JP2003117365A - Micro-bubble producing apparatus - Google Patents
Micro-bubble producing apparatusInfo
- Publication number
- JP2003117365A JP2003117365A JP2001322141A JP2001322141A JP2003117365A JP 2003117365 A JP2003117365 A JP 2003117365A JP 2001322141 A JP2001322141 A JP 2001322141A JP 2001322141 A JP2001322141 A JP 2001322141A JP 2003117365 A JP2003117365 A JP 2003117365A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- impeller
- mixing pump
- liquid mixing
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水質改善等に用い
られるマイクロバブル(微細気泡)を発生する装置に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for generating micro bubbles used for improving water quality and the like.
【0002】[0002]
【従来の技術】一般に、マイクロバブルは、液体と気体
とを混合して加圧し、液体中に気体を溶け込ませたの
ち、その気液混合流体を急減圧させることで発生する。
従来、気液混合流体をポンプで加圧し、ポンプの吐出側
管路をバルブで絞り、バルブを通過した気液混合流体を
エアレータから放出して、マイクロバブルを発生する装
置が知られている。2. Description of the Related Art Generally, microbubbles are generated by mixing a liquid and a gas, pressurizing them to dissolve the gas in the liquid, and then rapidly depressurizing the gas-liquid mixed fluid.
2. Description of the Related Art Conventionally, there is known a device that pressurizes a gas-liquid mixed fluid with a pump, restricts a discharge side pipe line of the pump with a valve, and discharges the gas-liquid mixed fluid that has passed through the valve from an aerator to generate microbubbles.
【0003】[0003]
【発明が解決しようとする課題】ところが、この従来装
置によると、以下のような問題点があった。
(1)液体に7〜8%以上の気体を混合すると、ポンプ
の吐出圧が減少するため、気体の混合比を制限する必要
があり、マイクロバブルの発生効率が悪かった。
(2)液体中に気体を充分に溶け込ませるためには、気
液混合流体をポンプ及び配管設備内で長時間加圧する必
要があり、ポンプの消費電力が嵩み、不経済であった。
(3)ポンプの吐出側にバルブを設けているので、バル
ブの上流側に気体が溜まり、マイクロバブルに大きな気
泡が混入し、不均一になりやすかった。However, this conventional device has the following problems. (1) When 7% to 8% or more of gas is mixed with the liquid, the discharge pressure of the pump decreases, so it is necessary to limit the mixing ratio of the gas, and the microbubble generation efficiency was poor. (2) In order to sufficiently dissolve the gas in the liquid, it is necessary to pressurize the gas-liquid mixed fluid in the pump and piping equipment for a long period of time, which increases the power consumption of the pump and is uneconomical. (3) Since the valve is provided on the discharge side of the pump, gas is accumulated on the upstream side of the valve, and large bubbles are mixed in the micro bubbles, which tends to cause non-uniformity.
【0004】そこで、本発明の課題は、微細で均一なマ
イクロバブルを経済的に効率よく発生することができる
装置を提供することにある。Therefore, an object of the present invention is to provide an apparatus capable of economically and efficiently generating fine and uniform micro bubbles.
【0005】[0005]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明のマイクロバブル発生装置は、液体及び気
体の混合流体を吸引する気液混合ポンプと、気液混合ポ
ンプの吐出流体に抵抗を付与する抵抗器と、気液混合ポ
ンプの回転速度を制御するインバータとを備え、気液混
合ポンプのケーシングの内周に径方向に狭い環状の流体
通路を形成し、羽根車の外周に流体通路に突出する多数
の撹拌羽根を設けたことを特徴とする。In order to solve the above-mentioned problems, a micro-bubble generator of the present invention uses a gas-liquid mixing pump for sucking a mixed fluid of liquid and gas, and a discharge fluid of the gas-liquid mixing pump. A resistor for applying resistance and an inverter for controlling the rotation speed of the gas-liquid mixing pump are provided, and a narrow annular fluid passage is formed in the radial direction on the inner circumference of the casing of the gas-liquid mixing pump, and on the outer circumference of the impeller. The invention is characterized in that a large number of stirring blades projecting in the fluid passage are provided.
【0006】ここで、気液混合ポンプが10%程度の高
い気体混入比の混合流体を効率よく加圧・撹拌し、かつ
安定的に吐出できるように、気液混合ポンプの各部を以
下のように設計するのが好ましい。
(a)羽根車の厚さを加圧通路の幅の35〜45%に設
計すること。
(b)羽根車の外径をケーシングの内径の91%以上に
設計すること。
(c)撹拌羽根の長さを羽根車の外径の4〜6.5%に
設計すること。
(d)吸込口及び吐出口の中心と羽根車の中心とのずれ
を羽根車の厚さの20%以下に設計すること。Here, in order that the gas-liquid mixing pump can efficiently pressurize and agitate the mixed fluid having a high gas mixture ratio of about 10%, and stably discharge it, the respective parts of the gas-liquid mixing pump are as follows. It is preferable to design (A) Design the thickness of the impeller to be 35 to 45% of the width of the pressure passage. (B) Design the outer diameter of the impeller to be 91% or more of the inner diameter of the casing. (C) Design the length of the stirring blade to be 4 to 6.5% of the outer diameter of the impeller. (D) Design the deviation between the center of the suction port and the discharge port and the center of the impeller to be 20% or less of the thickness of the impeller.
