JP4872937B2 - Fine bubble generating apparatus and method - Google Patents

Fine bubble generating apparatus and method Download PDF

Info

Publication number
JP4872937B2
JP4872937B2 JP2008023456A JP2008023456A JP4872937B2 JP 4872937 B2 JP4872937 B2 JP 4872937B2 JP 2008023456 A JP2008023456 A JP 2008023456A JP 2008023456 A JP2008023456 A JP 2008023456A JP 4872937 B2 JP4872937 B2 JP 4872937B2
Authority
JP
Japan
Prior art keywords
flow
pump
fine bubble
flow rate
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008023456A
Other languages
Japanese (ja)
Other versions
JP2008110346A (en
Inventor
みさき 隅倉
政隆 日▲高▼
昭二 渡辺
鉄郎 芳賀
伊智朗 圓佛
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008023456A priority Critical patent/JP4872937B2/en
Publication of JP2008110346A publication Critical patent/JP2008110346A/en
Application granted granted Critical
Publication of JP4872937B2 publication Critical patent/JP4872937B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微細気泡の径と発生量を安定化させた微細気泡生成装置及び方法に関する。   The present invention relates to a fine bubble generating apparatus and method in which the diameter and generation amount of fine bubbles are stabilized.

浄化,殺菌,消毒における微細気泡の利用と効果を記載したものに〔非特許文献1〕がある。〔非特許文献1〕には、微細気泡は、マイクロバブルと呼ばれる直径が50マイクロメータ以下の気泡であり、一般に、この領域の気泡は、気泡内の気体が周囲の液相へ溶け込むことによって直径が減少するため、表面張力の効果により内部が高圧,高温になり、消滅時にOHラジカルなどの酸化力の高いフリーラジカルと圧力波を生じることが記載されている。以下、微細気泡は、直径約50マイクロメータ以下の気泡であると定義する。   [Non-Patent Document 1] describes the use and effect of fine bubbles in purification, sterilization, and disinfection. In [Non-Patent Document 1], fine bubbles are bubbles called microbubbles having a diameter of 50 micrometers or less, and in general, bubbles in this region have a diameter due to the gas in the bubbles being dissolved into the surrounding liquid phase. Therefore, it is described that the internal pressure becomes high pressure and high temperature due to the effect of surface tension, and a pressure wave is generated with free radicals having high oxidizing power such as OH radicals when extinguished. Hereinafter, a fine bubble is defined as a bubble having a diameter of about 50 micrometers or less.

一般に、微細気泡の生成方法としては、気体と液体の気液二相流を、旋回流や旋回流の剪断,攪拌,ベンチュリ管等を利用して微細気泡化する方法が知られている。又、気液二相流を加圧し、その後狭隘流路で急激に減圧して溶存気体を微細気泡として析出させる方法がある。この方法は、他の方法と比較して、生成気泡量あたりの消費電力量が高い傾向にあるが、気泡径が比較的小さい領域に分布する。   In general, as a method for generating fine bubbles, there is known a method in which a gas-liquid two-phase flow of gas and liquid is made into fine bubbles using a swirl flow, a swirl of a swirl flow, stirring, a venturi tube, or the like. Further, there is a method in which a gas-liquid two-phase flow is pressurized and then rapidly reduced in a narrow channel to precipitate dissolved gas as fine bubbles. This method tends to have a higher power consumption per generated bubble amount than other methods, but is distributed in a region where the bubble diameter is relatively small.

〔特許文献1〕には、エゼクタによりオゾンガスを吸引して液相に混合し、ポンプで加圧した気液二相流をオリフィスで減圧し、溶解槽に噴射して微細気泡化する加圧式オゾン処理装置が開示され、オリフィスにおける設定圧力は4kg/cm2とし、オリフィス径d/管路径D比=0.4とすることが記載されている。 In [Patent Document 1], ozone gas is sucked by an ejector and mixed into a liquid phase, and a gas-liquid two-phase flow pressurized by a pump is decompressed by an orifice and injected into a dissolution tank to form fine bubbles. A processing apparatus is disclosed, and it is described that a set pressure at an orifice is 4 kg / cm 2 , and an orifice diameter d / pipeline diameter D ratio = 0.4.

〔特許文献2〕には、〔特許文献1〕と同様の構成で、半月状のスリットを有するオリフィスを用い、ポンプのインバータ制御を行い微細気泡の生成を行うマイクロバブル発生装置が開示されている。インバータ制御でポンプの回転数を変えることにより、気体が混入して吐出量及び吐出圧の変動した場合に、ポンプの吐出圧力を最適圧力に調整することが記載されている。   [Patent Document 2] discloses a microbubble generator having a configuration similar to that of [Patent Document 1] and using a orifice having a half-moon shaped slit to generate a fine bubble by performing inverter control of a pump. . It is described that the pump discharge pressure is adjusted to the optimum pressure when the gas is mixed and the discharge amount and the discharge pressure fluctuate by changing the rotation speed of the pump by inverter control.

〔特許文献3〕には、加圧した気液二相流の減圧を行う狭隘流路の流路面積を可変にできる装置を用いて、狭隘流路の流路断面積変化させる微細気泡の生成装置が開示されている。   [Patent Document 3] describes the generation of fine bubbles that change the cross-sectional area of a narrow channel using a device that can change the channel area of the narrow channel that depressurizes a pressurized gas-liquid two-phase flow. An apparatus is disclosed.

特開平10−225696号公報JP-A-10-225696 特開2003−117365号公報JP 2003-117365 A 特開平10−99877号公報Japanese Patent Laid-Open No. 10-99877 「水の特性と新しい利用技術」、株式会社エヌ・ティー・エス、142−146頁、2004年“Characteristics of Water and New Utilization Technology”, NTS Corporation, pages 142-146, 2004

〔非特許文献1〕に記載の従来の技術は、微細気泡の特性について記述しているが、微細気泡の具体的な発生方法については開示されていない。   The conventional technique described in [Non-Patent Document 1] describes the characteristics of fine bubbles, but does not disclose a specific method for generating fine bubbles.

〔特許文献1〕に記載の従来の技術では、混合水が高圧ポンプによりオリフィス上流側で加圧され、オリフィス通過時に減圧されて微細気泡を生成できるが、流路断面積が固定されたオリフィスであるため、オゾン微細気泡の混入水の流量を変化させる必要のある場合に対応できない問題がある。又、加圧圧力が変化すると微細気泡の径や発生量が変化するため、オゾン溶解効率が変化して水処理性能が不安定になる問題がある。   In the prior art described in [Patent Document 1], the mixed water is pressurized on the upstream side of the orifice by a high-pressure pump and is reduced when passing through the orifice to generate fine bubbles. Therefore, there is a problem that cannot be coped with when it is necessary to change the flow rate of the mixed water of ozone fine bubbles. Moreover, since the diameter and generation amount of fine bubbles change when the pressurizing pressure changes, there is a problem that the ozone dissolution efficiency changes and the water treatment performance becomes unstable.

〔特許文献2〕に記載の従来の技術では、インバータでポンプ回転数を制御することによりオリフィスの加圧圧力を制御することができるが、オリフィス流路面積が固定されているため、〔特許文献1〕のものと同様にオゾン微細気泡混入水の流量の変化に対応する場合に、加圧圧力が変化して安定して微細気泡を生成できないという問題がある。   In the conventional technique described in [Patent Document 2], the pressure applied to the orifice can be controlled by controlling the pump rotation speed with an inverter. 1] When dealing with a change in the flow rate of ozone fine bubble mixed water as in the case of 1], there is a problem that the pressurized pressure is changed and stable fine bubbles cannot be generated.

〔特許文献3〕に記載の従来の技術では、オリフィスの流路の絞りを可変調整して加圧圧力を制御しており、オゾン微細気泡混入水の流量も制御することができるが、オリフィスの流路の絞りが変わると、オリフィスを通過する際の流速が変わり、微細気泡を生成するためのオリフィス部における減圧量が変化する。加圧減圧のバランスが変わると微細気泡の径や発生量が変化するため、オゾン溶解効率が変化して水処理性能が不安定になる問題がある。すなわち、狭隘流路の流路断面積が小さいと流量が上げられず、気泡の生成量が低下し、逆に流路断面積が大きいと、生成気泡が粗大化する。このように、気泡の発生量が不足するか、気泡径が粗大化するため、安定した気泡生成ができない問題がある。   In the conventional technique described in [Patent Document 3], the pressure of the orifice flow path is variably adjusted to control the pressurization pressure, and the flow rate of the ozone fine bubble mixed water can be controlled. When the restriction of the flow path changes, the flow rate when passing through the orifice changes, and the amount of pressure reduction in the orifice portion for generating fine bubbles changes. If the balance between pressure and pressure changes, the diameter and amount of microbubbles change, which causes a problem that the ozone dissolution efficiency changes and the water treatment performance becomes unstable. That is, if the channel cross-sectional area of the narrow channel is small, the flow rate cannot be increased, and the amount of bubbles generated is reduced. Conversely, if the channel cross-sectional area is large, the generated bubbles are coarsened. As described above, there is a problem in that stable bubble generation cannot be performed because the amount of generated bubbles is insufficient or the bubble diameter becomes coarse.

発明者らは、異なる孔数を有する複数の多孔板を製作し、空気と水道水の気液二相流を高圧ポンプで昇圧して多孔板に注入して実験を行った結果、孔数が異なると、多孔板の上流側の圧力が変わるため微細気泡の発生量が変化することを確認している。又、孔数は同じで、孔径を変更した複数の多孔板を製作し、同様の実験を行った結果、孔径が増加すると、生成される気泡の気泡径分布が径の大きい粗大気泡側に移行することを確認している。   The inventors made a plurality of perforated plates having different numbers of holes, and conducted experiments by boosting the gas-liquid two-phase flow of air and tap water with a high-pressure pump and injecting them into the perforated plates. If they are different, the pressure on the upstream side of the perforated plate changes, and it has been confirmed that the generation amount of fine bubbles changes. In addition, as a result of producing a plurality of perforated plates with the same number of holes and changing the hole diameter and conducting the same experiment, when the hole diameter increases, the bubble diameter distribution of the generated bubbles shifts to the larger bubble side. Make sure you do.

本発明の第1の目的は、微細気泡を安定して生成でき、経済性に優れた微細気泡生成装置及びその方法を提供することにある。   A first object of the present invention is to provide a fine bubble generating apparatus and method that can stably generate fine bubbles and that are excellent in economy.

本発明の第2の目的は、ポンプの回転数制御と気液二相流が流通可能な孔数を変更することにより、微細気泡を安定して生成できる微細気泡生成装置及びその方法を提供することにある。   The second object of the present invention is to provide a fine bubble generating apparatus and method for stably generating fine bubbles by changing the number of holes through which the rotation speed of the pump and the gas-liquid two-phase flow can flow. There is.

