JP2013248607A - Membrane separator apparatus and membrane separation method - Google Patents

Membrane separator apparatus and membrane separation method Download PDF

Info

Publication number
JP2013248607A
JP2013248607A JP2012274793A JP2012274793A JP2013248607A JP 2013248607 A JP2013248607 A JP 2013248607A JP 2012274793 A JP2012274793 A JP 2012274793A JP 2012274793 A JP2012274793 A JP 2012274793A JP 2013248607 A JP2013248607 A JP 2013248607A
Authority
JP
Japan
Prior art keywords
membrane
differential pressure
raw water
tubular membrane
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012274793A
Other languages
Japanese (ja)
Inventor
Kyosuke Takahashi
恭介 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2012274793A priority Critical patent/JP2013248607A/en
Publication of JP2013248607A publication Critical patent/JP2013248607A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a membrane separator apparatus and a membrane separation method which can eliminate membrane clogging during an emergency period when clogging has developed and a transmembrane pressure difference increases.SOLUTION: A membrane separator apparatus 10 is configured such that raw water is made to flow into a tubular membrane 2 constituting a tube form, with the inside of a tube as a flow passage, and while a membrane surface is being cleaned, treated water is solid-liquid separated from raw water. During an emergency period when the pressure difference between an upper stream side and a lower stream side of a tubular membrane 2 exceeds a prescribed value P, churn flow is caused in the flow passage inside the cylinder of the tubular membrane 2 so that air bubbles having a shape like a collapsed longitudinal bullet are generated. Large and small various air bubbles are then forced to flow up in the tubular membrane 2 while keeping strong contact with the membrane surface.

Description

本発明は、原水と処理水の固液分離をろ過膜によって行う膜分離装置及び膜分離方法に関する。   The present invention relates to a membrane separation apparatus and a membrane separation method for performing solid-liquid separation of raw water and treated water using a filtration membrane.

近年、水処理において、膜分離法が非常に注目されている。この膜分離法とは、従来の水処理の固液分離を膜で行うものである。膜で固液分離することにより、処理水が清澄になり、沈殿池が不要になるため、装置全体がコンパクトになる等のメリットが得られる。   In recent years, membrane separation methods have received much attention in water treatment. In this membrane separation method, solid-liquid separation of conventional water treatment is performed with a membrane. By performing solid-liquid separation with a membrane, the treated water becomes clear and a sedimentation basin is not required, so that advantages such as the entire apparatus being compact can be obtained.

しかしながら、膜分離法にあっては、運転時間が経過すると膜の目詰まりが進行してろ過水量が低下するという問題がある。そこで、気液二相流による膜面洗浄が広く行われている。   However, in the membrane separation method, there is a problem that the clogging of the membrane proceeds and the amount of filtered water decreases when the operation time elapses. Therefore, membrane cleaning by gas-liquid two-phase flow is widely performed.

気液二相流による膜の洗浄方法として、例えば、処理原水を汚泥固形分と処理水とに分離するためのろ過膜を備える膜分離装置の洗浄において、膜の上流側と下流側との膜差圧を圧力センサで監視し、膜差圧が所定値以上に上昇した場合に散気装置に供給する曝気風量を増加させた気液二相流による膜面洗浄方法が知られている(例えば、特許文献1参照)。   As a method for cleaning a membrane by a gas-liquid two-phase flow, for example, in the cleaning of a membrane separation apparatus including a filtration membrane for separating treated raw water into sludge solids and treated water, the membrane on the upstream side and the downstream side of the membrane There is known a membrane surface cleaning method by gas-liquid two-phase flow in which the differential pressure is monitored with a pressure sensor and the amount of aeration air supplied to the diffuser is increased when the membrane differential pressure rises above a predetermined value (for example, , See Patent Document 1).

特開2005−144291号公報JP 2005-144291 A

ところで、上記のような膜面洗浄を行っている場合でも、何らかの理由で膜面の目詰まりが進行し膜差圧が上昇する事象が発生することがあり、十分なろ過性能が得られなくなるという問題がある。そこで、このような目詰まりの進行により膜差圧が上昇する非定常時に膜の目詰まりを解消することが可能な洗浄方法の開発が望まれている。   By the way, even when the membrane surface cleaning is performed as described above, there is a case where the membrane surface clogging progresses for some reason and the membrane differential pressure may increase, and sufficient filtration performance cannot be obtained. There's a problem. Therefore, it is desired to develop a cleaning method capable of eliminating the clogging of the membrane at the unsteady time when the membrane differential pressure increases due to the progress of such clogging.

本発明は、このような実情に鑑みてなされたものであり、目詰まりが進行し膜差圧が上昇する非定常時に、膜の目詰まりを解消させることができる膜分離装置及び膜分離方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a membrane separation apparatus and a membrane separation method capable of eliminating clogging of a membrane at the unsteady time when clogging progresses and a membrane differential pressure increases. The purpose is to provide.

上記課題を解決するため、本発明に係る膜分離装置は、筒状を成す管状膜に、筒内を流路として、原水を流入させて、膜面を洗浄すると同時に原水と処理水とに固液分離する膜分離装置であって、膜の上流側と下流側との差圧を検知する差圧検知手段と、膜に流入する原水に空気を供給して原水の気体の比率を調整する空気供給手段と、差圧検知手段によって検知された差圧が予め設定された設定値Pを超えた場合に、流路にチャーン流が発生するように空気供給手段による空気の供給量を制御する制御手段と、を備える。   In order to solve the above-mentioned problems, the membrane separation apparatus according to the present invention is configured to flow into the tubular membrane having a tubular shape, using the inside of the tube as a flow path, to feed the raw water, wash the membrane surface, and simultaneously fix the raw water and the treated water. A membrane separation device for liquid separation, a differential pressure detecting means for detecting a differential pressure between the upstream side and the downstream side of the membrane, and an air for adjusting the ratio of the raw water gas by supplying air to the raw water flowing into the membrane Control for controlling the amount of air supplied by the air supply means so that a churn flow is generated in the flow path when the differential pressure detected by the supply means and the differential pressure detection means exceeds a preset value P Means.

また、本発明に係る膜分離方法は、筒状を成す管状膜に、筒内を流路として、原水を流入させて、膜面を洗浄すると同時に原水と処理水とに固液分離する膜分離方法であって、膜の上流側と下流側との差圧を検知する差圧検知工程と、膜に流入する原水に空気を供給して原水の気体の比率を調整する空気供給工程と、差圧検知工程で検知された差圧が予め設定された設定値Pを超えた場合に、空気供給工程での空気の供給量を増加させて、流路にチャーン流が発生するように制御する制御工程と、を備える。   Further, the membrane separation method according to the present invention is a membrane separation in which raw water is introduced into a tubular membrane having a tubular shape, and the membrane surface is washed, and at the same time, the membrane surface is separated into raw water and treated water. A method for detecting a differential pressure between the upstream side and the downstream side of the membrane, an air supply step for adjusting the ratio of the raw water gas by supplying air to the raw water flowing into the membrane, Control for controlling the churn flow to be generated in the flow path by increasing the air supply amount in the air supply process when the differential pressure detected in the pressure detection process exceeds a preset value P. A process.