【0007】また、微細で均一なマイクロバブルを発生
できる点で、抵抗器に障壁板を設け、障壁板の下部に半
月形状のオリフィスを形成するのが望ましい。Further, it is desirable that a barrier plate is provided on the resistor and a half-moon shaped orifice is formed under the barrier plate in that fine and uniform micro bubbles can be generated.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1に示すように、この実施形態
のマイクロバブル発生装置は、液体及び気体の混合流体
を吸引する気液混合ポンプ1と、気液混合ポンプ1の吐
出流体に抵抗を付与してマイクロバブルを発生する抵抗
器2と、気液混合ポンプ1の回転速度を制御するインバ
ータ3とを備えている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the micro-bubble generating device of this embodiment generates a micro-bubble by applying a resistance to a gas-liquid mixing pump 1 for sucking a mixed fluid of liquid and gas and a discharge fluid of the gas-liquid mixing pump 1. It is provided with a resistor 2 for generating and an inverter 3 for controlling the rotation speed of the gas-liquid mixing pump 1.
【0009】気液混合ポンプ1の吸込口4には吸入配管
5を介して吸液配管6と吸気配管7とが接続されてい
る。吸入配管5上には真空計8が設けられ、吸液配管6
上には吸入圧調整バルブ9が設けられている。吸気配管
7上にはエアコントロールユニット10が設けられ、こ
のユニット10に流量調整バルブ11と流量計12と逆
止弁13とが内蔵されている。A liquid suction pipe 6 and a suction pipe 7 are connected to a suction port 4 of the gas-liquid mixing pump 1 via a suction pipe 5. A vacuum gauge 8 is provided on the suction pipe 5, and the suction pipe 6
A suction pressure adjusting valve 9 is provided above. An air control unit 10 is provided on the intake pipe 7, and a flow rate adjusting valve 11, a flow meter 12, and a check valve 13 are built in the unit 10.
【0010】気液混合ポンプ1の吐出口15には吐出配
管16が接続され、吐出配管16上に圧力計17と前記
抵抗器2とが設けられている。図4に示すように、抵抗
器2の内部には吐出流体に抵抗を付与する障壁板18が
組み込まれ、障壁板18に吐出流体を通過させるオリフ
ィス19が形成されている。この抵抗器2によれば、簡
単かつ安価な構成でマイクロバブルを発生することがで
きる。A discharge pipe 16 is connected to the discharge port 15 of the gas-liquid mixing pump 1, and a pressure gauge 17 and the resistor 2 are provided on the discharge pipe 16. As shown in FIG. 4, a barrier plate 18 that gives resistance to the discharge fluid is incorporated inside the resistor 2, and an orifice 19 that allows the discharge fluid to pass through is formed in the barrier plate 18. According to the resistor 2, micro bubbles can be generated with a simple and inexpensive structure.
【0011】オリフィス19の開口面積は、気液混合ポ
ンプ1の吐出圧及び吐出量、抵抗器2の通路面積、マイ
クロバブルの発生圧力等を考慮して決定される。また、
オリフィス19の部位及び形状は、混合流体中の気体が
急減圧により効率よくかつ見栄えよくマイクロバブルに
変容する点を考慮して決定される。図4〜図7に同じ開
口面積で部位及び形状が異なるオリフィス19の実施例
を示す。The opening area of the orifice 19 is determined in consideration of the discharge pressure and discharge amount of the gas-liquid mixing pump 1, the passage area of the resistor 2, the generated pressure of microbubbles, and the like. Also,
The site and shape of the orifice 19 are determined in consideration of the fact that the gas in the mixed fluid is transformed into microbubbles efficiently and visually by the rapid depressurization. 4 to 7 show examples of the orifice 19 having the same opening area but different parts and shapes.
【0012】(1)図4のオリフィス19は障壁板18
の下部に半月状に形成されている。このオリフィス19
は障壁板18の下部に開口しているため、障壁板18の
上流側上部に気泡が塊となって集約され、一定の体積に
肥大化したのち、オリフィス19から徐々に吐出され
る。このとき、オリフィス19が障壁板18の片隅に開
口しているので、オリフィス19を通過したのちの流れ
が不規則になり、その不整流中で大きな気泡が衝突を繰
り返して細かく破砕される。また、配管途中の凹凸等で
発生した気体の塊が抵抗器2に流入した場合も、障壁板
18の上流側上部に滞留し、塊のままオリフィス19を
通過するおそれがない。このため、微細で均一な見栄え
のよいマイクロバブルを発生できる利点がある。(1) The orifice 19 shown in FIG.
It is formed in the shape of a half moon at the bottom of. This orifice 19
Since it is open to the lower part of the barrier plate 18, the bubbles are aggregated in the upper part of the upstream side of the barrier plate 18 as a lump and enlarged to a certain volume, and then gradually discharged from the orifice 19. At this time, since the orifice 19 is opened at one corner of the barrier plate 18, the flow after passing through the orifice 19 becomes irregular, and during the non-rectification, large bubbles are repeatedly collided and finely crushed. Further, even if a gas mass generated due to unevenness in the middle of the pipe flows into the resistor 2, there is no possibility that the gas mass stays in the upper portion of the upstream side of the barrier plate 18 and passes through the orifice 19 as a mass. Therefore, there is an advantage that fine and uniform microbubbles having a good appearance can be generated.
【0013】(2)図5のオリフィス19は障壁板18
の上部に半月状に形成されている。このオリフィス19
は、障壁板18の片隅に開口しているので、気泡を細か
く破砕できるが、障壁板18の上部に開口しているた
め、大きな気泡がマイクロバブル中に混入しやすい。
(3)図6のオリフィス19は障壁板18の中心部に円
形に形成されている。このオリフィス19によると、マ
イクロバブルは発生するが、気泡の大きさが不均一で、
特に大きな気泡が目立つ。
(4)図7のオリフィス19は障壁板18の中央部に2
つ円形に形成されている。この場合も、図6と同様、泡
の大きさが不均一で、大きな気泡が混入する。従って、
図5,図6,図7に示すオリフィス19によると、マイ
クロバブルの見栄えが悪くなる難点がある。(2) The orifice 19 shown in FIG.