本発明の第3の目的は、微細気泡生成装置への流入圧力と流量を制御でき、微細気泡を安定して生成できる微細気泡生成装置及びその方法を提供することにある。   A third object of the present invention is to provide a fine bubble generating apparatus and method that can control the inflow pressure and flow rate to the fine bubble generating apparatus and can stably generate fine bubbles.

上記目的を達成するための本発明の微細気泡の生成装置は、気液二相流の生成装置に接続されたポンプの回転数を制御するインバータと、ポンプに接続され気液二相流の通過に使用される流路断面積を変化させる駆動装置を含む多孔板ユニットと、インバータ及び駆動装置を制御する制御装置とを備え、制御装置からの指令により、駆動装置を制御して気液二相流の通過に使用される流路断面積を変化させるとともにインバータを制御してポンプの加圧圧力を許容範囲内に維持させて気液二相流の流量を変化させるものである。   In order to achieve the above object, the fine bubble generating device of the present invention includes an inverter for controlling the rotational speed of a pump connected to the gas-liquid two-phase flow generating device, and the passage of the gas-liquid two-phase flow connected to the pump. A perforated plate unit including a driving device for changing the cross-sectional area of the flow path used in the control unit, and a control device for controlling the inverter and the driving device. The driving device is controlled by a command from the control device to control the gas-liquid two-phase. The flow passage cross-sectional area used for the flow passage is changed and the inverter is controlled to maintain the pressurized pressure of the pump within the allowable range to change the flow rate of the gas-liquid two-phase flow.

多孔板を備えた流路を複数並列に接続して各流路に開閉弁を設け、開閉弁の開閉制御を行うことにより気液二相流が通過する流路断面積を変更する。   A plurality of flow paths provided with a perforated plate are connected in parallel, an open / close valve is provided in each flow path, and the open / close control of the open / close valve is performed to change the cross-sectional area of the flow path through which the gas-liquid two-phase flow passes.

これにより、気液二相流をポンプで加圧し、狭隘流路へ注入することにより減圧して液体に溶解していた気体を析出させて微細気泡を生成する。気液二相流が通過する孔数を変更、すなわち流路断面積を変更することにより微細気泡の生成する条件を維持して流量を制御することができる。このように、気液二相流が通過する孔数の変更と、インバータを制御してポンプの回転数を制御することにより、加圧圧力と流量を制御する。   As a result, the gas-liquid two-phase flow is pressurized with a pump, and injected into the narrow channel to reduce the pressure, thereby precipitating the gas dissolved in the liquid and generating fine bubbles. By changing the number of holes through which the gas-liquid two-phase flow passes, that is, by changing the cross-sectional area of the flow path, the flow rate can be controlled while maintaining the conditions for generating fine bubbles. In this way, the pressurized pressure and the flow rate are controlled by changing the number of holes through which the gas-liquid two-phase flow passes and controlling the inverter to control the rotation speed of the pump.

多孔板には、1種類以上の断面積を有する複数の孔を有する多孔板、単位面積あたりの孔数が異なる孔が分布する多孔板を用いてもよい。   As the perforated plate, a perforated plate having a plurality of holes having one or more types of cross-sectional areas and a perforated plate in which holes having different numbers of holes per unit area are distributed may be used.

又、多孔板の逆流洗浄を行い、多孔板の孔の閉塞を回避することができる。又、流路制限板に多孔板と接触する端面構造を設け、流路制限板が多孔板の表面を移動する際に、端面構造が多孔板の表面の付着物を削り取って剥離させるようにしてもよい。   Further, the perforated plate can be back-flow washed to avoid clogging of the holes in the perforated plate. In addition, an end face structure that contacts the porous plate is provided on the flow restricting plate, and when the flow restricting plate moves on the surface of the porous plate, the end face structure scrapes off and removes the deposit on the surface of the porous plate. Also good.

又、気体の溶解効率を向上させるため、ポンプと多孔板ユニットとの間の流路に、加圧された気液二相流が滞留する加圧タンクを設ける、或いは気体の利用効率を向上させるため、多孔板から流出した粗大気泡を微細化するために、ポンプと多孔板ユニットとの間の流路に、流路制御板を設けて気液二相流が多孔板ユニットに流入する際に旋回流を与えるようにしてもよい。   Further, in order to improve the gas dissolution efficiency, a pressure tank in which a pressurized gas-liquid two-phase flow stays is provided in the flow path between the pump and the perforated plate unit, or the gas utilization efficiency is improved. Therefore, when the gas-liquid two-phase flow flows into the porous plate unit by providing a flow channel control plate in the flow channel between the pump and the porous plate unit in order to refine the coarse bubbles flowing out of the porous plate. A swirling flow may be given.

本発明によれば、微細気泡生成量を変更する時、ポンプの回転数と流通断面積を変更するので、加圧圧力を微細気泡生成に必要な範囲に維持して過剰な圧力上昇が抑制されるため、微細気泡を効率良く、かつ安定した気泡径分布で生成することができる。   According to the present invention, when the amount of fine bubbles generated is changed, the rotational speed and flow cross-sectional area of the pump are changed, so that an excessive pressure increase is suppressed by maintaining the pressurizing pressure within a range necessary for generating fine bubbles. Therefore, fine bubbles can be generated efficiently and with a stable bubble diameter distribution.

微細気泡生成装置で気液二相流の加圧圧力と流量を制御して安定した気泡径と発生量の微細気泡を生成する微細気泡生成装置及びその方法を提供する。   Provided are a fine bubble generating device and a method for generating a fine bubble having a stable bubble diameter and generated amount by controlling the pressure and flow rate of a gas-liquid two-phase flow with the fine bubble generating device.

本発明の実施例1について図1から図12を用いて説明する。図1は、本実施例である微細気泡生成装置の構成図である。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a fine bubble generating apparatus according to the present embodiment.

本実施例の微細気泡生成装置は、図1に示すように、図示しない気液二相流の生成装置に接続された流路9aと、流路9aに接続されたポンプ1と、ポンプ1に接続された図示しないインバータと、ポンプ1に流路9bを介して接続された多孔板ユニット4と、流路9bに設けられた圧力計5と、多孔板ユニット4に設置された駆動装置7と、多孔板ユニット4に接続された流路9cと、流路9cに設けられた流量計6と、制御装置3と、制御装置3に接続された入力装置8で構成される。ここで、気液二相流の液体には水が、気体には、空気,オゾン,窒素,酸素,二酸化炭素のいずれかが用いられる。   As shown in FIG. 1, the fine bubble generating apparatus of the present embodiment includes a flow path 9 a connected to a gas-liquid two-phase flow generating apparatus (not shown), a pump 1 connected to the flow path 9 a, and a pump 1. A connected inverter (not shown), a porous plate unit 4 connected to the pump 1 through a flow path 9b, a pressure gauge 5 provided in the flow path 9b, and a drive device 7 installed in the porous plate unit 4; The flow path 9 c connected to the perforated plate unit 4, the flow meter 6 provided in the flow path 9 c, the control device 3, and the input device 8 connected to the control device 3. Here, water is used as the gas-liquid two-phase flow liquid, and air, ozone, nitrogen, oxygen, or carbon dioxide is used as the gas.

圧力計5及び流量計6と制御装置3とは信号線で接続され、制御装置3は圧力計5及び流量計6からの信号を受信する。インバータ及び駆動装置7と制御装置3とは信号線で接続され、制御装置3からインバータ及び駆動装置7に制御信号を送信する。   The pressure gauge 5 and the flow meter 6 and the control device 3 are connected by a signal line, and the control device 3 receives signals from the pressure gauge 5 and the flow meter 6. The inverter and drive device 7 and the control device 3 are connected by a signal line, and a control signal is transmitted from the control device 3 to the inverter and drive device 7.

多孔板ユニット4は、図2から図6に示すように構成されている。図示しない多孔板ユニット4の壁面に固定され、直径が0.1〜5mmの範囲の同じ径の直管状の孔103が複数個設けられた円形板状の多孔板100と、図3,図4に示すように多孔板100の中心軸回りに回転し、多孔板100に対向するように設けられる円形板状の流路制限板101と、流路制限板101の中心部で固定板104により連結される回転軸102で構成される。回転軸102は、駆動装置7と連結されており、駆動装置7により回転角度を制御される。図4に示すように多孔板100の半分の領域に孔103が形成され、図5,図6に示すように半円形に形成された流路制限板101が回転することにより、気液二相流が通過できる孔数が変化するようになっている。本実施例では、流路制限板101は、半円形に形成された例を示しているが、扇型でもよい。なお、孔103の直径は、0.5〜2mmの範囲とすると微細気泡の生成はより安定化し生成効率はよりよくなる。   The perforated plate unit 4 is configured as shown in FIGS. A circular plate-like perforated plate 100 fixed to the wall surface of a perforated plate unit 4 (not shown) and provided with a plurality of straight tubular holes 103 having the same diameter in the range of 0.1 to 5 mm, and FIGS. As shown in FIG. 5, the circular plate-like flow restricting plate 101 is provided so as to rotate around the central axis of the porous plate 100 and to face the porous plate 100, and is connected by the fixed plate 104 at the center of the flow restricting plate 101. The rotary shaft 102 is configured. The rotation shaft 102 is connected to the driving device 7, and the rotation angle is controlled by the driving device 7. As shown in FIG. 4, a hole 103 is formed in a half region of the perforated plate 100, and a flow restricting plate 101 formed in a semicircular shape as shown in FIGS. The number of holes through which the flow can pass changes. In this embodiment, the flow path restriction plate 101 is an example of a semicircular shape, but may be a fan shape. If the diameter of the hole 103 is in the range of 0.5 to 2 mm, the generation of fine bubbles is further stabilized and the generation efficiency is improved.

多孔板100は流路9bに固定される構造でもよく、多孔板100と流路制限板101とは、流路制限板101の回転に支障を来たすような摩擦力が生じない範囲で接触している。又、流路制限板101の回転時には、駆動装置7を制御して軸102を軸方向に移動させ、多孔板100と流路制限板101との間に間隙を形成し、再度多孔板100と流路制限板101とを接触させて通水させるようにしてもよい。   The perforated plate 100 may be structured to be fixed to the flow path 9b, and the perforated plate 100 and the flow path restricting plate 101 are in contact with each other as long as no frictional force that hinders the rotation of the flow restricting plate 101 is generated. Yes. Further, when the flow path restricting plate 101 is rotated, the drive device 7 is controlled to move the shaft 102 in the axial direction so that a gap is formed between the porous plate 100 and the flow restricting plate 101, and You may make it water flow by making the flow-path restriction | limiting board 101 contact.