このような膜分離装置及び膜分離方法によれば、管状膜の上流側と下流側との差圧が設定値Pを超える非定常時には、管状膜の筒内に形成された流路にチャーン流が発生する。チャーン流が発生すると、縦長で弾丸状の気泡が崩れたような形状の気泡が生成され、大小様々な気泡が膜面に強く接触しながら管状膜内部を上昇していくこととなる。これにより、目詰まりの進行により膜差圧が上昇する非定常時に、洗浄力を強化させて膜の目詰まりを解消させることができる。   According to such a membrane separation device and a membrane separation method, when the differential pressure between the upstream side and the downstream side of the tubular membrane exceeds the set value P, the churn flow is caused in the flow path formed in the tube of the tubular membrane. Will occur. When the churn flow is generated, bubbles having a shape in which the vertically long bullet-shaped bubbles are broken are generated, and various large and small bubbles are lifted up inside the tubular membrane while strongly contacting the membrane surface. Thereby, at the time of the non-stationary state where the film differential pressure increases due to the progress of clogging, it is possible to reinforce the cleaning power and eliminate clogging of the film.

また、制御手段は、差圧検知手段によって検知された差圧が設定値Pを超えた場合に、原水の気体の比率が0.77〜0.89となるように空気供給手段による空気の供給量を制御することが好ましい。この場合、差圧が設定値Pを超えたときに、流路に、より好適にチャーン流を発生させることができる。従って、非定常時に、洗浄力を強化させて膜の目詰まりをより確実に解消させることができる。   In addition, when the differential pressure detected by the differential pressure detection unit exceeds the set value P, the control unit supplies the air by the air supply unit so that the ratio of the raw water gas becomes 0.77 to 0.89. It is preferred to control the amount. In this case, when the differential pressure exceeds the set value P, a churn flow can be more suitably generated in the flow path. Therefore, the clogging of the film can be more reliably resolved by enhancing the cleaning power at the non-steady time.

ここで、膜に流入する原水の流量を調整する流量調整手段を備え、制御手段は、差圧検知手段によって検知された差圧が設定値Pを超えた場合に、膜に流入する原水の量を増加させるように流量調整手段を制御することが好ましい。この場合、目詰まりの進行により膜差圧が上昇し、設定値Pを超える非定常時に、管状膜の筒内に流入する原水の量が増加するように制御され、より多くの原水が膜面に接触しながら管状膜内部を上昇していくこととなるため、洗浄力をより強化させることができる。   Here, the flow rate adjusting means for adjusting the flow rate of the raw water flowing into the membrane is provided, and the control means is the amount of the raw water flowing into the membrane when the differential pressure detected by the differential pressure detecting means exceeds the set value P. It is preferable to control the flow rate adjusting means so as to increase the flow rate. In this case, the membrane differential pressure rises due to the progress of clogging, and the amount of raw water flowing into the tubular membrane tube is controlled to increase in the non-steady state when the set value P is exceeded. Since the inside of the tubular membrane is raised while contacting the surface, the cleaning power can be further enhanced.

また、制御手段は、差圧検知手段により検知された差圧が設定値P以下である場合に、原水の気体の比率が0.4〜0.76となるように空気供給手段による空気の供給量を制御することが好ましい。この場合、管状膜の筒内の流路に、縦長で弾丸状の気泡が生成され、当該気泡が膜面に押し付けられるように接触しながら上昇し、気泡と膜面との間の僅かな隙間を、原水が気泡と逆向きとなる下向きに速い流速で移動することで強い剪断力が発生すると推測される。これにより、膜差圧が設定値P以下である定常時には、膜の目詰まりの発生を抑制する洗浄力を発揮すると共に、気体の比率を非定常時より低減させることによってランニングコストを抑えることができる。   Further, the control means supplies air by the air supply means so that the ratio of the raw water gas is 0.4 to 0.76 when the differential pressure detected by the differential pressure detection means is equal to or less than the set value P. It is preferred to control the amount. In this case, a vertically long bullet-shaped bubble is generated in the flow path in the tube of the tubular membrane, and the bubble rises in contact with the membrane surface so that it is pressed against the membrane surface, and a slight gap between the bubble and the membrane surface It is presumed that a strong shear force is generated when the raw water moves downward at a high flow rate in the opposite direction to the bubbles. Thereby, at the time of the steady state where the differential pressure of the membrane is equal to or less than the set value P, the cleaning power that suppresses the occurrence of clogging of the membrane is exhibited, and the running cost can be suppressed by reducing the gas ratio from the non-steady state. it can.

本発明によれば、目詰まりが進行し膜差圧が上昇する非定常時に、洗浄力を強化させて膜の目詰まりを解消させることができる。   According to the present invention, the clogging of the film can be eliminated by enhancing the cleaning power at the non-steady time when the clogging progresses and the film differential pressure increases.

本発明の第1実施形態に係る膜分離装置を備えた水処理装置を示す概略構成図である。It is a schematic block diagram which shows the water treatment apparatus provided with the membrane separation apparatus which concerns on 1st Embodiment of this invention. 管状膜の流路の気体比率(0.1〜0.6)と気泡形状との関係を示す図である。It is a figure which shows the relationship between the gas ratio (0.1-0.6) of the flow path of a tubular membrane, and bubble shape. 管状膜の流路の気体比率(0.70〜0.75)と気泡形状との関係を示す図である。It is a figure which shows the relationship between the gas ratio (0.70-0.75) of the flow path of a tubular membrane, and bubble shape. 管状膜の流路の気体比率(0.76〜0.8)と気泡形状との関係を示す図である。It is a figure which shows the relationship between the gas ratio (0.76-0.8) of the flow path of a tubular membrane, and bubble shape. 管状膜の流路の気体比率(0.88〜0.91)と気泡形状との関係を示す図である。It is a figure which shows the relationship between the gas ratio (0.88-0.91) of the flow path of a tubular membrane, and bubble shape. 図1中の膜分離装置の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the membrane separator in FIG. 本発明の第2実施形態に係る膜分離装置を備えた水処理装置を示す概略構成図である。It is a schematic block diagram which shows the water treatment apparatus provided with the membrane separator which concerns on 2nd Embodiment of this invention.

