JP2010137180A - Apparatus for emulsification - Google Patents

Apparatus for emulsification Download PDF

Info

Publication number
JP2010137180A
JP2010137180A JP2008316939A JP2008316939A JP2010137180A JP 2010137180 A JP2010137180 A JP 2010137180A JP 2008316939 A JP2008316939 A JP 2008316939A JP 2008316939 A JP2008316939 A JP 2008316939A JP 2010137180 A JP2010137180 A JP 2010137180A
Authority
JP
Japan
Prior art keywords
mixing pump
water
pore
pump
liquid mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008316939A
Other languages
Japanese (ja)
Inventor
I Fu Yang
一夫 楊
Yung Chuan Lin
湧泉 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008316939A priority Critical patent/JP2010137180A/en
Publication of JP2010137180A publication Critical patent/JP2010137180A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Colloid Chemistry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for emulsification capable of generating an emulsifying state. <P>SOLUTION: The apparatus for emulsification 10 comprises a mixing pump 30, a water source 20, a water feeding adjuster 40, a gas feeding adjuster 50, and an emulsifying device 70. The water source 20 is connected to the mixing pump 30, and the water feeding adjuster 40 is connected to the mixing pump 30. Further, the gas feeding adjuster 50 is connected to the mixing pump 30. The mixing pump 30 dissolves air in water and thereafter outputs a high pressure gas and liquid mixture. The emulsifying device 70 is connected to the mixing pump 30, and has a housing 71 whose interior space is comparted into a front chamber 73 and a rear chamber 74 by a partition wall 72. The emulsified state is generated by a cavitating phenomenon (cavitation) when the high pressure gas and liquid mixture passes through pores 75 as the partition wall 72 has a plurality of the pores 75. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、乳化装置に関し、詳しくは空洞現象(cavitation)によって高圧気液混合体を乳化させる装置に関するものである。   The present invention relates to an emulsifying apparatus, and more particularly to an apparatus for emulsifying a high-pressure gas-liquid mixture by cavitation.

空気を溶解させた水を減圧することによって生成する微細気泡は、汎用され、特に水質処理およびそれに関わるプロセスに応用することが成功したとされている。気泡が小さければ小さいほど水中に滞留する時間は長くなり、生じる作用は大きくなる。乳化とは水中の気泡密度が最大状態に達することを指す。乳化に必要な気泡径は数マイクロメートルより小さいため、加圧浮上分離法において、如何に直径がより小さく密度がより高い気泡を獲得するかということが重要な課題になる。   Fine bubbles generated by depressurizing water in which air is dissolved are widely used, and it has been successfully applied particularly to water quality treatment and related processes. The smaller the bubbles, the longer the residence time in the water and the greater the effect produced. Emulsification refers to the maximum density of bubbles in water. Since the bubble diameter required for emulsification is smaller than a few micrometers, how to obtain bubbles with a smaller diameter and a higher density is an important issue in the pressure flotation separation method.

台湾特許第I245667号により開示される『超微細気泡発生器』は、多段式ポンプによって空気を水中に溶解させ、気液混合体を生成させ、そののち気液混合体を減圧装置に出力し、気液混合体を瞬間に減圧することによって超微細気泡を放出する。   The “ultrafine bubble generator” disclosed by Taiwan Patent No. I245667 dissolves air in water by a multistage pump to generate a gas-liquid mixture, and then outputs the gas-liquid mixture to a decompression device. Ultrafine bubbles are released by instantaneously depressurizing the gas-liquid mixture.

しかしながら、上述した発明は、構造のため、気泡の大きさおよび密度が制限されることが原因で乳化条件に達することができない。   However, due to the structure of the invention described above, the emulsification conditions cannot be reached due to the limited size and density of the bubbles.

台湾特許第I245667号Taiwan Patent No. I245667

本発明者は、高速水路において速度を変えるとき、一部分の圧力は水の蒸気圧力より低いため、水を空洞気泡(cavitation bubble)に蒸発させ、そののち空洞泡は崩壊(collapse)が発生し、高エネルギーを放出することを発見した。この現象は、流体力学において空洞現象(cavitation)と称される。   When the inventor changes the speed in the high-speed water channel, the pressure of a part is lower than the vapor pressure of the water, so that the water is evaporated into a cavitation bubble, after which the cavitation bubble collapses, Found to release high energy. This phenomenon is referred to as cavitation in fluid mechanics.

本発明者は、さらに気液混合体が空洞発生領域(cavitation zone)を通過する際、気泡(air bubble)が水中から放出されることと、空洞泡が縮退崩壊する際、空洞泡が含有した空気は微細な気泡に分解し、空洞泡が縮退崩壊して放出した高エネルギーは水中から気泡を激増させ、乳化効果を生成することを発見した。   The inventor further found that when the gas-liquid mixture passes through the cavity zone, the air bubbles are released from the water, and when the cavity bubbles are degenerated and collapsed, the cavity bubbles contained. It was discovered that the air breaks down into fine bubbles, and the high energy released by the collapse and collapse of the hollow bubbles drastically increases the bubbles from the water, producing an emulsifying effect.

従って、本発明の主な目的は、流体力学の空洞現象によって気泡を水中に拡散させ、ミルクのような乳化状態を生成することを可能にする乳化装置を提供することである。   Therefore, the main object of the present invention is to provide an emulsifying device that allows bubbles to diffuse into water by hydrodynamic cavitation and produce an emulsified state like milk.

上述の目的を達成するために、本発明による乳化装置は、混合ポンプ、水源、送水調節器、送気調節器および乳化器を備える。水源は混合ポンプに給水するため、混合ポンプに接続される。送水調節器は混合ポンプに流れ込む水量を調節するため混合ポンプに接続される。送気調節器は混合ポンプに流れ込む空気量を調節するため混合ポンプに接続される。混合ポンプは空気を水中に溶解させ、そののち高圧気液混合体を出力する。乳化器は混合ポンプに接続され、ハウジングを有し、ハウジングは隔離板によって内部空間が前チャンバーおよび後チャンバーに分割され、隔離板は複数の細孔を有するため、高圧気液混合体が細孔を通過する際、空洞現象(cavitation)によって乳化状態を生成する。   In order to achieve the above object, an emulsifying apparatus according to the present invention includes a mixing pump, a water source, a water supply controller, an air supply controller, and an emulsifier. The water source is connected to the mixing pump for supplying water to the mixing pump. A water regulator is connected to the mixing pump to regulate the amount of water flowing into the mixing pump. The air supply regulator is connected to the mixing pump for adjusting the amount of air flowing into the mixing pump. The mixing pump dissolves air in water and then outputs a high-pressure gas-liquid mixture. The emulsifier is connected to a mixing pump and has a housing. The housing is divided into a front chamber and a rear chamber by a separator, and the separator has a plurality of pores. When passing through, an emulsified state is generated by cavitation.

好ましいのは、乳化器の細孔は幅が0.3mm以下であり、空洞発生地帯は細孔の断面積の20%以上を占める。   Preferably, the emulsifier pores have a width of 0.3 mm or less, and the cavity generation zone occupies 20% or more of the cross-sectional area of the pores.

好ましいのは、乳化器は隔離板の一側を移動可能なように装着される隙間調整板を有し、隙間調整板は複数の細孔を有する。隙間調整板を移動させ、隔離板の細孔に対して細孔の位置を調整して、互いに向かい合う二つの細孔をずらして生じた隙間を調整する。   Preferably, the emulsifier has a gap adjusting plate mounted so as to be movable on one side of the separator, and the gap adjusting plate has a plurality of pores. The gap adjusting plate is moved, the position of the pore is adjusted with respect to the pore of the separator, and the gap formed by shifting the two pores facing each other is adjusted.

好ましいのは、混合ポンプは遠心式であり、ポンプシャフトとともに回転する少なくとも一つのローターと、ポンプケースに固定される少なくとも一つのステーターとを有する。ローターおよびステーターは高圧気液混合体を軸方向に通過させるため、円盤の周縁に配置される複数の通路を別々に有する。   Preferably, the mixing pump is centrifugal and has at least one rotor rotating with the pump shaft and at least one stator fixed to the pump case. The rotor and the stator separately have a plurality of passages arranged on the periphery of the disk in order to allow the high-pressure gas-liquid mixture to pass in the axial direction.

本発明の技術内容および特徴を明確するため、以下の図面および詳細な実施形態に基づいて説明を進める。   In order to clarify the technical contents and features of the present invention, the description will proceed based on the following drawings and detailed embodiments.

本発明の技術内容の説明に用いる乳化装置10を図1の平面図で示す。乳化装置10は、水源20、混合ポンプ30、送水調節器40、送気調節器50、逆止弁60、乳化器70および必要な管路を備える。   The emulsification apparatus 10 used for description of the technical content of the present invention is shown in the plan view of FIG. The emulsification apparatus 10 includes a water source 20, a mixing pump 30, a water supply controller 40, an air supply controller 50, a check valve 60, an emulsifier 70, and necessary pipelines.

水源20は、混合ポンプ30に給水するため、第一管路25によって混合ポンプ30に接続される。混合ポンプ30に流れ込む水の清潔を確保するため、水源20は流出口にフィルター21を有する。フィルター21は水中の固体異物をろ過し、乳化通路の塞ぎ現象を避けることが可能である。   The water source 20 is connected to the mixing pump 30 by a first pipe 25 in order to supply water to the mixing pump 30. In order to ensure the cleanliness of the water flowing into the mixing pump 30, the water source 20 has a filter 21 at the outlet. The filter 21 can filter solid foreign matter in water and avoid the clogging phenomenon of the emulsification passage.

送水調節器40は、水源20が混合ポンプ30に供給する水量を調節するため、第一管路25に装着される。   The water supply controller 40 is attached to the first pipeline 25 in order to adjust the amount of water supplied from the water source 20 to the mixing pump 30.

送気調節器50は、混合ポンプ30に流れ込む空気量を調節するため、第二管路45に装着される。第二管路45は第一管路25と連絡し、かつ送水調節器40と混合ポンプ30の間に位置付けられる。   The air supply controller 50 is attached to the second pipe 45 in order to adjust the amount of air flowing into the mixing pump 30. The second line 45 communicates with the first line 25 and is positioned between the water supply regulator 40 and the mixing pump 30.

混合ポンプ30は、水源20に接続され、かつ送水口あたりの低圧を生成し、水をポンプケース内に誘導し、かつ空気を吸引し、水中に溶解させることによって、圧力が4.0Kg/cm2以上の飽和気液混合体を出力する。図2と図3に示す混合ポンプ30は遠心式であり、従来の遠心式ポンプと比べて、ポンプシャフト31とともに回転するローター33と、ポンプケース32に固定されるステーター34とを有する。高圧気液混合体を軸方向に通過させるため、ローター33の円盤35は複数の通路37を有し、ステーター34の円盤36は複数の通路38を有する。その作用についての説明は後ほど述べる。本実施形態において通路36、38は円形であるが、円形に限らず細長い形などの別の形を採用することが可能である。またローター33とステーター34との組み合せを複製し、多段式混合ポンプを成型することによって圧力のより高い飽和気液混合体を生成することが可能である。   The mixing pump 30 is connected to the water source 20 and generates a low pressure per water inlet, induces water into the pump case, and sucks air and dissolves it in water, so that the pressure is 4.0 kg / cm 2. The above saturated gas-liquid mixture is output. The mixing pump 30 shown in FIGS. 2 and 3 is a centrifugal type, and has a rotor 33 that rotates together with the pump shaft 31 and a stator 34 that is fixed to the pump case 32 as compared with a conventional centrifugal pump. In order to allow the high-pressure gas-liquid mixture to pass in the axial direction, the disk 35 of the rotor 33 has a plurality of passages 37, and the disk 36 of the stator 34 has a plurality of passages 38. The explanation of the operation will be described later. In the present embodiment, the passages 36 and 38 have a circular shape, but other shapes such as an elongated shape are possible without being limited to a circular shape. Further, it is possible to produce a saturated gas-liquid mixture with higher pressure by duplicating the combination of the rotor 33 and the stator 34 and molding a multistage mixing pump.

逆止弁60は、第二管路45に装着され、かつ第一管路25中の水が第二管路45を経て送気調節器50に逆流することを防止するため、第一管路25および送気調節器50の間に位置付けられる。   The check valve 60 is attached to the second pipeline 45 and prevents the water in the first pipeline 25 from flowing back to the air supply regulator 50 via the second pipeline 45. 25 and the air flow regulator 50.

乳化器70は、第三管路55によって混合ポンプ30に接続される。本願発明の第1実施形態の乳化器70は、図4に示すように、ハウジング71を有し、ハウジング71は隔離板72によって内部空間が前チャンバー73および後チャンバー74に分割される。隔離板72は複数の第一細孔としての細孔75を有し、細孔75によって乳化通路を構成するため、気液混合体が流れる際、空洞現象(cavitation)を生じさせることが可能である。空洞現象は細孔75の周縁にしか発生しないため、割合の比較的高い空洞発生領域(cavitation zone)を獲得するのには、細孔75の幅aを0.33mm以下、空洞発生地帯を細孔75の断面積の20%以上にすることが好ましい。   The emulsifier 70 is connected to the mixing pump 30 by the third pipe 55. As shown in FIG. 4, the emulsifier 70 according to the first embodiment of the present invention has a housing 71, and the housing 71 is divided into a front chamber 73 and a rear chamber 74 by an isolation plate 72. The separator 72 has a plurality of pores 75 as the first pores, and the pores 75 constitute an emulsification passage. Therefore, when the gas-liquid mixture flows, it is possible to cause a cavitation phenomenon. is there. Since the cavitation phenomenon occurs only at the periphery of the pore 75, in order to obtain a cavitation zone having a relatively high ratio, the width a of the pore 75 is 0.33 mm or less and the cavitation zone is narrowed. It is preferable that the cross-sectional area of the hole 75 be 20% or more.

乳化装置10が作動する際、混合ポンプ30は運転を開始し、第一管路25によって水源20から供給される水を吸引すると同時に第二管路45によって送気調節器50から適量の空気を吸引する。水および空気がポンプケース32に流れ込み、ローター33とともに回転する際、ローター33のエネルギーが吸収されるため、圧力および速度が高くなると同時に、空気を水中に溶解させて高圧飽和気液混合体を生成させることが可能である。ローター33によって気液混合体を排出口39まで誘導すると、気液混合体は軸方向に沿ってローター33およびステーター34の通路36、38を通過することが可能である。ローター33はステーター34に向かい合って回転し、裁断作用を発生させるため、まだ均質化されていない気泡を細かく崩し、気泡を水中に均質に分布させることによって空気を水中に溶解させる時間を短縮することが可能である。ポンプケース32から流出した気液混合体は、第三管路55によって乳化器70の前チャンバー73に出力される。気液混合体が乳化器70の細孔75を通過する際、空洞現象によって乳化を完成させ、そののち後チャンバー74から第四管路65を経て水槽80に流れ込むか、同一水源20に戻ることが可能である。   When the emulsifying device 10 is operated, the mixing pump 30 starts operation, sucks water supplied from the water source 20 through the first conduit 25, and simultaneously draws an appropriate amount of air from the air supply controller 50 through the second conduit 45. Suction. When water and air flow into the pump case 32 and rotate with the rotor 33, the energy of the rotor 33 is absorbed, so the pressure and speed increase, and at the same time, the air is dissolved in water to produce a high-pressure saturated gas-liquid mixture. It is possible to make it. When the gas-liquid mixture is guided to the discharge port 39 by the rotor 33, the gas-liquid mixture can pass through the passages 36 and 38 of the rotor 33 and the stator 34 along the axial direction. Since the rotor 33 rotates to face the stator 34 and generates a cutting action, the bubbles that have not been homogenized are broken down finely, and the bubbles are uniformly distributed in the water, thereby shortening the time for dissolving the air in the water. Is possible. The gas-liquid mixture flowing out from the pump case 32 is output to the front chamber 73 of the emulsifier 70 through the third pipe 55. When the gas-liquid mixture passes through the pores 75 of the emulsifier 70, the emulsification is completed by a cavity phenomenon, and then flows into the water tank 80 from the chamber 74 through the fourth pipe 65 or returns to the same water source 20. Is possible.

本願発明の第2実施形態の乳化器70aは図5のように示す。本実施形態において、乳化器70aは、上述の乳化器70と比べて隙間調整板76が増加する。隙間調整板76は隔離板72の一側を移動可能なように配置され、かつ複数の第二細孔としての細孔77を有する。本実施形態において、隔離板72および隙間調整板76の細孔75、77は一定の距離をおいて配置され、幅は数mmに達することが可能であるため、隙間調整板76を移動させ、隔離板の細孔75に対して細孔77の位置を調整し、互いに向かい合う二つの細孔75、77をずらすか、同一軸線上に位置させなければ、上述の細孔の幅aが一定するという制限を受けることなく、異なる流体条件に適することが可能である。かつ乳化通路が塞がれた時、隙間bを最大に調整すれば固定異物を排出することが可能である。   An emulsifier 70a according to the second embodiment of the present invention is shown in FIG. In this embodiment, the emulsifier 70a has a gap adjusting plate 76 that is larger than that of the emulsifier 70 described above. The gap adjusting plate 76 is arranged so as to be movable on one side of the separator plate 72 and has a plurality of pores 77 as second pores. In the present embodiment, the pores 75 and 77 of the separator plate 72 and the gap adjusting plate 76 are arranged at a certain distance and the width can reach several mm, so the gap adjusting plate 76 is moved, If the position of the pore 77 is adjusted with respect to the pore 75 of the separator and the two pores 75 and 77 facing each other are shifted or not positioned on the same axis, the above-mentioned pore width a is constant. It is possible to adapt to different fluid conditions without being restricted. When the emulsification passage is blocked, the fixed foreign matter can be discharged by adjusting the gap b to the maximum.

上述した説明及び図面にかかわるあらゆる記述は、本発明を説明するための一例に過ぎず、本発明の請求範囲を制限することができないため、上述した実施形態は本発明の請求範囲を逸脱しない限り、若干の変化を加えることが認められるべきである。   The above description and all the descriptions related to the drawings are merely examples for explaining the present invention, and the scope of the present invention cannot be limited. Therefore, the above-described embodiments do not depart from the scope of the present invention. It should be appreciated that slight changes are made.

本発明による乳化装置を示す平面図である。It is a top view which shows the emulsification apparatus by this invention. 本発明による乳化装置においての混合ポンプを示す断面図である。It is sectional drawing which shows the mixing pump in the emulsification apparatus by this invention. 本発明による乳化装置においての混合ポンプを示す一部分の平面図である。It is a partial top view which shows the mixing pump in the emulsification apparatus by this invention. 本発明の第1実施形態による乳化装置においての乳化器を示す断面図である。It is sectional drawing which shows the emulsifier in the emulsification apparatus by 1st Embodiment of this invention. 本発明の第2実施形態による乳化装置においての乳化器を示す断面図である。It is sectional drawing which shows the emulsifier in the emulsification apparatus by 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10:乳化装置、 20:水源、 21:フィルター、 25:第一管路、 30:混合ポンプ、 31:ポンプシャフト、 32:ポンプケース、 33:ローター、34:ステーター、 35:円盤、 36:円盤、 37:通路、 38:通路、 39:出口、 40:送水調節器、 45:第二管路、 50:送気調節器、 55:第三管路、 60:逆止弁、 65:第四管路、 70:乳化器、 70a:乳化器、 71:ハウジング、 72:隔離板、 73:前チャンバー、 74:後チャンバー、 75:細孔、 76:隙間調整板、 77:細孔、 80:水槽、 a:幅、 b:隙間 10: emulsification device, 20: water source, 21: filter, 25: first pipe, 30: mixing pump, 31: pump shaft, 32: pump case, 33: rotor, 34: stator, 35: disk, 36: disk 37: passage, 38: passage, 39: outlet, 40: water supply regulator, 45: second pipeline, 50: air regulator, 55: third pipeline, 60: check valve, 65: fourth Pipe: 70: Emulsifier, 70a: Emulsifier, 71: Housing, 72: Separating plate, 73: Front chamber, 74: Rear chamber, 75: Pore, 76: Gap adjusting plate, 77: Pore, 80: Aquarium, a: width, b: gap

Claims (4)

混合ポンプと、
該混合ポンプに給水するため、前記混合ポンプに接続される水源と、
前記混合ポンプに流れ込む水量を調節するため前記混合ポンプに接続される送水調節器と、
前記混合ポンプに流れ込む空気量を調節するため前記混合ポンプに接続される送気調節器と、
前記混合ポンプに接続され、ハウジングを有し、ハウジングは隔離板によって内部空間が前チャンバーおよび後チャンバーに分割される乳化器と、
を備え、
前記混合ポンプは空気を水中に溶解させ、そののち高圧気液混合体を出力し、前記隔離板は複数の第一細孔を有するため、高圧気液混合体が前期第一細孔を通過する際、空洞現象によって乳化状態を生成することを特徴とする乳化装置。
A mixing pump;
A water source connected to the mixing pump for supplying water to the mixing pump;
A water supply controller connected to the mixing pump to adjust the amount of water flowing into the mixing pump;
An air supply controller connected to the mixing pump to adjust the amount of air flowing into the mixing pump;
An emulsifier connected to the mixing pump and having a housing, wherein the housing is divided into a front chamber and a rear chamber by a separator;
With
The mixing pump dissolves air in water, and then outputs a high-pressure gas-liquid mixture. Since the separator has a plurality of first pores, the high-pressure gas-liquid mixture passes through the first pores. At this time, an emulsification state is generated by a cavity phenomenon.
前記第一細孔の幅は、0.3mm以下であり、空洞発生領域は、前記第一細孔の断面積の20%以上を占めることを特徴とする請求項1に記載の乳化装置。   2. The emulsification apparatus according to claim 1, wherein the width of the first pore is 0.3 mm or less, and the cavity generation region occupies 20% or more of the cross-sectional area of the first pore. 前記乳化器は、さらに前記隔離板の一側を移動可能なように装着される隙間調整板を有し、該隙間調整板は複数の第二細孔を有し、かつ前記隙間調整板を移動させ、前記第一細孔に対して前記第二細孔の位置を調整して、互いに向かい合う前記第一細孔と前記第二細孔とをずらして生じた隙間を調整することを特徴とする請求項1に記載の乳化装置。   The emulsifier further includes a gap adjusting plate that is mounted so as to be movable on one side of the separator plate, the gap adjusting plate has a plurality of second pores, and moves the gap adjusting plate. And adjusting the position of the second pore with respect to the first pore to adjust a gap generated by shifting the first pore and the second pore facing each other. The emulsification apparatus according to claim 1. 前記混合ポンプは、遠心式であり、ポンプシャフトとともに回転する少なくとも一つのローターと、ポンプケースに固定される少なくとも一つのステーターとを有し、ローターおよびステーターは前記高圧気液混合体を軸方向に通過させるため、円盤の周縁に配置される複数の通路を別々に有することを特徴とする請求項1に記載の乳化装置。   The mixing pump is centrifugal, and has at least one rotor that rotates together with the pump shaft, and at least one stator that is fixed to the pump case. The rotor and the stator axially move the high-pressure gas-liquid mixture. The emulsification apparatus according to claim 1, wherein the emulsification apparatus has a plurality of passages arranged separately on the periphery of the disk for passing through.
JP2008316939A 2008-12-12 2008-12-12 Apparatus for emulsification Pending JP2010137180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316939A JP2010137180A (en) 2008-12-12 2008-12-12 Apparatus for emulsification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008316939A JP2010137180A (en) 2008-12-12 2008-12-12 Apparatus for emulsification

Publications (1)

Publication Number Publication Date
JP2010137180A true JP2010137180A (en) 2010-06-24

Family

ID=42347780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316939A Pending JP2010137180A (en) 2008-12-12 2008-12-12 Apparatus for emulsification

Country Status (1)

Country Link
JP (1) JP2010137180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310993A (en) * 2016-09-30 2017-01-11 合肥华运机械制造有限公司 Pipeline type high shearing emulsification pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142353A (en) * 1979-04-23 1980-11-06 Ricoh Co Ltd Lamination type electrophotographic receptor
JP2002355539A (en) * 2001-05-29 2002-12-10 Tokushu Kika Kogyo Kk Agitating method and agitator
JP2003117365A (en) * 2001-10-19 2003-04-22 Malhaty Pump Mfg Co Ltd Micro-bubble producing apparatus
JP2004181366A (en) * 2002-12-03 2004-07-02 Fujikin Inc Powder dissolving method and circulation tube type tubular dissolution apparatus
JP2007021392A (en) * 2005-07-19 2007-02-01 Hitachi Ltd Apparatus and method for producing microbubble
JP2007209953A (en) * 2006-02-13 2007-08-23 Sharp Corp Microbubble generating system
WO2010046993A1 (en) * 2008-10-24 2010-04-29 本多機工株式会社 Volute pump for gas/liquid mixture and microbubble generation device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142353A (en) * 1979-04-23 1980-11-06 Ricoh Co Ltd Lamination type electrophotographic receptor
JP2002355539A (en) * 2001-05-29 2002-12-10 Tokushu Kika Kogyo Kk Agitating method and agitator
JP2003117365A (en) * 2001-10-19 2003-04-22 Malhaty Pump Mfg Co Ltd Micro-bubble producing apparatus
JP2004181366A (en) * 2002-12-03 2004-07-02 Fujikin Inc Powder dissolving method and circulation tube type tubular dissolution apparatus
JP2007021392A (en) * 2005-07-19 2007-02-01 Hitachi Ltd Apparatus and method for producing microbubble
JP2007209953A (en) * 2006-02-13 2007-08-23 Sharp Corp Microbubble generating system
WO2010046993A1 (en) * 2008-10-24 2010-04-29 本多機工株式会社 Volute pump for gas/liquid mixture and microbubble generation device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310993A (en) * 2016-09-30 2017-01-11 合肥华运机械制造有限公司 Pipeline type high shearing emulsification pump

Similar Documents

Publication Publication Date Title
JP3197149U (en) Generator for dissolving gas in liquid and fluid spray nozzle
JP4929874B2 (en) Microbubble generator
JP4893365B2 (en) Microbubble generator and microbubble generator system
JP5573879B2 (en) Microbubble generator
JP5038600B2 (en) Microbubble generator
JP2008086868A (en) Microbubble generator
JP2007209953A (en) Microbubble generating system
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
JP2010075838A (en) Bubble generation nozzle
JP4426612B2 (en) Fine bubble generation nozzle
JP2012250138A (en) Microbubble generation nozzle and microbubble generator
KR20110088355A (en) Gas/liquid mixing circulatory flow generating device
JP2008023435A (en) Microbubble generator
JP2007000848A (en) Method for generating fine bubble
JP6449531B2 (en) Microbubble generator
WO2014163018A1 (en) Seawater desalination system and energy recovery apparatus
JP2016112477A (en) Microbubble generator
JP2010137180A (en) Apparatus for emulsification
JP2011078858A (en) Method for generating microbubble and microbubble generator
JP2010115586A (en) Microbubble generator
JP2006272091A (en) Fine bubble producing apparatus
JP2012091153A (en) Fine-air-bubble generator
JP2009112947A (en) Manufacturing apparatus and manufacturing method of processing liquid
US7891642B2 (en) Emulsifier system
JP2010029774A (en) Fine bubble generating apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120302