駆動装置7を制御して回転軸102を回転すると、孔103の一部が流路制限板101によって遮られるため、例えば図2に示す状態から図6に示す状態に変化して、多孔板100の通水に使用される孔数が変化する。この通水に使用される孔数のことを、便宜上有効孔数という。   When the rotation shaft 102 is rotated by controlling the driving device 7, a part of the hole 103 is blocked by the flow path restricting plate 101, so that, for example, the state shown in FIG. 2 is changed to the state shown in FIG. The number of holes used for water flow varies. The number of holes used for water flow is referred to as an effective number of holes for convenience.

図2から図6に示す例では、流路制限板101を回転させる例を示したが、流路制限板101を多孔板100に沿って直径方向に平行移動するようにしてもよい。又、多孔板100の直径方向に複数の細長い流路制限板101を設け、流路制限板101を流れ方向に対して平行或いは垂直になるように回転させて有効孔数を変えるようにしてもよい。   In the example shown in FIGS. 2 to 6, the example in which the flow path restriction plate 101 is rotated is shown, but the flow path restriction plate 101 may be translated in the diameter direction along the porous plate 100. Further, a plurality of elongated flow restricting plates 101 may be provided in the diameter direction of the porous plate 100, and the effective pore count may be changed by rotating the flow restricting plate 101 so as to be parallel or perpendicular to the flow direction. Good.

図2から図6に示す例では、多孔板100に設ける孔103を直管状の孔で説明したが、図7に示す多孔板110のように、孔112の中間部の断面積が大きくなる形状のもの、図8に示す多孔板113のように、孔115の中間部の断面積が小さくなる形状のものなど、多孔板の孔内部の断面積が流路方向で変化する形状のものを用いてもよい。このような孔形状の多孔板を用いた場合は、多孔板の上流と下流の間の他、孔内部でも圧力変化が生じるので、気泡をさらに微細化できる。   In the example shown in FIGS. 2 to 6, the hole 103 provided in the perforated plate 100 has been described as a straight tubular hole. However, like the perforated plate 110 shown in FIG. 7, the cross-sectional area of the intermediate portion of the hole 112 is increased. 8 or a shape in which the cross-sectional area inside the hole of the perforated plate changes in the direction of the flow path, such as a shape in which the cross-sectional area of the intermediate portion of the hole 115 becomes small, such as the perforated plate 113 shown in FIG. May be. When such a perforated plate having a hole shape is used, the pressure change occurs not only between the upstream and downstream sides of the perforated plate but also inside the hole, so that the bubbles can be further refined.

又、多孔板に複数の孔を設ける代わりに、複数のスリットを設けてもよい。図9に示す例では、多孔板120の右半分側に孔が連なったような形状の直線状のスリット121を放射状に形成している。図10に示す例では、多孔板122の上下方向に直線状のスリット123を複数段形成している。なお、このスリットは孔が連なった形状に形成されており、必ずしも直線でなくてもよい。   Further, instead of providing a plurality of holes in the perforated plate, a plurality of slits may be provided. In the example shown in FIG. 9, linear slits 121 having a shape in which holes are connected to the right half side of the porous plate 120 are formed radially. In the example shown in FIG. 10, a plurality of linear slits 123 are formed in the vertical direction of the porous plate 122. In addition, this slit is formed in the shape with which the hole was continued, and does not necessarily need to be a straight line.

キーボード等を操作して、入力装置8に微細気泡生成量の目標値QBを入力する。又、微細気泡生成量の目標値QBからずれた場合の許容できる偏差量ΔQ、ポンプの回転数を増減する場合の制御幅ΔNが入力される。入力された微細気泡生成量の目標値QB,偏差量ΔQ,制御幅ΔNは、制御装置3へ送信される。制御装置3は、流路9bに設置された圧力計5の加圧圧力測定値、流路9cに設置された流量計6の微細気泡含有水11の排出流量測定値を受信する。 By operating a keyboard or the like, the target value Q B of the fine bubble generation amount is input to the input device 8. Further, an allowable deviation amount ΔQ when the amount of generated fine bubbles deviates from the target value Q B and a control width ΔN when increasing or decreasing the number of rotations of the pump are input. The input target value Q B of the fine bubble generation amount, deviation amount ΔQ, and control width ΔN are transmitted to the control device 3. The control device 3 receives the pressure measurement value of the pressure gauge 5 installed in the flow path 9b and the discharge flow rate measurement value of the fine bubble-containing water 11 of the flow meter 6 installed in the flow path 9c.

制御装置3では、微細気泡生成量の目標値QBを得るために必要な微細気泡含有水11の排出流量QOを計算する。制御装置3は、多孔板ユニット4の加圧圧力が入力装置8から入力された設定値からの偏差の許容範囲を超えることなく、排出流量QOを得るために必要なポンプ1の回転数Nと、多孔板ユニット4の孔数を算出する。この計算値に基づいて、制御装置3はインバータ2と駆動装置7を制御する。 The control device 3 calculates the discharge flow rate Q O of the fine bubble-containing water 11 necessary for obtaining the target value Q B of the fine bubble generation amount. The control device 3 is configured so that the pressurization pressure of the perforated plate unit 4 does not exceed the allowable range of deviation from the set value input from the input device 8 and the rotational speed N of the pump 1 necessary for obtaining the discharge flow rate Q O. Then, the number of holes of the perforated plate unit 4 is calculated. Based on this calculated value, the control device 3 controls the inverter 2 and the drive device 7.

制御装置3からインバータ2にポンプ1の回転数指令値が送信されてインバータ2が制御され、ポンプ1は回転数指令値に従って運転される。制御装置3から駆動装置7に制御信号が送信され、多孔板ユニット4の流路制限板101の回転角度を制御して算出された有効孔数となるように制御する。   The rotation speed command value of the pump 1 is transmitted from the control device 3 to the inverter 2 to control the inverter 2, and the pump 1 is operated according to the rotation speed command value. A control signal is transmitted from the control device 3 to the drive device 7 to control the rotation angle of the flow path restriction plate 101 of the perforated plate unit 4 so that the number of effective holes is calculated.

流路9aには気液二相流の生成装置からの気液二相流10が流入し、ポンプ1により加圧されて気体が加圧溶解された気液二相流10は、多孔板ユニット4に流入する。気液二相流10は、多孔板ユニット4を通過する際に急激に減圧され、溶存していた気体が析出して微細気泡を形成する。流路9cから微細気泡を含んだ微細気泡含有水11が排出される。   The gas-liquid two-phase flow 10 from the gas-liquid two-phase flow generator flows into the flow path 9a, and the gas-liquid two-phase flow 10 in which the gas is pressurized and dissolved by the pump 1 is a perforated plate unit. 4 flows in. The gas-liquid two-phase flow 10 is rapidly depressurized when passing through the perforated plate unit 4, and dissolved gas is deposited to form fine bubbles. Fine bubble-containing water 11 containing fine bubbles is discharged from the flow path 9c.

図11は、実施例1の制御フローチャートであり、微細気泡生成量QBを得るための運転方法を示している。図11を用いて、実施例1の運転方法をより詳細に説明する。 FIG. 11 is a control flowchart of the first embodiment and shows an operation method for obtaining the fine bubble generation amount Q B. The operation method of Example 1 will be described in more detail with reference to FIG.

ステップS1で、制御装置3は、入力装置8から入力された微細気泡生成量の目標値QBと、微細気泡含有水の微細気泡の含有率rBから、数1を用いて微細気泡含有水11の排出流量QOを決定してポンプを起動する。ここで、含有率rBは、予め実験により加圧圧力と孔径の関係から求められるようにするか、流量計6の他に含有率を計測する装置を設けることによって求められる。
(数1)
O=QB/rB …(1)
ステップS2で、制御装置3は、流量計6で計測される微細気泡含有水11の排出流量の測定値Qfと目標値QOを比較する。測定値Qfが目標値QOより低い場合はステップ3Sへ進み、高い場合はステップS4へ進む。
In step S1, the control device 3 uses the numerical value 1 to calculate the fine bubble-containing water from the target value Q B of the fine bubble generation amount input from the input device 8 and the fine bubble content rate r B of the fine bubble-containing water. 11 discharge flow rate Q O is determined and the pump is started. Here, the content rate r B can be obtained in advance by experiments from the relationship between the pressurizing pressure and the hole diameter, or by providing a device for measuring the content rate in addition to the flow meter 6.
(Equation 1)
Q O = Q B / r B (1)
In step S2, the control device 3 compares the measured value Q f of the discharge flow rate of the fine bubble-containing water 11 measured by the flow meter 6 with the target value Q O. When the measured value Q f is lower than the target value Q O , the process proceeds to step 3S, and when it is higher, the process proceeds to step S4.

ステップS3では、制御装置3は、目標値QOと測定値Qfの差分の絶対値を、許容できる偏差量ΔQと比較し、この差分の絶対値が偏差量ΔQより小さい場合は、流量は制御目標範囲にあると判断してステップS5へ進む。この差分の絶対値が偏差量ΔQより大きい場合は、流量が制御目標範囲に対して不足していると判断し、インバータ2を制御してポンプ1の回転数Nを設定された制御幅ΔN増加してステップS2へ戻る。 In step S3, the control device 3 compares the absolute value of the difference between the target value Q O and the measured value Q f with an allowable deviation amount ΔQ, and if the absolute value of this difference is smaller than the deviation amount ΔQ, the flow rate is It judges that it is in the control target range and proceeds to step S5. When the absolute value of this difference is larger than the deviation amount ΔQ, it is determined that the flow rate is insufficient with respect to the control target range, and the inverter 2 is controlled to increase the rotation speed N of the pump 1 by a set control width ΔN. Then, the process returns to step S2.

ステップS4で、制御装置3は、ステップS3と同様に目標値QOと測定値Qfの差分の絶対値を、偏差量ΔQと比較し、この差分の絶対値が偏差量ΔQより小さい場合は、流量は制御目標範囲にあると判断してステップS5へ進む。この差分の絶対値が偏差量ΔQより大きい場合は、流量が制御目標範囲に対して過剰であると判断し、インバータ2を制御してポンプの回転数Nを設定された幅ΔN減少してステップS2へ戻る。 In step S4, the control device 3 compares the absolute value of the difference between the target value Q O and the measured value Q f with the deviation amount ΔQ as in step S3, and if the absolute value of this difference is smaller than the deviation amount ΔQ. The flow rate is determined to be within the control target range, and the process proceeds to step S5. If the absolute value of the difference is larger than the deviation amount ΔQ, it is determined that the flow rate is excessive with respect to the control target range, and the inverter 2 is controlled to reduce the pump rotational speed N by the set width ΔN. Return to S2.

