクル性や焼却廃棄性に優れる点で好ましい。   Further, the resin material used for the resin foam of the present invention is not particularly limited. For example, polyolefin, polystyrene, polyurethane, polyphenol, polyvinyl chloride, vinyl chloride copolymer, polyvinylidene chloride, polyamide, polycarbonate, polyethylene Examples include thermoplastic and thermosetting resins such as terephthalate, polyimide, polyacryl, EVA, ABS, epoxy resin, unsaturated polyester, melamine resin, urea resin, diallyl phthalate resin, and xylene resin, preferably polyolefin resin. Certain polyethylene and polypropylene resins are preferred in that they are excellent in soundproofing and are excellent in recyclability and incineration disposal.

上記ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、アイソタクチックもしくはシンジオタクチックホモポリプロピレン、ブロックプロピレン共重合体、ランダムプロピレン共重合体、ポリブテン、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−ブテン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エステル共重合体等が挙げられる。これらは単独で用いられてもよいが、2種以上が組み合わされて併用されてもよい。   Examples of the polyolefin resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, isotactic or syndiotactic homopolypropylene, block propylene copolymer, random propylene copolymer, Examples include polybutene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid ester copolymer. These may be used singly or in combination of two or more.

また、ポリオレフィン系樹脂のメルトフローレート(MFR)は、JIS K−7210に準拠して測定された値で、0.1〜20g/10分が好ましい。MFRが大き過ぎても、又、反対に小さ過ぎても発泡安定性を低下させ、好ましくない。   Moreover, the melt flow rate (MFR) of polyolefin resin is a value measured based on JIS K-7210, and 0.1-20 g / 10min is preferable. If the MFR is too large, or conversely too small, the foaming stability is lowered, which is not preferable.

さらに、ポリオレフィン系樹脂は、必要に応じて架橋されたものであってもよい。架橋の方法は、特に限定されるものではないが、例えば、電子線等の電離性放射線を照射する電子線架橋法、有機過酸化物等を用いた化学架橋法、又は、シラン変性樹脂を用いたシラン架橋法等が挙げられる。   Furthermore, the polyolefin resin may be cross-linked as necessary. The crosslinking method is not particularly limited. For example, an electron beam crosslinking method in which ionizing radiation such as an electron beam is irradiated, a chemical crosslinking method using an organic peroxide, or a silane-modified resin is used. And the silane crosslinking method.

ポリオレフィン系樹脂の架橋の度合いは、余り高過ぎると、発泡倍率が低下すると共に、熱成形性が低下し、余り低過ぎると、熱安定性が低下し、且つ、発泡時のセル(気泡壁)が破泡し、均一な気泡が得られなくなることがあるので、架橋の指標となるゲル分率は、好ましくは10〜30重量%、より好ましくは15〜25重量%である。
ここで、ゲル分率とは、ポリオレフィン系樹脂発泡体を、120℃のキシレン中に24時間浸漬した後の残渣重量のキシレン浸漬前のポリオレフィン系樹脂発泡体重量に対する百分率(重量)で表す値である。
If the degree of crosslinking of the polyolefin-based resin is too high, the foaming ratio is reduced and the thermoformability is lowered. If it is too low, the thermal stability is lowered and the cell during foaming (bubble wall) May break, and uniform bubbles may not be obtained. Therefore, the gel fraction serving as an index for crosslinking is preferably 10 to 30% by weight, more preferably 15 to 25% by weight.
Here, the gel fraction is a value expressed as a percentage (weight) of the weight of the polyolefin resin foam after immersion in xylene at 120 ° C. for 24 hours with respect to the weight of the polyolefin resin foam before xylene immersion. is there.

なお、ポリオレフィン系樹脂には、30重量%以下の範囲で、他の熱可塑性樹脂、例えば、ポリスチレン等の相溶性を有する熱可塑性樹脂、エラストマー等が混合されて用いられてもよい。   The polyolefin-based resin may be mixed with other thermoplastic resin, for example, a compatible thermoplastic resin such as polystyrene, an elastomer, or the like within a range of 30% by weight or less.

本発明で用いる樹脂発泡体を得る製造方法は、特に限定されないが、好ましくは、ポリオレフィン系樹脂および変性用モノマーを溶融混和して変性ポリオレフィンを得、変性ポリオレフィンに熱分解型化学発泡剤を分散させ、得られた発泡性樹脂組成物を一旦シート状の原反に賦形した後、得られた発泡性シートを熱分解型化学発泡剤の分解温度以上に加熱して化学発泡させる方法である。   The production method for obtaining the resin foam used in the present invention is not particularly limited, but preferably, a polyolefin resin and a modifying monomer are melt-blended to obtain a modified polyolefin, and a thermally decomposable chemical foaming agent is dispersed in the modified polyolefin. In this method, the obtained foamable resin composition is once formed into a sheet-like raw material, and then the obtained foamable sheet is heated to a temperature equal to or higher than the decomposition temperature of the pyrolyzable chemical foaming agent for chemical foaming.