It is formed in the shape of a half moon at the top of the. This orifice 19
Has an opening at one corner of the barrier plate 18, so that bubbles can be finely crushed, but since it opens at the upper part of the barrier plate 18, large bubbles are easily mixed into the microbubbles. (3) The orifice 19 shown in FIG. 6 is formed in a circular shape at the center of the barrier plate 18. According to this orifice 19, micro bubbles are generated, but the sizes of the bubbles are not uniform,
Especially large bubbles are noticeable. (4) The orifice 19 shown in FIG.
It is formed in one circular shape. Also in this case, as in FIG. 6, the bubble size is non-uniform and large bubbles are mixed. Therefore,
According to the orifice 19 shown in FIGS. 5, 6 and 7, there is a drawback that the appearance of the microbubbles becomes poor.
【0014】図2及び図3に示すように、気液混合ポン
プ1はカスケードポンプ(過流ポンプ、ウエスコポン
プ)と類似する構造を備えている。ケーシング21は本
体部22と蓋部23とからなり、本体部22に回転軸2
4が支持され、回転軸24上に羽根車25が組み付けら
れている。As shown in FIGS. 2 and 3, the gas-liquid mixing pump 1 has a structure similar to a cascade pump (overflow pump, Wesco pump). The casing 21 includes a main body portion 22 and a lid portion 23, and the main body portion 22 has a rotary shaft 2
4 is supported, and the impeller 25 is mounted on the rotary shaft 24.
【0015】本体部22及び蓋部23には、羽根車25
の両側面に細隙を介して対向する突部22a,23aが
設けられ、その外周側において、ケーシング21の内周
に径方向に狭い環状の流体通路26が形成されている。
蓋部23の内周には、流体通路26の上部に突出する仕
切壁23bが形成され、仕切壁23bの両側で吸込口4
及び吐出口15が流体通路26に連通している。An impeller 25 is provided on the main body 22 and the lid 23.
Protruding portions 22a and 23a are provided on both side surfaces of the casing 21 so as to face each other with a slit therebetween, and an annular fluid passage 26 that is narrow in the radial direction is formed on the inner periphery of the casing 21 on the outer peripheral side thereof.
A partition wall 23b projecting above the fluid passage 26 is formed on the inner periphery of the lid portion 23, and the suction port 4 is provided on both sides of the partition wall 23b.
The discharge port 15 communicates with the fluid passage 26.
【0016】羽根車25の外周には、流体通路26に突
出する多数(例えば片側60個、両側120個)の撹拌
羽根27が設けられている。そして、羽根車25の回転
に伴い撹拌羽根27の摩擦力によって、気液混合流体を
吸込口4から吸い込み、流体通路26上で加圧・撹拌し
たのち、吐出口15から吐出するようになっている。A large number (for example, 60 on one side and 120 on both sides) of stirring blades 27 projecting into the fluid passage 26 are provided on the outer periphery of the impeller 25. Then, as the impeller 25 rotates, the gas-liquid mixed fluid is sucked from the suction port 4 by the frictional force of the stirring blade 27, pressurized and stirred on the fluid passage 26, and then discharged from the discharge port 15. There is.
【0017】撹拌羽根27は羽根車25の外周部両側面
を斜状に切除して形成されている。これにより、撹拌羽
根27の幅は羽根車25の厚さtと等しく設計されてい
る。また、撹拌羽根27の内径は流体通路26の内径と
等しく設計されている。The stirring blade 27 is formed by obliquely cutting both side surfaces of the outer peripheral portion of the impeller 25. Thereby, the width of the stirring blade 27 is designed to be equal to the thickness t of the impeller 25. Further, the inner diameter of the stirring blade 27 is designed to be equal to the inner diameter of the fluid passage 26.
【0018】羽根車25の厚さtは、流体通路26の幅
Mの35〜45%に設計されている。45%以上にする
と、10%程度の気体を混入した場合に、吐出量及び吐
出圧が不安定となり、経時的に圧力が低下して吐出不能
となるおそれがある。35%以下にすると、15%以上
の気体を混入可能であるが、ポンプの吐出量が減少す
る。The thickness t of the impeller 25 is designed to be 35 to 45% of the width M of the fluid passage 26. If it is 45% or more, when about 10% of gas is mixed, the discharge amount and discharge pressure become unstable, and the pressure may decrease over time, and discharge may become impossible. If it is 35% or less, 15% or more of the gas can be mixed, but the discharge amount of the pump is reduced.
【0019】羽根車25の外径dは、ケーシング21
(蓋部23)の内径Dの91%以上に設計されている。
91%未満にすると、7〜8%の気体混入比が限度であ
り、それ以上の気体を混入した場合に、経時的に圧力が
低下し、吐出不能となるおそれがある。The outer diameter d of the impeller 25 is the casing 21.
It is designed to be 91% or more of the inner diameter D of the (cover portion 23).
If it is less than 91%, the gas mixture ratio of 7 to 8% is the limit, and if a gas of more than that is mixed, the pressure will decrease over time, and ejection may be impossible.