ステップS5で、制御装置3は、圧力計5の測定値Pと設定値の圧力下限値Pminと比較する。測定値が下限値より高い場合は、ステップS6へ進む。低い場合は、駆動装置7を起動して多孔板ユニット4の有効孔数mを設定された制御幅Δm減少してステップS2へ戻る。下限値Pminは、例えば0.3PMaに設定する。 In step S5, the control device 3 compares the measured value P of the pressure gauge 5 with the pressure lower limit value Pmin of the set value. If the measured value is higher than the lower limit value, the process proceeds to step S6. If it is lower, the drive device 7 is activated to reduce the effective hole number m of the perforated plate unit 4 by the set control width Δm, and the process returns to step S2. The lower limit value P min is set to 0.3 PMa, for example.

ここで、加圧圧力は0.1MPa〜1.0MPaが許容範囲であった。加圧圧力については、微細気泡生成がより安定でコスト上有利な範囲は、0.3MPa〜0.7MPaの範囲である。   Here, the pressurization pressure was within an allowable range of 0.1 MPa to 1.0 MPa. Regarding the pressurizing pressure, the range in which fine bubble generation is more stable and advantageous in terms of cost is in the range of 0.3 MPa to 0.7 MPa.

ステップS6で、制御装置3は、圧力計5の測定値Pと設定値の圧力上限値Pmaxと比較する。測定値が上限値より低い場合は終了する。高い場合は、駆動装置7を起動して多孔板ユニット4の有効孔数mを設定された制御幅Δm増加してステップS2へ戻る。 In step S6, the control device 3 compares the measured value P of the pressure gauge 5 with the pressure upper limit value P max of the set value. If the measured value is lower than the upper limit value, the process ends. If it is higher, the drive device 7 is activated to increase the effective hole number m of the perforated plate unit 4 by the set control width Δm, and the process returns to step S2.

このように制御した場合の作用,効果を図12により説明する。   The operation and effect of such control will be described with reference to FIG.

図12中の破線は、有効孔数を変化させて流路断面積を変化させると共にポンプの回転数制御を行った場合を示しており、実線は、流路断面積は固定でポンプの回転数制御を行った場合を示している。ここでは、有効孔数は連続的に変化させ、流路断面積を滑らかに変化させる場合を示している。   The broken line in FIG. 12 shows the case where the effective flow rate is changed to change the flow path cross-sectional area and the pump rotational speed control is performed, and the solid line indicates that the flow path cross-sectional area is fixed and the pump rotational speed is fixed. The case where control is performed is shown. Here, the number of effective holes is continuously changed, and the flow path cross-sectional area is changed smoothly.

図12の上段の図は、気液二相流流量に対する加圧圧力の関係を示す図で、同じ流路断面積の有効孔数では交差するが、流路断面積を変化させる場合は、加圧圧力をほぼ一定、或いは許容範囲内に制御できることを示している。一方、流路断面積が固定の場合は、気液二相流の流量を多くするためにはポンプの回転速度を上昇させて加圧圧力を高くする必要があり、気液二相流の流量を少なくするためにはポンプの回転速度を低下させて加圧圧力を下降させる必要がある。   The upper diagram in FIG. 12 shows the relationship between the pressurized pressure and the gas-liquid two-phase flow rate, which intersects with the number of effective holes of the same channel cross-sectional area. It shows that the pressure and pressure can be controlled to be substantially constant or within an allowable range. On the other hand, when the cross-sectional area of the flow path is fixed, in order to increase the flow rate of the gas-liquid two-phase flow, it is necessary to increase the pressurization pressure by increasing the rotational speed of the pump. In order to reduce the pressure, it is necessary to lower the pressurization pressure by lowering the rotational speed of the pump.

このように、流路断面積が固定の場合は、気液二相流の流量を変化させるためには、加圧圧力を変化させる必要があるため、微細気泡を生成するための条件が変化して安定した微細気泡の生成が困難になるが、本実施例では、加圧圧力は一定或いは許容範囲内に制御でき、流路断面積を変化させても孔径は同じであるので安定した微細気泡の生成が行える。なお、図12では、流路断面積が固定の場合も幅広く流量制御が行えるように示しているが、実際には、制御幅はそれほど大きくない。   Thus, when the flow path cross-sectional area is fixed, in order to change the flow rate of the gas-liquid two-phase flow, it is necessary to change the pressurized pressure, so the conditions for generating fine bubbles change. However, in this embodiment, the pressurized pressure can be controlled to be constant or within an allowable range, and the pore diameter remains the same even if the flow path cross-sectional area is changed. Can be generated. Although FIG. 12 shows that the flow rate control can be performed widely even when the flow path cross-sectional area is fixed, the control width is not so large in practice.

図12の下段の図は、気液二相流流量に対するポンプ消費電力の関係を示す図で、気液二相流流量が大きく、処理量が必要とされる部分でポンプ消費電力を小さくできる。ここで、ポンプの消費電力は、圧力と流量の積に比例すると仮定している。   The lower diagram of FIG. 12 is a diagram showing the relationship of the pump power consumption with respect to the gas-liquid two-phase flow rate, and the pump power consumption can be reduced at a portion where the gas-liquid two-phase flow rate is large and a processing amount is required. Here, it is assumed that the power consumption of the pump is proportional to the product of the pressure and the flow rate.

本実施例によれば、微細気泡生成量を変更する時、ポンプの回転数と流通断面積を変更するので、加圧圧力を微細気泡生成に必要な範囲に維持して過剰な圧力上昇が抑制されるため、微細気泡を効率良く、かつ安定した気泡径分布で生成することができる。   According to the present embodiment, when the amount of fine bubbles generated is changed, the number of rotations of the pump and the cross-sectional area of the pump are changed, so that an excessive pressure rise is suppressed by maintaining the pressurizing pressure within a range necessary for generating fine bubbles. Therefore, fine bubbles can be generated efficiently and with a stable bubble diameter distribution.

本発明の実施例2を図13から図16を用いて説明する。図13は、本実施例の微細気泡生成装置の構成図である。   A second embodiment of the present invention will be described with reference to FIGS. FIG. 13 is a configuration diagram of the fine bubble generating device of the present embodiment.

本実施例の微細生成装置は、実施例1と同様に構成されているが、本実施例では、多孔板ユニット4を設置する代わりに、多孔板ユニット40として、流路9bのポンプ1の後段に複数の分岐流路が設けられ、各分岐流路には弁70−1〜70−nを介してそれぞれ固定された孔数を有する多孔板40−1〜40−nが設置されている。複数の多孔板40−1〜40−nは合流されて流路9cに接続されている。各弁70−1〜70−nはそれぞれ制御装置3と信号線で接続されており、弁70−1〜70−nの開閉制御を行うようになっている。ここで、流路9cを弁70−1〜70−n毎に延長できる場合は、必ずしも複数の多孔板40−1〜40−nは合流しなくてもよい。   The fine generation apparatus of the present embodiment is configured in the same manner as in the first embodiment, but in this embodiment, instead of installing the perforated plate unit 4, a perforated plate unit 40 is used as a rear stage of the pump 1 in the flow path 9b. A plurality of branch channels are provided, and perforated plates 40-1 to 40-n each having a fixed number of holes via valves 70-1 to 70-n are installed in each branch channel. The plurality of perforated plates 40-1 to 40-n are joined and connected to the flow path 9c. Each of the valves 70-1 to 70-n is connected to the control device 3 through a signal line, and performs opening / closing control of the valves 70-1 to 70-n. Here, when the flow path 9c can be extended for each of the valves 70-1 to 70-n, the plurality of perforated plates 40-1 to 40-n do not necessarily have to merge.

各多孔板40−1〜40−nに設けられている孔数は、多孔板毎に変えてもよく、同じにしてもよく、一部が同じで残りを変えてもよい。制御装置3は弁70−1〜70−nの開閉制御をするが、開く弁の個数を1個からn個の間で制御でき、設定する有効孔数に合うように開閉制御される。多孔板に設ける孔数,孔径が同じでも、図14に示すように多孔板の外周側に設ける、或いは図15に示すように多孔板の内周側に設けることにより、孔の位置が異なるものを、流量などにより使い分けてもよい。このように孔位置を形成することにより、内周側を流して旋回を与えたい場合などに使い分けることができる。   The number of holes provided in each of the perforated plates 40-1 to 40-n may be changed for each perforated plate, may be the same, or may be partially the same and the rest may be changed. The control device 3 controls the opening and closing of the valves 70-1 to 70-n. The number of valves to be opened can be controlled between 1 and n, and the opening and closing is controlled so as to match the number of effective holes to be set. Even if the number of holes and the hole diameter are the same in the perforated plate, the positions of the holes differ depending on whether they are provided on the outer peripheral side of the perforated plate as shown in FIG. 14 or on the inner peripheral side of the perforated plate as shown in FIG. May be properly used depending on the flow rate. By forming the hole positions in this way, it is possible to use them properly when, for example, it is desired to flow around the inner peripheral side.

本実施例の制御は、図11に示す実施例1の制御フローチャートと同様に行われる。各多孔板40−1〜40−nの孔数を等しくした場合は、図11中のステップS5,S6で、制御装置3は弁70−1〜70−nを開状態する数を増減して有効孔数を段階的に制御する。又、多孔板40−1〜40−nに形成される孔数が異なる場合は、弁70−1〜70−nの開閉を切替えて、孔数の多い多孔板の設置された流路或いは孔数の少ない多孔板の設置された流路を開にして有効孔数を切替える。   The control of the present embodiment is performed in the same manner as the control flowchart of the first embodiment shown in FIG. When the number of holes of each of the perforated plates 40-1 to 40-n is made equal, the control device 3 increases or decreases the number of open valves 70-1 to 70-n in steps S5 and S6 in FIG. The effective number of holes is controlled in stages. Further, when the number of holes formed in the perforated plates 40-1 to 40-n is different, the opening or closing of the valves 70-1 to 70-n is switched, and the flow path or the hole in which the perforated plate having a large number of holes is installed. The number of effective holes is switched by opening a flow path in which a small number of perforated plates are installed.

このように、実施例1では有効孔数の変更は流路制限板101の回転により行うため、機械的な可動部とモータが必要となるが、本実施例では、孔数変更を弁の開閉で行うため構成が簡素になり、信頼性が向上し、維持管理が容易になる利点がある。   As described above, in the first embodiment, the effective hole number is changed by the rotation of the flow path restriction plate 101. Therefore, a mechanical movable part and a motor are required. In this embodiment, the hole number is changed by opening and closing the valve. Therefore, there is an advantage that the configuration is simplified, reliability is improved, and maintenance is easy.

以上のように制御した場合の作用,効果を図16により説明する。   The operation and effect of the control as described above will be described with reference to FIG.

図16中の破線は、有効孔数を段階的に変化させて流路断面積を段階的に変化させると共にポンプの回転数制御を行った場合を示しており、実線は、流路断面積は固定でポンプの回転数制御を行った場合を示している。   The broken line in FIG. 16 shows the case where the effective hole number is changed stepwise to change the flow passage cross-sectional area stepwise and the rotation speed of the pump is controlled. The solid line shows the flow passage cross-sectional area. This shows a case where the rotation speed control of the pump is performed in a fixed state.