以下、本発明に係る膜分離装置及び膜分離方法の好適な実施形態について図1〜図7を参照しながら説明する。なお、各図において、同一の要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of a membrane separation apparatus and a membrane separation method according to the present invention will be described with reference to FIGS. Note that, in each drawing, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の第1実施形態に係る膜分離装置を備えた水処理装置を示す概略構成図、図2〜図5は、管状膜の流路の気体比率と気泡形状との関係を示す図、図6は、膜分離装置の動作を示すフローチャートである。   FIG. 1 is a schematic configuration diagram showing a water treatment apparatus provided with a membrane separation apparatus according to the first embodiment of the present invention, and FIGS. 2 to 5 show the relationship between the gas ratio of the flow path of the tubular membrane and the bubble shape. FIG. 6 and FIG. 6 are flowcharts showing the operation of the membrane separation apparatus.

図1に示すように、水処理装置100は、原水を導入する槽1と、槽1の外部に設けられ、筒状を成す内圧式のチューブラー膜(管状膜)2を備えた膜分離装置10とを具備する。原水としては、特に限定されないが、河川水、引用に供する原水、汚泥、排水等が挙げられる。   As shown in FIG. 1, a water treatment apparatus 100 includes a tank 1 for introducing raw water, and a membrane separation apparatus provided outside the tank 1 and having an internal pressure tubular membrane (tubular membrane) 2 having a cylindrical shape. 10. The raw water is not particularly limited, and examples thereof include river water, raw water used for citation, sludge, and drainage.

槽1には、ラインL1を通して原水が導入される。槽1の下部には散気管(不図示)が設けられ、この散気管により曝気を施すことで、例えば、槽1内に導入された原水に対して生物処理(汚泥活性処理)を行い、有機物を分解する。   Raw water is introduced into the tank 1 through the line L1. A diffuser pipe (not shown) is provided in the lower part of the tank 1, and by performing aeration with this diffuser pipe, for example, biological treatment (sludge activation process) is performed on the raw water introduced into the tank 1, and organic matter Disassemble.

膜分離装置10は、上述したチューブラー膜2と、槽1からチューブラー膜2に原水を供給すると共にチューブラー膜2から槽1に原水を返送する循環ポンプ(流量調整手段)4と、槽1からの原水に空気を供給するブロワ(空気供給手段)3と、チューブラー膜2から処理水を吸引する吸引ポンプ5と、チューブラー膜2の下流側の圧力を検出する圧力センサ6と、チューブラー膜2の上流側の圧力を検出する圧力センサ7と、ブロワ3及び循環ポンプ4の動作を制御するコントローラ(差圧検知手段;制御手段)8とを備える。   The membrane separation device 10 includes the above-described tubular membrane 2, a circulation pump (flow rate adjusting means) 4 for supplying raw water from the tank 1 to the tubular membrane 2 and returning the raw water from the tubular membrane 2 to the tank 1. A blower (air supply means) 3 for supplying air to the raw water from 1, a suction pump 5 for sucking treated water from the tubular membrane 2, a pressure sensor 6 for detecting the pressure on the downstream side of the tubular membrane 2, A pressure sensor 7 for detecting the pressure on the upstream side of the tubular membrane 2 and a controller (differential pressure detection means; control means) 8 for controlling the operation of the blower 3 and the circulation pump 4 are provided.

チューブラー膜2は、槽1内での原水を、槽1外で固液分離するための分離膜である。本実施形態のチューブラー膜2は、例えば、内径が数mmのストロー状の膜のことであり、通常の膜分離法に使用されるもので良く、塩素化ポリエチレン等のポリオレフィン系樹脂、ポリフッ化ビニリデン系樹脂、ポリ四弗化エチレン樹脂、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアクリロニトリル、酢酸セルロース、ポリスルホン、ポリエーテルスルホン、セラミック等から形成された多孔質膜等が挙げられる。   The tubular membrane 2 is a separation membrane for solid-liquid separation of raw water in the tank 1 outside the tank 1. The tubular membrane 2 of the present embodiment is, for example, a straw-like membrane having an inner diameter of several millimeters, and may be used in a normal membrane separation method. Polyolefin resins such as chlorinated polyethylene, polyfluorinated Examples thereof include a porous film formed from vinylidene resin, polytetrafluoroethylene resin, polypropylene, polyethylene, polystyrene, polyacrylonitrile, cellulose acetate, polysulfone, polyethersulfone, ceramic and the like.

そして、チューブラー膜2は、上下方向に延在するように縦置きにされている。なお、図が煩雑になるのを避けるために、図においてはチューブラー膜2は1本しか示されていないが、実際には例えば100本程度の多数のチューブラー膜2が束ねて纏められてチューブラー膜ユニットとされ、各チューブラー膜2の下端の導入口には、ラインL2を介して槽1が接続されている。ラインL2は、上記循環ポンプ4を備え、この循環ポンプ4の駆動により、チューブラー膜2の筒内に槽1からの原水を導入する。   The tubular membrane 2 is placed vertically so as to extend in the vertical direction. In order to avoid complication of the drawing, only one tubular membrane 2 is shown in the drawing, but actually, for example, about 100 tubular membranes 2 are bundled together. The tank 1 is connected to the inlet at the lower end of each tubular membrane 2 through a line L2. The line L <b> 2 includes the circulation pump 4, and the raw water from the tank 1 is introduced into the tube of the tubular membrane 2 by driving the circulation pump 4.

また、各チューブラー膜2の上端の導出口と、槽1の上部とは、チューブラー膜2の膜面で固液分離された原水を槽1内に返送するためのラインL3により接続されている。   In addition, the outlet at the upper end of each tubular membrane 2 and the upper portion of the tank 1 are connected by a line L3 for returning the raw water solid-liquid separated on the membrane surface of the tubular membrane 2 into the tank 1. Yes.

また、チューブラー膜2の外周側に対しては、当該チューブラー膜2の膜面で原水から固液分離された処理水をチューブラー膜2外に取り出すべく、上記吸引ポンプ5を備えたラインL4が設けられている。そして、この吸引ポンプ5を駆動することにより、循環ポンプ4との協働により、チューブラー膜2の筒内に槽1からの原水が流れると共に、チューブラー膜2の内側から外側に向けて固液分離された処理水が流れラインL4を通して導出される流れが形成され、所謂内圧式のチューブラー膜2が構成されている。   In addition, on the outer peripheral side of the tubular membrane 2, a line provided with the suction pump 5 so as to take out treated water solid-liquid separated from raw water on the membrane surface of the tubular membrane 2 to the outside of the tubular membrane 2. L4 is provided. Then, by driving the suction pump 5, the raw water from the tank 1 flows into the tube of the tubular membrane 2 in cooperation with the circulation pump 4 and is fixed from the inside to the outside of the tubular membrane 2. A flow in which the treated water separated from the liquid is led out through the flow line L4 is formed, and a so-called internal pressure type tubular membrane 2 is formed.