【0020】撹拌羽根27の長さhは、羽根車25の外
径dの4〜6.5%に設計されている。6.5%以上に
すると、10%程度の気体を混入した場合に、吐出量及
び吐出圧の変動が大きく不安定となり、経時的に圧力が
低下して吐出不能となるおそれがある。4%以下にする
と、10〜15%以上の気体を混入可能であるが、ポン
プの吐出量が減少する。The length h of the stirring blade 27 is designed to be 4 to 6.5% of the outer diameter d of the impeller 25. If it is 6.5% or more, when about 10% of gas is mixed, fluctuations in the discharge amount and the discharge pressure become large and unstable, and the pressure may decrease over time and discharge may become impossible. When it is 4% or less, 10 to 15% or more of gas can be mixed, but the discharge amount of the pump is reduced.
【0021】吸込口4及び吐出口15の中心と羽根車2
5の中心とのずれSは、羽根車25の厚さtの20%以
下に設計されている。20%以上にすると、10%程度
の気体を混入した場合に、吐出量及び吐出圧の変動が大
きく不安定となり、ポンプの取り扱いに困難を来す。The centers of the suction port 4 and the discharge port 15 and the impeller 2
The deviation S from the center of 5 is designed to be 20% or less of the thickness t of the impeller 25. If it is 20% or more, when a gas of about 10% is mixed, the fluctuation of the discharge amount and the discharge pressure becomes large and unstable, which makes it difficult to handle the pump.
【0022】上記のように構成されたマイクロバブル発
生装置においては、気液混合ポンプ1の回転速度がイン
バータ3により制御され、ポンプ1の吐出圧が圧力計1
7の指示値に従って最適圧力に調整される。こうすれ
ば、気液混合ポンプ1の吐出配管16上にバルブを設け
る必要がなく、バルブの上流側に溜った気体が大きな気
泡となってマイクロバブル中に混入するおそれがない。In the microbubble generator constructed as described above, the rotation speed of the gas-liquid mixing pump 1 is controlled by the inverter 3 and the discharge pressure of the pump 1 is measured by the pressure gauge 1.
The optimum pressure is adjusted according to the indicated value of 7. In this case, it is not necessary to provide a valve on the discharge pipe 16 of the gas-liquid mixing pump 1, and there is no possibility that the gas accumulated on the upstream side of the valve will become large bubbles and be mixed into the micro bubbles.
【0023】液体の吸入圧は吸液配管6上の吸入圧調整
バルブ9により真空計8の指示値に従って最適圧力に調
整される。また、気体の吸入量はエアコントロールユニ
ット10の流量調整バルブ11により流量計12の指示
値に従ってポンプ吐出量の10%程度に調整される。そ
して、気体及び液体の混合流体が気液混合ポンプ1の吸
引力によって吸入配管5を通りポンプ1内に自動的に吸
入される。The suction pressure of the liquid is adjusted to the optimum pressure by the suction pressure adjusting valve 9 on the suction pipe 6 according to the value indicated by the vacuum gauge 8. Further, the gas suction amount is adjusted to about 10% of the pump discharge amount by the flow control valve 11 of the air control unit 10 according to the instruction value of the flow meter 12. Then, the mixed fluid of gas and liquid is automatically sucked into the pump 1 through the suction pipe 5 by the suction force of the gas-liquid mixing pump 1.
【0024】従って、両バルブ9,11の開度調整とイ
ンバータ3の周波数調整とにより、気液混合流体の吸入
圧(真空度)、吐出圧及び気体量(混入比)を変化させ
て、マイクロバブルの大きさや発生量を簡単な操作で最
適に調整することができる。なお、エアコントロールユ
ニット10に逆止弁13が設けられているので、所要の
気体量を確定したのちにポンプ1を停止しても、液体が
逆流するおそれがなく、また同じ運転条件で装置を再起
動できる利点がある。Therefore, the suction pressure (vacuum degree), the discharge pressure, and the gas amount (mixing ratio) of the gas-liquid mixed fluid are changed by adjusting the opening degree of both valves 9 and 11 and the frequency adjustment of the inverter 3, and the micro pressure is changed. The size and amount of bubbles can be optimally adjusted with simple operations. In addition, since the check valve 13 is provided in the air control unit 10, even if the pump 1 is stopped after the required gas amount is determined, there is no possibility that the liquid will flow backward, and the device can be operated under the same operating conditions. It has the advantage of being restartable.
【0025】気液混合流体はポンプ1の吸込口4から流
体通路26に吸入され、ここで撹拌羽根27によって加
圧・撹拌され、気体が粉砕されると同時に液体中に溶解
され、その状態で吐出口15側に圧送される。この実施
形態の気液混合ポンプ1によれば、以下のような作用効
果が得られる。The gas-liquid mixed fluid is sucked from the suction port 4 of the pump 1 into the fluid passage 26, where it is pressurized and stirred by the stirring blade 27, and the gas is crushed and simultaneously dissolved in the liquid. It is pressure-fed to the discharge port 15 side. According to the gas-liquid mixing pump 1 of this embodiment, the following operational effects can be obtained.
【0026】(1)流体通路26に撹拌羽根27が突出
しているので、撹拌羽根27の流体摩擦を大きくし、1
0%程度の高い気体混入比の気液混合流体を短時間で加
圧・撹拌し、気体を細かく粉砕し同時に液体中に効率よ
く溶け込ませたのち、高い圧力で吐出することができ
る。従って、気液混合ポンプ1の消費電力を抑制するこ
とが可能となる。
(2)流体通路26を径方向に狭く形成したので、羽根
車25の回転に伴い通路26に高速の渦流が発生し、こ
の高速渦流中で気体を急激に撹拌するとともに、ケーシ
ング21及び撹拌羽根27に繰り返し衝突させて、微細
に粉砕することができる。
(3)流体通路26を径方向に狭く形成したので、同じ
通路容積のポンプと比較し、通路長さを延ばし、気液混
合流体の加圧・撹拌距離を長く確保して、気体を効率よ
く粉砕し溶解させることができる。(1) Since the stirring blade 27 projects into the fluid passage 26, the fluid friction of the stirring blade 27 is increased to
It is possible to pressurize and agitate a gas-liquid mixed fluid having a high gas mixture ratio of about 0% in a short time, finely pulverize the gas and at the same time efficiently dissolve it in the liquid, and then discharge it at a high pressure. Therefore, the power consumption of the gas-liquid mixing pump 1 can be suppressed. (2) Since the fluid passage 26 is formed to be narrow in the radial direction, a high-speed swirl flow is generated in the passage 26 as the impeller 25 rotates, and the gas is rapidly stirred in this high-speed swirl flow while the casing 21 and the stirring blades are agitated. It can be repeatedly collided with 27 and finely crushed. (3) Since the fluid passage 26 is formed to be narrow in the radial direction, the passage length is extended compared to a pump having the same passage volume, the pressurization / stirring distance of the gas-liquid mixed fluid is secured to be long, and the gas is efficiently supplied. It can be crushed and dissolved.
【0027】(4)羽根車25の外周部両側面を斜めに
切除して、撹拌羽根27を短く形成したので、混合流体
を遠心力で飛ばす作用をする切除部の溝の容積を小さく
し、そこに付着して戻る気体量を減らし、もって、吸入
口4側における気体の滞留を防止することができる。
(5)吸込口4及び吐出口15の中心と羽根車25の中
心とが略同一平面内に位置するように設計したので、羽
根車25両側の流体通路26に同等量の気液混合流体を
導入して、均一に加圧・撹拌することができる。(4) Since both side surfaces of the outer peripheral portion of the impeller 25 are obliquely cut and the stirring blade 27 is formed short, the volume of the groove of the cutting portion which acts to blow the mixed fluid by centrifugal force is reduced, It is possible to reduce the amount of gas that adheres and returns to it, and thus to prevent gas from staying on the suction port 4 side. (5) Since the centers of the suction port 4 and the discharge port 15 and the center of the impeller 25 are located in substantially the same plane, an equal amount of gas-liquid mixed fluid is supplied to the fluid passages 26 on both sides of the impeller 25. It can be introduced and uniformly pressurized and stirred.
【0028】気液混合ポンプ1からの吐出流体は吐出配
管16を通り抵抗器2に流入し、障壁板18の上流側で
加圧され、加圧によって気体の溶解が促進される。そし
て、吐出流体は障壁板18の下部から半月形状のオリフ
ィス19を通過し、急減圧下で不整流による衝突を繰り
返して、均一な微細気泡に変容し、マイクロバブルとな
って放出される。The fluid discharged from the gas-liquid mixing pump 1 flows into the resistor 2 through the discharge pipe 16 and is pressurized on the upstream side of the barrier plate 18. The pressurization accelerates the dissolution of gas. Then, the discharged fluid passes from the lower portion of the barrier plate 18 through the half-moon shaped orifice 19, and repeatedly collides due to non-rectification under rapid depressurization to be transformed into uniform fine bubbles and discharged as micro bubbles.
【0029】なお、本発明は上記実施形態に限定される
ものではなく、以下に例示するように、本発明の趣旨を
逸脱しない範囲で各部の形状並びに構成を適宜に変更し
て実施することも可能である。
(1)図3に示す気液混合ポンプ1において、羽根車2
5外周の断面三角形状部分を切除して、各撹拌羽根27
を相互に切り離して設けること。
(2)撹拌羽根27の幅Mを羽根車25の厚さtより若
干広く設計すること。
(3)ケーシング21の蓋部23の内周面に撹拌羽根2
7と対向する固定羽根を突設すること。
(4)抵抗器2の内側に螺旋状の撹拌羽根を設けるこ
と。The present invention is not limited to the above-described embodiment, and as illustrated below, the shape and configuration of each part may be appropriately changed without departing from the gist of the present invention. It is possible. (1) In the gas-liquid mixing pump 1 shown in FIG. 3, the impeller 2
5 Triangular section of the outer periphery is cut off, and each stirring blade 27
Should be provided separately from each other. (2) Design the width M of the stirring blade 27 to be slightly wider than the thickness t of the impeller 25. (3) The stirring blade 2 is provided on the inner peripheral surface of the lid portion 23 of the casing 21.
Providing a fixed blade facing 7 (4) A spiral stirring blade is provided inside the resistor 2.
【0030】[0030]
【発明の効果】以上詳述したように、本発明によれば、
気液混合ポンプの回転速度をインバータで制御し、ポン
プケーシングの径方向に狭い流体通路に羽根車の撹拌羽
根を突出させたので、気体混入比が高い気液混合流体を
ポンプで短時間に加圧・撹拌し、気体を細かく粉砕して
液体中に効率よく溶け込ませ、もって、微細で均一なマ
イクロバブルを経済的に発生できるという優れた効果を
奏する。As described in detail above, according to the present invention,
The rotation speed of the gas-liquid mixing pump was controlled by the inverter, and the stirring blades of the impeller were projected into the narrow fluid passage in the radial direction of the pump casing. It exerts an excellent effect that the gas is finely pulverized by being pressured and stirred, and the gas is efficiently dissolved in the liquid, so that fine and uniform micro bubbles can be economically generated.
【図1】本発明の一実施形態を示すマイクロバブル発生
装置の全体ブロックである。FIG. 1 is an overall block diagram of a micro-bubble generator showing an embodiment of the present invention.
【図2】気液混合ポンプの要部を示す正面図である。FIG. 2 is a front view showing a main part of a gas-liquid mixing pump.
【図3】同ポンプの断面図である。FIG. 3 is a sectional view of the pump.
【図4】オリフィスを示す抵抗器の断面図である。FIG. 4 is a sectional view of a resistor showing an orifice.
【図5】オリフィスの別の実施例を示す断面図である。FIG. 5 is a sectional view showing another embodiment of the orifice.
【図6】オリフィスの別の実施例を示す断面図である。FIG. 6 is a cross-sectional view showing another embodiment of the orifice.
【図7】オリフィスの別の実施例を示す断面図である。FIG. 7 is a sectional view showing another embodiment of the orifice.
1・・気液混合ポンプ、2・・抵抗器、3・・インバー
タ、4・・吸込口、5・・吸入配管、15・・吐出口、
16・・吐出配管、18・・障壁板、19・・オリフィ
ス、21・・ケーシング、25・・羽根車、26・・流
体通路、27・・撹拌羽根。1 ... Gas-liquid mixing pump, 2 ... Resistor, 3 ... Inverter, 4 ... Suction port, 5 ... Suction pipe, 15 ... Discharge port,
16 ... Discharge pipe, 18 ... Barrier plate, 19 ... Orifice, 21 ... Casing, 25 ... Impeller, 26 ... Fluid passage, 27 ... Agitation blade
Claims (6)
混合ポンプと、気液混合ポンプの吐出流体に抵抗を付与
する抵抗器と、気液混合ポンプの回転速度を制御するイ
ンバータとを備え、気液混合ポンプのケーシングの内周
に径方向に狭い環状の流体通路を形成し、羽根車の外周
に流体通路に突出する多数の撹拌羽根を設けたことを特
徴とするマイクロバブル発生装置。1. A gas-liquid mixing pump for sucking a mixed fluid of liquid and gas, a resistor for imparting resistance to the discharge fluid of the gas-liquid mixing pump, and an inverter for controlling the rotation speed of the gas-liquid mixing pump. A micro-bubble generating device characterized in that a narrow annular fluid passage is formed in an inner circumference of a casing of a gas-liquid mixing pump in a radial direction, and a large number of stirring blades projecting into the fluid passage are provided on an outer circumference of an impeller.
5%に設計した請求項1記載のマイクロバブル発生装
置。2. The thickness of the impeller is set to be 35 to 4 of the width of the fluid passage.
The microbubble generator according to claim 1, which is designed to be 5%.
%以上に設計した請求項1記載のマイクロバブル発生装
置。3. The outer diameter of the impeller is 91 times the inner diameter of the casing.
The microbubble generator according to claim 1, which is designed to have a content of at least%.
6.5%に設計した請求項1記載のマイクロバブル発生
装置。4. The length of the stirring blade is 4 to the outer diameter of the impeller.
The microbubble generator according to claim 1, which is designed to be 6.5%.
心と羽根車の中心とのずれを羽根車の厚さの20%以下
に設計した請求項1記載のマイクロバブル発生装置。5. The microbubble generator according to claim 1, wherein the center of the suction port and the discharge port of the gas-liquid mixing pump and the center of the impeller are designed to be 20% or less of the thickness of the impeller.
半月形状のオリフィスを形成した請求項1記載のマイク
ロバブル発生装置。6. The microbubble generator according to claim 1, wherein the resistor is provided with a barrier plate, and a half-moon shaped orifice is formed in a lower portion of the barrier plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001322141A JP2003117365A (en) | 2001-10-19 | 2001-10-19 | Micro-bubble producing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001322141A JP2003117365A (en) | 2001-10-19 | 2001-10-19 | Micro-bubble producing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003117365A true JP2003117365A (en) | 2003-04-22 |
Family
ID=19139235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001322141A Pending JP2003117365A (en) | 2001-10-19 | 2001-10-19 | Micro-bubble producing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003117365A (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005000878A (en) * | 2003-06-13 | 2005-01-06 | Aura Tec:Kk | Apparatus for generating micro bubble |
JP2005287994A (en) * | 2004-04-05 | 2005-10-20 | Matsushita Electric Ind Co Ltd | Washing device |
JP2006231193A (en) * | 2005-02-24 | 2006-09-07 | Mitsubishi Heavy Ind Ltd | Recovering device and method, and separating and recovering system and method of electronic tag, and surfacing recovering device and method of settling matter |
JP2006289367A (en) * | 2006-05-30 | 2006-10-26 | Daishin Boeki:Kk | Bubble generator |
JP2006305494A (en) * | 2005-04-28 | 2006-11-09 | Ebara Corp | Oxygen dissolving system |
JP2006326484A (en) * | 2005-05-26 | 2006-12-07 | Honda Kiko Co Ltd | Micro-bubbles generator |
JP2007021392A (en) * | 2005-07-19 | 2007-02-01 | Hitachi Ltd | Apparatus and method for producing microbubble |
JP2007136251A (en) * | 2005-11-14 | 2007-06-07 | Sumitomo Heavy Ind Ltd | Method and apparatus for wetly desulfurizing hydrogen sulfide-containing gas |
JP2007136255A (en) * | 2005-11-14 | 2007-06-07 | Chiken Kk | Nano-bubble producing apparatus |
JP2007209953A (en) * | 2006-02-13 | 2007-08-23 | Sharp Corp | Microbubble generating system |