上記変性用モノマーは、ラジカル反応し得る官能基を分子内に2個以上有する化合物である。上記官能基としてはオキシム基、マレイミド基、ビニル基、アリル基、(メタ)アクリル基等が例示される。変性用モノマーは、好ましくは、ジオキシム化合物、ビスマレイミド化合物、ジビニルベンゼン、アリル系多官能モノマー、(メタ)アクリル系多官能モノマーである。また、変性用モノマーはキノン化合物のような、分子内に2個以上のケトン基を有する環状化合物であってもよい。
上記のような樹脂変性方法をとることで、成形された発泡性シート原反架橋度が低いにも拘らず、これを常圧で発泡させることが可能となる。
The modifying monomer is a compound having two or more functional groups capable of radical reaction in the molecule. Examples of the functional group include an oxime group, a maleimide group, a vinyl group, an allyl group, and a (meth) acryl group. The modifying monomer is preferably a dioxime compound, a bismaleimide compound, divinylbenzene, an allyl polyfunctional monomer, or a (meth) acrylic polyfunctional monomer. The modifying monomer may be a cyclic compound having two or more ketone groups in the molecule, such as a quinone compound.
By adopting the resin modification method as described above, it is possible to foam the foamed sheet at normal pressure despite the low degree of crosslinking of the molded foam sheet.

本発明で用いる樹脂発泡体は、化学発泡によって得られるものと、物理発泡によって得られるもののいずれであっても良いが、樹脂発泡体が熱融着により他の材料に積層される場合には、前者の方法が好ましい。   The resin foam used in the present invention may be either one obtained by chemical foaming or one obtained by physical foaming, but when the resin foam is laminated to another material by thermal fusion, The former method is preferred.

化学発泡による発泡体は、例えば加熱により分解ガスを発生する熱分解型化学発泡剤を予めポリオレフィン系樹脂組成物に分散させておき、得られた発泡性組成物を一旦シート状の原反に賦形した後、加熱して発泡剤より発生するガスにより発泡させることで製造される。熱分解型化学発泡剤の代表例としては、アゾジカルボンアミド、ベンゼンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、トルエンスルホニルヒドラジド、4,4−オキシビス(ベンゼンスルホニルヒドラジド)等が挙げられる。化学発泡剤の添加量は樹脂組成物100重量部に対して好ましくは2〜20重量部である。   In the foam by chemical foaming, for example, a thermal decomposition type chemical foaming agent that generates a decomposition gas by heating is dispersed in a polyolefin resin composition in advance, and the obtained foamable composition is once applied to a sheet-like raw fabric. After forming, it is manufactured by heating and foaming with a gas generated from a foaming agent. Representative examples of the pyrolytic chemical foaming agent include azodicarbonamide, benzenesulfonyl hydrazide, dinitrosopentamethylenetetramine, toluenesulfonyl hydrazide, 4,4-oxybis (benzenesulfonyl hydrazide) and the like. The addition amount of the chemical foaming agent is preferably 2 to 20 parts by weight with respect to 100 parts by weight of the resin composition.

シート状発泡性原反の賦形方法としては、押出成型の他、プレス成型、ブロー成型、カ
レンダリング成型、射出成型など、プラスチックの成型加工で一般的に行われる方法が適用可能であるが、スクリュ押出機より吐出する発泡性樹脂組成物を直後賦形する方法が生産性の観点から好ましい。この方法では、一定寸法幅の連続原反シートを得ることができる。
As a method for shaping the sheet-like foamable raw material, methods generally performed in plastic molding processes such as press molding, blow molding, calendering molding, injection molding, etc. can be applied in addition to extrusion molding. A method of immediately forming a foamable resin composition discharged from a screw extruder is preferable from the viewpoint of productivity. In this method, a continuous original fabric sheet having a constant width can be obtained.

シート状原反の化学発泡は、通常、熱分解型化学発泡剤の分解温度以上、熱可塑性樹脂の熱分解温度以下の温度範囲で行われる。特に連続式発泡装置としては、加熱炉の出口側で発泡体を引き取りながら発泡させる引き取り式発泡機の他、ベルト式発泡機、縦型または横型発泡炉、熱風恒温槽など、あるいは熱浴中で発泡を行うオイルバス、メタルバス、ソルトバスなどが使用される。   The chemical foaming of the sheet-shaped original fabric is usually performed in a temperature range not lower than the decomposition temperature of the pyrolytic chemical foaming agent and not higher than the thermal decomposition temperature of the thermoplastic resin. In particular, as a continuous foaming apparatus, in addition to a take-off type foaming machine that foams while taking out a foam on the outlet side of a heating furnace, a belt type foaming machine, a vertical or horizontal type foaming furnace, a hot air thermostat, or a hot bath Foaming oil baths, metal baths, salt baths, etc. are used.

本発明で用いる特定のアスペクト比を有している樹脂発泡体は、気泡のアスペクト比Dz/Dxyの平均値が1.1〜4.0であるので、紡錘形気泡となっている。このような紡錘形気泡を有する樹脂発泡体を得る方法としては、特に限定されるものではないが、例えば、発泡中の原反の面内方向(xy方向)の発泡力を抑制し得る強度を有する面材を発泡前の原反の少なくとも片面に積層する方法が好ましい。
発泡前の原反の少なくとも片面に面材を積層することにより、発泡時における原反の面内の二次元方向(xy方向)の発泡を抑制し、厚み方向(z方向)にのみ発泡させることが可能となって、得られる発泡体シート内部の気泡は厚み方向にその長軸を配向した紡錘形の気泡となる。
The resin foam having a specific aspect ratio used in the present invention has spindle-shaped bubbles because the average value of the bubble aspect ratio Dz / Dxy is 1.1 to 4.0. A method for obtaining a resin foam having such spindle-shaped bubbles is not particularly limited, and for example, has a strength capable of suppressing the foaming force in the in-plane direction (xy direction) of the original fabric during foaming. A method of laminating the face material on at least one side of the original fabric before foaming is preferable.
By laminating face materials on at least one side of the original fabric before foaming, foaming in the two-dimensional direction (xy direction) in the surface of the original fabric during foaming is suppressed, and foaming is performed only in the thickness direction (z direction). The bubbles in the foam sheet thus obtained become spindle-shaped bubbles whose major axis is oriented in the thickness direction.

上記面材としては、原反の発泡温度以上の温度、すなわち、発泡体用樹脂、例えば、ポリオレフィン系樹脂の融点以上の温度および熱分解型化学発泡剤の分解温度以上の温度に耐え得るものであれば良く、特に限定されるものではないが、例えば、紙、布、木材、鉄、非鉄金属、有機繊維や無機繊維からなる織布や不織布、寒冷紗、ガラス繊維、炭素繊維、等が好適に用いられる。また、例えば、テフロン(登録商標)シートのような離型性を有するシートを面材として用い、原反を厚み方向に発泡させた後、上記離型性シートを剥離して、発泡体シートを得ても良い。
ただし、ポリオレフィン系樹脂以外の材料からなる面材を用いるときは、リサイクル性の観点より、その使用量は最小限度に留めることが好ましい。
本発明の複合樹脂発泡体は、樹脂発泡体の表面に繊維集合体を積層したものであるので、上記面材として、繊維集合体を用いることにより、樹脂発泡体と繊維集合体の積層工程を省くことができるので、上述の繊維集合体が特に好ましい。
The face material is capable of withstanding a temperature equal to or higher than the foaming temperature of the original fabric, that is, a temperature equal to or higher than the melting point of the resin for foams, for example, a polyolefin resin, and a temperature equal to or higher than the decomposition temperature of the pyrolytic chemical foaming agent. Although it is not particularly limited, for example, paper, cloth, wood, iron, non-ferrous metal, woven or non-woven fabric made of organic fiber or inorganic fiber, cold water bottle, glass fiber, carbon fiber, etc. are suitable. Used. Further, for example, a sheet having releasability such as a Teflon (registered trademark) sheet is used as a face material, and after foaming the raw material in the thickness direction, the releasable sheet is peeled off to obtain a foam sheet. You may get.
However, when using a face material made of a material other than the polyolefin-based resin, it is preferable to keep the amount used to a minimum from the viewpoint of recyclability.
Since the composite resin foam of the present invention is obtained by laminating a fiber assembly on the surface of the resin foam, by using the fiber assembly as the face material, the step of laminating the resin foam and the fiber assembly is performed. The fiber assembly described above is particularly preferred because it can be omitted.

本発明の複合発泡体の製造にあっては、面材として繊維集合体を用いると、発泡工程と面材積層工程を同時に行なうことで製造工程を簡略でき、かつ、発泡工程で溶融した樹脂が流動特性上、面材である繊維集合体の微細な隙間に潜り込み固化することで、繊維集合体は樹脂発泡体に強固に積層し、樹脂発泡体を破壊しない限り繊維集合体である面材だけを引き剥がすことはできず、使用上の表面素材を引き剥がす際に繊維集合体の層間剥離を引き起こし、樹脂発泡体を破壊することなく表面材を剥がせる効果を発生しやすい。   In the production of the composite foam of the present invention, when a fiber assembly is used as the face material, the production process can be simplified by simultaneously performing the foaming step and the face material laminating step, and the resin melted in the foaming step can be obtained. Due to the flow characteristics, the fiber aggregate is firmly laminated to the resin foam by solidifying into the fine gaps of the fiber aggregate that is the face material, and only the face material that is the fiber aggregate unless the resin foam is destroyed. Can not be peeled off, and when the surface material in use is peeled off, delamination of the fiber aggregate is caused, and the effect of peeling off the surface material without destroying the resin foam is likely to occur.

なお、樹脂発泡体と上記繊維集合体との積層は、上記のように発泡時に直接積層する方法だけでなく、通常の接着剤を使用した接着であっても良い。接着剤としては、特に制限なく使用できるが、例えば、酢酸ビニル樹脂エマルジョン接着剤、アクリルエマルジョン接着剤、酢酸ビニル共重合エマルジョン接着剤、ポリビニルアルコール接着剤、酢酸ビニル樹脂マスチック接着剤、ドープセメント、モノマーセメント、塩化ビニル樹脂接着剤、クロロプレンゴム系接着剤、天然ゴム系接着剤、ユリア樹脂接着剤、メラミン樹脂接着剤、フェノール樹脂接着剤、エポキシ樹脂接着剤、ポリウレタン系接着剤等を使用できる。   In addition, lamination | stacking with a resin foam and the said fiber assembly may be the adhesion | attachment which uses not only the method of laminating | stacking directly at the time of foaming as mentioned above but a normal adhesive agent. As an adhesive, it can be used without any particular limitation. For example, vinyl acetate resin emulsion adhesive, acrylic emulsion adhesive, vinyl acetate copolymer emulsion adhesive, polyvinyl alcohol adhesive, vinyl acetate resin mastic adhesive, dope cement, monomer Cement, vinyl chloride resin adhesive, chloroprene rubber adhesive, natural rubber adhesive, urea resin adhesive, melamine resin adhesive, phenol resin adhesive, epoxy resin adhesive, polyurethane adhesive, and the like can be used.