ブロワ3は、チューブラー膜2に流入する槽1からの原水に空気を供給するためのものであり、ラインL2の途中に接続されている。このブロワ3による空気の供給量を制御することにより、ラインL2を流れる原水の気体比率を調整できるようになっている。   The blower 3 is for supplying air to the raw water from the tank 1 flowing into the tubular membrane 2, and is connected in the middle of the line L2. By controlling the amount of air supplied by the blower 3, the gas ratio of the raw water flowing through the line L2 can be adjusted.

圧力センサ7は、チューブラー膜2の上流側を通る原水の圧力を検出するためのものであり、ラインL2でブロワ3との接続位置より下流に設けられる。   The pressure sensor 7 is for detecting the pressure of the raw water passing through the upstream side of the tubular membrane 2 and is provided downstream of the connection position with the blower 3 in the line L2.

圧力センサ6は、チューブラー膜2の下流側を通る処理水の圧力を検出するためのものであり、ラインL4に設けられる。   The pressure sensor 6 is for detecting the pressure of the treated water passing through the downstream side of the tubular membrane 2, and is provided in the line L4.

コントローラ8は、圧力センサ7によって検出されたチューブラー膜2の上流側の圧力と、圧力センサ6によって検出されたチューブラー膜2の下流側の圧力との差圧を検知する。このコントローラ8は、検知した差圧に応じて、ブロワ3及び循環ポンプ4に制御信号を出力し、ブロワ3及び循環ポンプ4の動作を制御する。   The controller 8 detects a differential pressure between the pressure on the upstream side of the tubular membrane 2 detected by the pressure sensor 7 and the pressure on the downstream side of the tubular membrane 2 detected by the pressure sensor 6. The controller 8 outputs a control signal to the blower 3 and the circulation pump 4 according to the detected differential pressure, and controls the operation of the blower 3 and the circulation pump 4.

このような構成を有する水処理装置100によれば、原水がラインL1を通して槽1内に導入され、例えば、原水中の有機成分が活性汚泥により分解される(好気性処理される)。こうして、槽1内の原水は、ラインL2を通して槽1外に引き出され、チューブラー膜ユニットを構成する多数のチューブラー膜2の筒内に各々供給され、筒内を移動する(上昇する)際に当該チューブラー膜2により原水と処理水とが固液分離される。   According to the water treatment apparatus 100 having such a configuration, raw water is introduced into the tank 1 through the line L1, and, for example, organic components in the raw water are decomposed by activated sludge (aerobic treatment). In this way, the raw water in the tank 1 is drawn out of the tank 1 through the line L2, supplied to the tubes of the numerous tubular membranes 2 constituting the tubular membrane unit, and moves (increases) in the tubes. In addition, the tubular membrane 2 separates the raw water and the treated water from each other.

このとき、すなわち、チューブラー膜2の筒内を原水が移動し固液分離されるのと同時に、チューブラー膜2の膜面には、原水による剪断力が作用し、当該膜面が洗浄される。そして、チューブラー膜2で分離された処理水は、ラインL4を通して外部に取り出され、チューブラー膜2で分離され筒内を移動する原水は、ラインL3を通して槽1内に返送される。   At this time, that is, at the same time as the raw water moves in the tube of the tubular membrane 2 and is solid-liquid separated, the membrane surface of the tubular membrane 2 is subjected to a shearing force due to the raw water, and the membrane surface is washed. The The treated water separated by the tubular membrane 2 is taken out through the line L4, and the raw water separated by the tubular membrane 2 and moving in the cylinder is returned to the tank 1 through the line L3.

このように、チューブラー膜2の膜面には原水による剪断力が作用し、チューブラー膜2の膜面が洗浄されるが、チューブラー膜2の筒内の流路2a(図2〜図5参照)を流れる原水の気体比率によって洗浄効果が変わることが本発明者により確認されている。ここで、チューブラー膜2の上流側のラインL2に設けられたブロワ3を制御して、チューブラー膜2の筒内の流路2aを流れる汚泥の気体比率を0.1、0.2、0.4、0.6、0.7〜0.8、0.88〜0.91と変えて、気泡の形状を観察すると共に、チューブラー膜2の膜面の洗浄効果を確認した。図2〜図5は、流路2aにおける気体比率と気泡形状との関係を示す図である。   Thus, the shearing force by the raw water acts on the membrane surface of the tubular membrane 2, and the membrane surface of the tubular membrane 2 is washed, but the flow path 2a in the cylinder of the tubular membrane 2 (FIGS. 2 to 2) It has been confirmed by the present inventors that the cleaning effect varies depending on the gas ratio of the raw water flowing through (5). Here, the blower 3 provided in the upstream line L2 of the tubular membrane 2 is controlled so that the gas ratio of the sludge flowing through the flow path 2a in the cylinder of the tubular membrane 2 is 0.1, 0.2, While changing to 0.4, 0.6, 0.7 to 0.8, and 0.88 to 0.91, the shape of bubbles was observed, and the cleaning effect of the membrane surface of the tubular membrane 2 was confirmed. 2-5 is a figure which shows the relationship between the gas ratio in the flow path 2a, and bubble shape.

図2(a)及び図2(b)に示すように、気体比率が0.1〜0.2の場合は、流路2a内で小さな気泡が上昇していくバブル流が形成される。また、図2(c)、図2(d)、図3(a)〜(f)、及び図4(a)に示すように、気体比率が0.4〜0.76の場合は、流路2aに、潰れたような状態の縦長で弾丸状の気泡Aが生成されるスラグ流が発生する。このスラグ流が発生すると、当該気泡Aが、膜面に押し付けられるように接触しながら上昇し、この気泡Aの上昇に伴い、気泡Aと膜面との間の僅かな隙間を、汚泥が気泡Aと逆向きとなる下向きに移動することで、強い剪断力が発生すると推測される。このスラグ流により、目詰まりを抑制できる。   As shown in FIG. 2A and FIG. 2B, when the gas ratio is 0.1 to 0.2, a bubble flow is formed in which small bubbles rise in the flow path 2a. In addition, as shown in FIGS. 2 (c), 2 (d), 3 (a) to (f), and 4 (a), when the gas ratio is 0.4 to 0.76, In the path 2a, a slug flow is generated in which a vertically elongated bullet-shaped bubble A is generated. When this slag flow is generated, the bubble A rises while being pressed against the membrane surface, and as the bubble A rises, sludge is bubbled through a slight gap between the bubble A and the membrane surface. It is estimated that a strong shearing force is generated by moving downward in the direction opposite to A. Clogging can be suppressed by this slag flow.