図16の上段の図は、気液二相流流量に対する加圧圧力の関係を示す図で、分岐流路の切替えにより流路断面積を段階的に変化させる場合は、ある分岐流路の流路断面積でポンプの回転速度を変化させることにより気液二相流の流量を変化させ、流路断面積を切替える制御を行うことにより、加圧圧力を許容範囲内に制御できることを示している。すなわち、加圧圧力が許容値を超えようとすると、制御装置3は流路を切替えて流路断面積を増加させるため、加圧圧力はある変動幅内で変動するが、許容範囲内に維持される。   The upper diagram in FIG. 16 shows the relationship between the pressurized pressure and the gas-liquid two-phase flow rate. When the channel cross-sectional area is changed stepwise by switching the branch channel, the flow of a certain branch channel is shown. It shows that the pressurized pressure can be controlled within the allowable range by changing the flow rate of the gas-liquid two-phase flow by changing the rotational speed of the pump with the path cross-sectional area and switching the flow path cross-sectional area. . That is, when the pressurized pressure exceeds the allowable value, the control device 3 switches the flow path to increase the flow path cross-sectional area, so that the pressurized pressure fluctuates within a certain fluctuation range but is maintained within the allowable range. Is done.

一方、流路断面積が固定の場合は、気液二相流の流量を多くするためにはポンプの回転速度を上昇させて加圧圧力を高くする必要があり、気液二相流の流量を少なくするためにはポンプの回転速度を低下させて加圧圧力を下降させる必要がある。   On the other hand, when the cross-sectional area of the flow path is fixed, in order to increase the flow rate of the gas-liquid two-phase flow, it is necessary to increase the pressurization pressure by increasing the rotational speed of the pump. In order to reduce the pressure, it is necessary to lower the pressurization pressure by lowering the rotational speed of the pump.

このように、流路断面積が固定の場合は、気液二相流の流量を変化させるためには、加圧圧力を大幅に変化させる必要があるため、微細気泡を生成するための条件が変化して安定した微細気泡の生成が困難になるが、本実施例では、加圧圧力は許容範囲内に制御でき、流路断面積を段階的に変化させても孔径は同じであるので安定した微細気泡の生成が行える。   Thus, when the cross-sectional area of the flow path is fixed, in order to change the flow rate of the gas-liquid two-phase flow, it is necessary to change the pressurization pressure significantly. However, in this embodiment, the pressurized pressure can be controlled within an allowable range, and the pore diameter remains the same even if the flow path cross-sectional area is changed step by step. Fine bubbles can be generated.

図12の下段の図は、気液二相流流量に対するポンプ消費電力の関係を示す図で、気液二相流流量が大きく、処理量が必要とされる部分で余剰な圧力損失が発生しないため、ポンプ消費電力を小さくできる。   The lower diagram of FIG. 12 is a diagram showing the relationship between the pump power consumption and the gas-liquid two-phase flow rate. The gas-liquid two-phase flow rate is large, and no excessive pressure loss occurs in the portion where the processing amount is required. Therefore, the power consumption of the pump can be reduced.

本実施例によれば、微細気泡生成量を変更する時、ポンプの回転数と流通断面積を変更するので、加圧圧力を微細気泡生成に必要な範囲に維持して過剰な圧力上昇が抑制されるため、微細気泡を効率良く、かつ安定した気泡径分布で生成することができる。   According to the present embodiment, when the amount of fine bubbles generated is changed, the number of rotations of the pump and the cross-sectional area of the pump are changed, so that an excessive pressure rise is suppressed by maintaining the pressurizing pressure within a range necessary for generating fine bubbles. Therefore, fine bubbles can be generated efficiently and with a stable bubble diameter distribution.

本実施例によれば、微細気泡生成量を変更する際、ポンプの回転数と狭隘流路の流路断面積が変更されるので、加圧圧力は、微細気泡生成に必要な範囲内に維持でき、過剰な圧力の上昇が抑制される。このため、微細気泡を効率良く、かつ安定した気泡径分布で生成することができる。   According to the present embodiment, when changing the amount of fine bubbles generated, the number of rotations of the pump and the cross-sectional area of the narrow channel are changed, so that the pressurizing pressure is maintained within the range necessary for generating fine bubbles. It is possible to suppress an excessive increase in pressure. For this reason, fine bubbles can be generated efficiently and with a stable bubble diameter distribution.

本発明の実施例3を図17から図23を用いて説明する。図17から図23は、本実施例の多孔板ユニットの構成図である。   A third embodiment of the present invention will be described with reference to FIGS. 17 to 23 are configuration diagrams of the perforated plate unit of this embodiment.

本実施例の多孔板ユニットは、実施例1の図2から図6に示す多孔板ユニット4の変形例である。   The perforated plate unit of the present embodiment is a modification of the perforated plate unit 4 shown in FIGS. 2 to 6 of the first embodiment.

図17から図23に示すように、多孔板211には、円形の板が複数の領域に分割され、領域毎に孔径が異なるように形成され、領域毎に断面積の異なる孔が設けられている。或いは、多孔板211に領域毎に孔径は同じに形成し同じ断面積の孔を単位表面積あたりの孔数が異なるように設けるようにしてもよい。流路制限板は、多孔板211の表裏に設けられ、表側(上流側)には半円形状の流路制限板211が、裏側(下流側)には半円形状の流路制限板212が設けられている。流路制限板211の中心部には軸214が嵌合され、固定板216によって軸214に固定されている。流路制限板212の中心部には軸215が嵌合され、固定板217によって軸215に固定されている。軸215は中空であり、中空部の空間に軸214が挿入され、軸215と軸216は駆動装置7によって独立して回転操作されるようになっている。   As shown in FIGS. 17 to 23, in the perforated plate 211, a circular plate is divided into a plurality of regions, each having a different hole diameter, and a hole having a different cross-sectional area is provided in each region. Yes. Alternatively, the hole diameter may be the same for each region in the porous plate 211 and the holes having the same cross-sectional area may be provided so that the number of holes per unit surface area is different. The flow restricting plate is provided on the front and back of the porous plate 211, the semicircular flow restricting plate 211 is provided on the front side (upstream side), and the semicircular flow restricting plate 212 is provided on the back side (downstream side). Is provided. A shaft 214 is fitted in the center of the flow path restriction plate 211 and is fixed to the shaft 214 by a fixing plate 216. A shaft 215 is fitted in the center of the flow path restriction plate 212 and is fixed to the shaft 215 by a fixing plate 217. The shaft 215 is hollow, the shaft 214 is inserted into the space of the hollow portion, and the shaft 215 and the shaft 216 are independently rotated by the driving device 7.

制御装置3は、駆動装置7を制御して軸215と軸216をそれぞれ独立に回転させ、表側の流路制限板211の回転角、裏側の流路制限板212の回転角を制御して気液二相流が通過する孔の箇所,孔数,流路段面積を調節し、必要な有効孔数、或いは必要な流路断面積になるように制御する。なお、以上の説明では、流路制限板211,212が半円形状の場合を説明したが、その形状は変形することができる。   The control device 3 controls the drive device 7 to rotate the shaft 215 and the shaft 216 independently, and controls the rotation angle of the front-side flow path restriction plate 211 and the rotation angle of the back-side flow restriction plate 212 to control the air flow. The location, number of holes, and channel area of the holes through which the liquid two-phase flow passes are adjusted to control the required effective number of holes or the required channel cross-sectional area. In the above description, the flow restricting plates 211 and 212 have been described as being semicircular, but the shape can be modified.

本実施例によれば、多孔板の全面に孔を設けることができ、狭隘流路の流路断面積をより細かく変更することが可能になり、微細気泡生成量を滑らかに制御できる。又、流量変更時の加圧圧力の変動が抑制されるため、ポンプへの急激な流量・圧力変動が緩和され、ポンプへの負担が軽減される。   According to the present embodiment, holes can be provided on the entire surface of the perforated plate, the cross-sectional area of the narrow channel can be changed more finely, and the amount of fine bubbles generated can be controlled smoothly. Further, since the fluctuation of the pressurizing pressure at the time of changing the flow rate is suppressed, the rapid flow rate / pressure fluctuation to the pump is alleviated, and the burden on the pump is reduced.

本発明の実施例4を図24,図25により説明する。図24は、本実施例の微細気泡生成装置の構成図、図25は、本実施例の微細気泡生成装置における逆流洗浄時の運転方法の制御フローチャートである。   A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 24 is a configuration diagram of the fine bubble generating device of the present embodiment, and FIG. 25 is a control flowchart of an operation method during back-flow cleaning in the fine bubble generating device of the present embodiment.

本実施例の微細気泡生成装置は、図1に示す実施例1と同様に構成されているが、流路9aには弁12が設置され、弁12には流入管16が設けられ、流路9bのポンプ1と多孔板ユニット4との間には弁13と弁14が、流路9cには弁15が設置され、弁13と弁15は配管17で連結され、弁14には排水管18が設けられている。弁12,13,14,15は、三方弁で構成され、それぞれ信号線で制御装置3と接続され、制御装置3からの指令により開閉の切替え制御が行われる。   The fine bubble generating apparatus of the present embodiment is configured in the same manner as in the first embodiment shown in FIG. 1, but a valve 12 is installed in the flow path 9a, an inflow pipe 16 is installed in the valve 12, and the flow path A valve 13 and a valve 14 are installed between the pump 1 of 9b and the perforated plate unit 4, a valve 15 is installed in the flow path 9c, the valve 13 and the valve 15 are connected by a pipe 17, and a drain pipe is connected to the valve 14 18 is provided. Each of the valves 12, 13, 14, and 15 is configured by a three-way valve, and is connected to the control device 3 through a signal line, and switching control of opening and closing is performed by a command from the control device 3.

通常運転時には、弁12は流路9a側を開とし流入管16側を閉とする。弁13と弁15はそれぞれ流路9b側を開、流路9c側を開、配管17側を閉とする。弁14は流路9b側を開、排水管18側を閉とする。これにより、気液二相流10は、ポンプ1で昇圧されて多孔板ユニット4で微細気泡が生成されて微細気泡流11として流出される。   During normal operation, the valve 12 opens on the flow path 9a side and closes the inflow pipe 16 side. Each of the valve 13 and the valve 15 is opened on the channel 9b side, opened on the channel 9c side, and closed on the pipe 17 side. The valve 14 opens the flow path 9b side and closes the drain pipe 18 side. As a result, the gas-liquid two-phase flow 10 is pressurized by the pump 1 to generate fine bubbles in the perforated plate unit 4 and flow out as a fine bubble flow 11.