JP2007268186A (en) * | 2006-03-31 | 2007-10-18 | Nohmi Bosai Ltd | Fire-fighting installation |
JP2008006432A (en) * | 2006-05-29 | 2008-01-17 | Spg Techno Kk | Method and apparatus for dissolving and mixing gas and liquid using linear slit |
JP2008006397A (en) * | 2006-06-30 | 2008-01-17 | Aisin Seiki Co Ltd | Microbubble generation apparatus |
JP2008036481A (en) * | 2006-08-02 | 2008-02-21 | Osaka Gas Co Ltd | Fine bubble producing apparatus |
JP2008110346A (en) * | 2008-02-04 | 2008-05-15 | Hitachi Ltd | Apparatus and method for producing minute gas bubble |
JP2008119567A (en) * | 2006-11-08 | 2008-05-29 | Yokota Seisakusho:Kk | Microbubble generation device |
JP2008296095A (en) * | 2007-05-29 | 2008-12-11 | Sharp Corp | Method and apparatus for generating nanobubble comprising useful substance |
JP2009028666A (en) * | 2007-07-27 | 2009-02-12 | Sharp Corp | Nanobubble-containing magnetically activated water manufacturing apparatus and method |
JP2009065997A (en) * | 2007-09-10 | 2009-04-02 | Nohmi Bosai Ltd | Fire extinguishing system |
EP2060318A1 (en) | 2007-11-15 | 2009-05-20 | YARA International ASA | Apparatus and method for generating and distributing bubbles in a gas-liquid mixture |
JP2009112964A (en) * | 2007-11-07 | 2009-05-28 | Sharp Corp | Fine bubble generator |
JP2009254984A (en) * | 2008-04-17 | 2009-11-05 | Aura Tec:Kk | Nanobubble generation method and nanobubble generator |
JP2009299629A (en) * | 2008-06-16 | 2009-12-24 | Kps Kogyo Kk | Pump unit |
JP2010137180A (en) * | 2008-12-12 | 2010-06-24 | I Fu Yang | Apparatus for emulsification |
JP2010269301A (en) * | 2009-04-24 | 2010-12-02 | Anlet Co Ltd | Micropscopic bubble generating apparatus |
JP2011110435A (en) * | 2009-11-24 | 2011-06-09 | Tomotaka Marui | Device and method for forming minute air bubble in liquid to make liquid to generate heat |
WO2011121631A1 (en) * | 2010-03-29 | 2011-10-06 | 株式会社技術開発総合研究所 | Gas-liquid supply device |
JPWO2011049215A1 (en) * | 2009-10-22 | 2013-03-14 | エウレカ・ラボ株式会社 | Processing equipment for gas / liquid or liquid / liquid dispersion, dissolution, solubilization or emulsification |
KR101307836B1 (en) | 2011-08-01 | 2013-09-12 | 니혼 스핀들 세이조 가부시키가이샤 | Suction type mixing system |
WO2015072142A1 (en) * | 2013-11-14 | 2015-05-21 | 日本環境コンサルタント株式会社 | Microbubble generating device |
JP2020058980A (en) * | 2018-10-10 | 2020-04-16 | 株式会社ディスコ | Mixing device |
JP2020163241A (en) * | 2019-03-28 | 2020-10-08 | ミナミ産業株式会社 | Ultrafine bubble generation device |
KR20200126528A (en) * | 2019-04-30 | 2020-11-09 | 주식회사 일성 | Nano-bubble generator system |
KR20200126530A (en) * | 2019-04-30 | 2020-11-09 | 주식회사 일성 | Dissolving device for Nano-bubble generator system |
-
2001
- 2001-10-19 JP JP2001322141A patent/JP2003117365A/en active Pending
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005000878A (en) * | 2003-06-13 | 2005-01-06 | Aura Tec:Kk | Apparatus for generating micro bubble |
JP2005287994A (en) * | 2004-04-05 | 2005-10-20 | Matsushita Electric Ind Co Ltd | Washing device |
JP4552488B2 (en) * | 2004-04-05 | 2010-09-29 | パナソニック電工株式会社 | Cleaning device |
JP2006231193A (en) * | 2005-02-24 | 2006-09-07 | Mitsubishi Heavy Ind Ltd | Recovering device and method, and separating and recovering system and method of electronic tag, and surfacing recovering device and method of settling matter |
JP2006305494A (en) * | 2005-04-28 | 2006-11-09 | Ebara Corp | Oxygen dissolving system |
JP4559289B2 (en) * | 2005-04-28 | 2010-10-06 | 株式会社荏原製作所 | Oxygen dissolving apparatus and oxygen dissolving method |
JP4686258B2 (en) * | 2005-05-26 | 2011-05-25 | 本多機工株式会社 | Micro bubble generator |
JP2006326484A (en) * | 2005-05-26 | 2006-12-07 | Honda Kiko Co Ltd | Micro-bubbles generator |
JP2007021392A (en) * | 2005-07-19 | 2007-02-01 | Hitachi Ltd | Apparatus and method for producing microbubble |
JP2007136251A (en) * | 2005-11-14 | 2007-06-07 | Sumitomo Heavy Ind Ltd | Method and apparatus for wetly desulfurizing hydrogen sulfide-containing gas |
JP2007136255A (en) * | 2005-11-14 | 2007-06-07 | Chiken Kk | Nano-bubble producing apparatus |
JP2007209953A (en) * | 2006-02-13 | 2007-08-23 | Sharp Corp | Microbubble generating system |
JP2007268186A (en) * | 2006-03-31 | 2007-10-18 | Nohmi Bosai Ltd | Fire-fighting installation |
JP2008006432A (en) * | 2006-05-29 | 2008-01-17 | Spg Techno Kk | Method and apparatus for dissolving and mixing gas and liquid using linear slit |
JP2006289367A (en) * | 2006-05-30 | 2006-10-26 | Daishin Boeki:Kk | Bubble generator |
JP2008006397A (en) * | 2006-06-30 | 2008-01-17 | Aisin Seiki Co Ltd | Microbubble generation apparatus |
JP2008036481A (en) * | 2006-08-02 | 2008-02-21 | Osaka Gas Co Ltd | Fine bubble producing apparatus |
JP2008119567A (en) * | 2006-11-08 | 2008-05-29 | Yokota Seisakusho:Kk | Microbubble generation device |
JP2008296095A (en) * | 2007-05-29 | 2008-12-11 | Sharp Corp | Method and apparatus for generating nanobubble comprising useful substance |
JP2009028666A (en) * | 2007-07-27 | 2009-02-12 | Sharp Corp | Nanobubble-containing magnetically activated water manufacturing apparatus and method |
JP2009065997A (en) * | 2007-09-10 | 2009-04-02 | Nohmi Bosai Ltd | Fire extinguishing system |
JP2009112964A (en) * | 2007-11-07 | 2009-05-28 | Sharp Corp | Fine bubble generator |
EP2060318A1 (en) | 2007-11-15 | 2009-05-20 | YARA International ASA | Apparatus and method for generating and distributing bubbles in a gas-liquid mixture |
JP2008110346A (en) * | 2008-02-04 | 2008-05-15 | Hitachi Ltd | Apparatus and method for producing minute gas bubble |
JP2009254984A (en) * | 2008-04-17 | 2009-11-05 | Aura Tec:Kk | Nanobubble generation method and nanobubble generator |
JP2009299629A (en) * | 2008-06-16 | 2009-12-24 | Kps Kogyo Kk | Pump unit |
JP2010137180A (en) * | 2008-12-12 | 2010-06-24 | I Fu Yang | Apparatus for emulsification |
JP2010269301A (en) * | 2009-04-24 | 2010-12-02 | Anlet Co Ltd | Micropscopic bubble generating apparatus |
JP5380545B2 (en) * | 2009-10-22 | 2014-01-08 | エウレカ・ラボ株式会社 | Processing equipment for gas / liquid or liquid / liquid dispersion, dissolution, solubilization or emulsification |
JPWO2011049215A1 (en) * | 2009-10-22 | 2013-03-14 | エウレカ・ラボ株式会社 | Processing equipment for gas / liquid or liquid / liquid dispersion, dissolution, solubilization or emulsification |
JP2011110435A (en) * | 2009-11-24 | 2011-06-09 | Tomotaka Marui | Device and method for forming minute air bubble in liquid to make liquid to generate heat |
WO2011121631A1 (en) * | 2010-03-29 | 2011-10-06 | 株式会社技術開発総合研究所 | Gas-liquid supply device |
KR101307836B1 (en) | 2011-08-01 | 2013-09-12 | 니혼 스핀들 세이조 가부시키가이샤 | Suction type mixing system |
WO2015072142A1 (en) * | 2013-11-14 | 2015-05-21 | 日本環境コンサルタント株式会社 | Microbubble generating device |
JP7193972B2 (en) | 2018-10-10 | 2022-12-21 | 株式会社ディスコ | mixing device |
JP2020058980A (en) * | 2018-10-10 | 2020-04-16 | 株式会社ディスコ | Mixing device |
JP2020163241A (en) * | 2019-03-28 | 2020-10-08 | ミナミ産業株式会社 | Ultrafine bubble generation device |
JP7251730B2 (en) | 2019-03-28 | 2023-04-04 | ミナミ産業株式会社 | Ultra fine bubble generator |
KR20200126530A (en) * | 2019-04-30 | 2020-11-09 | 주식회사 일성 | Dissolving device for Nano-bubble generator system |
KR102311635B1 (en) * | 2019-04-30 | 2021-10-08 | 주식회사 일성 | Nano-bubble generator system |
KR102312598B1 (en) * | 2019-04-30 | 2021-10-14 | 지현숙 | Dissolving device for Nano-bubble generator system |
KR20200126528A (en) * | 2019-04-30 | 2020-11-09 | 주식회사 일성 | Nano-bubble generator system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003117365A (en) | Micro-bubble producing apparatus | |
TW499552B (en) | Device for generating superfine air bubble | |
JP2006159187A (en) | Superfine bubble generating device | |
US9527048B2 (en) | Rotor-stator system for the production of dispersions | |
JP2003126665A (en) | Microbubble generator | |
JP2009112964A (en) | Fine bubble generator | |
KR20100045422A (en) | Micro bubble equipment using multistage pump | |
JP2010167399A (en) | Apparatus and system for mixing liquid and powder | |
JPWO2018117040A1 (en) | Apparatus and system for generating gas-liquid containing fine bubbles | |
KR101944684B1 (en) | Nano-bubble generating apparatus | |
JP2010264337A (en) | Aeration agitator | |
KR101865240B1 (en) | Device for generating bubble | |
JP2006326484A (en) | Micro-bubbles generator | |
RU2495724C2 (en) | Flotation aerator | |
JP6600065B1 (en) | Static mixer | |
JP2011251202A (en) | Stirring mixer | |
KR20030063776A (en) | minute an air bubble generation device | |
JP3968737B2 (en) | Aeration equipment | |
JP2012091153A (en) | Fine-air-bubble generator | |
JPH10230150A (en) | Aerator | |
JP2008274394A (en) | Pickling apparatus and method | |
JPH0763687B2 (en) | Article cleaning method and device | |
KR20220102291A (en) | Nano-micro bubble generator | |
JPH10216794A (en) | Water area purifying device | |
JPH06285488A (en) | Underwater agitation and aeration device |