また、図4(b)〜(e)に示すように、気体比率が0.77〜0.8の場合は、気泡の下端が崩れた形になっており、スラグ流から大小様々な気泡が混在するチャーン流に遷移している。また、図5(a)及び(b)に示すように、気体比率が0.88〜0.89の場合は、大小様々な気泡が混在するチャーン流が発生する。このチャーン流が発生すると、縦長で弾丸状の気泡Aが崩れたような形状の気泡が生成され、大小様々な気泡が膜面に強く接触しながらチューブラー膜2内部を上昇していくこととなる。このチャーン流により、洗浄力をより強化させて目詰まりを解消させることができる。   Moreover, as shown in FIGS. 4B to 4E, when the gas ratio is 0.77 to 0.8, the lower end of the bubble is collapsed, and various large and small bubbles are generated from the slag flow. Transition to mixed churn flow. Moreover, as shown to Fig.5 (a) and (b), when a gas ratio is 0.88-0.89, the churn flow in which various small and large bubbles are mixed generate | occur | produces. When this churn flow is generated, a vertically long bullet-shaped bubble A is generated, and bubbles inside the tubular membrane 2 rise while the large and small bubbles are in strong contact with the membrane surface. Become. By this churn flow, the cleaning power can be further strengthened and clogging can be eliminated.

また、図5(c)及び(d)に示すように、気体比率が0.90〜0.91の場合は、気泡の流れは完全に消え、流路2aの中心がほとんど気体となり、洗浄効果が期待できないアニュラー流が発生する。   Further, as shown in FIGS. 5C and 5D, when the gas ratio is 0.90 to 0.91, the flow of bubbles completely disappears, and the center of the flow path 2a becomes almost gas, and the cleaning effect is obtained. An annular flow that cannot be expected occurs.

このような気体比率による洗浄力の関係に基づき、本実施形態の膜分離装置10では以下のような処理を行う。図6は、コントローラ8による膜分離装置10の処理動作を示すフローチャートである。まず、チューブラー膜2の膜面の目詰まりが進行しておらず、チューブラー膜2の上流側と下流側との差圧が上昇しておらず、差圧が予め設定された設定値P以下である定常時において、定常運転を行う(S1)。このとき、チューブラー膜2に流入する気体比率が0.4〜0.76となるようにブロワ3を制御し、スラグ流による洗浄を行うと同時に原水と処理水との固液分離を行う。   Based on such a relationship of the cleaning power depending on the gas ratio, the membrane separation apparatus 10 of the present embodiment performs the following processing. FIG. 6 is a flowchart showing the processing operation of the membrane separation apparatus 10 by the controller 8. First, the clogging of the membrane surface of the tubular membrane 2 has not progressed, the differential pressure between the upstream side and the downstream side of the tubular membrane 2 has not increased, and the differential pressure is set to a preset value P In the following steady state, steady operation is performed (S1). At this time, the blower 3 is controlled so that the ratio of the gas flowing into the tubular membrane 2 is 0.4 to 0.76, and cleaning with the slag flow is performed, and at the same time, the solid water is separated from the treated water.

そして、圧力センサ6,7により、チューブラー膜2の上流側と下流側の差圧を検知する(S2)。このS2の処理は、差圧検知工程に相当する。   Then, the differential pressure between the upstream side and the downstream side of the tubular membrane 2 is detected by the pressure sensors 6 and 7 (S2). The process of S2 corresponds to a differential pressure detection process.

次に、S2で検知した差圧が予め設定された設定値Pより大きいか否かを判定する(S3)。ここで、チューブラー膜2の膜面の目詰まりが進行しておらず、チューブラー膜2の上流側と下流側との差圧が設定値P以下である上記定常時の場合は、S2に戻り差圧の検知を繰り返す。一方、チューブラー膜2の膜面の目詰まりが進行し、チューブラー膜2の上流側と下流側との差圧が上昇し、差圧が設定値Pより大きい非定常時と判定した場合は、S4に移行する。   Next, it is determined whether or not the differential pressure detected in S2 is larger than a preset value P (S3). Here, when the membrane surface of the tubular membrane 2 is not clogged and the pressure difference between the upstream side and the downstream side of the tubular membrane 2 is equal to or less than the set value P, the process proceeds to S2. Repeated detection of return differential pressure. On the other hand, when the clogging of the membrane surface of the tubular membrane 2 proceeds, the differential pressure between the upstream side and the downstream side of the tubular membrane 2 increases, and it is determined that the differential pressure is unsteady when the differential pressure is larger than the set value P. To S4.

S4において、原水の循環量及び気体比率を増大させる。すなわち、循環ポンプ4及びブロワ3を制御して、チューブラー膜2に流入する原水の量を増加させると共に、チューブラー膜2に流入する原水の気体の比率が0.77〜0.89となり、チャーン流が発生するようにブロワ3による空気の供給量を制御する。こうして、流路2aにチャーン流を発生させ(図4(b)〜(e)、図5(a)及び(b)参照)、縦長で弾丸状の気泡Aが崩れたような気泡を生成し、大小様々な気泡を膜面に強く接触させながらチューブラー膜2内部を上昇させる。これにより、洗浄力を定常時のスラグ流より強化させ、目詰まりを解消させる。このS4の処理は、空気供給工程、流量調整工程、及び制御工程に相当する。   In S4, the circulation amount and gas ratio of the raw water are increased. That is, the circulation pump 4 and the blower 3 are controlled to increase the amount of raw water flowing into the tubular membrane 2, and the ratio of the raw water gas flowing into the tubular membrane 2 is 0.77 to 0.89. The amount of air supplied by the blower 3 is controlled so that a churn flow is generated. In this way, a churn flow is generated in the flow path 2a (see FIGS. 4 (b) to (e), FIGS. 5 (a) and 5 (b)), and a vertically long bullet-shaped bubble A is generated. Then, the inside of the tubular membrane 2 is raised while strongly contacting various large and small bubbles with the membrane surface. As a result, the detergency is strengthened from the slag flow at the normal time, and clogging is eliminated. The process of S4 corresponds to an air supply process, a flow rate adjustment process, and a control process.

次に、S2と同様に、チューブラー膜2の上流側と下流側との差圧を検知し(S5)、検知した差圧が予め設定された設定値P以下であるか否かを判定する(S6)。ここで、チューブラー膜2の膜面の目詰まりが解消しておらず、チューブラー膜2の上流側と下流側との差圧が上昇したままで設定値P以下でない非定常時の場合は、S5に戻り、差圧の検知を繰り返す。一方、チューブラー膜2の膜面の目詰まりが解消し、チューブラー膜2の上流側と下流側との差圧が下降して設定値P以下である定常時の場合は、S7に移行する。   Next, similarly to S2, a differential pressure between the upstream side and the downstream side of the tubular membrane 2 is detected (S5), and it is determined whether or not the detected differential pressure is equal to or less than a preset value P. (S6). In this case, the clogging of the membrane surface of the tubular membrane 2 has not been eliminated, and the differential pressure between the upstream side and the downstream side of the tubular membrane 2 has been increased and is not at or below the set value P. Returning to S5, the detection of the differential pressure is repeated. On the other hand, when the clogging of the membrane surface of the tubular membrane 2 is eliminated and the differential pressure between the upstream side and the downstream side of the tubular membrane 2 decreases and is equal to or less than the set value P, the process proceeds to S7. .

そして、S7において、循環ポンプ4及びブロワ3を制御して、原水の循環量及び気体比率を初期状態に戻し、チューブラー膜2に流入する原水の気体の比率が0.4〜0.76となり、スラグ流が発生するようにブロワ3による空気の供給量を制御する。   In S7, the circulation pump 4 and the blower 3 are controlled to return the circulation amount and gas ratio of the raw water to the initial state, and the ratio of the raw water gas flowing into the tubular membrane 2 becomes 0.4 to 0.76. The amount of air supplied by the blower 3 is controlled so that a slag flow is generated.

以上、第1実施形態の膜分離装置10によれば、チューブラー膜2の上流側と下流側との差圧が設定値Pを超える非定常時の場合に、チューブラー膜2の筒内に形成された流路にチャーン流が発生し、縦長で弾丸状の気泡が崩れたような形状の気泡が生成され、大小様々な気泡が膜面に強く接触しながらチューブラー膜2内部を上昇していくこととなり、目詰まりの進行により膜差圧が上昇する非定常時に、洗浄力を強化させて膜の目詰まりを解消することができる。   As described above, according to the membrane separation device 10 of the first embodiment, when the differential pressure between the upstream side and the downstream side of the tubular membrane 2 exceeds the set value P, the tubular membrane 2 is placed in the cylinder. A churn flow is generated in the formed flow path, creating bubbles that are shaped like a vertically elongated bullet-like bubble collapsed, and the bubbles inside the tubular membrane 2 rise while the large and small bubbles are in strong contact with the membrane surface. Therefore, when the membrane differential pressure increases due to the progress of clogging, the cleaning power can be strengthened to eliminate the clogging of the membrane.

また、コントローラ8は、差圧が設定値Pを超えた場合に、原水の気体の比率が0.77〜0.89となるようにブロワ3による空気の供給量を制御するので、流路に、より好適にチャーン流を発生させることができる。従って、非定常時に、洗浄力を強化させて膜の目詰まりをより確実に解消させることができる。   In addition, when the differential pressure exceeds the set value P, the controller 8 controls the amount of air supplied by the blower 3 so that the ratio of the raw water gas is 0.77 to 0.89. Thus, the churn flow can be generated more suitably. Therefore, the clogging of the film can be more reliably resolved by enhancing the cleaning power at the non-steady time.

また、チューブラー膜2に流入する原水の流量を調整する循環ポンプ4を備え、コントローラ8は、差圧が設定値Pを超える非定常時の場合に、チューブラー膜2に流入する原水の量を増加させるように循環ポンプ4を制御するため、目詰まりの進行により膜差圧が上昇する非定常時に、チューブラー膜2の筒内に流入する原水の量が増加し、より多くの原水が膜面に接触しながらチューブラー膜2内部を上昇していくこととなり、洗浄力をより強化させることができる。   Moreover, the circulation pump 4 which adjusts the flow volume of the raw | natural water which flows into the tubular membrane 2 is provided, and the controller 8 is the quantity of the raw | natural water which flows into the tubular membrane 2 in the case of the unsteady time when a differential pressure exceeds the setting value P. Since the circulation pump 4 is controlled so as to increase the amount of raw water flowing into the cylinder of the tubular membrane 2 at the non-steady time when the membrane differential pressure increases due to the progress of clogging, more raw water is The inside of the tubular membrane 2 is raised while contacting the membrane surface, and the cleaning power can be further enhanced.

また、コントローラ8は、差圧が設定値P以下である定常時の場合に、原水の気体の比率が0.4〜0.76となるようにブロワ3による空気の供給量を制御するため、チューブラー膜2の筒内に、縦長で弾丸状の気泡Aが生成され、当該気泡Aが膜面に押し付けられるように接触しながら上昇し、気泡Aと膜面との間の僅かな隙間を、原水が気泡Aと逆向きとなる下向きに速い流速で移動することで強い剪断力が発生すると推測される。これにより、膜差圧が上昇していない定常時には、チューブラー膜2の目詰まりの発生を抑制する洗浄力を発揮すると共に、気体の比率を非定常時より低減させることによってランニングコストを抑えることができる。   Further, the controller 8 controls the amount of air supplied by the blower 3 so that the ratio of the raw water gas is 0.4 to 0.76 in the steady state where the differential pressure is equal to or less than the set value P. In the tube of the tubular membrane 2, a vertically long bullet-shaped bubble A is generated and rises in contact so that the bubble A is pressed against the membrane surface, and a slight gap is formed between the bubble A and the membrane surface. It is presumed that a strong shearing force is generated when the raw water moves downward at a high flow rate opposite to the bubbles A. As a result, at the time of steady state where the differential pressure of the membrane does not increase, the cleaning power that suppresses the occurrence of clogging of the tubular membrane 2 is exhibited and the running cost is suppressed by reducing the gas ratio from the unsteady state. Can do.

次に、第2実施形態の膜分離装置20について、図7を参照しながら説明する。この第2実施形態の膜分離装置20が第1実施形態の膜分離装置10と異なる点は、ブロワ3の代わりに、ラインL2に接続され、ラインL2を通る原水に空気を供給する2つのブロワ13a,13bを並列に接続した点と、循環ポンプ4の代わりに、ラインL2に、互いに並列に設けられる2つの循環ポンプ14a,14bを接続した点である。   Next, the membrane separation apparatus 20 of 2nd Embodiment is demonstrated, referring FIG. The membrane separator 20 of the second embodiment is different from the membrane separator 10 of the first embodiment in that two blowers connected to the line L2 and supplying air to the raw water passing through the line L2 are used instead of the blower 3. 13a and 13b are connected in parallel, and instead of the circulation pump 4, two circulation pumps 14a and 14b provided in parallel with each other are connected to the line L2.

ブロワ13a及び循環ポンプ14aは、常時動作するものであり、ブロワ13b及び循環ポンプ14bは、コントローラ8から制御信号を受けて、チューブラー膜2の上流側と下流側の差圧が上記設定値Pを超えた場合にのみ動作する。   The blower 13a and the circulation pump 14a always operate, and the blower 13b and the circulation pump 14b receive a control signal from the controller 8 so that the differential pressure between the upstream side and the downstream side of the tubular membrane 2 is the set value P. It works only when it exceeds.

膜分離装置20の動作については、図6に示すS1、S4及びS7の処理内容が第1実施形態と異なっており、その他の点は第1実施形態と同様である。第2実施形態において、S1では、ブロワ13a及び循環ポンプ14aのみが動作し、ブロワ13b及び循環ポンプ14bは停止している。このとき、チューブラー膜2に流入する原水の気体比率は0.4〜0.76となっている。   About the operation | movement of the membrane separator 20, the processing content of S1, S4, and S7 shown in FIG. 6 differs from 1st Embodiment, and other points are the same as that of 1st Embodiment. In the second embodiment, in S1, only the blower 13a and the circulation pump 14a operate, and the blower 13b and the circulation pump 14b are stopped. At this time, the gas ratio of the raw water flowing into the tubular membrane 2 is 0.4 to 0.76.

S4において、停止していた循環ポンプ14b及びブロワ13bを動作させて、チューブラー膜2に流入する原水の量を増加させると共に、チューブラー膜2に流入する原水の気体の比率が0.77〜0.89となるようにブロワ13bによる空気の供給量を制御する。   In S4, the circulating pump 14b and the blower 13b that have been stopped are operated to increase the amount of raw water flowing into the tubular membrane 2, and the ratio of the raw water gas flowing into the tubular membrane 2 is 0.77 to The amount of air supplied by the blower 13b is controlled to be 0.89.

S7において、循環ポンプ14b及びブロワ13bを停止させて、循環ポンプ14a及びブロワ13aのみが動作する状態にする。こうして、チューブラー膜2に流入する原水の量を戻すと共に、チューブラー膜2に流入する原水の気体の比率が0.4〜0.76となるように原水への空気の供給量を制御する。   In S7, the circulation pump 14b and the blower 13b are stopped so that only the circulation pump 14a and the blower 13a operate. Thus, the amount of raw water flowing into the tubular membrane 2 is returned, and the amount of air supplied to the raw water is controlled so that the ratio of the raw water gas flowing into the tubular membrane 2 is 0.4 to 0.76. .

以上、第2実施形態の膜分離装置20によれば、チューブラー膜2の上流側と下流側の差圧が設定値Pを超えた場合に原水の気体の比率が0.77〜0.89となるように制御され、差圧が設定値P以下である場合には原水の気体の比率が0.4〜0.76となるように制御されるため、第1実施形態と同様の効果が得られる。   As described above, according to the membrane separation device 20 of the second embodiment, when the differential pressure between the upstream side and the downstream side of the tubular membrane 2 exceeds the set value P, the ratio of the raw water gas is 0.77 to 0.89. Since the ratio of the raw water gas is controlled to be 0.4 to 0.76 when the differential pressure is equal to or less than the set value P, the same effect as in the first embodiment is obtained. can get.

以上、本発明をその実施形態に基づき具体的に説明したが本発明は上記実施形態に限定されるものではなく、例えば、上記実施形態においては、循環ポンプ4をチューブラー膜2の上流側のラインL2に設けたが、チューブラー膜2の下流側のラインL3に設けるようにしてもよい。   As described above, the present invention has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment. For example, in the above embodiment, the circulation pump 4 is disposed on the upstream side of the tubular membrane 2. Although provided in the line L2, it may be provided in the line L3 on the downstream side of the tubular membrane 2.

また、上記実施形態では、特に好ましいとして、チューブラー膜2の上流側と下流側の差圧が設定値Pを超えた場合に原水の量と気体比率の両方を増加させ、差圧が設定値P以下の場合は原水の量と気体比率の両方を元に戻すようにしたが、これに限らず、差圧が設定値Pを超えた場合に気体比率のみを増加させ、差圧が設定値P以下の場合は気体比率のみを元に戻すようにしてもよい。   Moreover, in the said embodiment, as especially preferable, when the differential pressure | voltage of the upstream and downstream of the tubular membrane 2 exceeds preset value P, both the amount of raw | natural water and a gas ratio are increased, and differential pressure is set value. In the case of P or less, both the amount of raw water and the gas ratio are restored to the original, but not limited to this, when the differential pressure exceeds the set value P, only the gas ratio is increased and the differential pressure is set to the set value. In the case of P or less, only the gas ratio may be restored.

また、上記実施形態では、特に好ましいとして、槽外型の水処理装置100に適用する膜分離装置10,20について説明したが、これに限らず、浸漬型(一体型、槽別置型)に適用する膜分離装置であってもよい。   Moreover, in the said embodiment, although the membrane separation apparatus 10 and 20 applied to the water treatment apparatus 100 of a tank outside type was demonstrated as being especially preferable, it is not restricted to this, It applies to a submerged type (integrated type, tank separate type). It may be a membrane separation device.

1…槽、2…チューブラー膜(管状膜)、2a…流路、3,13a,13b…ブロワ、4,14a,14b…循環ポンプ、5…吸引ポンプ、6,7…圧力センサ、8…コントローラ、10,20…膜分離装置、A…気泡。   DESCRIPTION OF SYMBOLS 1 ... Tank, 2 ... Tubular membrane (tubular membrane), 2a ... Flow path, 3, 13a, 13b ... Blower, 4, 14a, 14b ... Circulation pump, 5 ... Suction pump, 6, 7 ... Pressure sensor, 8 ... Controller, 10, 20 ... Membrane separator, A ... Bubble.

Claims (5)

筒状を成す管状膜に、筒内を流路として、原水を流入させて、膜面を洗浄すると同時に前記原水と処理水とに固液分離する膜分離装置であって、
前記膜の上流側と下流側との差圧を検知する差圧検知手段と、
前記膜に流入する前記原水に空気を供給して前記原水の気体の比率を調整する空気供給手段と、
前記差圧検知手段によって検知された差圧が予め設定された設定値Pを超えた場合に、前記流路にチャーン流が発生するように前記空気供給手段による空気の供給量を制御する制御手段と、
を備えた膜分離装置。
A membrane separation device for solid-liquid separation into the raw water and treated water at the same time as washing the membrane surface by flowing the raw water into the tubular membrane that forms a cylinder, using the inside of the cylinder as a flow path,
Differential pressure detecting means for detecting a differential pressure between the upstream side and the downstream side of the membrane;
Air supply means for adjusting the ratio of the raw water gas by supplying air to the raw water flowing into the membrane;
Control means for controlling the amount of air supplied by the air supply means so that a churn flow is generated in the flow path when the differential pressure detected by the differential pressure detection means exceeds a preset value P. When,
A membrane separation apparatus.
前記制御手段は、前記差圧検知手段によって検知された差圧が前記設定値Pを超えた場合に、前記原水の気体の比率が0.77〜0.89となるように前記空気供給手段による空気の供給量を制御する、
請求項1に記載の膜分離装置。
The control means uses the air supply means so that when the differential pressure detected by the differential pressure detection means exceeds the set value P, the ratio of the raw water gas becomes 0.77 to 0.89. Control air supply,
The membrane separator according to claim 1.
前記膜に流入する前記原水の流量を調整する流量調整手段を備え、
前記制御手段は、前記差圧検知手段によって検知された差圧が前記設定値Pを超えた場合に、前記膜に流入する前記原水の量を増加させるように前記流量調整手段を制御する、
請求項1又は2に記載の膜分離装置。
A flow rate adjusting means for adjusting the flow rate of the raw water flowing into the membrane;
The control means controls the flow rate adjusting means so as to increase the amount of the raw water flowing into the membrane when the differential pressure detected by the differential pressure detection means exceeds the set value P.
The membrane separator according to claim 1 or 2.
前記制御手段は、前記差圧検知手段により検知された差圧が前記設定値P以下である場合に、前記原水の気体の比率が0.4〜0.76となるように前記空気供給手段による空気の供給量を制御する、
請求項1〜3のいずれか一項に記載の膜分離装置。
When the differential pressure detected by the differential pressure detection means is equal to or less than the set value P, the control means uses the air supply means so that the ratio of the raw water gas is 0.4 to 0.76. Control air supply,
The membrane separation apparatus as described in any one of Claims 1-3.
筒状を成す管状膜に、筒内を流路として、原水を流入させて、膜面を洗浄すると同時に前記原水と処理水とに固液分離する膜分離方法であって、
前記膜の上流側と下流側との差圧を検知する差圧検知工程と、
前記膜に流入する前記原水に空気を供給して前記原水の気体の比率を調整する空気供給工程と、
前記差圧検知工程で検知された差圧が予め設定された設定値Pを超えた場合に、前記空気供給工程での空気の供給量を増加させて、前記流路にチャーン流が発生するように制御する制御工程と、
を備えた膜分離方法。
A membrane separation method for solid-liquid separation into the raw water and treated water at the same time as washing the membrane surface by flowing raw water into the tubular membrane that forms a cylinder, using the inside of the cylinder as a flow path,
A differential pressure detection step of detecting a differential pressure between the upstream side and the downstream side of the membrane;
An air supply step of adjusting the ratio of the gas of the raw water by supplying air to the raw water flowing into the membrane;
When the differential pressure detected in the differential pressure detection step exceeds a preset set value P, the amount of air supplied in the air supply step is increased so that a churn flow is generated in the flow path. A control process to control,
A membrane separation method.
JP2012274793A 2012-05-01 2012-12-17 Membrane separator apparatus and membrane separation method Pending JP2013248607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274793A JP2013248607A (en) 2012-05-01 2012-12-17 Membrane separator apparatus and membrane separation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012104646 2012-05-01
JP2012104646 2012-05-01
JP2012274793A JP2013248607A (en) 2012-05-01 2012-12-17 Membrane separator apparatus and membrane separation method

Publications (1)

Publication Number Publication Date
JP2013248607A true JP2013248607A (en) 2013-12-12

Family

ID=49847821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274793A Pending JP2013248607A (en) 2012-05-01 2012-12-17 Membrane separator apparatus and membrane separation method

Country Status (1)

Country Link
JP (1) JP2013248607A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098941A1 (en) * 2015-12-11 2017-06-15 三菱重工環境・化学エンジニアリング株式会社 Biological treatment device
JP6268660B1 (en) * 2017-05-18 2018-01-31 三菱重工環境・化学エンジニアリング株式会社 Biological treatment apparatus, biological treatment method, and program
NL2022169B1 (en) * 2018-07-03 2020-01-08 Wafilin Systems B V Method and device for operating an ultrafiltration (UF) process for treating a process stream
NL2022170B1 (en) * 2018-07-03 2020-01-08 Wafilin Systems B V Method and device for operating a reverse osmosis (RO) process for treating a process flow

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098941A1 (en) * 2015-12-11 2017-06-15 三菱重工環境・化学エンジニアリング株式会社 Biological treatment device
JP2017104833A (en) * 2015-12-11 2017-06-15 三菱重工環境・化学エンジニアリング株式会社 Biological treatment apparatus
KR20180017199A (en) * 2015-12-11 2018-02-20 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Biological treatment device
CN107848850A (en) * 2015-12-11 2018-03-27 三菱重工环境·化学工程株式会社 Biological treatment device
TWI643662B (en) * 2015-12-11 2018-12-11 日商三菱重工環境 化學工程股份有限公司 Biological treatment apparatus
KR102167816B1 (en) * 2015-12-11 2020-10-20 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Biological treatment device
JP6268660B1 (en) * 2017-05-18 2018-01-31 三菱重工環境・化学エンジニアリング株式会社 Biological treatment apparatus, biological treatment method, and program
KR101870598B1 (en) * 2017-05-18 2018-06-22 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Biological treatment apparatus, biological treatment method, and program
NL2022169B1 (en) * 2018-07-03 2020-01-08 Wafilin Systems B V Method and device for operating an ultrafiltration (UF) process for treating a process stream
NL2022170B1 (en) * 2018-07-03 2020-01-08 Wafilin Systems B V Method and device for operating a reverse osmosis (RO) process for treating a process flow

Similar Documents

Publication Publication Date Title
JP6432914B2 (en) Water treatment method and water treatment apparatus
JP6072994B1 (en) Membrane filtration apparatus, filtration membrane cleaning method, and filtration membrane manufacturing method
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
JP5803293B2 (en) Air diffuser
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP2013248607A (en) Membrane separator apparatus and membrane separation method
KR20120082852A (en) Water filtration with automatic backwash
JP2014231033A (en) Cleaning method of membrane surface in flat membrane type membrane separation device and flat membrane type membrane separation device
WO2008041320A1 (en) Method of operating membrane separator
CN110709153B (en) Cleaning device and cleaning method for water treatment membrane and water treatment system
JP6580338B2 (en) Film processing apparatus and film processing method
JP6084635B2 (en) Water treatment system
KR101743642B1 (en) Water treating apparatus including bubble generator
JP5797874B2 (en) Waste water treatment apparatus and waste water treatment method
JP2009214062A (en) Operation method of immersion type membrane module
JPWO2013103083A1 (en) Membrane separation method and membrane separation apparatus
JP5149223B2 (en) Separation membrane cleaning device, membrane separation device and cleaning method
KR20120044594A (en) Air diffuser forming separated diffuser frame and air chamber
JP4943662B2 (en) Operation method of membrane separator
JP7067678B1 (en) Filtration membrane cleaning equipment, water treatment equipment and filtration membrane cleaning method
JP6264095B2 (en) Membrane module cleaning method
JP6644211B1 (en) Water treatment device and water treatment method
JP6609236B2 (en) Water treatment apparatus and water treatment method
JP6878050B2 (en) Membrane filtration device, membrane filtration method and blow device of membrane filtration device
JP6395679B2 (en) Water treatment process control method and water treatment system using fine bubbles