本発明の複合樹脂発泡体の用途は、特に限定されないが、発泡体の性能として有する熱伝導率特性や圧縮強度、軽量性の観点から建材用材料としての利用が好ましい。ここで、建材用材料とは集合住宅や、戸建て住宅、商業施設、公共施設、多目的施設など各種の構造建築に利用される材料を意味し、例えば、床構造の段差調整や断熱性の保持等を目的とした床用下地材、例を挙げるとすれば木質系フローリング用スペーサー材;カーペットやクッションフロアなどの樹脂系床表面仕上材用スペーサー材;ござ、麻マットなど各種繊維系床表面仕上材用スペーサー材;二重床や置き床用スペーサー材;畳用スペーサー材;各種床下断熱材;根太フォーム材;温水式床暖房用下地断熱材、電気式床暖房用下地断熱材、蓄熱式床暖房用下地断熱材など各種床暖房用下地断熱材、それ以外にも天井断熱材、内壁断熱材、外壁断熱材、間仕切り用断熱材、間仕切り用芯材や各種リフォーム材など各種用途等が挙げられる。これらの中では、床用下地材としての利用が最も好ましい。
本発明の複合樹脂発泡体の形状は、特段限定するものではないが、利用面から考慮すると、パネル形状やブロック形状、長尺シート等の形状が好ましい。
The use of the composite resin foam of the present invention is not particularly limited, but it is preferably used as a building material from the viewpoint of thermal conductivity characteristics, compressive strength, and light weight as the performance of the foam. Here, the building material means a material used for various structural constructions such as apartment houses, detached houses, commercial facilities, public facilities, multi-purpose facilities, etc. Flooring materials for flooring, for example, wooden flooring spacer materials; spacer materials for resin-based floor surface finishing materials such as carpets and cushion floors; various fiber-based floor surface finishing materials such as goza and hemp mats Spacer material for double floors and standing floors; Spacer material for tatami mats; Various underfloor heat insulating materials; joist foam materials; Various base heat insulation materials such as base heat insulation materials, ceiling heat insulation materials, inner wall heat insulation materials, outer wall heat insulation materials, heat insulation materials for partitioning, core materials for partitioning, and various remodeling materials. . Among these, the use as a floor base material is most preferable.
The shape of the composite resin foam of the present invention is not particularly limited, but in view of utilization, shapes such as a panel shape, a block shape, and a long sheet are preferable.

なお、床下地材として用いる場合は、複合樹脂発泡体を単体として用いても良く、例えば、他の硬質板状体と積層して組み合わせて用いても良い。
上記硬質板状体としては、特に限定されず、例えば、以下の(i)〜(v)に示すようなものが挙げられる。
(i)単板(単一材料のむく板)
(ii)合板など[ベニヤ、パーチクルボード、繊維板(ファイバーボードともいう:MDFなど)など従来から床材として使われているもの]
(iii)合成樹脂板[ポリエチレン樹脂板(超高分子量ポリエチレン板が望ましい)、ポリプロピレン樹脂板、塩化ビニル樹脂板など]
(iv)繊維強化合成樹脂板(ガラス繊維などで繊維強化された、ポリエステル樹脂板、エポキシ樹脂板、硬質ポリウレタン樹脂板など)
(v)無機質板(磁器タイル、石板など)
In addition, when using as a floor base material, you may use a composite resin foam as a single-piece | unit, for example, may be laminated | stacked and combined with another hard plate-shaped body.
It does not specifically limit as said hard plate-shaped object, For example, what is shown to the following (i)-(v) is mentioned.
(I) Single plate (single material strip)
(Ii) Plywood, etc. [Veneer, particle board, fiber board (also called fiber board: MDF, etc.) conventionally used as flooring]
(Iii) Synthetic resin plates [polyethylene resin plates (preferably ultrahigh molecular weight polyethylene plates), polypropylene resin plates, vinyl chloride resin plates, etc.]
(Iv) Fiber reinforced synthetic resin plate (polyester resin plate, epoxy resin plate, rigid polyurethane resin plate, etc. reinforced with glass fiber)
(V) Inorganic board (porcelain tile, stone board, etc.)

本発明をさらに詳しく説明するために、以下に実施例を挙げるが、本発明はこれらの実施例のみに限定されるものではない。なお、実施例で用いた評価方法は以下の通りである。   In order to describe the present invention in more detail, examples will be given below, but the present invention is not limited to these examples. The evaluation methods used in the examples are as follows.

(1)不織布の任意の点から拘束部までの距離
サンプル表面に対して予め任意の点にボールペンにて20点表示させておき、マイクロスコープにて表面撮影を行い、画像データをパソコンに保存した。その後、画像解析装置を用いてパソコンディスプレイ上に表示し、目視にて任意の点を確認した。確認された点から画像解析装置を使用し、最も短い拘束部端部までの距離を計測し平均値を算出した。
(2)拘束点密度
繊維集合体の点状拘束区域の全表面積における密度、すなわち拘束点密度Bとして次式で求めた。
B(点/cm)=[拘束点の数(点)/繊維集合体の全表面積(cm)]
(3)耐磨耗性
テーバー摩耗試験装置でJIS K5600に準拠して、回転数と摩耗程度を目視判断した。
(4)接着施工性
樹複合脂発泡体を1m×1mのサイズにパネルカットし、コニシ(株)製の木質床材直貼り施工用接着剤「ボンドKU928R」を付属の専用くし目コテでパネル片面に塗布し、表面の毛玉発生具合を目視にて確認した。
(5)接着強度
JIS A1612に準拠し、コニシ(株)製の木質床材直貼り施工用接着剤「ボンドKU928R」をコンクリートモルタルと資料との接着強度を測定した。
なお、試験用治具とコンクリートモルタル、資料との固定は接着強度が高いエポキシ系接着剤を用い、接着面積は25cm、引張り速度は5mm/minとした。
(6)リサイクル成形性
高さ10cm、サイズ1m×1mのリサイクル樹脂パレットを成形し、サンプルをペレタイジングにより粉砕したインジェクション成形法による金型内成形が可能かどうかをみた。
(7)再剥離性
1m×1mのサンプルにコニシ(株)製の木質床材直貼り施工用接着剤「ボンドKU928R」をビード状に15cm間隔で格子状に塗布し、木質フローリングを接着し、48時間常温(23℃)にて放置後にフローリングを剥がし各サンプルの破壊度合を目視で判断した。
(1) Distance from an arbitrary point of the nonwoven fabric to the restraint part 20 points were previously displayed on the sample surface with a ballpoint pen, the surface was photographed with a microscope, and the image data was stored in a personal computer. . Then, it displayed on the personal computer display using the image analysis apparatus, and arbitrary points were confirmed visually. The image analysis apparatus was used from the confirmed point, the distance to the shortest restraint part edge part was measured, and the average value was computed.
(2) Restraint point density The density in the total surface area of the point-like restrained area of the fiber assembly, that is, the restraint point density B was obtained by the following equation.
B (points / cm 2 ) = [number of restraint points (points) / total surface area of fiber assembly (cm 2 )]
(3) Abrasion resistance According to JIS K5600, the number of rotations and the degree of wear were visually determined using a Taber abrasion tester.
(4) Adhesive workability Panel composite fat foam is cut into a 1m x 1m size panel, and the bond "KUKU2828R", an adhesive for directly attaching wooden flooring made by Konishi Co., Ltd., is attached to the panel. It apply | coated to one side and the hair ball generation | occurrence | production condition of the surface was confirmed visually.
(5) Adhesive strength In accordance with JIS A1612, the adhesive strength between concrete mortar and materials was measured using “bond KU928R”, an adhesive for directly applying wood flooring manufactured by Konishi Co., Ltd.
The test jig, concrete mortar, and data were fixed using an epoxy adhesive having high adhesive strength, an adhesion area of 25 cm 2 , and a pulling speed of 5 mm / min.
(6) Recyclable moldability A recycle resin pallet having a height of 10 cm and a size of 1 m × 1 m was molded, and it was examined whether or not in-mold molding was possible by an injection molding method in which a sample was pulverized by pelletizing.
(7) Re-peeling property Adhesive “Bond KU928R”, an adhesive for directly applying wood flooring made by Konishi Co., Ltd., to a 1 m × 1 m sample was applied in a lattice shape at 15 cm intervals in a bead shape, and a wooden flooring was adhered. After leaving at room temperature (23 ° C.) for 48 hours, the flooring was peeled off and the degree of destruction of each sample was judged visually.

(実施例1)
(1)変性ポリオレフィン系樹脂の調製
変性ポリオレフィン系樹脂を調製するために、同方向回転2軸スクリュー押出機(プラスチック工学研究所社製、型式「BT40型」)を用いた。この押出機は、セルフワイピング2条スクリューを備え、そのL/Dは35、D(直径)は39mmである。シリンダーバレルは押出機の上流から下流側にかけて第6バレルに区分され、成形ダイは3穴ストランドダイであり、第4バレルには揮発分を回収するための真空ベントが設置されている。以下の操作においては、第1バレルの温度を180℃、第2バレルから第6バレルの温度および3穴ストランドダイの温度を220℃に設定し、スクリュー回転数を150rpmに設定した。
上記2軸スクリュー押出機の第1バレル後端に備えられたホッパーから、ポリオレフィン系樹脂としてランダムポリマー型のポリプロピレン樹脂(日本ポリケム社製、商品名「EX6」、MFR1.8g/10分、密度0.9g/cm、)を10kg/時間の供給量で押出機内に投入した。次に、第3バレルから、ジビニルベンゼン(変性用モノマー)および2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3(有機過酸化物)の混合物を押出機内に注入し、これらを均一に溶融混練して、変性ポリプロピレン樹脂を調製した。
次いで、この変性ポリプロピレン樹脂を3穴ストランドダイから吐出した後、水冷し、ペレタイザーで切断して、変性ポリプロピレン樹脂のペレットを得た。変性用モノマーおよび有機過酸化物の注入量は、ポリプロピレン樹脂100重量部に対し、変性用モノマー0.5重量部および有機過酸化物0.1重量部であった。また、押出機内で発生した揮発分は真空ベントにより真空吸引した。
Example 1
(1) Preparation of modified polyolefin resin In order to prepare a modified polyolefin resin, a co-rotating twin screw extruder (Plastics Engineering Laboratory Co., Ltd., model "BT40 type") was used. This extruder is equipped with a self-wiping double thread, and its L / D is 35 and D (diameter) is 39 mm. The cylinder barrel is divided into a sixth barrel from the upstream side to the downstream side of the extruder, the forming die is a three-hole strand die, and a vacuum vent for collecting volatile matter is installed in the fourth barrel. In the following operations, the temperature of the first barrel was set to 180 ° C., the temperature from the second barrel to the sixth barrel and the temperature of the 3-hole strand die were set to 220 ° C., and the screw rotation speed was set to 150 rpm.
From the hopper provided at the rear end of the first barrel of the twin screw extruder, a random polymer type polypropylene resin (trade name “EX6” manufactured by Nippon Polychem Co., Ltd., MFR 1.8 g / 10 min, density 0 9.9 g / cm 3 ) was fed into the extruder at a feed rate of 10 kg / hour. Next, a mixture of divinylbenzene (modifying monomer) and 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 (organic peroxide) is injected into the extruder from the third barrel. These were uniformly melt-kneaded to prepare a modified polypropylene resin.
Next, the modified polypropylene resin was discharged from a three-hole strand die, cooled with water, and cut with a pelletizer to obtain modified polypropylene resin pellets. The amount of the modifying monomer and the organic peroxide injected was 0.5 part by weight of the modifying monomer and 0.1 part by weight of the organic peroxide with respect to 100 parts by weight of the polypropylene resin. Moreover, the volatile matter generated in the extruder was vacuumed by a vacuum vent.

(2)発泡性シートの作製
上記で得られた変性ポリプロピレン樹脂に未変性ポリプロピレン樹脂および発泡剤を添加するために、同方向回転2軸スクリュー押出機(日本製鋼所社製、型式「TEX−44型」)を用いた。この押出機は、セルフワイピング2条スクリューを備え、そのL/Dは45.5、D(直径)は47mmである。シリンダーバレルは押出機の上流から下流側にかけて第1バレルから第12バレルに区分され、第12バレルの先端部には成形ダイとしてTダイが設定されている。また、発泡剤を供給するために、第6バレルにはサイドフィーダーが設置されており、第11バレルには揮発分を回収するための真空ベントが設置されている。以下の操作においては、第1バレルを常時冷却し、第1ゾーン(第2バレルから第4バレル)の温度を150℃、第2ゾーン(第5バレルから第8バレル)の温度を170℃、第3ゾーン(第9バレルから第12バレル)の温度を180℃、第4ゾーン(Tダイおよびアダプター部)の温度を160℃に設定し、スクリュー回転数を40rpmに設定した。
上記2軸スクリュー押出機の第1バレル後端に備えられたホッパーから、前工程(1)で得られたペレット状の変性ポリプロピレン樹脂、および未変性のホモポリマー型のポリプロピレン樹脂(日本ポリケム社製、商品名「FY4」、MFR5.0g/10分、密度0.9g/cm)を、それぞれ10kg/時間(合計20kg/時間)の供給量で押出機内に投入した。また、第6バレルに設けられたサイドフィーダーから、発泡剤としてアゾジカルボンアミド(ADCA)を1.0kg/時間の速度で供給量で押出機内に投入し、これらを均一に溶融混練して、発泡性ポリプロピレン樹脂組成物を調製した。次いで、この樹脂組成物をTダイから押し出し、幅1100mm、厚み0.7mmの発泡性シートを作製した。
(2) Production of expandable sheet In order to add unmodified polypropylene resin and a foaming agent to the modified polypropylene resin obtained above, a co-rotating twin-screw extruder (manufactured by Nippon Steel Works, model "TEX-44" Type "). This extruder is equipped with a self-wiping twin screw, and its L / D is 45.5 and D (diameter) is 47 mm. The cylinder barrel is divided from the first barrel to the twelfth barrel from the upstream side to the downstream side of the extruder, and a T die is set as a forming die at the tip of the twelfth barrel. Further, in order to supply the foaming agent, a side feeder is installed in the sixth barrel, and a vacuum vent for collecting volatile components is installed in the eleventh barrel. In the following operation, the first barrel is always cooled, the temperature of the first zone (second barrel to fourth barrel) is 150 ° C., the temperature of the second zone (fifth barrel to eighth barrel) is 170 ° C., The temperature of the third zone (9th barrel to 12th barrel) was set to 180 ° C., the temperature of the fourth zone (T die and adapter part) was set to 160 ° C., and the screw rotation speed was set to 40 rpm.
From the hopper provided at the rear end of the first barrel of the above twin screw extruder, the pellet-shaped modified polypropylene resin obtained in the previous step (1) and the unmodified homopolymer type polypropylene resin (manufactured by Nippon Polychem Co., Ltd.) , Trade name “FY4”, MFR 5.0 g / 10 min, density 0.9 g / cm 3 ) was fed into the extruder at a feed rate of 10 kg / hr (total 20 kg / hr). Also, azodicarbonamide (ADCA) as a foaming agent is introduced into the extruder at a supply rate of 1.0 kg / hour from the side feeder provided in the sixth barrel, and these are uniformly melt-kneaded and foamed. A functional polypropylene resin composition was prepared. Next, this resin composition was extruded from a T die to produce a foamable sheet having a width of 1100 mm and a thickness of 0.7 mm.

(3)複合樹脂発泡性シートの作製
上記で得られた発泡性シートの両面に、ポリエチレンテレフタレート製の不織布(ユニチカ社製、商品名「マリックス70150WTO」、拘束点密度64点/cm、任意の点からの繊維拘束部の存在位置0.415mm、目付重量15g/m)を重ね、プレス成形機を用いて、180℃の加熱加圧条件で積層して、2m×1mの発泡体性複合シートを得た。
(3) Production of Composite Resin Foam Sheet On both surfaces of the foam sheet obtained above, a polyethylene terephthalate nonwoven fabric (manufactured by Unitika Ltd., trade name “Marix 70150 WTO”, restraint point density 64 points / cm 2 , arbitrary The position of the fiber restraint part from the point 0.415 mm and the weight per unit area 15 g / m 2 ) are stacked and laminated using a press molding machine under a heating and pressing condition of 180 ° C., 2 m × 1 m foam composite A sheet was obtained.

(4)発泡
次いで、上記複合樹脂発泡性シートを、230℃の加熱炉中で約10分間加熱して、発泡させ、厚み6mmの複合樹脂発泡体を得た。
得られた複合樹脂発泡体の特性を評価した。その結果を表1に示す。
(4) Foaming Next, the composite resin foamable sheet was heated in a heating furnace at 230 ° C. for about 10 minutes to be foamed to obtain a composite resin foam having a thickness of 6 mm.
The characteristics of the obtained composite resin foam were evaluated. The results are shown in Table 1.

(実施例2)
発泡スチロール(発泡倍率20倍、ビーズ発泡成形品)厚さ12mm、サイズ2m×1mのパネルの表裏にポリエチレンテレフタレート製の不織布(ユニチカ社製、商品名「マリックス70150WTO」、拘束点密度64点/cm、任意の点からの繊維拘束部の存在位置0.415mm、目付重量15g/m)をエポキシ系接着剤で積層した複合樹脂パネルを製作した。
(Example 2)
Polystyrene terephthalate non-woven fabric (product name “Marix 70150 WTO” manufactured by Unitika Co., Ltd.), restraint point density 64 points / cm 2 Then, a composite resin panel in which a position where the fiber restraint portion is present from an arbitrary point 0.415 mm and a weight per unit area 15 g / m 2 ) was laminated with an epoxy adhesive was manufactured.

(比較例1)
不織布として、ポリエチレンテレフタレート製の不織布(東洋紡績社製、商品名「スパンボンドエクーレ6301A」、拘束点密度25点/cm、任意の点からの繊維拘束部の存在位置0.803mm、目付重量15g/m)を用いる以外は、実施例1と同様にして複合樹脂発泡体を得た。評価結果を表1に示す。
(Comparative Example 1)
Nonwoven fabric made of polyethylene terephthalate (trade name “Spunbond Ecule 6301A”, restraint point density 25 points / cm 2 , location of fiber restraint portion from arbitrary point 0.803 mm, weight per unit weight A composite resin foam was obtained in the same manner as in Example 1 except that 15 g / m 2 ) was used. The evaluation results are shown in Table 1.

(比較例2)
不織布として、ポリエチレンテレフタレート製の不織布(東洋紡績社製、商品名「スパンボンドエクーレ6301A」、拘束点密度25点/cm、任意の点からの繊維拘束部の存在位置0.803mm、目付重量15g/m)を用いる以外は、実施例2と同様にして複合樹脂発泡体を得た。評価結果を表1に示す。
(Comparative Example 2)
Nonwoven fabric made of polyethylene terephthalate (trade name “Spunbond Ecule 6301A”, restraint point density 25 points / cm 2 , location of fiber restraint portion from arbitrary point 0.803 mm, weight per unit weight A composite resin foam was obtained in the same manner as in Example 2 except that 15 g / m 2 ) was used. The evaluation results are shown in Table 1.

Figure 0004874592
Figure 0004874592

表1より明らかなように、本発明の複合樹脂発泡体は、耐磨耗性及び接着剤塗布施工における毛玉発生の抑制機能に優れている。一方、本発明の範囲を外れた不織布を用いると耐磨耗性及び接着剤塗布施工における毛玉発生の抑制機能に劣る。また、オレフィン系樹脂を主原料とした場合にはリサイクル性にも優れる。   As is clear from Table 1, the composite resin foam of the present invention is excellent in wear resistance and the function of suppressing the generation of pills in the adhesive application. On the other hand, if a non-woven fabric outside the scope of the present invention is used, it is inferior in wear resistance and the function of suppressing the generation of pills in adhesive application. Moreover, when olefin resin is used as the main raw material, it is excellent in recyclability.

以上説明したように、本発明の床下地材用スペーサー及びその製造方法における複合樹脂発泡体は、接着強度を低下させることなく、接着施工性を向上させ、かつ面材の層間剥離性を保持することで樹脂発泡体の再利用が可能で、建材用として使用可能な、軽量かつ切断性、耐水性、耐荷重性に優れる複合発泡体であり、床下地材用スペーサーとして用いることができ、リサイクル、リフォームの際も何ら問題なく使用できるため工業的に有用な材料として用いることができる。
As explained above, the spacer for floor base material of the present invention and the composite resin foam in the production method thereof improve the adhesive workability without decreasing the adhesive strength and maintain the delamination property of the face material. The resin foam can be reused, is a composite foam that is lightweight, can be used for building materials, is lightweight, has excellent cutting properties, water resistance, and load resistance, and can be used as a spacer for floor base materials. it can be used as an industrially useful material because it can be used without any problem even when the renovation.

(a)は硬質発泡体の概略斜視図、(b)は(a)中のz方向に平行な断面の一部の拡大概略図である。(A) is a schematic perspective view of a hard foam, (b) is an enlarged schematic view of a part of a cross section parallel to the z direction in (a).

Claims (4)

樹脂発泡体の少なくとも一面に、繊維拘束部が存在する繊維集合体が積層されてなる複合樹脂発泡体からなる床下地材用スペーサーであって、
前記複合樹脂発泡体において、前記繊維集合体は、任意の点から上記繊維拘束部までの平均最短距離が0.5mm以下、該繊維拘束部の点密度が30点/cm以上であり、
前記樹脂発泡体は、内在する気泡のアスペクト比のDz/Dxの平均値が1.1〜4.0、発泡倍率が3〜20倍であることを特徴とする床下地材用スペーサー
At least one surface of the resin foam, a spacer underfloor member of fiber aggregate is present the fiber restraining portion is made of a composite resin foam ing is laminated,
In the composite resin foam, the fiber assembly has an average shortest distance from an arbitrary point to the fiber restraint portion of 0.5 mm or less, and a point density of the fiber restraint portion is 30 points / cm 2 or more,
The above-mentioned resin foam is a spacer for a floor base material characterized in that the average value of Dz / Dx of the aspect ratio of air bubbles is 1.1 to 4.0 and the expansion ratio is 3 to 20 times .
繊維集合体が不織布であることを特徴とする請求項1に記載の床下地材用スペーサーThe floor base material spacer according to claim 1, wherein the fiber assembly is a nonwoven fabric. 樹脂発泡体が、オレフィン系樹脂を主原料として用いた発泡体であることを特徴とする請求項1または2に記載の床下地材用スペーサーThe spacer for a floor base material according to claim 1 or 2 , wherein the resin foam is a foam using an olefin resin as a main raw material . 請求項1〜3のいずれか1項に記載の床下地材用スペーサーの製造方法であって、It is a manufacturing method of the spacer for floor base materials given in any 1 paragraph of Claims 1-3,
前記樹脂発泡体の発泡前の原反の少なくとも片面に、前記繊維集合体を積層する工程と、  A step of laminating the fiber assembly on at least one side of the raw fabric before foaming of the resin foam;
前記積層体を、前記原反の発泡温度以上の温度で加熱することにより、該原反を厚み方向に発泡させる工程とを含むことを特徴とする床下地材用スペーサーの製造方法。  And heating the laminated body at a temperature equal to or higher than the foaming temperature of the original fabric to foam the original fabric in the thickness direction.
JP2005207088A 2005-07-15 2005-07-15 Spacer for floor base material and manufacturing method thereof Active JP4874592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207088A JP4874592B2 (en) 2005-07-15 2005-07-15 Spacer for floor base material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207088A JP4874592B2 (en) 2005-07-15 2005-07-15 Spacer for floor base material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007021879A JP2007021879A (en) 2007-02-01
JP4874592B2 true JP4874592B2 (en) 2012-02-15

Family

ID=37783267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207088A Active JP4874592B2 (en) 2005-07-15 2005-07-15 Spacer for floor base material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4874592B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926947B2 (en) * 2011-12-16 2016-05-25 倉敷紡績株式会社 Fiber-reinforced resin molded body and vehicle interior material using the same
JP2016094799A (en) * 2014-11-17 2016-05-26 旭化成建材株式会社 Glued laminated heat insulation material and heat insulation composite board
JP6215250B2 (en) * 2015-04-03 2017-10-18 旭化成建材株式会社 Thermosetting resin foam board
JP6876444B2 (en) * 2017-01-19 2021-05-26 積水化学工業株式会社 Insulated composite panel for concrete
JP2018119307A (en) * 2017-01-25 2018-08-02 積水化学工業株式会社 Spacer and wall structure
KR102268226B1 (en) * 2020-08-11 2021-06-23 나상권 Interlayer insulation sound insulation materials of buldings
KR102364350B1 (en) * 2021-06-14 2022-02-17 나상권 Anisotropic sound insulation for reducing impact sound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872542B2 (en) * 1993-08-31 1999-03-17 ユニチカ株式会社 Thermally bonded nonwoven fabric and method for producing the same
JP3351677B2 (en) * 1996-03-14 2002-12-03 東リ株式会社 Soundproof wooden flooring and soundproof floor structure
JP4140997B2 (en) * 1997-12-09 2008-08-27 ユニチカ株式会社 Polyester long fiber nonwoven fabric and method for producing the same
JP2000325218A (en) * 1999-05-20 2000-11-28 Sekisui Chem Co Ltd Mat for soundproof floor
JP3792523B2 (en) * 2000-02-28 2006-07-05 積水化学工業株式会社 Laminated sheet, laminated sheet manufacturing method, and laminated sheet forming method
JP3904109B2 (en) * 2001-12-10 2007-04-11 東洋紡績株式会社 Elastic nonwoven fabric and elastic composite nonwoven fabric
JP4220831B2 (en) * 2003-05-14 2009-02-04 積水化学工業株式会社 Floor base material, floor structure and building using the same

Also Published As

Publication number Publication date
JP2007021879A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4874592B2 (en) Spacer for floor base material and manufacturing method thereof
KR102615688B1 (en) Method of making coextruded, crosslinked multilayer polyolefin foam structures from recycled crosslinked polyolefin foam material
KR102393714B1 (en) Method of making coextruded, crosslinked polyolefin foam with tpu cap layers
CN107108936A (en) Cover plate and the method for manufacturing cover plate
JP2019508528A (en) Exterior panel and method for manufacturing exterior panel
JP2007046227A (en) Substrate material for non-wood-based floor finishing material
JP2008303593A (en) Tatami mat forming member and thin tatami mat using the same
JP4220831B2 (en) Floor base material, floor structure and building using the same
JP2012237098A (en) Repair waterproof structure of roof floor having parapet
JP4286590B2 (en) Underfloor spacer, floor heating structure and building using the same
JP2001132220A (en) Floor covering material, its manufacturing method, and mansion
JP3429749B2 (en) Tatami mat core made of polyolefin resin composite foam and thin tatami mat using the same
JP2000039165A (en) Sound-proofing floor finishing material with heating function
JP3366162B2 (en) Floor material
JP2003166335A (en) Floor material
JP4751572B2 (en) Thermoplastic resin foam and soundproofing heating flooring
JP5934133B2 (en) Composite foam
JP2000325218A (en) Mat for soundproof floor
JP3429713B2 (en) Tatami flooring
JP4148006B2 (en) Interpolation material for flooring
JP3583078B2 (en) Floor structure and construction method
JP3947527B2 (en) Hot water heating floor and floor heating system
JP2000097445A (en) Sound-proof hot water heating floor
JP2002030796A (en) Floor heating panel, peripheral panel laid on unheated floor section around heated floor section, and method for installing floor heating appliances using the panels
JP2003048288A (en) Composite foam, tatami core constituted of foam and thin tatami with tatami core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4874592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3