JP2000097445A - Sound-proof hot water heating floor - Google Patents

Sound-proof hot water heating floor

Info

Publication number
JP2000097445A
JP2000097445A JP10269988A JP26998898A JP2000097445A JP 2000097445 A JP2000097445 A JP 2000097445A JP 10269988 A JP10269988 A JP 10269988A JP 26998898 A JP26998898 A JP 26998898A JP 2000097445 A JP2000097445 A JP 2000097445A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
foam
hot water
resin
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10269988A
Other languages
Japanese (ja)
Other versions
JP3967832B2 (en
Inventor
Kenji Iuchi
謙治 居内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP26998898A priority Critical patent/JP3967832B2/en
Publication of JP2000097445A publication Critical patent/JP2000097445A/en
Application granted granted Critical
Publication of JP3967832B2 publication Critical patent/JP3967832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance heating efficiency and sound-proof performance by laminating a hard planar body, a heat radiating plate and a hard foamed body sequentially and arranging a hot water supply pipe in the hard foamed body while setting the bending modulus of elasticity thereof within a specified range. SOLUTION: The sound-proof hot water heating floor comprises a hard planar body 1, a heat radiating plate, i.e., a planar heating element 2, and a hard foamed body 3 laminated sequentially. The hard foamed body 3 has bending modulus of elasticity in the range of 50-300 kgf/cm2 and comprises a continuously foamed layer of thermoplastic resin, a plurality of heavily foamed bodies of thermoplastic resin arranged on the continuously foamed layer, and a lightly foamed thin film of thermoplastic resin covering the outer surface of the heavily foamed body. A hot water supply pipe 5 is arranged in the hard foamed body 3. According to the structure, both thermal efficiency and sound-proof performance are enhanced while improving the walking feeling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、防音性温水暖房床
に関する。
TECHNICAL FIELD The present invention relates to a soundproof hot water heating floor.

【0002】[0002]

【従来の技術】ポリオレフィン系樹脂発泡体は、一般
に、柔軟性、断熱性にすぐれ、従来より、建築材料、車
両の天井、ドア、インストルメントパネル等の内装材と
して用いられている。特に近年、床暖房の需要の増加に
より、樹脂発泡体に配管溝を設け、温水供給用パイプを
通した床暖房パネルとして用いられることが多くなって
いる。
2. Description of the Related Art Polyolefin resin foams are generally excellent in flexibility and heat insulation, and have been conventionally used as interior materials such as building materials, vehicle ceilings, doors and instrument panels. In particular, in recent years, due to an increase in demand for floor heating, a resin foam is provided with a piping groove, and is often used as a floor heating panel through a hot water supply pipe.

【0003】これら床暖房パネルは、その表面にフロー
リング床仕上げ、コルクタイル仕上げ、畳仕上げ、カー
ペット仕上げ等を施して防音性温水暖房床として使用さ
れる。
[0003] These floor heating panels are used as soundproof hot water heating floors by applying a flooring finish, a cork tile finish, a tatami finish, a carpet finish or the like to the surface.

【0004】これらのうち、フローリング床仕上げされ
た防音性温水暖房床を集合住宅向けに用いる場合、階下
への騒音問題が発生するため、床に防音性能を付与させ
ることが必要である。防音性能を有効に付与させるため
に、床暖房パネルは、通常は更にその下部に遮音材を貼
付して用いられる。
[0004] Among them, when a soundproof hot water heating floor finished with a flooring floor is used for an apartment house, a noise problem is caused downstairs, and it is necessary to impart soundproof performance to the floor. In order to effectively provide the soundproof performance, the floor heating panel is usually used by attaching a sound insulating material to a lower portion thereof.

【0005】図4は、従来の防音性温水暖房床の一例を
示した説明図であり、aはポリエチレン発泡体、bはこ
のポリエチレン発泡体aに形成された配管溝、cは、こ
の溝b内に配管された架橋低密度ポリエチレン製の放熱
(温水供給用)パイプ、dは小根太、eはポリエチレン
発泡体aの表面全体に貼り付けられたアルミニウム箔製
の放熱板であって、伝熱性を挙げるために敷設、貼着さ
れている。fはフローリング床、gは不織布であり、こ
の不織布gはフローリング床fからの衝撃音を遮断する
目的としている。なお、hは下地合板、iは根太である
(特開平8─327707公報、従来の技術の欄参
照)。
[0005] Fig. 4 is an explanatory view showing an example of a conventional soundproof hot water heating floor, wherein a is a polyethylene foam, b is a pipe groove formed in the polyethylene foam a, and c is a groove b. A heat-radiating pipe made of cross-linked low-density polyethylene (for hot water supply), d is a small joist, and e is a heat-radiating plate made of aluminum foil attached to the entire surface of the polyethylene foam a. It is laid and stuck to raise. f is a flooring floor, g is a nonwoven fabric, and this nonwoven fabric g is intended to block the impact sound from the flooring floor f. Here, h is the base plywood, and i is the joist (see JP-A-8-327707, column of the prior art).

【0006】[0006]

【発明が解決しようとする課題】上記の床暖房パネル
は、不織布gの遮音効果が小さいため、高い遮音効果を
得ようとすると、不織布g層の厚みを充分とる必要があ
り、そうすると荷重に対する沈み込みが大きくなり、床
材上面の歩行時に「船酔い現象」と称される違和感を覚
えるという新しい問題が発生した。さらに、ポリエチレ
ン発泡体aとして通常の発泡体を使用しているから、上
記歩行時の違和感はさらに大きくなるといった問題もあ
り、さらに小根太dからの放熱もあり、熱効率も不十分
であった。
In the above floor heating panel, since the non-woven fabric g has a small sound insulating effect, it is necessary to increase the thickness of the non-woven fabric g layer in order to obtain a high sound insulating effect. A new problem arises when walking on the upper surface of the floor material, and the user feels discomfort called the “sickness phenomenon”. Furthermore, since a normal foam is used as the polyethylene foam a, there is a problem that the uncomfortable feeling at the time of walking is further increased, heat is also radiated from the small joist d, and thermal efficiency is insufficient.

【0007】なお、防音性能及び歩行時の違和感は、フ
ローリング床fと、放熱板eとの間に設けることによ
り、幾分解消されるが、その場合、暖房効率が低下して
防音性温水暖房床としては満足できるものではなかっ
た。
The soundproofing performance and uncomfortable feeling when walking can be somewhat eliminated by providing the space between the flooring floor f and the radiator plate e. In this case, however, the heating efficiency is reduced and the soundproof hot water heating is performed. The floor was not satisfactory.

【0008】本発明は上記の課題を解決し、高い暖房効
率と高い防音性能を有し、かつ歩行感の良好な防音性温
水暖房床を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a soundproof hot-water heating floor having high heating efficiency and high soundproofing performance and good walking feeling.

【0009】[0009]

【発明を解決するための手段】請求項1記載の防音性温
水暖房床(以下、「本発明の暖房床」という)は、硬質
板状体、放熱板、硬質発泡体がこの順に積層され、該硬
質発泡体内に温水供給用パイプが配管されているた床材
であって、上記硬質発泡体の曲げ弾性率が50〜300
kgf/cm2 であることを特徴とする。
According to the first aspect of the present invention, there is provided a soundproof hot water heating floor (hereinafter referred to as "heating floor of the present invention") in which a hard plate, a heat sink, and a hard foam are laminated in this order. A floor material in which a hot water supply pipe is laid in the rigid foam, wherein the rigid foam has a flexural modulus of 50 to 300.
kgf / cm 2 .

【0010】本発明の暖房床に使用される硬質板状体
は、床材に通常負荷される荷重で容易に破損、損傷を起
こさない材料であれば特に限定されず、例えば、木単
板、合板、パーティクルボード、高密度繊維板(HD
F)、中密度繊維板(MDF)等の木質材料;ポリエチ
レン、ポリプロピレン、ポリ塩化ビニル等の熱可塑性樹
脂;ポリエステル、エポキシ樹脂等の熱硬化性樹脂;及
びこれらの積層体などが挙げられ、防音性、加工性及び
質感などの点で、合板;HDF、MDF等の繊維板単
板;又は、これらの積層体が好ましい。
The hard plate used in the heating floor of the present invention is not particularly limited as long as it does not easily break or damage under the load normally applied to the flooring. Plywood, particle board, high density fiberboard (HD
F), wood materials such as medium-density fiberboard (MDF); thermoplastic resins such as polyethylene, polypropylene, and polyvinyl chloride; thermosetting resins such as polyester and epoxy resin; and laminates of these materials. Plywood; a fiberboard veneer such as HDF or MDF; or a laminate thereof is preferred in terms of properties, processability, texture, and the like.

【0011】上記硬質板状体には、必要に応じて、突
板、合成樹脂又は合成樹脂発泡シート、化粧紙、合成樹
脂含浸シートなどの表面化粧材を接着、積層し、例え
ば、木目調や大理石調に加装してもよい。この場合、反
りが発生しないように、硬質板状体の両面に接着、積層
するのが好ましい。さらに意匠性、木質感、耐傷性など
を付与するために、印刷、塗装、着色、コーティング等
を行ってもよい。
If necessary, a surface decorative material such as a veneer, a synthetic resin or a synthetic resin foam sheet, decorative paper, a synthetic resin impregnated sheet, etc. is adhered and laminated on the hard plate-like body. It may be added in a tone. In this case, it is preferable to bond and laminate both surfaces of the hard plate to prevent warping. Further, printing, painting, coloring, coating, and the like may be performed in order to impart designability, woody feel, scratch resistance, and the like.

【0012】本発明の暖房床に使用される放熱板として
は、アルミニウム及びその合金、鉄及び鋼材、銅及びそ
の合金などが使用され、通常はテープ状として用いられ
る。
As the radiator plate used for the heating floor of the present invention, aluminum and its alloys, iron and steel materials, copper and its alloys, and the like are used, and are usually used in the form of tape.

【0013】本発明の暖房床に使用される硬質発泡体
は、曲げ弾性率が小さすぎると、発泡体の柔軟性が高す
ぎ、圧縮方向の弾性率も不足するため、床下に施工した
場合、歩行する際に、「船酔い現象」が生じ、きわめて
歩行感が悪いものとなる。また、曲げ弾性率が大きすぎ
ると、床材を含めた床暖房パネル構成体全体の柔軟性、
制振性が低下し、遮音層を硬質発泡体を介した下部に貼
り付けても十分な防音効果が得られないため、防音性能
を付与させるために硬質板状体と放熱板の間に直接防音
材を貼付する必要があり、この場合、床暖房パネルの上
部に防音層が積層する構造になるため、暖房効率がきわ
めて悪くなる。従って、曲げ弾性率が50〜300kg
f/cm2 に限定され、好ましくは100〜250kg
f/cm2である。
When the rigid foam used for the heating floor of the present invention has too small a flexural modulus, the flexibility of the foam is too high and the modulus of elasticity in the compression direction is also insufficient. When walking, a "sickness phenomenon" occurs, and the walking feeling becomes extremely poor. Also, if the flexural modulus is too large, the flexibility of the entire floor heating panel structure including the floor material,
The sound damping property is reduced, and even if the sound insulation layer is attached to the lower part via the hard foam, a sufficient sound insulation effect cannot be obtained. In this case, since the soundproof layer is laminated on the floor heating panel, the heating efficiency is extremely deteriorated. Therefore, the flexural modulus is 50 to 300 kg.
f / cm 2 , preferably 100-250 kg
f / cm 2 .

【0014】上記曲げ弾性率の測定方法は、JIS K
7203に準拠し、23℃、50%RHにおける12m
mの厚みの発泡体を、支点間距離192mmで支持し、
その中点を上部より6mm/minの速度で下降し、そ
の際の変位−応力曲線より求めるものである。
The method for measuring the flexural modulus is described in JIS K
12m at 23 ° C and 50% RH
m, a foam having a thickness of 192 mm is supported at a fulcrum distance of 192 mm,
The midpoint is lowered from the upper part at a speed of 6 mm / min, and is obtained from a displacement-stress curve at that time.

【0015】上記硬質発泡体は、その曲げ弾性率が50
〜300kgf/cm2 であれば特に限定されないが、
請求項2に示したように、特願平9−43975号明細
書記載の、熱可塑性樹脂よりなる連続発泡層と、連続発
泡層の少なくとも片面上に複数配置される熱可塑性樹脂
よりなる高発泡体と、高発泡体の外表面を被覆する熱可
塑性樹脂よりなる低発泡薄膜とを備え、前記複数の高発
泡体が互いに前記低発泡薄膜を介して熱融着されている
熱可塑性樹脂発泡体であることが好ましい。
The rigid foam has a flexural modulus of 50.
Although it is not particularly limited as long as it is ~ 300 kgf / cm 2 ,
As shown in claim 2, a continuous foam layer made of a thermoplastic resin and a high foam made of a thermoplastic resin arranged on at least one surface of the continuous foam layer described in Japanese Patent Application No. 9-43975. Body, and a low-foaming thin film made of a thermoplastic resin covering the outer surface of the high-foaming material, wherein the plurality of high-foaming materials are heat-sealed to each other via the low-foaming thin film. It is preferred that

【0016】上記熱可塑性樹脂発泡体を構成する連続発
泡層、高発泡体、及び低発泡薄膜に用いられる樹脂とし
ては、発泡可能な熱可塑性樹脂であれば、特に限定され
るものではなが、得られる熱可塑性発泡体の平滑性を高
め得るので、ポリエチレン、ポリプロピレン等のオレフ
ィン系樹脂又はこれらの混合物が好ましく、表面平滑性
と、得られる床仕上げ材の歩行時の沈み込みの防止を両
立するためには、高密度ポリエチレン、ホモポリプロピ
レン又はこれらの少なくとも一方を含む混合物が特に好
ましい。
The resin used for the continuous foamed layer, the high foamed body, and the low foamed thin film constituting the thermoplastic resin foam is not particularly limited as long as it is a foamable thermoplastic resin. Olefin-based resins such as polyethylene and polypropylene or a mixture thereof are preferable because they can enhance the smoothness of the obtained thermoplastic foam, and both the surface smoothness and the prevention of sinking of the obtained floor finishing material during walking can be achieved. For this purpose, high-density polyethylene, homopolypropylene or a mixture containing at least one of them is particularly preferred.

【0017】上記熱可塑性樹脂発泡体を製造する方法
は、特に限定されるものではなく、例えば、発泡剤を含
有した発泡性熱可塑性樹脂組成物を所定の容器中で発泡
させ、一面を除いた外表面が熱可塑性樹脂よりなる低発
泡薄膜が被覆されている高発泡体を製造し、これを上記
低発泡薄膜を介して熱融着し、別途製造した熱可塑性樹
脂よりなる連続発泡シート層を熱融着等により積層して
もよいが、発泡性熱可塑性樹脂粒状体が平面的に配置さ
れ、上記発泡性熱可塑性樹脂粒状体が発泡性熱可塑性樹
脂薄膜を介して一体的に連結されている発泡性熱可塑性
樹脂シート状体を、発泡剤の分解温度以上に加熱し発泡
させることにより得る方法が好ましい。
The method for producing the thermoplastic resin foam is not particularly limited. For example, a foamable thermoplastic resin composition containing a foaming agent is foamed in a predetermined container, and one side is removed. A high-foamed body whose outer surface is coated with a low-foaming thin film made of a thermoplastic resin is produced, and this is heat-sealed through the low-foaming thin film to form a continuous foam sheet layer made of a separately produced thermoplastic resin. Lamination may be performed by heat fusion or the like, but the expandable thermoplastic resin particles are arranged in a plane, and the expandable thermoplastic resin particles are integrally connected via an expandable thermoplastic resin thin film. It is preferable to obtain a foamable thermoplastic resin sheet by heating the foamed thermoplastic resin sheet to a temperature equal to or higher than the decomposition temperature of the foaming agent and foaming.

【0018】上記発泡性熱可塑性樹脂シート状体を構成
する発泡性熱可塑性樹脂粒状体及び発泡性熱可塑性樹脂
薄膜に用いられる熱可塑性樹脂としては、上記熱可塑性
樹脂樹脂発泡体に使用される樹脂と同様のものが使用さ
れる。
The thermoplastic resin used for the expandable thermoplastic resin granules and the expandable thermoplastic resin thin film constituting the expandable thermoplastic resin sheet may be a resin used for the above thermoplastic resin foam. The same is used.

【0019】上記発泡性熱可塑性樹脂粒状体に用いられ
る熱可塑性樹脂と、発泡性熱可塑性樹脂薄膜に用いられ
る熱可塑性樹脂とは、同一の樹脂である必要性はない
が、発泡性及び接着性等の観点から、同種の樹脂を用い
ることが好ましい。上記連続発泡層を構成する熱可塑性
樹脂粒状体及び発泡性熱可塑性樹脂薄膜に用いられる熱
可塑性樹脂としては、発泡可能な熱可塑性樹脂であれ
ば、特に限定されるものではない。これらは、単独で用
いられても、併用されてもよい。
The thermoplastic resin used for the foamable thermoplastic resin granules and the thermoplastic resin used for the foamable thermoplastic resin thin film do not need to be the same resin. From the viewpoint of the above, it is preferable to use the same type of resin. The thermoplastic resin used for the thermoplastic resin granules and the foamable thermoplastic resin thin film constituting the continuous foam layer is not particularly limited as long as it is a foamable thermoplastic resin. These may be used alone or in combination.

【0020】上記熱可塑性樹脂の中でも、得られる発泡
体の表面平滑性を高め得るので、ポリエチレン、ポリプ
ロピレン等のオレフィン系樹脂またはこれらの混合物が
好ましく、表面平滑性と圧縮強度を両立するためには、
高密度ポリエチレン、ホモポリプロピレンまたはこれら
の少なくとも一方を含む混合物が特に好ましい。
Among the above thermoplastic resins, an olefin resin such as polyethylene and polypropylene or a mixture thereof is preferable since the surface smoothness of the obtained foam can be enhanced. ,
High-density polyethylene, homopolypropylene or a mixture containing at least one of these is particularly preferred.

【0021】上記発泡性熱可塑性樹脂シート状体等に用
いられる熱可塑性樹脂は、必要に応じて架橋されていて
もよい。架橋されることによって、発泡時の破泡が防止
でき、発泡倍率が増加し、床仕上げ材の軽量化につなが
るからである。架橋方法としては、特に限定されず、例
えば、シラン架橋性樹脂を熱可塑性樹脂に溶融混練
後、水処理を行い、架橋する方法、熱可塑性樹脂に過
酸化物を該過酸化物の分解温度より低い温度で溶融混練
後、過酸化物の分解温度以上に加熱して架橋する方法、
放射線を照射して架橋する方法等が挙げられる。但
し、後述する高架橋樹脂と、低(無)架橋樹脂を得るた
めには、シラン架橋性樹脂、就中、シラン架橋性ポリ
プロピレン樹脂を用いた架橋方法が好ましい。
The thermoplastic resin used for the foamable thermoplastic resin sheet or the like may be cross-linked if necessary. This is because cross-linking can prevent foam breakage during foaming, increase the foaming ratio, and reduce the weight of the floor finish. The crosslinking method is not particularly limited.For example, after melt-kneading a silane crosslinking resin into a thermoplastic resin, performing a water treatment and crosslinking, the peroxide is converted into a thermoplastic resin by the decomposition temperature of the peroxide. After melt-kneading at a low temperature, a method of crosslinking by heating above the decomposition temperature of the peroxide,
A method of cross-linking by irradiating radiation may be used. However, a cross-linking method using a silane cross-linkable resin, especially a silane cross-linkable polypropylene resin, is preferable to obtain a high cross-linked resin and a low (no) cross-linked resin described later.

【0022】上記発泡性熱可塑性樹脂粒状体に用いられ
る熱可塑性樹脂は、上述したように特に限定されない
が、発泡剤と、互いにほとんど相溶性を有しない高架橋
熱可塑性樹脂と、低架橋もしくは無架橋熱可塑性樹脂と
の混合物であることが好ましい。この場合、発泡時には
低架橋もしくは無架橋熱可塑性樹脂が流動し易いので、
得られる熱可塑性樹脂発泡体の表面平滑性が高められ
る。
The thermoplastic resin used for the foamable thermoplastic resin granules is not particularly limited as described above, but may be a foaming agent, a highly crosslinked thermoplastic resin having almost no compatibility with each other, and a low crosslinked or noncrosslinked thermoplastic resin. Preferably, it is a mixture with a thermoplastic resin. In this case, the low-crosslinked or non-crosslinked thermoplastic resin easily flows during foaming,
The surface smoothness of the obtained thermoplastic resin foam is enhanced.

【0023】上記互いにほとんど相溶性を有さない上記
2種類の樹脂に使用される熱可塑性樹脂(架橋前)とし
ては、前述した熱可塑性樹脂の内2種類〔以下、樹脂そ
のものの架橋性能には拘泥されず、高架橋熱可塑性樹脂
を形成する樹脂を「高架橋性樹脂」、低架橋もしくは無
架橋熱可塑性樹脂を形成する樹脂を「低(無)架橋性樹
脂」という〕を適宜選択して用いることができる。
As the thermoplastic resin (before crosslinking) used for the two types of resins having almost no compatibility with each other, two types of the above-mentioned thermoplastic resins [hereinafter referred to as the crosslinking performance of the resin itself. Resins that form a highly crosslinked thermoplastic resin are called "highly crosslinkable resins", and resins that form a low or no crosslinkable thermoplastic resin are called "low (no) crosslinkable resins". Can be.

【0024】上記、高架橋性樹脂と、低(無)架橋性樹
脂のメルトインデックス(MI)の差が、大きくなる
と、架橋して得られる高架橋熱可塑性樹脂と、低架橋も
しくは無架橋熱可塑性樹脂とが非常に粗く分散するた
め、得られる発泡体の発泡倍率が低下し、小さくなる
と、架橋して得られる高架橋熱可塑性樹脂と、低架橋も
しくは無架橋熱可塑性樹脂の相溶性が高くなり、得られ
る熱可塑性樹脂発泡体の表面平滑性が低下することがあ
るため、高架橋熱可塑性樹脂と、低架橋もしくは無架橋
熱可塑性樹脂とが互いに相溶せずに均一微細に分散し、
かつ高発泡倍率の熱可塑性樹脂発泡体を得るには、MI
の差は5〜13g/10分が好ましく、7〜11g/1
0分がより好ましい。なお、本明細書におけるMIは、
JIS K7210に従って、測定された値である。
When the difference in the melt index (MI) between the highly crosslinkable resin and the low (non) crosslinkable resin increases, the high crosslinkable thermoplastic resin obtained by crosslinking and the low crosslinkable or noncrosslinkable thermoplastic resin Is very coarsely dispersed, so that the expansion ratio of the obtained foam is reduced and becomes smaller, and the high crosslinked thermoplastic resin obtained by crosslinking, the compatibility of the low crosslinked or non-crosslinked thermoplastic resin becomes high, and the obtained. Because the surface smoothness of the thermoplastic resin foam may be reduced, the highly crosslinked thermoplastic resin and the low crosslinked or non-crosslinked thermoplastic resin are uniformly and finely dispersed without being compatible with each other,
In order to obtain a thermoplastic resin foam having a high expansion ratio, MI
Is preferably 5 to 13 g / 10 minutes, and 7 to 11 g / 1.
0 minutes is more preferred. Note that MI in the present specification is
It is a value measured according to JIS K7210.

【0025】架橋して得られる高架橋熱可塑性樹脂と、
低架橋もしくは無架橋熱可塑性樹脂とが均一微細に分散
し、かつ表面平滑性に優れた高発泡倍率の熱可塑性樹脂
発泡体を得るためには、高架橋性樹脂と、低(無)架橋
性樹脂との混合比率は重量比で、2:8〜8:2である
ことが好ましい。
A highly crosslinked thermoplastic resin obtained by crosslinking,
In order to obtain a high-expansion-ratio thermoplastic resin foam in which a low-crosslinking or non-crosslinking thermoplastic resin is uniformly and finely dispersed and has excellent surface smoothness, a highly crosslinkable resin and a low (no) crosslinkable resin are required. Is preferably 2: 8 to 8: 2 by weight.

【0026】高架橋熱可塑性樹脂の架橋度が高すぎる
と、架橋がかかりすぎ、得られる熱可塑性樹脂発泡体の
発泡倍率が低下し、逆に、低すぎると発泡時にセルが破
泡し、均一なセルが得られないことがあるので、架橋度
の指標となる到達ゲル分率で熱可塑性樹脂全体の5〜4
0重量%とするのが好ましく、10〜35重量%がより
好ましい。
If the degree of cross-linking of the highly cross-linked thermoplastic resin is too high, the cross-linking is excessive, and the expansion ratio of the obtained thermoplastic resin foam is reduced. Since cells may not be obtained, the ultimate gel fraction, which is an index of the degree of crosslinking, is 5 to 4% of the entire thermoplastic resin.
It is preferably 0% by weight, more preferably 10 to 35% by weight.

【0027】低架橋または無架橋熱可塑性樹脂の架橋度
が高いと、架橋がかかりすぎ、得られる熱可塑性樹脂発
泡体の流動性が低下し、熱可塑性樹脂発泡体の表面平滑
性が低くなることがあるので、架橋度の指標となるゲル
分率で5重量%以下が好ましく、3重量%以下がより好
ましい。
If the degree of crosslinking of the low-crosslinking or non-crosslinking thermoplastic resin is too high, crosslinking is excessive, the fluidity of the resulting thermoplastic resin foam is reduced, and the surface smoothness of the thermoplastic resin foam is reduced. Therefore, the gel fraction as an index of the degree of crosslinking is preferably 5% by weight or less, more preferably 3% by weight or less.

【0028】なお、本明細書におけるゲル分率とは、架
橋樹脂成分を120℃のキシレン中に24時間浸漬した
後の残渣重量のキシレン浸漬前の架橋樹脂成分の重量に
対する重量百分率をいう。
The gel fraction in this specification refers to the percentage by weight of the residue weight after immersing the crosslinked resin component in xylene at 120 ° C. for 24 hours with respect to the weight of the crosslinked resin component before immersion in xylene.

【0029】高架橋性樹脂のみを、または低(無)架橋
性樹脂より高架橋性樹脂を優先的に架橋する方法として
は、例えば、高架橋性樹脂のみを、または低(無)架
橋性樹脂より高架橋性樹脂を優先的に架橋する架橋剤を
用いて架橋する方法、第1段階で、架橋性官能基を有
する、高架橋性樹脂と同種の架橋性樹脂とを混合し架橋
して、高架橋熱可塑性樹脂を形成させた後、第2段階
で、これを低(無)架橋性樹脂と混合する方法等が挙げ
られる。
Examples of a method of preferentially crosslinking a highly crosslinkable resin only or a highly crosslinkable resin over a low (non) crosslinkable resin include, for example, only a highly crosslinkable resin or a more highly crosslinkable resin than a low (no) crosslinkable resin. A method of crosslinking using a crosslinking agent that preferentially crosslinks a resin, in the first step, a highly crosslinkable resin having a crosslinkable functional group is mixed and crosslinked with the same type of crosslinkable resin to form a highly crosslinked thermoplastic resin. After the formation, in a second stage, a method of mixing this with a low (non-) crosslinkable resin may be used.

【0030】もっとも、高架橋熱可塑性樹脂と、低架橋
もしくは無架橋熱可塑性樹脂とが均一微細に分散できる
こと、高架橋性樹脂を優先的に架橋し易いこと、並びに
熱可塑性樹脂を容易に調製し得ることから、高架橋性樹
脂とほとんど同じメルトインデックスを有し、かつ架橋
性官能基を有する、高架橋性樹脂と同種の架橋性樹脂
を、高架橋性樹脂及び低(無)架橋性樹脂と共に混合し
た後、架橋させる方法が最も好ましい。
It should be noted that the highly crosslinked thermoplastic resin and the low crosslinked or non-crosslinked thermoplastic resin can be uniformly and finely dispersed, that the highly crosslinked resin is easily crosslinked preferentially, and that the thermoplastic resin can be easily prepared. From the above, a crosslinkable resin having the same melt index as the highly crosslinkable resin and having a crosslinkable functional group, and the same type of crosslinkable resin as the high crosslinkable resin and the low (no) crosslinkable resin are mixed, Is most preferred.

【0031】高架橋性樹脂とほとんど同じメルトインデ
ックスを有した、架橋性官能基を有する、高架橋性樹脂
と同種の架橋性樹脂としては、反応性官能基を有し、架
橋することができる熱可塑性樹脂であれば特に限定され
ない。このような官能基としては、例えば、ビニル基、
アリル基、プロペニル基等の不飽和基、水酸基、カルボ
キシル基、エポキシ基、アミノ基、シラノール基、シラ
ネート基等を有する前述した熱可塑性樹脂が挙げられ
る。
Examples of the crosslinkable resin having the same melt index as the highly crosslinkable resin, having a crosslinkable functional group, and the same kind as the highly crosslinkable resin include a thermoplastic resin having a reactive functional group and capable of being crosslinked. If it is, there is no particular limitation. Such functional groups include, for example, vinyl groups,
The above-mentioned thermoplastic resin having an unsaturated group such as an allyl group and a propenyl group, a hydroxyl group, a carboxyl group, an epoxy group, an amino group, a silanol group, a silanate group and the like can be mentioned.

【0032】架橋性官能基を有する、高架橋性樹脂と同
種の架橋性樹脂の具体的な例としては、マレイン酸変性
ポリエチレン、マレイン酸変性ポリプロピレン、シラン
変性ポリエチレン、シラン変性ポリプロピレン等が挙げ
られる。高架橋性樹脂のみに、または低(無)架橋性樹
脂より高架橋性樹脂を優先的に架橋することが容易なこ
と、及び混合後の架橋が容易なことから、シラン変性ポ
リエチレン、シラン変性ポリプロピレンがさらに好まし
い。
Specific examples of the same kind of crosslinkable resin having a crosslinkable functional group as the highly crosslinkable resin include maleic acid-modified polyethylene, maleic acid-modified polypropylene, silane-modified polyethylene, and silane-modified polypropylene. Silane-modified polyethylene and silane-modified polypropylene are more preferred because it is easy to preferentially crosslink highly crosslinkable resin only to highly crosslinkable resin or low (no) crosslinkable resin over crosslinkable resin, and easy to crosslink after mixing. preferable.

【0033】高架橋性樹脂と、架橋性官能基を有する架
橋性樹脂とのメルトインデックスの差は、大きすぎると
高架橋性樹脂のみに、または低(無)架橋性樹脂より高
架橋性樹脂を優先的に架橋することが困難になるので、
2g/10分以下が好ましく、1g/10分以下がさら
に好ましい。
If the difference in melt index between the highly crosslinkable resin and the crosslinkable resin having a crosslinkable functional group is too large, only the highly crosslinkable resin or the highly crosslinkable resin is given priority over the low (no) crosslinkable resin. Because it becomes difficult to crosslink,
It is preferably at most 2 g / 10 min, more preferably at most 1 g / 10 min.

【0034】架橋性官能基を有する架橋性樹脂として、
シラン架橋性ポリプロピレン系樹脂を使用する場合、シ
ラン架橋性ポリプロピレン系樹脂の配合量が多すぎる
と、架橋が過度に進行し、得られる発泡体の倍率が不足
したり、賦型性が悪くなるといった問題が生じ、逆に少
なすぎるとセルが破泡し、均一な発泡セルが得られなく
なるので、シラン架橋性ポリプロピレン系樹脂の配合量
は、全樹脂組成物中の5〜55重量%、好ましくは20
〜35重量%である。
As a crosslinkable resin having a crosslinkable functional group,
When using a silane-crosslinkable polypropylene-based resin, if the blending amount of the silane-crosslinkable polypropylene-based resin is too large, crosslinking proceeds excessively, the magnification of the obtained foam becomes insufficient, or the moldability deteriorates. A problem arises. Conversely, if the amount is too small, the cells break and the uniform foamed cells cannot be obtained. Therefore, the blending amount of the silane-crosslinkable polypropylene-based resin is 5 to 55% by weight of the total resin composition, preferably 20
~ 35% by weight.

【0035】シラン架橋性ポリプロピレン系樹脂の製造
方法としては、特に限定されず、例えば、ポリプロピレ
ン系樹脂に、R1 SiR2 2 (式中R1 は、オレフィ
ン性の不飽和な1価の炭化水素基またはハイドロカーボ
ンオキシ基であり、各Yは、加水分解しうる有機官能基
であり、R2 は基R1 か基Yである)で表される不飽和
シラン化合物及び有機過酸化物を反応させ、シラン架橋
性ポリプロピレン系樹脂を得る方法が挙げられる。
The method for producing the silane-crosslinkable polypropylene-based resin is not particularly limited. For example, R 1 SiR 2 Y 2 (where R 1 is an olefinically unsaturated monovalent carbon A hydrogen group or a hydrocarbonoxy group, each Y is a hydrolyzable organic functional group, and R 2 is a group R 1 or a group Y). A method of reacting to obtain a silane crosslinkable polypropylene resin.

【0036】シラン架橋性ポリプロピレン系樹脂の架橋
方法は、例えば、上記Yがメトキシ基であれば、水と接
触することにより、加水分解して水酸基となり、分子間
の水酸基が反応し、Si−O−Si結合を形成し、シラ
ングラフト重合体同士が架橋する。このような水処理方
法は、水中に浸漬する方法の他、水蒸気にさらす方法が
挙げられ、100℃以上で処理する場合には、加圧下で
行う。この際の温度は、高すぎると樹脂が溶融する不具
合が生じ、低すぎると架橋反応速度が低下するので、9
0〜120℃が好ましい。また、このようなシラン架橋
を促進する目的で、ジブチル錫ジアセテート、ジブチル
錫ラウレート、ジオクチル錫ジラウレート、オクタン酸
錫、ナフテン酸鉛、カブリル酸亜鉛、ステアリン酸亜鉛
等が挙げられる。このようなシラン架橋触媒は、通常、
樹脂成分全体に対し、100重量部に対して0.01〜
1重量部添加して用いられる。
For example, when the above-mentioned Y is a methoxy group, the silane-crosslinkable polypropylene-based resin is hydrolyzed into a hydroxyl group by contact with water, and a hydroxyl group between molecules reacts to form a Si—O. -Si bonds are formed, and the silane graft polymers are crosslinked. Examples of such a water treatment method include a method of immersion in water and a method of exposing to water vapor. When the treatment is performed at 100 ° C. or more, the treatment is performed under pressure. If the temperature at this time is too high, there is a problem that the resin is melted, and if the temperature is too low, the crosslinking reaction speed decreases.
0-120 ° C is preferred. Further, for the purpose of promoting such silane crosslinking, dibutyltin diacetate, dibutyltin laurate, dioctyltin dilaurate, tin octoate, lead naphthenate, zinc cabrate, zinc stearate and the like can be mentioned. Such silane crosslinking catalysts are usually
0.01 to 100 parts by weight based on the whole resin component
One part by weight is used.

【0037】上記シラン架橋性ポリプロピレン系樹脂の
架橋方法により得られるポリプロピレンの架橋度は、通
常、3〜45%が好ましい。架橋度が3%未満では、耐
熱性、強度が低すぎ、逆に45%を越えると架橋度が過
剰となり、高倍率の発泡体が得られない。
The degree of crosslinking of the polypropylene obtained by the method of crosslinking a silane-crosslinkable polypropylene resin is usually preferably from 3 to 45%. If the degree of cross-linking is less than 3%, the heat resistance and strength are too low, and if it exceeds 45%, the degree of cross-linking becomes excessive, and a high magnification foam cannot be obtained.

【0038】発泡剤 本発明において、上記発泡性熱可塑性樹脂粒状体及び発
泡性熱可塑性樹脂薄膜に含有される発泡剤として熱分解
型の発泡剤が用いられる。
Blowing Agent In the present invention, a pyrolytic blowing agent is used as a blowing agent contained in the expandable thermoplastic resin granules and the expandable thermoplastic resin thin film.

【0039】上記熱分解型発泡剤としては、用いられる
熱可塑性樹脂の溶融温度より高い分解温度を有するもの
であれば、特に限定されず、例えば、重炭酸ナトリウ
ム、炭酸アンモニウム、重炭酸アンモニウム、アジド化
合物、ほう水素化ナトリウム等の無機系熱分解型発泡
剤;アゾジカルボンアミド、アゾビスホルムアミド、ア
ゾビスイソブチロニトリル、アゾジカルボン酸バリウ
ム、ジアゾアミノベンゼン、N,N´−ジニトロソペン
タメチレンテトラミン、P−トルエンスルホニルヒドラ
ジド、P,P´−オキシビスベンゼンスルホニルヒドラ
ジド、トリヒドラジノトリアジン等が挙げられ、熱可塑
性樹脂としてポリオレフィン系エチレン樹脂を用いる場
合は、分解温度や分解速度の調整が容易でガス発生量が
多く、衛生上優れているアゾジカルボンアミドが好まし
い。
The pyrolytic foaming agent is not particularly limited as long as it has a decomposition temperature higher than the melting temperature of the thermoplastic resin used. Examples thereof include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate and azide. Compounds, inorganic pyrolytic blowing agents such as sodium borohydride; azodicarbonamide, azobisformamide, azobisisobutyronitrile, barium azodicarboxylate, diazoaminobenzene, N, N'-dinitrosopentamethylenetetramine , P-toluenesulfonylhydrazide, P, P'-oxybisbenzenesulfonylhydrazide, trihydrazinotriazine, and the like. When a polyolefin-based ethylene resin is used as the thermoplastic resin, the decomposition temperature and decomposition rate can be easily adjusted. A large amount of gas is generated, and Zodicarbonamide is preferred.

【0040】上記熱分解型発泡剤の添加量が多すぎる
と、破泡し、均一なセルが形成されず、逆に少なすぎる
と十分に発泡しなくなることがあるため、熱分解型発泡
剤は、熱可塑性樹脂100重量部に対し、1〜25重量
部の割合で含有させることが好ましい。
If the amount of the above-mentioned pyrolytic foaming agent is too large, foams are broken and uniform cells are not formed. On the contrary, if the amount is too small, foaming may not be sufficiently performed. It is preferable that the content be contained in a proportion of 1 to 25 parts by weight based on 100 parts by weight of the thermoplastic resin.

【0041】発泡性熱可塑性樹脂シート状体は、発泡性
熱可塑性樹脂粒状体が平面的に略均一に配置しており、
上記発泡性熱可塑性樹脂粒状体が発泡性熱可塑性樹脂薄
膜を介して一体的に連結されているものである。
In the foamable thermoplastic resin sheet, the foamable thermoplastic resin granules are arranged substantially uniformly in a plane.
The foamable thermoplastic resin granules are integrally connected via a foamable thermoplastic resin thin film.

【0042】上記発泡性熱可塑性樹脂粒状体の形状は、
特に限定されず、例えば、六方体、円柱状、球状体など
が挙げられるが、発泡性熱可塑性樹脂粒状体が発泡する
際に、発泡を均一に行わせるには、円柱状が最も好まし
い。
The shape of the foamable thermoplastic resin particles is as follows:
There is no particular limitation, and examples thereof include a hexagon, a columnar shape, a spherical shape, and the like, and a columnar shape is most preferable for uniformly foaming the expandable thermoplastic resin particles.

【0043】発泡性熱可塑性樹脂粒状体が円柱状の場
合、その径は、目的とする発泡体の発泡倍率や厚さによ
っても異なるため特に限定されるものではないが、大き
すぎると発泡速度が低下し、小さすぎると発泡時の加熱
で円柱が溶融し、変形し易く一次元発泡性を発現できな
くなり、厚み精度、重量精度のばらつきが大きくなる。
また表面平滑性も低下する。従って、発泡性熱可塑性樹
脂粒状体が円柱の場合、その径は、1〜30mmが好ま
しく、2〜20mmの範囲が特に好ましい。
When the expandable thermoplastic resin particles are cylindrical, the diameter thereof is not particularly limited because it varies depending on the expansion ratio and thickness of the target foam. If it is too low, the column is melted by heating during foaming, easily deformed and one-dimensional foamability cannot be exhibited, and the thickness accuracy and weight accuracy vary greatly.
Also, the surface smoothness is reduced. Therefore, when the expandable thermoplastic resin particles are cylindrical, the diameter is preferably 1 to 30 mm, and particularly preferably 2 to 20 mm.

【0044】上記発泡性熱可塑性樹脂シート状体の製造
方法としては、特に限定されるものではなく、例えば、
1)発泡性熱可塑性樹脂シートを構成する熱可塑性樹脂
及び発泡剤などを射出成形機に供給し、熱分解型発泡剤
の分解温度より低い温度で溶融混練し、発泡性熱可塑性
樹脂粒状体の形状に応じた凹部を有する金型に射出した
後冷却する方法等が挙げられるが、2)発泡性熱可塑性
樹脂シート状体を構成する熱可塑性樹脂及び発泡剤など
を押出機に供給し、熱分解型発泡剤の分解温度より低い
温度で溶融混練した後、軟化状態のシート状発泡性熱可
塑性樹脂を、該シート状発泡性熱可塑性樹脂の厚みより
狭いクリアランスを有し、少なくとも一方の外周面に多
数の凹部が均一に配設された異方向に回転する一対の賦
形ロールに導入し、前記凹部に軟化状態のシート状発泡
性熱可塑性樹脂の一部を圧入した後、冷却、離型する方
法が最も好ましい。
The method for producing the foamable thermoplastic resin sheet is not particularly limited.
1) The thermoplastic resin and the foaming agent constituting the foamable thermoplastic resin sheet are supplied to an injection molding machine, and are melt-kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent to form the foamable thermoplastic resin granules. A method of injecting the mixture into a mold having a concave portion corresponding to the shape and then cooling the mixture may be mentioned. 2) The thermoplastic resin and the foaming agent constituting the foamable thermoplastic resin sheet are supplied to an extruder and heated. After melt-kneading at a temperature lower than the decomposition temperature of the decomposable foaming agent, the softened sheet-shaped foamable thermoplastic resin has a clearance smaller than the thickness of the sheet-shaped foamable thermoplastic resin, and has at least one outer peripheral surface. After being introduced into a pair of shaping rolls rotating in different directions in which a large number of concave portions are uniformly disposed, a part of a softened sheet-like foamable thermoplastic resin is pressed into the concave portions, and then cooled and released. Is the most preferred method

【0045】本発明の暖房床において、上記硬質発泡体
側の表面に、不織布、制振ゴム等の硬質発泡体以外の制
振剤、防音剤が積層されていてもよい。この場合、請求
項3に記載のように、軟質発泡体が積層されているもの
が好ましい。
In the heating floor of the present invention, a damping agent other than a hard foam such as a nonwoven fabric or a damping rubber, and a soundproofing agent may be laminated on the surface of the hard foam. In this case, it is preferable that the flexible foam is laminated as described in claim 3.

【0046】上記軟質発泡体としては特に限定されない
が、例えば、発泡ポリエチレン、発泡ポリウレタン、発
泡ポリプロピレン、発泡ポリスチレン等の軟質発泡体な
ど、が挙げられ、この中でも発泡ポリウレタンが最も防
音効果が高く、好適に用いられる。またこのような緩衝
層には、床下地材との接着を良好にする意味で、架橋ポ
リオレフィン系発泡体の如き独立気泡発泡体を貼着して
用いることが好ましい。このような発泡体層は、接着を
良好にする他、止水層としての効果もあるため好ましく
用いられる。
The above-mentioned flexible foam is not particularly limited, and examples thereof include flexible foams such as foamed polyethylene, foamed polyurethane, foamed polypropylene, and foamed polystyrene. Of these, foamed polyurethane has the highest soundproofing effect and is preferred. Used for In addition, it is preferable that a closed cell foam such as a crosslinked polyolefin foam is adhered to such a buffer layer in order to improve the adhesion to the floor base material. Such a foam layer is preferably used because it has an effect as a water blocking layer in addition to improving the adhesion.

【0047】(作用)本発明の暖房床は、硬質板状体、
放熱板、硬質発泡体がこの順に積層され、該硬質発泡体
内に温水供給用パイプが配管されているた床材であっ
て、上記硬質発泡体の曲げ弾性率が50〜300kgf
/cm2 となされているから、硬質発泡体が適度の柔軟
性を有するため、床材の暖房効率がよく、高い防音性能
を有するものである。さらに、発泡体が柔らかすぎると
いった問題もないため、歩行時の沈み込み量も僅かであ
り、歩行感も良好であるという、優れたれた性能を有す
るものである。
(Function) The heating floor of the present invention has a hard plate-like shape,
A heat sink and a rigid foam are laminated in this order, and a floor material in which a hot water supply pipe is laid in the rigid foam, wherein the rigid foam has a flexural modulus of 50 to 300 kgf.
/ Cm 2 , the rigid foam has appropriate flexibility, so that the floor material has good heating efficiency and high soundproofing performance. Furthermore, since there is no problem that the foam is too soft, the amount of sinking during walking is small, and the walking feeling is good.

【0048】この際、請求項2記載の発明のように、上
記硬質発泡体が、熱可塑性樹脂よりなる連続発泡層と、
連続発泡層の少なくとも片面上に複数配置される熱可塑
性樹脂よりなる高発泡体と、高発泡体の外表面を被覆す
る熱可塑性樹脂よりなる低発泡薄膜とを備え、前記複数
の高発泡体が互いに前記低発泡薄膜を介して熱融着され
ている熱可塑性樹脂発泡体であるから防音性能、歩行感
がさらに優れたものとなる。
In this case, as in the second aspect of the present invention, the rigid foam comprises a continuous foam layer made of a thermoplastic resin,
A high-foamed body made of a thermoplastic resin disposed on at least one surface of the continuous foam layer, and a low-foamed thin film made of a thermoplastic resin covering the outer surface of the high-foamed body, wherein the plurality of high-foamed bodies are Since the thermoplastic resin foams are thermally fused to each other via the low-foaming thin film, the soundproofing performance and walking feeling are further improved.

【0049】さらに、請求項3記載の発明のように、防
音性温水暖房床の硬質発泡体側の表面に、さらに軟質発
泡体が積層されていると、暖房効率、防音性能がさらに
優れたものとなる。
Further, when the soft foam is further laminated on the surface of the hard foam side of the soundproof hot water heating floor as in the invention of claim 3, the heating efficiency and the soundproof performance are further improved. Become.

【0050】[0050]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は請求項3において引用さ
れた請求項2記載の記載本発明の防音性温水暖房床の一
例を示す断面図である。図1に示すように本発明1の防
音性温水暖房床暖房機能付防音床仕上げ材は、表面側か
ら、硬質板状体1、平板状発熱体2、及び硬質樹脂発泡
体3がこの順に積層され、硬質樹脂発泡体3の裏面には
軟質樹脂発泡体4が積層されている。この場合におい
て、硬質発泡体3には所定の寸法の溝6が形成され、温
水供給用パイプ5が挿入されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the soundproof hot water heating floor of the present invention described in claim 2 cited in claim 3. As shown in FIG. 1, the soundproofing floor covering with soundproofing hot water heating floor heating function of the present invention 1 has a hard plate 1, a flat heating element 2, and a hard resin foam 3 laminated in this order from the surface side. The soft resin foam 4 is laminated on the back surface of the hard resin foam 3. In this case, a groove 6 having a predetermined size is formed in the rigid foam 3, and a hot water supply pipe 5 is inserted therein.

【0051】図2は本発明に使用される熱可塑性樹脂発
泡体の一例を示す略図的縦断面図である。図2に示すよ
うに、熱可塑性樹脂発泡体3は、熱可塑性樹脂よりなる
連続発泡層3cの少なくとも片面上に発泡倍率の高い熱
可塑性樹脂よりなる高発泡体3aが複数配置されてお
り、この高発泡体3aの外表面は発泡倍率の低い熱可塑
性樹脂よりなる低発泡薄膜3bにより被覆されている。
また隣接する高発泡体3aは、低発泡薄膜3bを介して
熱融着されている。
FIG. 2 is a schematic vertical sectional view showing an example of the thermoplastic resin foam used in the present invention. As shown in FIG. 2, the thermoplastic resin foam 3 has a plurality of high foams 3a made of a thermoplastic resin having a high expansion ratio arranged on at least one surface of a continuous foam layer 3c made of a thermoplastic resin. The outer surface of the high foam 3a is covered with a low foam thin film 3b made of a thermoplastic resin having a low expansion ratio.
The adjacent high foam 3a is thermally fused via the low foam thin film 3b.

【0052】[0052]

【実施例】以下、本発明の詳細を実施例に基づいて説明
する。 (実施例1)低(無)架橋性樹脂として、高密度ポリエ
チレン(三菱化学社製;品番「HY340」、密度0.
952g/cm3 、MI=1.5g/10分、融点13
3℃)25重量部、高架橋性樹脂として、高密度ポリエ
チレン(三菱化学社製;品番「HJ381P」、密度
0.951g/cm3 、MI=9.0g/10分、融点
132℃)25重量部、ポリプロピレン(三菱化学社
製;品番「MA3」、密度0.900g/cm3 、MI
=11g/10分、融点151℃)29重量部、シラン
架橋性ポリプロピレン(三菱化学社製;品番「XPM8
00HM」)21重量部、シラン架橋触媒(三菱化学社
製;品番「PZ−10S」)1重量部、熱分解型発泡剤
として、アゾジカルボンアミド(大塚化学社製;品番
「SO−20」)9重量部の混合物を、2軸押出機(径
44mm)にて180℃で溶融混練し、面長300m
m、リップ1.5mmのTダイにより軟化状態のシート
状発泡性熱可塑性樹脂を押出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on embodiments. (Example 1) As a low (non-) crosslinkable resin, high-density polyethylene (manufactured by Mitsubishi Chemical Corporation; product number "HY340", density 0.
952 g / cm 3 , MI = 1.5 g / 10 min, melting point 13
25 parts by weight, 3 parts by weight, 25 parts by weight of high-density polyethylene (manufactured by Mitsubishi Chemical Corporation; product number "HJ381P", density: 0.951 g / cm 3 , MI = 9.0 g / 10 minutes, melting point: 132 ° C.) as a highly crosslinkable resin , Polypropylene (manufactured by Mitsubishi Chemical Corporation; product number “MA3”, density 0.900 g / cm 3 , MI
= 11 g / 10 min, melting point 151 ° C) 29 parts by weight, silane crosslinkable polypropylene (manufactured by Mitsubishi Chemical Corporation; product number “XPM8
00HM ") 21 parts by weight, 1 part by weight of a silane crosslinking catalyst (manufactured by Mitsubishi Chemical Corporation; product number" PZ-10S "), and azodicarbonamide (manufactured by Otsuka Chemical Co .; product number" SO-20 ") as a pyrolytic foaming agent 9 parts by weight of the mixture was melt-kneaded at 180 ° C. with a twin-screw extruder (diameter: 44 mm), and the surface length was 300 m.
The sheet-like foamable thermoplastic resin in a softened state was extruded by a T die having a m and a lip of 1.5 mm.

【0053】さらに、高さ5mm、直径4mmの凹部が
千鳥状に配置された、径250mm、面長300mmの
該発泡性熱可塑性樹脂シート状体を賦型しつつ冷却し、
さらに発泡性熱可塑性シート状体を98℃の熱水中に2
時間浸漬した後乾燥させることにより、発泡性熱可塑性
樹脂シート状体(架橋度15%)を得た。上記のように
して得た発泡性熱可塑性樹脂シート状体では、上記賦型
ロールの凹部に対応する部分において発泡性熱可塑性樹
脂粒状体が構成されており、該発泡性熱可塑性樹脂粒状
体がその端部にて厚み0.4mmの発泡性熱可塑性樹脂
薄膜により連結されて、全体として発泡性熱可塑性樹脂
シート状体が構成されていた。
Further, the foamable thermoplastic resin sheet having a diameter of 250 mm and a surface length of 300 mm in which concave portions having a height of 5 mm and a diameter of 4 mm are arranged in a zigzag pattern is cooled while being shaped.
Furthermore, the foamable thermoplastic sheet is placed in hot water at 98 ° C.
After immersion for a period of time and drying, a foamable thermoplastic resin sheet (crosslinking degree: 15%) was obtained. In the foamable thermoplastic resin sheet obtained as described above, the foamable thermoplastic resin granules are configured in a portion corresponding to the concave portion of the forming roll, and the foamable thermoplastic resin granules are The ends were connected by a foamable thermoplastic resin thin film having a thickness of 0.4 mm to form a foamable thermoplastic resin sheet as a whole.

【0054】得られた発泡性熱可塑性樹脂シート状体
を、ポリテトラフルオロエチレンシート上に配置した状
態で加熱装置を有する無端ベルトに供給し、硬質発泡体
3を得た。なお、発泡性熱可塑性樹脂シート状体の送り
速度は0.5mm/min、加熱装置長さ5mm、温度
210℃であった。また、冷却装置16は長さ5mm、
温度30℃であった。得られた硬質発泡体3の厚みは1
2mmであった。
The obtained foamable thermoplastic resin sheet was supplied to an endless belt having a heating device in a state of being placed on a polytetrafluoroethylene sheet, and a rigid foam 3 was obtained. The feed rate of the foamable thermoplastic resin sheet was 0.5 mm / min, the length of the heating device was 5 mm, and the temperature was 210 ° C. The cooling device 16 has a length of 5 mm,
The temperature was 30 ° C. The thickness of the obtained rigid foam 3 is 1
2 mm.

【0055】得られた硬質発泡体3(倍率20倍)を、
310×910mmに切断した後、ピッチ間100mm
で凹溝6(幅、深さ10mm)をルーター加工法により
付け、溝にポリエチレン管5(イノアック社製、直径1
0mm、厚み1.5mm)を挿入し、さらに硬質発泡体
3の上面にアルミテープ2(イノアック社製モジュラー
パネル用灼熱アルミテープ、雛板DMTA470−2
5)を貼付し、その上面に厚み9mmの合板1を貼付
し、さらに、硬質発泡体3の下面に軟質発泡体4(ブリ
ジストン製ウレタンフォーム、発泡倍率50倍、厚み3
mm)を貼付し、図1に示した防音性温水暖房床を作成
した。
The obtained rigid foam 3 (magnification: 20 times)
After cutting into 310 x 910mm, pitch interval 100mm
A groove 6 (width, depth 10 mm) is formed by a router processing method, and a polyethylene pipe 5 (manufactured by INOAC, diameter 1) is formed in the groove.
0 mm and a thickness of 1.5 mm), and an aluminum tape 2 (a burning aluminum tape for a modular panel manufactured by INOAC Co., Ltd .;
5), a plywood 1 having a thickness of 9 mm is adhered on the upper surface, and a soft foam 4 (Bridgestone urethane foam, foaming ratio 50 times, thickness 3)
mm) was affixed to produce the soundproof hot water heating floor shown in FIG.

【0056】(実施例2)低(無)架橋性樹脂36重量
部、高架橋性樹脂として、高密度ポリエチレン(三菱化
学社製;品番「HJ381P」、密度0.951g/c
3 、MI=9.0g/10分、融点132℃)36重
量部、ポリプロピレン(三菱化学社製;品番「MA
3」、密度0.900g/cm3 、MI=11g/10
分、融点151℃)7重量部、シラン架橋性ポリプロピ
レン(三菱化学社製;品番「XPM800HM」)21
重量部を用いたこと以外は実施例1と同様にして防音性
温水暖房床を作成した。
Example 2 36 parts by weight of a low (non-) crosslinkable resin, high-density polyethylene (manufactured by Mitsubishi Chemical Corporation; product number "HJ381P", density 0.951 g / c) as a highly crosslinkable resin
m 3 , MI = 9.0 g / 10 min, melting point 132 ° C.) 36 parts by weight, polypropylene (manufactured by Mitsubishi Chemical Corporation; product number “MA”
3 ", density 0.900 g / cm 3 , MI = 11 g / 10
7 parts by weight, silane crosslinkable polypropylene (manufactured by Mitsubishi Chemical Corporation; product number "XPM800HM") 21
Except for using parts by weight, a soundproof hot water heating floor was prepared in the same manner as in Example 1.

【0057】(比較例1)軟質発泡体4を図3に示した
ように合板1とアルミテープ2の間に配置したこと以外
は実施例1と同様にして防音性温水暖房床を作成した。
(Comparative Example 1) A soundproof hot water heating floor was prepared in the same manner as in Example 1 except that the soft foam 4 was disposed between the plywood 1 and the aluminum tape 2 as shown in FIG.

【0058】(比較例2)硬質発泡体3として、ダウ化
工社製、商品名「スタイロフォームRB−GK」を用い
たこと以外は実施例1と同様にして防音性温水暖房床を
作成した。
(Comparative Example 2) A soundproof hot water heating floor was prepared in the same manner as in Example 1 except that the product name “STYROFORM RB-GK” manufactured by Dow Chemical Industries, Ltd. was used as the rigid foam 3.

【0059】(比較例3)軟質発泡体4を図3に示した
ように合板1とアルミテープ2の間に配置したこと以外
は比較例1と同様にして防音性温水暖房床を作成した。
Comparative Example 3 A soundproof hot water heating floor was prepared in the same manner as in Comparative Example 1 except that the soft foam 4 was disposed between the plywood 1 and the aluminum tape 2 as shown in FIG.

【0060】(比較例4)硬質発泡体3に代えて、東レ
社製の架橋ポリエチレン発泡体(倍率20倍、厚み4m
mを3枚重ね)を用いたこと以外は実施例1と同様にし
て防音性温水暖房床を作成した。
(Comparative Example 4) Instead of the rigid foam 3, a crosslinked polyethylene foam made by Toray (magnification: 20 times, thickness: 4 m)
m was laminated in the same manner as in Example 1 except that m was used.

【0061】発泡体の弾性率 得られた硬質発泡体3及び、東レ社製の架橋ポリエチレ
ン発泡体を、JISK7203に準拠し、23℃、50
%RHにおける12mmの厚みの発泡体を、支点間距離
192mmで3点曲げ試験を6mm/minの速度で変
位−応力曲線より求め、その勾配から弾性率を測定し、
表1に示した。
The rigid foam 3 obtained from the elastic modulus of the foam and the crosslinked polyethylene foam manufactured by Toray Co., Ltd. were treated at 23 ° C. and 50 ° C. in accordance with JIS K7203.
The foam having a thickness of 12 mm at% RH was determined from a displacement-stress curve at a rate of 6 mm / min in a three-point bending test at a distance between supporting points of 192 mm, and the elastic modulus was measured from the gradient.
The results are shown in Table 1.

【0062】実施例1、2、比較例1〜4で得られた防
音性温水暖房床を以下の評価に供し、表1に示した。
The soundproof hot water heating floors obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were subjected to the following evaluations and are shown in Table 1.

【0063】防音性温水暖房床の評価 Evaluation of Soundproof Hot Water Heating Floor

【0064】(熱効率)得られた防音性温水暖房床のポ
リエチレン管5に80℃の温水を流し、製熱流量計(英
弘精機社製)を用いて、熱効率(総熱量中の、上面に伝
わった熱量の比率)を測定した。
(Thermal Efficiency) Hot water of 80 ° C. was flowed through the obtained polyethylene pipe 5 of the soundproof hot water heating floor, and the thermal efficiency (transmitted to the upper surface in the total heat quantity) was measured using a heat flow meter (manufactured by Eiko Seiki Co., Ltd.). Of the amount of heat).

【0065】(防音性)JIS A1418に準拠して
軽量床衝撃レベルLLを測定した。
(Soundproofing) The lightweight floor impact level LL was measured according to JIS A1418.

【0066】(歩行感)直径50mmの鋼球を硬質板状
体側に80kgfの力で押し付けた時の沈み込み量を測
定した。なお、1.4〜2.6mmが良好とされ、。4
mm以上では歩行時にフカフカした不快感が生じ、0m
mではコンクリートの上を歩くように足の裏が痛くな
る。以上の結果を表1にまとめて示した。
(Walking Feeling) The amount of sinking when a steel ball having a diameter of 50 mm was pressed against the hard plate-like body with a force of 80 kgf was measured. In addition, 1.4-2.6 mm is considered to be good. 4
mm or more, when walking, fluffy and uncomfortable
At m, the soles hurt as if walking on concrete. The above results are summarized in Table 1.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【発明の効果】請求項1記載の防音性温水暖房床は、上
述の如き構成となされているのであるから、良好な熱効
率と防音性能を両立し、かつ、歩行感もすぐれるという
ものとなる。
According to the first aspect of the present invention, since the sound-insulating hot water heating floor is constructed as described above, it achieves both good thermal efficiency and soundproofing performance, and also has an excellent walking feeling. .

【0069】請求項2記載の防音性温水暖房床は、上述
の如き構成となされているのであるから、防音性能、歩
行感がさらに優れたものとなる。
The soundproofing hot water heating floor according to claim 2 is configured as described above, so that the soundproofing performance and walking feeling are further improved.

【0070】請求項3記載の防音性温水暖房床は、上述
の如き構成となされているのであるから、暖房効率、防
音性能がさらに優れたものとなる。
The soundproofing hot water heating floor according to the third aspect has the above-described configuration, so that the heating efficiency and the soundproofing performance are further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項3において引用された請求項2記載の記
載本発明の防音性温水暖房床の一例を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing an example of a soundproof hot-water heating floor according to the present invention described in claim 2 of the present invention.

【図2】熱可塑性樹脂発泡体の一例を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing an example of a thermoplastic resin foam.

【図3】比較例1、3の防音性温水暖房床の一例を示す
断面図である。
FIG. 3 is a cross-sectional view illustrating an example of a soundproof hot water heating floor of Comparative Examples 1 and 3.

【図4】従来の防音性温水暖房床の一例を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing an example of a conventional soundproof hot water heating floor.

【符号の説明】[Explanation of symbols]

1 硬質板状体 2 平板状発熱体 3 硬質樹脂発泡体 4 軟質樹脂発泡体 5 温水供給用パイプ DESCRIPTION OF SYMBOLS 1 Hard plate-shaped body 2 Plate-shaped heating element 3 Hard resin foam 4 Soft resin foam 5 Pipe for hot water supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硬質板状体、放熱板、硬質発泡体がこの
順に積層され、該硬質発泡体内に温水供給用パイプが配
管されているた床材であって、上記硬質発泡体の曲げ弾
性率が50〜300kgf/cm2 であることを特徴と
する防音性温水暖房床。
1. A floor material in which a hard plate, a heat sink, and a hard foam are laminated in this order, and a hot water supply pipe is laid in the hard foam. A soundproof hot-water heating floor having a rate of 50 to 300 kgf / cm 2 .
【請求項2】 上記硬質発泡体が、熱可塑性樹脂よりな
る連続発泡層と、連続発泡層の少なくとも片面上に複数
配置される熱可塑性樹脂よりなる高発泡体と、高発泡体
の外表面を被覆する熱可塑性樹脂よりなる低発泡薄膜と
を備え、前記複数の高発泡体が互いに前記低発泡薄膜を
介して熱融着されている熱可塑性樹脂発泡体であること
を特徴とする請求項1記載の防音性温水暖房床。
2. The foam according to claim 1, wherein the rigid foam comprises a continuous foam layer of a thermoplastic resin, a high foam of a thermoplastic resin disposed on at least one surface of the continuous foam layer, and an outer surface of the high foam. 2. A low-foaming thin film made of a thermoplastic resin to be coated, wherein the plurality of high-foaming bodies are thermoplastic resin foams which are thermally fused to each other via the low-foaming thin film. The described soundproof hot water heating floor.
【請求項3】 請求項1又は2記載の防音性温水暖房床
の硬質発泡体側の表面に、さらに軟質発泡体が積層され
ていることを特徴とする防音性温水暖房床。
3. A soundproof hot water heating floor, wherein a soft foam is further laminated on the surface of the soundproof hot water heating floor according to claim 1 on the hard foam side.
JP26998898A 1998-09-24 1998-09-24 Soundproof hot water heating floor Expired - Fee Related JP3967832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26998898A JP3967832B2 (en) 1998-09-24 1998-09-24 Soundproof hot water heating floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26998898A JP3967832B2 (en) 1998-09-24 1998-09-24 Soundproof hot water heating floor

Publications (2)

Publication Number Publication Date
JP2000097445A true JP2000097445A (en) 2000-04-04
JP3967832B2 JP3967832B2 (en) 2007-08-29

Family

ID=17480011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26998898A Expired - Fee Related JP3967832B2 (en) 1998-09-24 1998-09-24 Soundproof hot water heating floor

Country Status (1)

Country Link
JP (1) JP3967832B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175491A (en) * 2007-01-19 2008-07-31 Osaka Gas Co Ltd Floor heating panel
JP2014534365A (en) * 2011-10-17 2014-12-18 オンユウ カンパニー リミテッド Floor panel system
JP2016216928A (en) * 2015-05-15 2016-12-22 株式会社クラレ Impact relieving floor material
KR102018595B1 (en) * 2018-04-09 2019-09-05 조원대 Manufacturing method of the Floor impact noise reduction mat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175491A (en) * 2007-01-19 2008-07-31 Osaka Gas Co Ltd Floor heating panel
JP2014534365A (en) * 2011-10-17 2014-12-18 オンユウ カンパニー リミテッド Floor panel system
JP2016216928A (en) * 2015-05-15 2016-12-22 株式会社クラレ Impact relieving floor material
KR102018595B1 (en) * 2018-04-09 2019-09-05 조원대 Manufacturing method of the Floor impact noise reduction mat

Also Published As

Publication number Publication date
JP3967832B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
KR102493850B1 (en) Coextruded, crosslinked polyolefin foam with tpu cap layers
JPWO2002016124A1 (en) Expandable thermoplastic resin molded article, method for producing expandable thermoplastic resin molded article, and thermoplastic resin foam
JP4874592B2 (en) Spacer for floor base material and manufacturing method thereof
JP3476323B2 (en) Floor material
JP3967832B2 (en) Soundproof hot water heating floor
JP2000039165A (en) Sound-proofing floor finishing material with heating function
JP2012237098A (en) Repair waterproof structure of roof floor having parapet
JP2001132218A (en) Soundproof hot-water heating floor
JP4220831B2 (en) Floor base material, floor structure and building using the same
JP3366162B2 (en) Floor material
JP3448449B2 (en) Flooring and condominiums using it
JP2002071152A (en) Floor heating panel
JP2007046227A (en) Substrate material for non-wood-based floor finishing material
JP2003166335A (en) Floor material
JP2000325218A (en) Mat for soundproof floor
JP3615662B2 (en) Flooring
JP2001132220A (en) Floor covering material, its manufacturing method, and mansion
JP2005351001A (en) Sound insulating hot-water floor heating panel
JP2000213756A (en) Soundproofing warm water heating floor
JP3583078B2 (en) Floor structure and construction method
JP4286590B2 (en) Underfloor spacer, floor heating structure and building using the same
JP4751572B2 (en) Thermoplastic resin foam and soundproofing heating flooring
JPH10280661A (en) Floor material and building structure using same
JP3838733B2 (en) Floor materials and condominiums using this
JP2000071364A (en) Production of floor material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees