JP4220831B2 - Floor base material, floor structure and building using the same - Google Patents

Floor base material, floor structure and building using the same Download PDF

Info

Publication number
JP4220831B2
JP4220831B2 JP2003136297A JP2003136297A JP4220831B2 JP 4220831 B2 JP4220831 B2 JP 4220831B2 JP 2003136297 A JP2003136297 A JP 2003136297A JP 2003136297 A JP2003136297 A JP 2003136297A JP 4220831 B2 JP4220831 B2 JP 4220831B2
Authority
JP
Japan
Prior art keywords
floor
base material
foam
foaming
floor base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003136297A
Other languages
Japanese (ja)
Other versions
JP2004339757A (en
Inventor
博 森武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003136297A priority Critical patent/JP4220831B2/en
Publication of JP2004339757A publication Critical patent/JP2004339757A/en
Application granted granted Critical
Publication of JP4220831B2 publication Critical patent/JP4220831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、多層階住宅等における床下地材、床構造及びそれを用いた建物に関し、特に防音性が要求される住宅等に好適に用いられる床下地材、床構造及びそれを用いた建物に関する。
【0002】
【従来の技術】
従来、多層階住宅等における床構造においては、例えば、特許文献1に記載のように、柱によって支持された胴差や根太などの太い横架材の間に床ばりを支持し、その上に構造用面板からなる床下地材を取り付けた上、さらにその上面に床仕上材を貼着して仕上げてあるものが多用されていた。また、上記特許文献1においては、上記について、複数の柱の間を横架材によって連結し、四角形の平面を有する床材支持枠を形成すると共に、前記床材支持枠の上面に略四角形の切欠きを設け、その切欠きの中に構造用パネルを嵌め込んで周縁部を支持してなる木造建築における床板の支持構造が提案されている。
【0003】
しかし、上記に開示された床構造においては、床下地材などの床構造板上に床仕上材が単に貼着され積層されたものであり、その床構造における防音性は非常に乏しいものであった。したがって一般的には、上記防音性を向上するため、防音床構造として、床下地材や床仕上材の裏面などに防音性を有する樹脂発泡体や不織布などの緩衝層を積層一体化したものなどが用いられていた。
【0004】
しかし、上記防音性の優劣は緩衝層の性能で左右されるため、従来緩衝層についての改良が進められてきたが、本発明者の検討によれば、従来の緩衝層は通常5mm以上の厚みを必要とし、また、緩衝層自体が一般に柔軟性を有するため、上記のような防音床の上を歩行した際の歩行感において、いわゆる「ふかふか」する問題があった。このため、防音性と歩行感を両立することが求められていた。
【0005】
【特許文献1】
特開平10−317562号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記従来の問題点に鑑み、優れた防音性を有するとともに、「ふかふか」しない良好な歩行感を有する床下地材、床構造及びそれを用いた建物を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の床下地材は、内在する気泡のアスペクト比Dz/Dxyの平均値が1.1〜4.0、発泡倍率が3〜20倍、及び圧縮弾性率が5MPa以上である硬質発泡体からなることを特徴とする。
請求項2記載の床構造は、パーチクルボードまたは合板からなる床材に、請求項1記載の床下地材が積層されて用いられることを特徴とする。
請求項3記載の建物は、請求項2記載の床構造が用いられたことを特徴とする。
【0008】
以下、本発明を詳細に説明する。
本発明における硬質発泡体は、内在する気泡のアスペクト比Dz/Dxyの平均値が1.1〜4.0とされる。
【0009】
本明細書において用いられる用語「アスペクト比」は、硬質発泡体中の気泡における定方向最大径の比の個数(算術)平均値であり、シート厚み方向の直径Dzと面内方向の直径Dxyとの比Dz/Dxyとして表される。
【0010】
すなわち、図1に示すように、硬質発泡体(a)のシート厚み方向(z方向と呼ぶ)に平行な任意な断面(b)の10倍の拡大写真をとり、この写真中で無作為に選ばれる少なくとも50個の気泡における下記の2つの定方向最大径(Dz,Dxy)を測り、個数平均値を算出する。
【0011】
Dz:硬質発泡体中の気泡のz方向に平行な最大径
Dxy:硬質発泡体中の気泡のシート幅または長さ方向、すなわちz方向に垂直な面方向(xy方向と呼ぶ)に平行な最大径
【0012】
内在する気泡のアスペクト比が上記の範囲となることによって、本発明における硬質発泡体はその厚み方向に圧縮力を受けると、厚み方向に長い紡錘形の気泡の長軸方向に力がかかることになるので厚み方向に高い圧縮強度を示す。
【0013】
アスペクト比の平均値が1.1を下回ると、気泡がほぼ球形となり、紡錘形に起因する圧縮弾性率、圧縮強度の向上が得られず、良好な歩行感が得られにくくなる。アスペクト比の平均値が4.0を越えると、硬質発泡体が衝撃を受けたときに破壊が起こり易くなり、割れや欠けが発生しやすくなる。また、上記硬質発泡体に内在する気泡のDxyの平均値は500μm以上であることが好ましい。
【0014】
通常発泡体は、化学発泡によって得られるものと、物理発泡によって得られるものがあるが、上記硬質発泡体が熱融着により他の材料に積層される場合には、前者の方法が好ましい。
【0015】
また、硬質発泡体に用いられる材料としては、例えば、ポリオレフィン系樹脂であることが、防音性に優れ、しかもリサイクル性や焼却廃棄性に優れる点で好ましい。
【0016】
上記において、化学発泡による発泡体は、例えば加熱により分解ガスを発生する熱分解型化学発泡剤を予めポリオレフィン系樹脂組成物に分散させておき、得られた発泡性組成物を一旦シート状の原反に賦形した後、加熱して発泡剤より発生するガスにより発泡させることで製造されうる。熱分解型化学発泡剤の代表例としては、アゾジカルボンアミド、ベンゼンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、トルエンスルホニルヒドラジド、4,4−オキシビス(ベンゼンスルホニルヒドラジド)等が挙げられる。化学発泡剤の添加量は樹脂組成物100重量部に対して好ましくは2〜20重量部である。
【0017】
上記ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、アイソタクチックもしくはシンジオタクチックホモポリプロピレン、ブロックプロピレン共重合体、ランダムプロピレン共重合体、ポリブテン、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−ブテン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エステル共重合体等が挙げられる。これらは単独で用いられてもよいが、2種以上が組み合わされて併用されてもよい。
【0018】
上記ポリオレフィン系樹脂には、30重量%以下の範囲で、他の熱可塑性樹脂、例えば、ポリスチレン等の相溶性を有する熱可塑性樹脂、エラストマー等が混合されて用いられてもよい。
【0019】
上記ポリオレフィン系樹脂のメルトフローレート(MFR)は、余り大き過ぎても、又、反対に小さ過ぎても発泡安定性を低下させるものであるので、好ましくは、JIS K 7210に準拠して測定された値で、0.1〜20g/10分である。
【0020】
上記ポリオレフィン系樹脂は、必要に応じて架橋されたものであってもよい。架橋の方法は、特に限定されるものではないが、例えば、電子線等の電離性放射線を照射する電子線架橋法、有機過酸化物等を用いた化学架橋法、又は、シラン変性樹脂を用いたシラン架橋法等が挙げられる。
【0021】
上記ポリオレフィン系樹脂の架橋の度合いは、余り高過ぎると、発泡倍率が低下すると共に、熱成形性が低下し、余り低過ぎると、熱安定性が低下し、且つ、発泡時のセル(気泡壁)が破泡し、均一な気泡が得られなくなることがあるので、架橋の指標となるゲル分率は、好ましくは10〜30重量%、より好ましくは15〜25重量%である。
【0022】
尚、本発明において、上記ゲル分率とは、ポリオレフィン系樹脂発泡体を、120℃のキシレン中に24時間浸漬した後の残渣重量のキシレン浸漬前のポリオレフィン系樹脂発泡体重量に対する百分率(重量)である。
【0023】
硬質発泡体を得る製造方法は特に限定されないが、好ましくは、ポリオレフィン系樹脂および変性用モノマーを溶融混和して変性ポリオレフィンを得、変性ポリオレフィンに熱分解型化学発泡剤を分散させ、得られた発泡性樹脂組成物を一旦シート状の原反に賦形した後、得られた発泡性シートを熱分解型化学発泡剤の分解温度以上に加熱して化学発泡させる方法である。
【0024】
本発明方法で用いる変性用モノマーは、ラジカル反応し得る官能基を分子内に2個以上有する化合物である。上記官能基としてはオキシム基、マレイミド基、ビニル基、アリル基、(メタ)アクリル基等が例示される。変性用モノマーは、好ましくは、ジオキシム化合物、ビスマレイミド化合物、ジビニルベンゼン、アリル系多官能モノマー、(メタ)アクリル系多官能モノマーである。また、変性用モノマーはキノン化合物のような、分子内に2個以上のケトン基を有する環状化合物であってもよい。
【0025】
上記のような樹脂変性方法をとることで、成形された発泡性シート原反架橋度が低いにも拘らず、これを常圧で発泡させることが可能となる。
【0026】
シート状発泡性原反の賦形方法としては、押出成型の他、プレス成型、ブロー成型、カレンダリング成型、射出成型など、プラスチックの成型加工で一般的に行われる方法が適用可能であるが、スクリュ押出機より吐出する発泡性樹脂組成物を直後賦形する方法が生産性の観点から好ましい。この方法では、一定寸法幅の連続原反シートを得ることができる。
【0027】
シート状原反の化学発泡は、通常、熱分解型化学発泡剤の分解温度以上、熱可塑性樹脂の熱分解温度以下の温度範囲で行われる。特に連続式発泡装置としては、加熱炉の出口側で発泡体を引き取りながら発泡させる引き取り式発泡機の他、ベルト式発泡機、縦型または横型発泡炉、熱風恒温槽など、あるいは熱浴中で発泡を行うオイルバス、メタルバス、ソルトバスなどが使用される。
【0028】
上述の紡錘形気泡からなる硬質発泡体、すなわち、気泡のアスペクト比Dz/Dxyの平均値が1.1〜4.0である発泡体を得る方法としては、特に限定されるものではないが、例えば、発泡中の原反の面内方向(xy方向)の発泡力を抑制し得る強度を有する面材を発泡前の原反の少なくとも片面に積層する方法が好ましい。
【0029】
発泡前の原反の少なくとも片面に上記面材を積層することにより、発泡時における原反の面内の二次元方向(xy方向)の発泡を抑制し、厚み方向(z方向)にのみ発泡させることが可能となって、得られる発泡体シート内部の気泡は厚み方向にその長軸を配向した紡錘形の気泡となる。
【0030】
上記面材は、原反の発泡温度以上の温度、即ちポリオレフィン系樹脂の融点以上の温度および熱分解型化学発泡剤の分解温度以上の温度に耐え得るものであれば良く、特に限定されるものではないが、例えば、紙、布、木材、鉄、非鉄金属、有機繊維や無機繊維から成る織布や不織布、寒冷紗、ガラス繊維、炭素繊維、等が好適に用いられる。また、例えばテフロン(登録商標)シートのような離型性を有するシートを面材として用い、原反を厚み方向に発泡させた後、上記離型性シートを剥離して、発泡体シートを得ても良い。
【0031】
ただし、ポリオレフィン系樹脂以外の材料からなる面材を用いるときは、リサイクル性の観点より、その使用量は最小限度に留めることが好ましい。
【0032】
上記面材のなかでも、積層する際の投錨効果(アンカー効果)に優れ、人体や環境に対して悪い影響を及ぼすことの殆どないポリエチレンテレフタレート製の不織布がより好適に用いられる。
【0033】
本発明において、上記硬質発泡体は、発泡倍率が3〜20倍、及び圧縮弾性率が5Mpa以上とされる。発泡倍率が3未満の場合には十分な気泡の長軸と短軸の比が得られず、所望強度が得られことがあり、20を超える場合は個々の気泡における気泡壁が薄くなって、十分な圧縮強度を発現し得ないことがある。
【0034】
また、圧縮弾性率が5Mpa未満の場合は床下地材としての十分な剛性が得られないことがある。圧縮弾性率の上限は特に認められないが、50Mpaを超える場合は脆くなって、施工時などに欠けや割れが起こりやすくなることがあるので注意を要する。
【0035】
本発明の床下地材は、上記硬質発泡体からなるものであれば特に限定されず、上記発泡体が単体で用いられたものであってもよいし、例えば他の硬質板状体と積層されるなどの方法で組み合わせて用いられたものであってもよい。
【0036】
上記硬質板状体としては、特に限定されず、例えば、以下の(ア)〜(オ)に示すようなものが挙げられる。
(ア)単板(単一材料のむく板)
(イ)合板など[ベニヤ、パーチクルボード、繊維板(ファイバーボードともいう:MDFなど)など従来から床材として使われているもの]
(ウ)合成樹脂板[ポリエチレン樹脂板(超高分子量ポリエチレン板が望ましい)、ポリプロピレン樹脂板、塩化ビニル樹脂板など]
(エ)繊維強化合成樹脂板(ガラス繊維などで繊維強化された、ポリエステル樹脂板、エポキシ樹脂板、硬質ポリウレタン樹脂板など)
(オ)無機質板(磁器タイル、石板など)
【0037】
上記硬質発泡体及び硬質板状体は多層構造に積層されたものであってもよく、また、本発明の効果を損なわない限り部分的に組み合わせて用いられたものであってもよい。
【0038】
本発明の床構造は、パーチクルボードまたは合板からなる床材に、上記の床下地材が積層されて用いられることを特徴とするものである。上記積層方法としては、特に限定されず、例えば、パーチクルボードまたは合板が予め床材として施工された床面上に、上記床下地材が全面もしくは部分的に積層されて用いられてもよいし、パーチクルボードまたは合板からなる床材が施工される前に、全面もしくは部分的に上記床下地材が予め積層されて用いられてもよい。
【0039】
本発明の建物は、上記床構造が用いられたものであれば特に限定されるものではなく、一般の戸建て住宅や集合住宅などの多層階住宅等に好適に用いられるが、特に多層階に限られて用いられるものではなく、1階の床構造に用いられたものであってもよい。
【0040】
(作用)
本発明によれば、内在する気泡のアスペクト比Dz/Dxyの平均値が1.1〜4.0、発泡倍率が3〜20倍、及び圧縮弾性率が5MPa以上である硬質発泡体からなることを特徴とするので、優れた防音性を有するとともに、上記発泡体はその厚み方向に圧縮力を受けると、厚み方向に長い紡錘形の気泡の長軸方向に力がかかることになるので厚み方向に高い圧縮強度を示し、「ふかふか」しない良好な歩行感を有するものとなる。
【0041】
【発明の実施の形態】
本発明をさらに詳しく説明するために、以下に実施例を挙げるが、本発明はこれらの実施例のみに限定されるものではない。
(実施例)
1.ポリオレフィン系樹脂発泡体シートの作製
(1)変性ポリオレフィン系樹脂の調製
変性ポリオレフィン系樹脂を調製するために、同方向回転2軸スクリュー押出機(プラスチック工学研究所社製、型式「BT40型」)を用いた。この押出機は、セルフワイピング2条スクリューを備え、そのL/Dは35、D(直径)は39mmである。シリンダーバレルは押出機の上流から下流側にかけて第6バレルに区分され、成形ダイは3穴ストランドダイであり、第4バレルには揮発分を回収するための真空ベントが設置されている。以下の操作においては、第1バレルの温度を180℃、第2バレルから第6バレルの温度および3穴ストランドダイの温度を220℃に設定し、スクリュー回転数を150rpmに設定した。
【0042】
上記2軸スクリュー押出機の第1バレル後端に備えられたホッパーから、ポリオレフィン系樹脂としてランダムポリマー型のポリプロピレン樹脂(日本ポリケム社製、商品名「EX6」、MFR1.8g/10分、密度0.9g/cm3、)を10kg/時間の供給量で押出機内に投入した。次に、第3バレルから、ジビニルベンゼン(変性用モノマー)および2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3(有機過酸化物)の混合物を押出機内に注入し、これらを均一に溶融混練して、変性ポリプロピレン樹脂を調製した。
【0043】
次いで、この変性ポリプロピレン樹脂を3穴ストランドダイから吐出した後、水冷し、ペレタイザーで切断して、変性ポリプロピレン樹脂のペレットを得た。変性用モノマーおよび有機過酸化物の注入量は、ポリプロピレン樹脂100重量部に対し、変性用モノマー0.5重量部および有機過酸化物0.1重量部であった。また、押出機内で発生した揮発分は真空ベントにより真空吸引した。
【0044】
(2)発泡性シートの作製
上記で得られた変性ポリプロピレン樹脂に未変性ポリプロピレン樹脂および発泡剤を添加するために、同方向回転2軸スクリュー押出機(日本製鋼所社製、型式「TEX−44型」)を用いた。この押出機は、セルフワイピング2条スクリューを備え、そのL/Dは45.5、D(直径)は47mmである。シリンダーバレルは押出機の上流から下流側にかけて第1バレルから第12バレルに区分され、第12バレルの先端部には成形ダイとしてTダイが設定されている。また、発泡剤を供給するために、第6バレルにはサイドフィーダーが設置されており、第11バレルには揮発分を回収するための真空ベントが設置されている。以下の操作においては、第1バレルを常時冷却し、第1ゾーン(第2バレルから第4バレル)の温度を150℃、第2ゾーン(第5バレルから第8バレル)の温度を170℃、第3ゾーン(第9バレルから第12バレル)の温度を180℃、第4ゾーン(Tダイおよびアダプター部)の温度を160℃に設定し、スクリュー回転数を40rpmに設定した。
【0045】
上記2軸スクリュー押出機の第1バレル後端に備えられたホッパーから、前工程(1)で得られたペレット状の変性ポリプロピレン樹脂、および未変性のホモポリマー型のポリプロピレン樹脂(日本ポリケム社製、商品名「FY4」、MFR5.0g/10分、密度0.9g/cm3)を、それぞれ10kg/時間(合計20kg/時間)の供給量で押出機内に投入した。また、第6バレルに設けられたサイドフィーダーから、発泡剤としてアゾジカルボンアミド(ADCA)を1.0kg/時間の速度で供給量で押出機内に投入し、これらを均一に溶融混練して、発泡性ポリプロピレン樹脂組成物を調製した。次いで、この樹脂組成物をTダイから押し出し、幅1100mm、厚み0.7mmの発泡性シートを作製した。
【0046】
(3)面材付き発泡性シートの作製
上記で得られた発泡性シートの両面に、面材としてポリエチレンテレフタレート製の不織布(東洋紡績社製、商品名「スパンボンドエクーレ6301A」、坪量30g/m2)を重ね、プレス成形機を用いて、180℃の加熱加圧条件で積層して、2m×1mの面材付き発泡性シートを得た。
【0047】
(4)発泡
次いで、上記面材付き発泡性シートを、230℃の加熱炉中で約10分間加熱して、発泡させ、面材付きの硬質発泡体からなる床下地材(厚み6mm)を得た。
【0048】
(比較例1)
12mm厚の合板を床下地材として使用した。
(比較例2)
高比重充填材(砂鉄)及びアスファルトからなる混練物をポリエステル不織布でサンドイッチした厚み6mmの遮音シート単体を床下地材として使用した。
【0049】
上記実施例及び比較例について以下の方法で評価した。評価結果は表1に示した。
(1)硬質発泡体の特性測定
上記実施例により得られた硬質発泡体の特性{▲1▼気泡のアスペクト比(Dz/Dxy)の平均値、▲2▼発泡倍率}を以下の方法で測定した。
▲1▼気泡のアスペクト比(Dz/Dxy)の平均値
硬質発泡体を厚み方向(z方向)にカットし、断面の中央部を光学顕微鏡で観察しながら15倍の拡大写真を撮った。次いで、写真に写った全ての気泡のDzとDxyをノギスで測定した後、気泡毎のDz/Dxyを算出し、気泡100個分のDz/Dxyの個数平均を算出して、アスペクト比(Dz/Dxy)の平均値とした。但し、実際のDzが0.05mm以下および10mm以上の気泡は除外した。
▲2▼発泡倍率
硬質発泡体よりシート状の試料をカッターで切り出した後、JIS K6767に準拠して、見掛け密度を測定し、その逆数を発泡倍率(倍)とした。
【0050】
(2)床下地材の性能評価
上記実施例及び比較例の床下地材の特性(▲1▼圧縮弾性率、▲2▼曲げ剛性)を以下の方法で測定した。
▲1▼圧縮弾性率
JIS K7220に準拠して圧縮弾性率を測定した。
▲2▼曲げ剛性
JIS K7221に準拠し、スパン100mm、速度5mm/分の条件で3点曲げ試験を行い、23℃における曲げ剛性を求めた。
(3)床構造の評価
実施例及び比較例2の床下地材を厚み6mmの合板に接着剤(積水化学工業社製、変性シリコーン弾性接着剤「セキスイボンド#65」)で積層し、比較例1の床下地材とともにその特性(▲1▼防音性能、▲2▼沈み込み量)を以下の方法で評価した。
▲1▼防音性能
JIS A1418に準拠して軽量衝撃レベルを測定し、防音性能LLとして表示した
▲2▼沈み込み量
直径50mmの圧子端子を床材(硬質板状体)に800Nの力で押し付けたときの変位を沈み込み量とした(3mm以上沈み込むと歩行感が悪いとされる)。
【0051】
【表1】

Figure 0004220831
【0052】
表1から明らかなように、本発明の実施例においては、防音性が良好で且つ沈み込み量が小さいことがが判明した。
【0053】
【発明の効果】
以上説明したように、本発明によれば、優れた防音性を有するとともに、「ふかふか」しない良好な歩行感を有する床下地材、床構造及びそれを用いた建物を提供することができる。
【図面の簡単な説明】
【図1】図1(a)は硬質発泡体の概略斜視図、図1(b)は図1(a)中のz方向に平行な断面の一部の拡大概略図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a floor base material, a floor structure, and a building using the floor base material in a multi-storey house and the like, and more particularly, to a floor base material, a floor structure, and a building using the floor base material that are suitably used for a house that requires soundproofing. .
[0002]
[Prior art]
Conventionally, in a floor structure in a multi-story house or the like, for example, as described in Patent Document 1, a floor beam is supported between thick horizontal members such as a trunk difference and joists supported by a pillar, and on that, In many cases, a floor base material made of a structural face plate was attached and a floor finishing material was attached to the upper surface of the floor base material and finished. Moreover, in the said patent document 1, while connecting between several pillars by a horizontal member about the above, while forming the floor-material support frame which has a square plane, on the upper surface of the said floor-material support frame, it is substantially square shape. There has been proposed a support structure for a floor board in a wooden building in which a notch is provided and a structural panel is fitted into the notch to support the peripheral edge.
[0003]
However, in the floor structure disclosed above, a floor finishing material is simply stuck and laminated on a floor structure board such as a floor base material, and the soundproofing property in the floor structure is very poor. It was. Therefore, in general, in order to improve the above-described soundproofing, a soundproofing floor structure in which a buffer layer such as a resin foam or a nonwoven fabric having soundproofing properties is laminated and integrated on the back surface of a floor base material or floor finishing material, etc. Was used.
[0004]
However, since the superiority or inferiority of the soundproofing depends on the performance of the buffer layer, the conventional buffer layer has been improved, but according to the study of the present inventors, the conventional buffer layer is usually 5 mm or more in thickness. In addition, since the buffer layer itself is generally flexible, there is a so-called “fluffy” problem in the walking feeling when walking on the soundproof floor as described above. For this reason, it has been required to achieve both soundproofing and walking feeling.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-317562
[Problems to be solved by the invention]
In view of the above-described conventional problems, an object of the present invention is to provide a floor base material, a floor structure, and a building using the same, which have excellent soundproofing properties and have a good feeling of walking without being “fluffy”. .
[0007]
[Means for Solving the Problems]
The floor base material according to claim 1 is a hard foam whose average value of the aspect ratio Dz / Dxy of the internal bubbles is 1.1 to 4.0, the expansion ratio is 3 to 20 times, and the compression modulus is 5 MPa or more. It consists of a body.
The floor structure according to claim 2 is characterized in that the floor base material according to claim 1 is laminated on a floor material made of particle board or plywood.
The building according to claim 3 is characterized in that the floor structure according to claim 2 is used.
[0008]
Hereinafter, the present invention will be described in detail.
In the rigid foam in the present invention, the average value of the aspect ratio Dz / Dxy of the internal bubbles is set to 1.1 to 4.0.
[0009]
The term “aspect ratio” used in the present specification is the number (arithmetic) average value of the ratio of the maximum diameter in the fixed direction in the bubbles in the hard foam, and the diameter Dz in the sheet thickness direction and the diameter Dxy in the in-plane direction Expressed as the ratio Dz / Dxy.
[0010]
That is, as shown in FIG. 1, an enlarged photograph 10 times of an arbitrary cross section (b) parallel to the sheet thickness direction (referred to as z direction) of the hard foam (a) is taken, and randomly taken in this photograph. The following two constant direction maximum diameters (Dz, Dxy) in at least 50 selected bubbles are measured, and the number average value is calculated.
[0011]
Dz: Maximum diameter parallel to the z direction of the bubbles in the hard foam Dxy: Maximum sheet width or length direction of the bubbles in the hard foam, that is, a maximum parallel to the plane direction (referred to as the xy direction) perpendicular to the z direction Diameter [0012]
When the aspect ratio of the internal bubbles is within the above range, when the hard foam in the present invention receives a compressive force in the thickness direction, a force is applied in the major axis direction of the spindle-shaped bubbles that are long in the thickness direction. Therefore, high compressive strength is shown in the thickness direction.
[0013]
When the average value of the aspect ratio is less than 1.1, the bubbles are almost spherical, and the compression elastic modulus and compression strength due to the spindle shape cannot be improved, and it becomes difficult to obtain a good walking feeling. When the average value of the aspect ratio exceeds 4.0, the hard foam tends to break when subjected to an impact, and cracks and chips are likely to occur. Moreover, it is preferable that the average value of Dxy of the bubble inherent in the said hard foam is 500 micrometers or more.
[0014]
Usually, there are foams obtained by chemical foaming and those obtained by physical foaming, but the former method is preferred when the hard foam is laminated to another material by thermal fusion.
[0015]
In addition, as a material used for the hard foam, for example, a polyolefin resin is preferable because it is excellent in soundproofing properties and excellent in recyclability and incineration discardability.
[0016]
In the above, the foam by chemical foaming is prepared by, for example, dispersing a thermal decomposition type chemical foaming agent that generates a decomposition gas by heating in a polyolefin resin composition in advance, and then obtaining the foamable composition once in a sheet-like raw material. On the contrary, it can be produced by heating and foaming with a gas generated from a foaming agent. Representative examples of the pyrolytic chemical foaming agent include azodicarbonamide, benzenesulfonyl hydrazide, dinitrosopentamethylenetetramine, toluenesulfonyl hydrazide, 4,4-oxybis (benzenesulfonyl hydrazide) and the like. The addition amount of the chemical foaming agent is preferably 2 to 20 parts by weight with respect to 100 parts by weight of the resin composition.
[0017]
Examples of the polyolefin resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, isotactic or syndiotactic homopolypropylene, block propylene copolymer, random propylene copolymer, Examples include polybutene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid ester copolymer. These may be used singly or in combination of two or more.
[0018]
In the polyolefin-based resin, other thermoplastic resin, for example, a compatible thermoplastic resin such as polystyrene, an elastomer, or the like may be mixed and used within a range of 30% by weight or less.
[0019]
The melt flow rate (MFR) of the polyolefin resin is preferably measured in accordance with JIS K 7210 because it will reduce the foaming stability if it is too large, or conversely too small. The measured value is 0.1 to 20 g / 10 min.
[0020]
The polyolefin resin may be cross-linked as necessary. The crosslinking method is not particularly limited. For example, an electron beam crosslinking method in which ionizing radiation such as an electron beam is irradiated, a chemical crosslinking method using an organic peroxide, or a silane-modified resin is used. And the silane crosslinking method.
[0021]
If the degree of crosslinking of the polyolefin-based resin is too high, the foaming ratio is lowered and the thermoformability is lowered. If it is too low, the thermal stability is lowered, and the cell during foaming (cell wall) ) May break, and uniform bubbles may not be obtained. Therefore, the gel fraction serving as an index for crosslinking is preferably 10 to 30% by weight, more preferably 15 to 25% by weight.
[0022]
In the present invention, the gel fraction is the percentage (weight) of the weight of the polyolefin resin foam before immersion in xylene after the polyolefin resin foam is immersed in xylene at 120 ° C. for 24 hours. It is.
[0023]
The production method for obtaining a rigid foam is not particularly limited, but preferably, a polyolefin resin and a modifying monomer are melt-mixed to obtain a modified polyolefin, and a thermally decomposable chemical foaming agent is dispersed in the modified polyolefin. This is a method in which a foamable sheet is chemically foamed by heating the resulting foamable sheet to a temperature equal to or higher than the decomposition temperature of the thermally decomposable chemical foaming agent after once forming the base resin composition into a sheet-like raw material.
[0024]
The modifying monomer used in the method of the present invention is a compound having two or more functional groups capable of radical reaction in the molecule. Examples of the functional group include an oxime group, a maleimide group, a vinyl group, an allyl group, and a (meth) acryl group. The modifying monomer is preferably a dioxime compound, a bismaleimide compound, divinylbenzene, an allyl polyfunctional monomer, or a (meth) acrylic polyfunctional monomer. The modifying monomer may be a cyclic compound having two or more ketone groups in the molecule, such as a quinone compound.
[0025]
By adopting the resin modification method as described above, it is possible to foam the foamed sheet at normal pressure despite the low degree of crosslinking of the molded foam sheet.
[0026]
As a method for shaping the sheet-like foamable raw material, methods generally performed in plastic molding processes such as press molding, blow molding, calendering molding, injection molding, etc. can be applied in addition to extrusion molding. A method of immediately forming a foamable resin composition discharged from a screw extruder is preferable from the viewpoint of productivity. In this method, a continuous original fabric sheet having a constant width can be obtained.
[0027]
The chemical foaming of the sheet-shaped original fabric is usually performed in a temperature range not lower than the decomposition temperature of the pyrolytic chemical foaming agent and not higher than the thermal decomposition temperature of the thermoplastic resin. In particular, as a continuous foaming apparatus, in addition to a take-off type foaming machine that foams while taking out a foam on the outlet side of a heating furnace, a belt type foaming machine, a vertical or horizontal type foaming furnace, a hot air thermostat, or a hot bath Foaming oil baths, metal baths, salt baths, etc. are used.
[0028]
The method for obtaining the above-mentioned rigid foam composed of spindle-shaped bubbles, that is, a foam having an average aspect ratio Dz / Dxy of the bubbles of 1.1 to 4.0 is not particularly limited. A method of laminating a face material having a strength capable of suppressing the foaming force in the in-plane direction (xy direction) of the original fabric during foaming on at least one side of the original fabric before foaming is preferable.
[0029]
By laminating the face material on at least one surface of the original fabric before foaming, foaming in the two-dimensional direction (xy direction) in the surface of the original fabric during foaming is suppressed, and foaming is performed only in the thickness direction (z direction). Thus, the bubbles inside the obtained foam sheet become spindle-shaped bubbles whose major axis is oriented in the thickness direction.
[0030]
The face material is not particularly limited as long as it can withstand the temperature above the foaming temperature of the raw fabric, that is, the temperature above the melting point of the polyolefin resin and the temperature above the decomposition temperature of the thermal decomposition type chemical foaming agent. However, for example, paper, cloth, wood, iron, non-ferrous metal, woven or non-woven fabric made of organic fiber or inorganic fiber, cold water, glass fiber, carbon fiber, etc. are preferably used. Further, for example, a sheet having releasability such as a Teflon (registered trademark) sheet is used as a face material, and after the foam is foamed in the thickness direction, the releasable sheet is peeled off to obtain a foam sheet. May be.
[0031]
However, when using a face material made of a material other than the polyolefin-based resin, it is preferable to keep the amount used to a minimum from the viewpoint of recyclability.
[0032]
Among the face materials, a nonwoven fabric made of polyethylene terephthalate which is excellent in anchoring effect (anchor effect) at the time of lamination and hardly adversely affects the human body and the environment is more preferably used.
[0033]
In the present invention, the hard foam has an expansion ratio of 3 to 20 times and a compression elastic modulus of 5 Mpa or more. When the expansion ratio is less than 3, a sufficient ratio between the major axis and the minor axis of the bubbles cannot be obtained, and the desired strength may be obtained. When the expansion ratio exceeds 20, the bubble walls in the individual bubbles become thin, In some cases, sufficient compressive strength cannot be exhibited.
[0034]
In addition, when the compression elastic modulus is less than 5 Mpa, sufficient rigidity as a floor base material may not be obtained. The upper limit of the compressive elastic modulus is not particularly recognized. However, if it exceeds 50 Mpa, it becomes brittle, and care must be taken because chipping and cracking may easily occur during construction.
[0035]
The floor base material of the present invention is not particularly limited as long as it is made of the above-mentioned hard foam, and the above-mentioned foam may be used alone or, for example, laminated with another hard plate-like body. It may be used in combination by a method such as
[0036]
It does not specifically limit as said hard plate-shaped object, For example, what is shown to the following (a)-(e) is mentioned.
(A) Single board (single board of single material)
(B) Plywood, etc. [Veneer, particle board, fiberboard (also called fiberboard: MDF, etc.) conventionally used as flooring]
(C) Synthetic resin board [polyethylene resin board (preferably ultra high molecular weight polyethylene board), polypropylene resin board, vinyl chloride resin board, etc.]
(D) Fiber reinforced synthetic resin plates (polyester resin plates, epoxy resin plates, rigid polyurethane resin plates, etc., reinforced with glass fibers)
(E) Inorganic board (porcelain tile, stone board, etc.)
[0037]
The hard foam and the hard plate may be laminated in a multilayer structure, or may be used in combination as long as the effects of the present invention are not impaired.
[0038]
The floor structure of the present invention is characterized in that the floor base material is laminated and used on a floor material made of particle board or plywood. The lamination method is not particularly limited. For example, the floor base material may be used by laminating the floor base material entirely or partially on a floor surface on which a particle board or plywood is previously constructed as a floor material. Alternatively, before the floor material made of plywood is constructed, the floor base material may be preliminarily laminated and used in whole or in part.
[0039]
The building of the present invention is not particularly limited as long as the above floor structure is used, and is suitably used for a multi-storey house such as a general detached house or an apartment house. It may be used for the floor structure of the first floor instead of being used.
[0040]
(Function)
According to the present invention, the average value of the aspect ratio Dz / Dxy of the internal bubbles is 1.1 to 4.0, the expansion ratio is 3 to 20 times, and the rigid foam is a compression elastic modulus of 5 MPa or more. Therefore, when the foam is subjected to a compressive force in the thickness direction, a force is applied in the major axis direction of the spindle-shaped bubbles that are long in the thickness direction. It shows high compressive strength and has a good feeling of walking without being "fluffy".
[0041]
DETAILED DESCRIPTION OF THE INVENTION
In order to describe the present invention in more detail, examples will be given below, but the present invention is not limited to these examples.
(Example)
1. Preparation of polyolefin resin foam sheet (1) Preparation of modified polyolefin resin To prepare a modified polyolefin resin, the same direction rotating twin screw extruder (Plastics Engineering Laboratory Co., Ltd., model "BT40 type") was used. Using. This extruder is equipped with a self-wiping double thread, and its L / D is 35 and D (diameter) is 39 mm. The cylinder barrel is divided into a sixth barrel from the upstream side to the downstream side of the extruder, the forming die is a three-hole strand die, and a vacuum vent for collecting volatile matter is installed in the fourth barrel. In the following operations, the temperature of the first barrel was set to 180 ° C., the temperature from the second barrel to the sixth barrel and the temperature of the 3-hole strand die were set to 220 ° C., and the screw rotation speed was set to 150 rpm.
[0042]
From the hopper provided at the rear end of the first barrel of the twin screw extruder, a random polymer type polypropylene resin (trade name “EX6” manufactured by Nippon Polychem Co., Ltd., MFR 1.8 g / 10 min, density 0 .9 g / cm 3 ) was fed into the extruder at a feed rate of 10 kg / hour. Next, a mixture of divinylbenzene (modifying monomer) and 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 (organic peroxide) is injected into the extruder from the third barrel. These were uniformly melt-kneaded to prepare a modified polypropylene resin.
[0043]
Next, the modified polypropylene resin was discharged from a three-hole strand die, cooled with water, and cut with a pelletizer to obtain modified polypropylene resin pellets. The amount of the modifying monomer and the organic peroxide injected was 0.5 part by weight of the modifying monomer and 0.1 part by weight of the organic peroxide with respect to 100 parts by weight of the polypropylene resin. Moreover, the volatile matter generated in the extruder was vacuumed by a vacuum vent.
[0044]
(2) Production of expandable sheet In order to add unmodified polypropylene resin and a foaming agent to the modified polypropylene resin obtained above, the same direction rotating twin screw extruder (manufactured by Nippon Steel Works, model "TEX-44" Type "). This extruder is equipped with a self-wiping twin screw, and its L / D is 45.5 and D (diameter) is 47 mm. The cylinder barrel is divided from the first barrel to the twelfth barrel from the upstream side to the downstream side of the extruder, and a T die is set as a forming die at the tip of the twelfth barrel. Further, in order to supply the foaming agent, a side feeder is installed in the sixth barrel, and a vacuum vent for collecting volatile components is installed in the eleventh barrel. In the following operation, the first barrel is always cooled, the temperature of the first zone (second barrel to fourth barrel) is 150 ° C., the temperature of the second zone (fifth barrel to eighth barrel) is 170 ° C., The temperature of the third zone (9th barrel to 12th barrel) was set to 180 ° C., the temperature of the fourth zone (T die and adapter part) was set to 160 ° C., and the screw rotation speed was set to 40 rpm.
[0045]
From the hopper provided at the rear end of the first barrel of the above twin screw extruder, the pellet-shaped modified polypropylene resin obtained in the previous step (1) and the unmodified homopolymer type polypropylene resin (manufactured by Nippon Polychem Co., Ltd.) , Trade name “FY4”, MFR 5.0 g / 10 min, density 0.9 g / cm 3 ) were each fed into the extruder at a feed rate of 10 kg / hr (total 20 kg / hr). Also, azodicarbonamide (ADCA) as a foaming agent is introduced into the extruder at a supply rate of 1.0 kg / hour from the side feeder provided in the sixth barrel, and these are uniformly melt-kneaded and foamed. A functional polypropylene resin composition was prepared. Next, this resin composition was extruded from a T die to produce a foamable sheet having a width of 1100 mm and a thickness of 0.7 mm.
[0046]
(3) Production of expandable sheet with face material On both surfaces of the foamable sheet obtained above, a polyethylene terephthalate nonwoven fabric (trade name “Spunbond Ecule 6301A” manufactured by Toyobo Co., Ltd.), basis weight 30 g as a face material / M 2 ) and stacked under a heating and pressing condition of 180 ° C. using a press molding machine to obtain a 2 m × 1 m foam sheet with a face material.
[0047]
(4) Foaming Next, the foamable sheet with a face material is heated in a heating furnace at 230 ° C. for about 10 minutes to be foamed to obtain a floor base material (thickness 6 mm) made of a hard foam with face material. It was.
[0048]
(Comparative Example 1)
A 12 mm thick plywood was used as the floor base material.
(Comparative Example 2)
A 6 mm-thick sound insulation sheet alone, in which a kneaded material composed of a high specific gravity filler (sand iron) and asphalt was sandwiched between polyester nonwoven fabrics, was used as a floor base material.
[0049]
The above examples and comparative examples were evaluated by the following methods. The evaluation results are shown in Table 1.
(1) Characteristic measurement of hard foam The characteristics {{1} average value of the aspect ratio (Dz / Dxy) of bubbles, {circle around (2)} foaming magnification}} of the hard foam obtained by the above-mentioned examples were measured by the following methods. did.
(1) Average value of bubble aspect ratio (Dz / Dxy) A hard foam was cut in the thickness direction (z direction), and an enlarged photograph of 15 times was taken while observing the central part of the cross section with an optical microscope. Next, after measuring Dz and Dxy of all the bubbles in the photograph with a caliper, Dz / Dxy for each bubble is calculated, the number average of Dz / Dxy for 100 bubbles is calculated, and the aspect ratio (Dz / Dxy). However, bubbles having an actual Dz of 0.05 mm or less and 10 mm or more were excluded.
(2) Foaming ratio After cutting a sheet-like sample from a hard foam with a cutter, the apparent density was measured according to JIS K6767, and the reciprocal number was taken as the foaming ratio (times).
[0050]
(2) Performance Evaluation of Floor Base Material The characteristics ((1) compression elastic modulus, (2) bending rigidity) of the floor base materials of the above-mentioned examples and comparative examples were measured by the following methods.
(1) Compression modulus The compression modulus was measured according to JIS K7220.
(2) Flexural rigidity Based on JIS K7221, a three-point bending test was performed under the conditions of a span of 100 mm and a speed of 5 mm / min, and the flexural rigidity at 23 ° C. was determined.
(3) Evaluation of floor structure The floor base material of Example and Comparative Example 2 was laminated on a 6 mm thick plywood with an adhesive (manufactured by Sekisui Chemical Co., Ltd., modified silicone elastic adhesive “Sekisui Bond # 65”), and a comparative example The characteristics ((1) soundproofing performance, (2) sinking amount) of the floor base material of 1 were evaluated by the following methods.
(1) Soundproof performance Lightweight impact level was measured according to JIS A1418 and displayed as soundproof performance (LL) (2) Presser terminal with a sinking diameter of 50 mm was pressed against the floor material (hard plate) with a force of 800 N The amount of subsidence was taken as the amount of subsidence.
[0051]
[Table 1]
Figure 0004220831
[0052]
As is apparent from Table 1, it was found that in the examples of the present invention, the soundproofing property was good and the sinking amount was small.
[0053]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a floor base material, a floor structure, and a building using the floor base material that have excellent soundproofness and have a good walking feeling that is not “fluffy”.
[Brief description of the drawings]
FIG. 1 (a) is a schematic perspective view of a hard foam, and FIG. 1 (b) is an enlarged schematic view of a part of a cross section parallel to the z direction in FIG. 1 (a).

Claims (3)

内在する気泡のアスペクト比Dz/Dxyの平均値が1.1〜4.0、発泡倍率が3〜20倍、及び圧縮弾性率が5MPa以上である硬質発泡体からなることを特徴とする床下地材。A floor base comprising a rigid foam having an average aspect ratio Dz / Dxy of internal bubbles of 1.1 to 4.0, an expansion ratio of 3 to 20 times, and a compression modulus of 5 MPa or more. Wood. パーチクルボードまたは合板からなる床材に、請求項1記載の床下地材が積層されて用いられることを特徴とする床構造。A floor structure comprising the floor base material according to claim 1 laminated on a floor material made of particle board or plywood. 請求項2記載の床構造が用いられたことを特徴とする建物。A building using the floor structure according to claim 2.
JP2003136297A 2003-05-14 2003-05-14 Floor base material, floor structure and building using the same Expired - Lifetime JP4220831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136297A JP4220831B2 (en) 2003-05-14 2003-05-14 Floor base material, floor structure and building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136297A JP4220831B2 (en) 2003-05-14 2003-05-14 Floor base material, floor structure and building using the same

Publications (2)

Publication Number Publication Date
JP2004339757A JP2004339757A (en) 2004-12-02
JP4220831B2 true JP4220831B2 (en) 2009-02-04

Family

ID=33526314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136297A Expired - Lifetime JP4220831B2 (en) 2003-05-14 2003-05-14 Floor base material, floor structure and building using the same

Country Status (1)

Country Link
JP (1) JP4220831B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874592B2 (en) * 2005-07-15 2012-02-15 積水化学工業株式会社 Spacer for floor base material and manufacturing method thereof
JP2007046227A (en) * 2005-08-05 2007-02-22 Sekisui Chem Co Ltd Substrate material for non-wood-based floor finishing material
JP6696726B2 (en) * 2014-12-10 2020-05-20 大日本印刷株式会社 Floor cosmetics
JP7144226B2 (en) * 2018-07-23 2022-09-29 積水化学工業株式会社 Floor sound insulation method
JP7010319B2 (en) * 2020-03-02 2022-01-26 大日本印刷株式会社 Floor lumber

Also Published As

Publication number Publication date
JP2004339757A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
KR102615688B1 (en) Method of making coextruded, crosslinked multilayer polyolefin foam structures from recycled crosslinked polyolefin foam material
US20210260857A1 (en) Method of making coextruded, cross-linked polyolefin foam with tpu cap layers
KR20180111603A (en) Coextruded, crosslinked polyolefin foam with tpu cap layers
JP3354924B2 (en) Polyolefin resin composite laminate
JP4874592B2 (en) Spacer for floor base material and manufacturing method thereof
KR20010110732A (en) Polyolefin resin composite laminate
JP4220831B2 (en) Floor base material, floor structure and building using the same
JP2007046227A (en) Substrate material for non-wood-based floor finishing material
JP4286590B2 (en) Underfloor spacer, floor heating structure and building using the same
JP2008303593A (en) Tatami mat forming member and thin tatami mat using the same
JP2001132220A (en) Floor covering material, its manufacturing method, and mansion
JP3476323B2 (en) Floor material
JP4751572B2 (en) Thermoplastic resin foam and soundproofing heating flooring
JP3366162B2 (en) Floor material
JP3967832B2 (en) Soundproof hot water heating floor
JP3429749B2 (en) Tatami mat core made of polyolefin resin composite foam and thin tatami mat using the same
JP3448449B2 (en) Flooring and condominiums using it
JP3429713B2 (en) Tatami flooring
JP3947527B2 (en) Hot water heating floor and floor heating system
JP2000325218A (en) Mat for soundproof floor
JP2001132218A (en) Soundproof hot-water heating floor
JP2000071364A (en) Production of floor material
JP2000045503A (en) Floor material
JP5934133B2 (en) Composite foam
JP2001050550A (en) Underfloor ground material with heating function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4220831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

EXPY Cancellation because of completion of term