液相中の浮遊物、溶解成分の析出・付着等により多孔板ユニット4内の多孔板の閉塞が検知されると、制御装置3は、弁12〜15を切替えて、逆洗運転を行う。   When the blockage of the porous plate in the porous plate unit 4 is detected due to the suspended matter in the liquid phase, the deposition / adhesion of dissolved components, etc., the control device 3 switches the valves 12 to 15 and performs the backwash operation.

逆洗運転時には、弁12は流路9a側を閉とし流入管16側を開とする。弁13と弁15はそれぞれ流路9b側を閉、流路9c側を閉、配管17側を開とする。弁14は流路9b側を閉、排水管18側を開とする。   During the backwash operation, the valve 12 closes the flow path 9a side and opens the inflow pipe 16 side. Each of the valve 13 and the valve 15 is closed on the flow path 9b side, closed on the flow path 9c side, and opened on the pipe 17 side. The valve 14 closes the flow path 9b side and opens the drain pipe 18 side.

流入管16から流入した逆洗用水は、ポンプ1で昇圧され配管17を流れて流路9c側から多孔板ユニット4に流入し、多孔板ユニット4の孔を洗浄した後、排水管18から排出される。なお、多孔板ユニット4の代わりに実施例2の多孔板を設置してもよい。   The backwash water flowing in from the inflow pipe 16 is pressurized by the pump 1, flows through the pipe 17, flows into the perforated plate unit 4 from the flow path 9 c side, and is discharged from the drain pipe 18 after washing the holes of the perforated plate unit 4. Is done. Instead of the perforated plate unit 4, the perforated plate of Example 2 may be installed.

逆洗運転への切替えは、図25に示すフローチャートに従って行われる。   Switching to the backwash operation is performed according to the flowchart shown in FIG.

ステップS11で、制御装置3は、駆動装置7を起動して多孔板ユニット4の有効孔数を校正用の目標値mpに設定する。ステップS12で、制御装置3は、インバータ2を制御してポンプ1を起動し、流量計6の測定値が校正用の目標値Qpになるようにポンプ1の回転数を制御する。   In step S <b> 11, the control device 3 activates the driving device 7 to set the effective hole number of the perforated plate unit 4 to the calibration target value mp. In step S12, the control device 3 controls the inverter 2 to start the pump 1, and controls the rotation speed of the pump 1 so that the measured value of the flow meter 6 becomes the calibration target value Qp.

ステップS13で、圧力計5の測定値Pを計測し、測定値Pと校正用の目標値Ppとの差分が偏差量の許容値ΔPより大きいか否かの判定を行う。測定値Pと校正用の目標値Ppとの差分が偏差量の許容値ΔPより大きい場合は、液相中の浮遊物,溶解成分の析出・付着等により多孔板ユニット4内の多孔板の閉塞が生じたと判定し、ステップS14に進み、小さい場合は終了する。   In step S13, the measured value P of the pressure gauge 5 is measured, and it is determined whether or not the difference between the measured value P and the calibration target value Pp is larger than the allowable deviation amount ΔP. When the difference between the measured value P and the calibration target value Pp is larger than the tolerance ΔP of the deviation amount, the porous plate in the porous plate unit 4 is clogged due to precipitation or adhesion of suspended matter or dissolved components in the liquid phase. Is determined, and the process proceeds to step S14.

ステップS14で、弁12〜弁15を逆洗用流路に切替える。すなわち、上述したように、弁12は流路9a側を閉、流入管16側を開とし、弁13と弁15はそれぞれ流路9b側を閉、流路9c側を閉、配管17側を開とし、弁14は流路9b側を閉、排水管18側を開とする。   In step S14, the valves 12 to 15 are switched to the backwash channel. That is, as described above, the valve 12 closes the flow path 9a side, the inflow pipe 16 side opens, and the valves 13 and 15 close the flow path 9b side, close the flow path 9c side, and close the pipe 17 side, respectively. The valve 14 is opened, the flow path 9b side is closed, and the drain pipe 18 side is opened.

ステップS15で、制御装置3は、ポンプ1を起動して設定された運転時間の間ポンプ1を運転して多孔板ユニット4の逆洗を行う。設定された運転時間が経過すると、ポンプ1を停止し、ステップS16で、弁12〜弁15の開閉状態を切替えて通常運転時の微細気泡生成用の流路に切替え、ステップS2に戻る。   In step S <b> 15, the control device 3 starts the pump 1 and operates the pump 1 for the set operation time to perform the backwashing of the perforated plate unit 4. When the set operation time has elapsed, the pump 1 is stopped, and in step S16, the open / close states of the valves 12 to 15 are switched to switch to the flow path for generating fine bubbles during normal operation, and the process returns to step S2.

なお、校正用の目標値mp,Qpと逆洗時のポンプ1の運転時間は入力装置8から入力される。   The calibration target values mp and Qp and the operation time of the pump 1 during backwashing are input from the input device 8.

以上の説明では、校正用の目標値と計測値の差分が許容値より大きい場合に逆洗運転を行う例を説明したが、制御装置3がタイマーにより時間計測を行い、入力装置8から入力された逆洗開始時刻、逆洗を開始するための時間間隔で、弁12〜弁15を逆洗用流路に切替え、設定された運転時間の間ポンプ1を運転して、通常運転時の微細気泡生成用流路に戻すように制御してもよい。   In the above description, the example in which the backwash operation is performed when the difference between the calibration target value and the measured value is larger than the allowable value has been described. However, the control device 3 performs time measurement with a timer and is input from the input device 8. The backwashing start time and the time interval for starting the backwashing are switched to the flow path for backwashing, and the pump 1 is operated for the set operation time. You may control to return to the bubble production | generation flow path.

又、多孔板ユニット4を用いる場合は、流路制限板の軸方向に多孔板に接触するような突起部分或いはブラシ状の部品を取付けてもよい。又、流路制限板の軸方向部分に多孔板面に対して鋭角に加工された部分を有してもよい。実施例3に示すように流路制限板が複数枚ある場合は、表側の流路制限板にこの加工を施すとよい。この場合は、微細気泡生成運転時の設定された時間間隔で、或いは逆洗運転時のポンプ起動前で運転中に流路制限板をその可動領域全体に動かすとよい。流路制限板に多孔板と接触する端面構造を設け、流路制限板が多孔板の表面を移動する際に、端面構造により多孔板の表面の付着物を削り取って剥離させるようにしてもよく、これにより多孔板の孔の閉塞を回避することができる。   When the perforated plate unit 4 is used, a protruding portion or a brush-like component that contacts the perforated plate in the axial direction of the flow path restricting plate may be attached. Moreover, you may have the part processed by the acute angle with respect to the porous plate surface in the axial direction part of the flow-path restriction | limiting board. When there are a plurality of flow path restriction plates as shown in the third embodiment, this processing may be performed on the front face flow restriction plate. In this case, the flow path restriction plate may be moved to the entire movable region during the operation at a set time interval during the fine bubble generation operation or before the pump is activated during the backwash operation. An end face structure that contacts the perforated plate may be provided on the flow path restricting plate, and when the flow restricting plate moves on the surface of the perforated plate, deposits on the surface of the porous plate may be scraped off and peeled off by the end face structure. Thus, blockage of the holes of the perforated plate can be avoided.

本実施例によれば、狭隘流路の付着物を除去することができるので、微細気泡生成装置が閉塞を防止でき、加圧圧力が上昇するのを回避できる。又、多孔板の孔断面積,孔形状の変化による気泡径分布の変化を回避できるため、微細気泡をより効率良く、かつ安定した気泡径分布で生成することができる。   According to the present embodiment, since the deposits in the narrow channel can be removed, the fine bubble generating device can be prevented from being blocked and the pressurization pressure can be prevented from rising. Further, since the change in the bubble diameter distribution due to the change in the hole cross-sectional area and hole shape of the perforated plate can be avoided, the fine bubbles can be generated more efficiently and with a stable bubble diameter distribution.

多孔板ユニット4に流入する気液二相流10の気体溶解効率は、微細気泡含有水11の微細気泡個数濃度に影響する。微細気泡個数濃度が低いと、微細気泡含有水11の流量を増加しても微細気泡量が確保できない。ポンプ1に流入する気液二相流の気体注入率を増加させても、溶解効率が低い場合は、微細気泡混合水11中へ粗大気泡として流出するため微細気泡を充分に利用できない。   The gas dissolution efficiency of the gas-liquid two-phase flow 10 flowing into the perforated plate unit 4 affects the fine bubble number concentration of the water 11 containing fine bubbles. When the fine bubble number concentration is low, the amount of fine bubbles cannot be secured even if the flow rate of the fine bubble-containing water 11 is increased. Even if the gas injection rate of the gas-liquid two-phase flow flowing into the pump 1 is increased, if the dissolution efficiency is low, the fine bubbles cannot be fully utilized because they flow out into the fine bubble mixed water 11 as coarse bubbles.

本実施例では、ポンプ1の後段において気体溶解効率を向上し、微細気泡含有水11の微細気泡個数濃度をより高める方法を図26により説明する。図26は本実施例の微細気泡生成装置の構成図である。   In the present embodiment, a method of improving the gas dissolution efficiency in the subsequent stage of the pump 1 and further increasing the fine bubble number concentration of the fine bubble-containing water 11 will be described with reference to FIG. FIG. 26 is a block diagram of the fine bubble generating apparatus of the present embodiment.

本実施例の微細気泡生成装置は、実施例1或いは実施例2の微細気泡生成装置と同様に構成されているが、ポンプ1と多孔板ユニット4の間で、圧力計5の上流側に圧力タンク21を設置している。圧力タンク21は、微細気泡生成に必要な加圧圧力に耐える構造になっている。ポンプ1で加圧された気液二相流10は、圧力タンク21内において高圧条件下で滞留することにより気体の溶解が進行する。   The fine bubble generating apparatus of the present embodiment is configured in the same manner as the fine bubble generating apparatus of the first embodiment or the second embodiment, but the pressure is increased upstream of the pressure gauge 5 between the pump 1 and the perforated plate unit 4. A tank 21 is installed. The pressure tank 21 has a structure that can withstand the pressurizing pressure necessary for generating fine bubbles. The gas-liquid two-phase flow 10 pressurized by the pump 1 stays in the pressure tank 21 under a high-pressure condition, so that gas dissolution proceeds.

本実施例によれば、狭隘流路に流入する気液二相流の溶存気体濃度を高めることができ、減圧により析出する微細気泡の個数濃度が増加するので、流量あたりの微細気泡生成量がより増加する。このため、ポンプ前段で注入した気体の利用効率が向上し、微細気泡をより効率良く生成することができる。   According to the present embodiment, the dissolved gas concentration of the gas-liquid two-phase flow flowing into the narrow channel can be increased, and the number concentration of fine bubbles precipitated due to the reduced pressure increases, so the amount of fine bubbles generated per flow rate can be reduced. Increase more. For this reason, the utilization efficiency of the gas inject | poured before the pump improves, and it can produce | generate a fine bubble more efficiently.

なお、本実施例は、実施例2〜実施例4のいずれかに適用することができ、実施例4に適用する場合は、弁14および排水管18は圧力タンク21の後段に設置する。   The present embodiment can be applied to any one of Embodiments 2 to 4. When the embodiment is applied to Embodiment 4, the valve 14 and the drain pipe 18 are installed in the subsequent stage of the pressure tank 21.

多孔板ユニット4を用いた場合、溶解できなかった気体は多孔板の入口付近で蓄積され、所定量に達すると気相として多孔板を通過する場合がある。原理上、加圧条件で溶解していない気体は、減圧しても微細気泡化しないので、多孔板から流出する微細気泡含有水11中に、粗大気泡が周期的に混入して上部の気相へと脱離するため、気体の利用効率が低下する。   When the perforated plate unit 4 is used, the gas that could not be dissolved is accumulated near the entrance of the perforated plate, and when it reaches a predetermined amount, it may pass through the perforated plate as a gas phase. In principle, gas that has not been dissolved under pressure does not become microbubbles even under reduced pressure. Therefore, coarse bubbles are periodically mixed in the water 11 containing fine bubbles flowing out of the perforated plate, and the upper gas phase. The gas utilization efficiency is reduced due to desorption.

本実施例では、ポンプ1の後段における気液二相流の流入状態を変えることにより、多孔板の後段に流出した粗大気泡を微細気泡化する方法を図27により説明する。   In the present embodiment, a method of making the coarse bubbles flowing out downstream of the perforated plate into fine bubbles by changing the inflow state of the gas-liquid two-phase flow downstream of the pump 1 will be described with reference to FIG.

本実施例の微細気泡生成装置は、実施例1或いは実施例2の微細気泡生成装置と同様に構成されているが、ポンプ1と多孔板ユニット4の間に流体制御板22が設置されている。流体制御板22は、ポンプ1で加圧された気液二相流に旋回を与え、多孔板ユニット4に流入する際に、管路断面方向の中心付近の気相割合を高める。多孔板ユニット4の孔位置を中心付近と周辺付近に設けた場合、中心から流出する気相割合が高く比較的低流速の気液二相流は、周辺から流出する液相割合が高く比較的高流速の二相流により剪断力を与えられる。その結果、中心から流出する気液二相流に粗大気泡が混入していた場合、粗大気泡はこの剪断力により微細化される。   The fine bubble generating apparatus of the present embodiment is configured in the same manner as the fine bubble generating apparatus of the first or second embodiment, but a fluid control plate 22 is installed between the pump 1 and the perforated plate unit 4. . The fluid control plate 22 turns the gas-liquid two-phase flow pressurized by the pump 1 and increases the gas phase ratio in the vicinity of the center in the pipe cross-sectional direction when flowing into the perforated plate unit 4. When the hole positions of the perforated plate unit 4 are provided near the center and near the periphery, the gas-liquid two-phase flow with a high gas phase ratio flowing out from the center and a relatively low flow rate has a relatively high liquid phase ratio flowing out from the periphery. A shearing force is applied by a high-speed two-phase flow. As a result, when coarse bubbles are mixed in the gas-liquid two-phase flow flowing out from the center, the coarse bubbles are refined by this shearing force.

なお、本実施例は、実施例2〜実施例4のいずれかに適用することができ、実施例4に適用する場合は、弁14および排水管18は流体制御板22の後段に設置する。   The present embodiment can be applied to any one of Embodiments 2 to 4. When the embodiment is applied to Embodiment 4, the valve 14 and the drain pipe 18 are installed in the subsequent stage of the fluid control plate 22.

本実施例によれば、多孔板ユニット4に流入する気液二相流を、気相割合の異なる部分に分け、多孔板の後段でこれら気液二相流間に剪断力を発生させる。これにより、多孔板に減圧しても微細気泡化ができない粗大気泡が流入しても、多孔板を流出した後に機械的に微細気泡化されるため、ポンプ前段で注入した気体の利用効率が向上する。この結果、微細気泡をより効率良く生成することができる。   According to the present embodiment, the gas-liquid two-phase flow flowing into the perforated plate unit 4 is divided into portions having different gas phase ratios, and a shearing force is generated between these gas-liquid two-phase flows at the subsequent stage of the perforated plate. As a result, even if coarse bubbles that cannot be made into microbubbles even if the pressure is reduced to the perforated plate, the microbubbles are mechanically made after flowing out of the perforated plate, so the efficiency of using the gas injected in the previous stage of the pump is improved. To do. As a result, fine bubbles can be generated more efficiently.

本発明の実施例1である微細気泡生成装置の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the fine bubble production | generation apparatus which is Example 1 of this invention. 本実施例の多孔板ユニットの構成を示す平面図。The top view which shows the structure of the perforated panel unit of a present Example. 本実施例の多孔板ユニットの構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the perforated panel unit of a present Example. 本実施例の多孔板の平面図。The top view of the perforated panel of a present Example. 本実施例の流路制限板の平面図。The top view of the flow-path restriction | limiting board of a present Example. 本実施例の多孔板ユニットの構成を示す平面図。The top view which shows the structure of the perforated panel unit of a present Example. 本実施例の狭隘流路の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the narrow channel of a present Example. 本実施例の狭隘流路の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the narrow channel of a present Example. 本実施例の狭隘流路の構成を示す平面図。The top view which shows the structure of the narrow flow path of a present Example. 本実施例の狭隘流路の構成を示す平面図。The top view which shows the structure of the narrow flow path of a present Example. 本実施例の制御フローチャート図。The control flowchart figure of a present Example. 本実施例の作用,効果を説明する図。The figure explaining the effect | action and effect of a present Example. 本発明の実施例2である微細気泡生成装置の構成図。The block diagram of the fine bubble production | generation apparatus which is Example 2 of this invention. 本実施例の多孔板の平面図。The top view of the perforated panel of a present Example. 本実施例の多孔板の平面図。The top view of the perforated panel of a present Example. 本実施例の作用,効果を説明する図。The figure explaining the effect | action and effect of a present Example. 本発明の実施例3である微細気泡生成装置の多孔板ユニットの構成を示す平面図。The top view which shows the structure of the perforated plate unit of the microbubble production | generation apparatus which is Example 3 of this invention. 本実施例の多孔板ユニットの構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the perforated panel unit of a present Example. 本実施例の多孔板の平面図。The top view of the perforated panel of a present Example. 本実施例の流路制限板の平面図。The top view of the flow-path restriction | limiting board of a present Example. 本実施例の多孔板ユニットの構成を示す平面図。The top view which shows the structure of the perforated panel unit of a present Example. 本実施例の流路制限板の平面図。The top view of the flow-path restriction | limiting board of a present Example. 本実施例の流路制限板の平面図。The top view of the flow-path restriction | limiting board of a present Example. 本発明の実施例4である微細気泡生成装置の構成図。The block diagram of the fine bubble production | generation apparatus which is Example 4 of this invention. 本実施例による制御フローチャート図。The control flowchart figure by a present Example. 本発明の実施例5である微細気泡生成装置の構成図。The block diagram of the microbubble production | generation apparatus which is Example 5 of this invention. 本発明の実施例6である微細気泡生成装置の構成図。The block diagram of the microbubble production | generation apparatus which is Example 6 of this invention.

符号の説明Explanation of symbols

1…ポンプ、2…インバータ、3…制御装置、4…多孔板ユニット、5…圧力計、6…
流量計、7…駆動装置、8…入力装置、9…流路、12,13,14,15…弁、16…
流入管、17…配管、18…排水管、21…圧力タンク、22…流体制御板、100…多
孔板、101…流路制限板、102…軸、103…孔、104…固定板。
DESCRIPTION OF SYMBOLS 1 ... Pump, 2 ... Inverter, 3 ... Control apparatus, 4 ... Perforated board unit, 5 ... Pressure gauge, 6 ...
Flow meter, 7 ... Drive device, 8 ... Input device, 9 ... Flow path, 12, 13, 14, 15 ... Valve, 16 ...
Inflow pipe, 17 ... pipe, 18 ... drain pipe, 21 ... pressure tank, 22 ... fluid control plate, 100 ... perforated plate, 101 ... channel restriction plate, 102 ... shaft, 103 ... hole, 104 ... fixing plate.

Claims (8)

気液二相流の生成装置に接続されたポンプと、該ポンプの回転数を制御するインバータと、前記ポンプの後段で分岐した複数の流路と、該複数の流路の各々に弁を有して接続された固定された流路断面積を有する多孔板ユニットと、前記インバータ及び前記弁の開閉を制御する制御装置とを備え、前記制御装置により、前記複数の分岐流路毎に設けられた前記弁を選択的に開閉制御する微細気泡の生成装置。   A pump connected to the gas-liquid two-phase flow generator, an inverter for controlling the number of revolutions of the pump, a plurality of flow paths branched at the subsequent stage of the pump, and a valve in each of the plurality of flow paths And a perforated plate unit having a fixed flow path cross-sectional area connected thereto, and a control device for controlling the opening and closing of the inverter and the valve, provided by the control device for each of the plurality of branch flow paths. A fine bubble generating apparatus that selectively opens and closes the valve. 前記流路断面積が複数の同径の孔、孔が連った形状のスリットのいずれかで形成されている請求項1に記載の微細気泡の生成装置。 The flow path cross-sectional area is more than the same diameter of the hole, the hole generation device microbubble of claim 1 which is formed in one of slit bets shape Tsu communication. 前記流路断面積が複数の同径の孔で形成され、少なくとも一部の多孔板ユニットの孔数が他の多孔板ユニットの孔数と異なるように設けられている請求項1に記載の微細気泡の生成装置。 2. The fine structure according to claim 1, wherein the flow path cross-sectional area is formed of a plurality of holes having the same diameter, and the number of holes of at least some of the porous plate units is different from the number of holes of other porous plate units. Bubble generator. 前記ポンプと前記多孔板ユニットとの間の流路に圧力タンク、又は流体制御板を設置した請求項1から3のいずれかに記載の微細気泡の生成装置。   The apparatus for generating fine bubbles according to any one of claims 1 to 3, wherein a pressure tank or a fluid control plate is installed in a flow path between the pump and the porous plate unit. 前記ポンプの前段に1個、前記ポンプの後段で前記分岐の前段の流路に2個、前記多孔板ユニットの後段に1個の三方弁をそれぞれ設け、三方弁を切替えた時に逆洗用水を多孔板ユニットの下流側から上流側に流すように三方弁に接続された配管を接続した請求項1から3のいずれかに記載の微細気泡の生成装置。 One three-way valve is provided at the front stage of the pump, two at the downstream stage of the pump at the rear stage of the pump, and one at the rear stage of the perforated plate unit, and backwash water is supplied when the three-way valve is switched. The microbubble generating device according to any one of claims 1 to 3, wherein a pipe connected to a three-way valve is connected so as to flow from the downstream side to the upstream side of the perforated plate unit. 気液二相流の生成装置に接続されたポンプの回転数を制御するインバータ及び弁を開閉制御する制御装置において、入力された微細気泡生成量の目標値から、該微細気泡生成量の目標値と、設定したまたは設定圧力から算出した微細気泡含有水の微細気泡の含有率の比により微細気泡含有水の排出流量を算出し、該算出された排出流量と気液二相流の流量測定値を比較し、前記流量測定値が算出された排出流量より大の場合は前記インバータによってポンプ回転数を減少させ、前記流量測定値が算出された排出流量より小の場合は前記インバータによってポンプ回転数を増加させ、圧力の設定値と測定圧力値の偏差が許容値内となるように、前記ポンプの後段で分岐した複数の流路と、該複数の流路の各々に弁を有して接続された固定された孔数又はスリット数の流路断面積を有する多孔板ユニットの流路断面積を前記弁を選択的に開閉制御して増減少させる微細気泡の生成方法。 In an inverter that controls the number of revolutions of a pump connected to a gas-liquid two-phase flow generator and a controller that controls opening and closing of a valve, the target value of the fine bubble generation amount is determined from the input target value of the fine bubble generation amount. And the discharge flow rate of the fine bubble-containing water by the ratio of the fine bubble content rate calculated from the set or set pressure, and the measured flow rate of the calculated discharge flow rate and the gas-liquid two-phase flow comparing the case from the discharge flow rate measurement values are computed for the large decrease the pump speed by the inverter, the case from the discharge flow rate measurement values are computed for the small pump rotational speed by the inverter And a plurality of flow paths branched at the subsequent stage of the pump and connected to each of the plurality of flow paths with valves so that the deviation between the set pressure value and the measured pressure value is within an allowable value. Fixed Selectively opening and closing control and the method of generating the micro-bubbles for reducing increase in the valve channel cross-sectional area of the perforated plate unit having a flow path cross-sectional area of several or numbers slits. 気液二相流の生成装置に接続されたポンプの回転数を制御するインバータ及び弁を開閉制御する制御装置において、入力された微細気泡生成量の目標値から、該微細気泡生成量の目標値と、設定したまたは設定圧力から算出した微細気泡含有水の微細気泡の含有率の比により微細気泡含有水の排出流量を算出し、該算出された排出流量と気液二相流の流量測定値を比較し、該流量測定値が算出された排出流量より大の場合は前記インバータによってポンプ回転数を減少させるとともに、前記ポンプの後段で分岐した複数の流路と、該複数の流路の各々に弁を有して接続された固定された孔数又はスリット数の流路断面積を有する多孔板ユニットの流路断面積を前記弁を選択的に開閉制御して減少させ、圧力を設定値に維持するようにし、前記流量測定値が算出された排出流量より小の場合は前記インバータによってポンプ回転数を増加させるとともに、前記複数の多孔板ユニットの流路断面積を前記弁を選択的に開閉制御して増加させ圧力を設定値に維持するようにして、目標の微細気泡生成量に制御する微細気泡の生成方法。 In an inverter that controls the number of revolutions of a pump connected to a gas-liquid two-phase flow generator and a controller that controls opening and closing of a valve, the target value of the fine bubble generation amount is determined from the input target value of the fine bubble generation amount. And the discharge flow rate of the fine bubble-containing water by the ratio of the fine bubble content rate calculated from the set or set pressure, and the measured flow rate of the calculated discharge flow rate and the gas-liquid two-phase flow comparing, each from the discharge flow rate the flow rate measurement value is calculated with the case of a large decrease of the pump speed by the inverter, a plurality of flow paths branching at a later stage of the pump, the plurality of flow path The flow passage cross-sectional area of a perforated plate unit having a fixed flow passage cross-sectional area with a number of holes or slits connected with a valve is reduced by selectively opening and closing the valve, and the pressure is set to a set value. To keep the above Together if from the discharge flow amount measured value is calculated for small increase pump speed by the inverter, pressure flow path cross-sectional area of the plurality of perforated plate unit is increased by selectively controlling opening and closing said valve Is maintained at the set value, and the fine bubble generation method is controlled to the target fine bubble generation amount. 気液二相流の生成装置に接続されたポンプの回転数を制御するインバータ及び弁を開閉制御する制御装置において、入力された微細気泡生成量の目標値から、該微細気泡生成量の目標値と、設定したまたは設定圧力から算出した微細気泡含有水の微細気泡の含有率の比により微細気泡含有水の排出流量を算出し、該算出された排出流量と気液二相流の流量測定値を比較し、前記流量測定値が算出された流量より大の場合は、前記ポンプの後段で分岐した複数の流路と、該複数の流路の各々に弁を有して接続された固定された孔数又はスリット数の流路断面積を有する多孔板ユニットの流路断面積を前記弁を選択的に開閉制御して減少させ、前記流量測定値が算出された排出流量より小の場合は前記複数の多孔板ユニットの流路断面積を前記弁を選択的に開閉制御して増加し、前記インバータによってポンプ回転数を増減させ、圧力を設定値に維持するようにして、目標の微細気泡生成量に制御する微細気泡の生成方法。 In an inverter that controls the number of revolutions of a pump connected to a gas-liquid two-phase flow generator and a controller that controls opening and closing of a valve, the target value of the fine bubble generation amount is determined from the input target value of the fine bubble generation amount. And the discharge flow rate of the fine bubble-containing water by the ratio of the fine bubble content rate calculated from the set or set pressure, and the measured flow rate of the calculated discharge flow rate and the gas-liquid two-phase flow If the measured flow rate is greater than the calculated flow rate, a plurality of flow paths branched at a later stage of the pump and a fixed connection connected to each of the plurality of flow paths with valves. If the flow passage cross-sectional area of the perforated plate unit having a flow passage cross-sectional area having a number of holes or slits is decreased by selectively opening and closing the valve, and the flow rate measurement value is smaller than the calculated discharge flow rate, The valve cross-sectional area of the plurality of perforated plate units Increases in selectively opening and closing control, increase or decrease the pump speed by the inverter, so as to maintain the pressure to the set value, fine bubble generation method of controlling the fine bubbles generated amount of target.
JP2008023456A 2008-02-04 2008-02-04 Fine bubble generating apparatus and method Expired - Fee Related JP4872937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023456A JP4872937B2 (en) 2008-02-04 2008-02-04 Fine bubble generating apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023456A JP4872937B2 (en) 2008-02-04 2008-02-04 Fine bubble generating apparatus and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005207961A Division JP4151681B2 (en) 2005-07-19 2005-07-19 Fine bubble generating apparatus and method

Publications (2)

Publication Number Publication Date
JP2008110346A JP2008110346A (en) 2008-05-15
JP4872937B2 true JP4872937B2 (en) 2012-02-08

Family

ID=39443171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023456A Expired - Fee Related JP4872937B2 (en) 2008-02-04 2008-02-04 Fine bubble generating apparatus and method

Country Status (1)

Country Link
JP (1) JP4872937B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064880A1 (en) * 2009-11-27 2011-06-03 三菱電機株式会社 Bubble generation method and bubble generator
JP5796176B2 (en) * 2010-04-23 2015-10-21 パナソニックIpマネジメント株式会社 Bathtub with microbubble generator
KR101922102B1 (en) * 2016-01-14 2019-02-14 서울대학교산학협력단 Nano bubble generator
KR102091672B1 (en) * 2018-10-11 2020-03-20 서윤환 Bubble generator and nano bubble generator using the same
EP3903915A4 (en) * 2018-12-25 2023-08-02 Miike Tekkou Kabushikigaisha Ultrafine bubble maker and ultrafine bubble water preparing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755586A (en) * 1980-09-20 1982-04-02 Fujitsu Ltd Bubble element
JPH0636860B2 (en) * 1988-08-22 1994-05-18 東京瓦斯株式会社 Ejector group device
JP3701065B2 (en) * 1995-11-06 2005-09-28 有限会社エーディ Heterogeneous fluid mixing device
JP3739902B2 (en) * 1996-09-20 2006-01-25 株式会社日本触媒 Gas-liquid dispersion device, gas-liquid contact device, and wastewater treatment device
JPH10225696A (en) * 1997-02-17 1998-08-25 Hitachi Ltd Pressurization type ozone treating device
JPH10230285A (en) * 1997-02-19 1998-09-02 Toshiba Corp High speed ozone reaction system
JP4298824B2 (en) * 1997-10-28 2009-07-22 Idec株式会社 Gas-liquid dissolution and mixing equipment
JP3043315B2 (en) * 1998-08-12 2000-05-22 株式会社五月工業 Bubble generator
JP2001300276A (en) * 2000-04-24 2001-10-30 Isao Endo Bubble generating device
JP3647731B2 (en) * 2000-08-10 2005-05-18 有限会社出雲技研 Gas-liquid supply device
JP2002301345A (en) * 2001-02-05 2002-10-15 Teruji Sasaki Bubble water manufacturing apparatus
JP2003117365A (en) * 2001-10-19 2003-04-22 Malhaty Pump Mfg Co Ltd Micro-bubble producing apparatus
JP2004000878A (en) * 2002-04-25 2004-01-08 Yaskawa Electric Corp Fluid mixing apparatus

Also Published As

Publication number Publication date
JP2008110346A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP4151681B2 (en) Fine bubble generating apparatus and method
JP4872937B2 (en) Fine bubble generating apparatus and method
JP4910322B2 (en) Water treatment equipment using fine bubbles
JP6239418B2 (en) Air diffuser and cleaning method
US6357483B1 (en) Flow controller
JP2002052330A (en) Gas and liquid supply device
JP7265891B2 (en) Fine bubble generator
JP2006320886A (en) Micron bubble generator
JP6084635B2 (en) Water treatment system
JP2013248607A (en) Membrane separator apparatus and membrane separation method
JP2016173075A (en) Hydraulic machinery and operation method of the same
KR20160114786A (en) Apparatus for producing carbonated water
JP2019132051A (en) Sanitary washing device
JP4485954B2 (en) Gas supply system for metallurgical furnace and operation method therefor
JP2014161807A (en) Reverse osmosis membrane apparatus
WO2018047156A1 (en) Method and system for liquid treatment
JP2011183350A (en) Gas-liquid mixing apparatus
RU2570668C1 (en) Device for liquid degassing of open dynamic tank
JP3143158U (en) Gas liquid mixing device
JP5228011B2 (en) Water treatment equipment
CN204307528U (en) Filter core and the purifier with it
JP5842177B2 (en) Air mixed water discharge device
JP5102134B2 (en) Shower equipment
JP4853899B2 (en) Muddy water treatment drainage system
JP7260348B2 (en) Aeration system and method of operating the aeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees