JP4865598B2 - Shape control method and shape control apparatus for cold rolled material - Google Patents

Shape control method and shape control apparatus for cold rolled material Download PDF

Info

Publication number
JP4865598B2
JP4865598B2 JP2007052176A JP2007052176A JP4865598B2 JP 4865598 B2 JP4865598 B2 JP 4865598B2 JP 2007052176 A JP2007052176 A JP 2007052176A JP 2007052176 A JP2007052176 A JP 2007052176A JP 4865598 B2 JP4865598 B2 JP 4865598B2
Authority
JP
Japan
Prior art keywords
shape
rolled
air
cold
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007052176A
Other languages
Japanese (ja)
Other versions
JP2007290034A (en
Inventor
敬輔 北里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2007052176A priority Critical patent/JP4865598B2/en
Publication of JP2007290034A publication Critical patent/JP2007290034A/en
Application granted granted Critical
Publication of JP4865598B2 publication Critical patent/JP4865598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷間圧延材の効率的な形状制御方法および形状制御装置に関する。   The present invention relates to an efficient shape control method and shape control apparatus for cold rolled material.

製品の高品質化と生産性向上の観点から冷間圧延材の平坦形状の向上が強く求められており、例えば6段式冷間圧延機における被圧延材の幅全体の平坦形状は、ワークロールベンダ、中間ロールベンダ、圧下レベリングなどにより制御され、局部伸びや複合伸びが対象の局所平坦形状はワークロールをスポットクーリングすることにより制御されてきた。   Improvement of the flat shape of the cold rolled material is strongly demanded from the viewpoint of improving the quality of the product and improving the productivity. For example, the flat shape of the entire width of the material to be rolled in a six-stage cold rolling mill is a work roll. It has been controlled by a vendor, an intermediate roll bender, a reduction leveling, and the like, and the local flat shape targeted for local elongation and composite elongation has been controlled by spot cooling the work roll.

前記スポットクーリングは、ワークロール全体を冷却するためのクーラントを、ワークロールの高温箇所に補足噴射してワークロールの熱膨張量を均一化して局所平坦形状を改善する方法であるが、その効果が現れるまでに5〜30秒掛かるため応答性に問題があった。   The spot cooling is a method of improving the local flat shape by making the thermal expansion amount of the work roll uniform by supplementarily injecting coolant for cooling the whole work roll to the high temperature portion of the work roll. Since it took 5 to 30 seconds to appear, there was a problem in responsiveness.

このようなことから、冷間圧延機出側の被圧延材の幅方向に沿ってエアーノズルを複数配置して、伸びが少ない部分にエアーを噴射して平坦形状を改善する方法が提案された(特許文献1)。この方法は冷間圧延機出側の被圧延材にエアーを局部的に噴射してその部分を急冷し、熱収縮させて被圧延材に張力分布を与えて被圧延材の形状を制御する方法である。   For this reason, a method has been proposed in which a plurality of air nozzles are arranged along the width direction of the material to be rolled on the cold rolling mill exit side, and the flat shape is improved by injecting air into a portion with little elongation. (Patent Document 1). This method is a method of controlling the shape of the material to be rolled by locally injecting air to the material to be rolled on the cold rolling mill outlet, rapidly cooling the part, and thermally contracting to give a tension distribution to the material to be rolled. It is.

特開2004−042108号公報JP 2004-042108 A

しかしながら、この方法は、エアーの噴射圧力や流量を大きくしないとその効果が得難いため、設備費増および騒音による作業環境の悪化を招いた。また圧延機出側には圧延油をエアーで吹き飛ばすワイピング用エアーノズルが配置されているためエアー同士が干渉し合って平坦形状を効率良く制御できなかった。さらにワイピング用エアーノズルが存在するため、スペース的に問題があった。
このようなことから、本発明者は、エアーを冷間圧延機の入側で噴射する方法を検討した。その結果、エアーを冷間圧延機の入側で噴射する方法は、出側で噴射する方法よりも被圧延材の形状を効率良く制御できることを見出した。そしてさらに検討を進めて本発明を完成させるに至った。
However, since this method is difficult to obtain unless the air injection pressure and flow rate are increased, the equipment cost is increased and the working environment is deteriorated due to noise. Further, since a wiping air nozzle that blows off the rolling oil with air is disposed on the exit side of the rolling mill, the air interferes with each other and the flat shape cannot be controlled efficiently. Furthermore, there is a problem in terms of space because there is an air nozzle for wiping.
For this reason, the present inventor has studied a method of injecting air at the inlet side of the cold rolling mill. As a result, it has been found that the method of injecting air at the inlet side of the cold rolling mill can control the shape of the material to be rolled more efficiently than the method of injecting air at the outlet side. Further studies have been made and the present invention has been completed.

本発明は、冷間圧延材の局所平坦形状を、低コスト、低騒音で、スペース的問題も生じずに、効率良く制御できる冷間圧延材の形状制御方法および形状制御装置の提供を目的とする。   It is an object of the present invention to provide a cold rolled material shape control method and shape control device that can efficiently control the local flat shape of a cold rolled material at low cost, low noise, and without causing space problems. To do.

請求項1記載発明は、冷間圧延機入側の被圧延材の幅方向に沿って複数のエアーノズル
を配置し、前記冷間圧延機出側の圧延材の平坦形状をオンラインで検出し、この検出結果
と目標とする平坦形状との間の形状偏差から各エアーノズルのエアー噴射条件を算出し、
この算出した噴射条件に従って前記複数のエアーノズルからエアーを噴射して被圧延材の
温度を局所的に制御して圧延する冷間圧延材の形状制御方法であって、前記被圧延材の板
厚tと前記冷間圧延機のワークロールの直径Dの比(t/D)が1.0×10 −3 未満で
あることを特徴とする冷間圧延材の形状制御方法である。

The invention according to claim 1, wherein a plurality of air nozzles are arranged along the width direction of the material to be rolled on the cold rolling mill entry side, and the flat shape of the rolling material on the cold rolling mill exit side is detected online, Calculate the air injection conditions of each air nozzle from the shape deviation between this detection result and the target flat shape,
What locally controlled and shape control method der of cold rolled material you rolling temperature by injecting air from said plurality of air nozzles the material to be rolled in accordance with the calculated injection conditions of the material to be rolled Board
The ratio (t / D) of the thickness t to the diameter D of the work roll of the cold rolling mill is less than 1.0 × 10 −3
It is the shape control method of the cold-rolled material characterized by being.

請求項記載発明は、前記エアーノズルから噴射されるエアーの平均衝突圧力P0が、
被圧延材の2次元降伏応力の5%以上であることを特徴とする請求項1に記載の冷間圧延
材の形状制御方法である。

The invention according to claim 2 is characterized in that an average collision pressure P 0 of air injected from the air nozzle is
A shape control method of a cold-rolled material according to claim 1, characterized in that at least 5% of the 2-dimensional yield stress of the material to be rolled.

請求項記載発明は、前記エアーノズルから噴射するエアーの平均衝突圧力、温度、ま
たは平均衝突圧力と温度を調節して、被圧延材の平坦形状を制御することを特徴とする請
求項1または2に記載の冷間圧延材の形状制御方法である。

According to claim 3 invention, the air of the average collision pressure ejected from the air nozzle, by adjusting the temperature or the average collision pressure and temperature, or claim 1 and controls the flat shape of the material to be rolled 2 is a shape control method of a cold-rolled material according to 2 .

請求項記載発明は、前記被圧延材の板厚tが0.1mm以下であることを特徴とする
請求項1乃至のいずれかに記載の冷間圧延材の形状制御方法である。

A fourth aspect of the present invention is the cold rolled material shape control method according to any one of the first to third aspects, wherein a thickness t of the material to be rolled is 0.1 mm or less.

請求項記載発明は、冷間圧延機入側の被圧延材の幅方向に沿って配置され、被圧延材
の幅方向に移動可能な複数のエアーノズルと、前記冷間圧延機出側の圧延材の平坦形状を
検出する形状検出器と、前記平坦形状の目標形状を設定する形状設定器と、前記検出形状
と目標形状との形状偏差から各エアーノズルのエアー噴射条件を算出し、この算出結果を
信号に変換する形状制御器と、前記信号を受けて前記エアーノズルからエアーを噴射する
エアー調整器を備えたことを特徴とする冷間圧延材の形状制御装置である。

The invention according to claim 5 is arranged along the width direction of the material to be rolled on the cold rolling mill entry side, and the material to be rolled
A plurality of air nozzles movable in the width direction, a shape detector for detecting a flat shape of the rolled material on the cold rolling mill exit side, a shape setter for setting the target shape of the flat shape, and the detection An air injection condition for each air nozzle is calculated from the shape deviation between the shape and the target shape, and a shape controller that converts the calculation result into a signal, and an air regulator that receives the signal and injects air from the air nozzle. It is the shape control apparatus of the cold-rolled material characterized by having provided.

請求項記載発明は、前記被圧延材の板厚tが0.1mm以下であることを特徴とする
請求項5に記載の冷間圧延材の形状制御装置である。

A sixth aspect of the present invention is the cold rolled material shape control apparatus according to the fifth aspect, wherein a thickness t of the material to be rolled is 0.1 mm or less.

本発明の冷間圧延材の形状制御方法の特徴は、複数のエアーノズルを冷間圧延機入側に配置して、被圧延材の局部伸びなどが生じた箇所の材料温度を調節することで入側圧延張力を局部的にコントロールして局所平坦形状を改善する方法であり、冷間圧延機入側圧延張力は出側圧延張力と比べて圧延荷重への影響度合が大きく、また前記材料温度の調節により入側圧延張力だけでなく圧延ワークロールの温度や潤滑状態もコントロ−ルできる。併せて、圧延機入側でワ−クロ−ルと被圧延材との間に噴射している圧延潤滑油をエアーで局部的に排除することにより潤滑状態もコントロ−ルできる。これらの相互効果によってエアーの噴射圧力が小さくても十分な平坦形状の制御効果が得られる。従って局所平坦形状を、低コスト、低騒音で、効率良く向上できる。また冷間圧延機入側にはワイピング用エアーノズルなどが存在しないためスペース上の問題も生じない。   The feature of the shape control method of the cold rolled material according to the present invention is that a plurality of air nozzles are arranged on the cold rolling mill entrance side to adjust the material temperature at the location where the local elongation of the material to be rolled occurs. This is a method to improve the local flat shape by locally controlling the entry-side rolling tension, and the cold rolling mill entry-side rolling tension has a greater influence on the rolling load than the exit-side rolling tension, and the material temperature By adjusting this, it is possible to control not only the entry-side rolling tension but also the temperature and lubrication state of the rolling work roll. At the same time, the lubricating state can be controlled by locally removing the rolling lubricating oil sprayed between the work roll and the material to be rolled on the inlet side of the rolling mill. Due to these mutual effects, a sufficient flat shape control effect can be obtained even if the air injection pressure is small. Therefore, the local flat shape can be improved efficiently with low cost and low noise. Further, there is no space problem because there is no wiping air nozzle or the like on the cold rolling mill entry side.

前記被圧延材の板厚tとワークロールの直径Dの比(t/D)を1.0×10−3未満にすることにより、被圧延材の局所平坦形状をより効率よく制御できる。 By setting the ratio (t / D) of the plate thickness t of the material to be rolled to the diameter D of the work roll to be less than 1.0 × 10 −3 , the local flat shape of the material to be rolled can be controlled more efficiently.

前記エアーノズルから噴射されるエアーの平均衝突圧力P0を、被圧延材の2次元降伏応力の5%以上とすることにより被圧延材の局所平坦形状がより効率よく向上する。 By setting the average impingement pressure P 0 of the air injected from the air nozzle to 5% or more of the two-dimensional yield stress of the material to be rolled, the local flat shape of the material to be rolled can be more efficiently improved.

前記エアーノズルから噴射するエアーの平均衝突圧力または/および温度を調節することにより、被圧延材の局所平坦形状を適確にかつ効率良く制御できる。   The local flat shape of the material to be rolled can be controlled accurately and efficiently by adjusting the average collision pressure or / and temperature of the air injected from the air nozzle.

本発明の冷間圧延材の形状制御装置は、冷間圧延機入側の被圧延材の幅方向に沿って配置された複数のエアーノズルと、前記冷間圧延機出側の圧延材の平坦形状を検出する形状検出器と、前記平坦形状の目標形状を設定する形状設定器と、前記検出形状と目標形状との形状偏差から各エアーノズルのエアー噴射条件を算出し、この算出結果を信号に変換する形状制御器と、前記信号を受けて前記エアーノズルからエアーを噴射するエアー調整器を備えた冷間圧延材の形状制御装置であり、この装置では被圧延材の局部伸びなどが生じた箇所の温度を調節して圧延して局所平坦形状を制御するため、エアーの噴射圧力が小さくても十分な制御効果が得られ、そのため局所平坦形状を、低コスト、低騒音で、効率良く向上できる。また冷間圧延機入側にはワイピング用エアーノズルなどが存在しないためスペース上の問題も生じない。   The cold rolled material shape control apparatus according to the present invention includes a plurality of air nozzles arranged along the width direction of the material to be rolled on the cold rolling mill entry side, and a flatness of the rolling material on the cold rolling mill exit side. Calculate the air injection condition of each air nozzle from the shape detector that detects the shape, the shape setter that sets the target shape of the flat shape, and the shape deviation between the detected shape and the target shape, and signal the calculation result A shape control device for a cold rolled material provided with a shape controller for converting to an air and an air adjuster for receiving air from the air nozzle in response to the signal. In this device, local elongation of the material to be rolled occurs. Since the local flat shape is controlled by adjusting the temperature of the heated area, sufficient control effect can be obtained even if the air injection pressure is small. Therefore, the local flat shape can be efficiently produced at low cost, low noise. Can be improved. Further, there is no space problem because there is no wiping air nozzle or the like on the cold rolling mill entry side.

前記エアーノズルを被圧延材の幅方向に移動可能とすることにより、エアーの噴射位置を適正に調整できる。従って、被圧延材の局所平坦形状を適確に、かつ効率よく制御できる。またエアーノズルの設置個数を削減することもできる。   By making the air nozzle movable in the width direction of the material to be rolled, the air injection position can be adjusted appropriately. Therefore, the local flat shape of the material to be rolled can be controlled accurately and efficiently. In addition, the number of installed air nozzles can be reduced.

本発明では、被圧延材の厚さが0.1mm以下(箔)の場合に、その形状制御をより効率良く行うことができる。   In the present invention, when the thickness of the material to be rolled is 0.1 mm or less (foil), the shape control can be performed more efficiently.

本発明の冷間圧延材の形状制御方法は、被圧延材の圧延張力分布を、圧延荷重への影響度合いが大きい圧延機入側で制御する方法であり、圧延機出側で制御する従来法に較べて、被圧延材の形状を効率良く制御でき、設備費および騒音の低減が図れる。さらに本発明方法では、被圧延材の温度を圧延機の入側で制御するため、被圧延材と接触するワークロールの表面温度を局部的にコントロ−ルでき、その結果ワークロールの局部的熱膨張状態(ロールクラウン)およびロールギャップ内の潤滑状態が改善され、被圧延材の形状が一層向上する。   The shape control method of the cold rolled material of the present invention is a method of controlling the rolling tension distribution of a material to be rolled on the rolling mill entry side having a large degree of influence on the rolling load, and the conventional method of controlling on the rolling mill exit side In comparison with this, the shape of the material to be rolled can be controlled efficiently, and the equipment cost and noise can be reduced. Furthermore, in the method of the present invention, since the temperature of the material to be rolled is controlled on the entry side of the rolling mill, the surface temperature of the work roll in contact with the material to be rolled can be locally controlled. As a result, the local heat of the work roll can be controlled. The expanded state (roll crown) and the lubrication state in the roll gap are improved, and the shape of the material to be rolled is further improved.

本発明の冷間圧延材の形状制御方法は、冷間圧延機出側で検出した伸びが目標の伸びよりも小さい場合には、その伸びの小さい部分に高い圧力または/および低温のエアーを噴射してその部分を伸び易くし、前記検出した伸びが目標の伸びより大きい場合には、その伸びの大きい部分のエアー噴射を停止するか、または高温のエアーを噴射してその部分を伸び難くして被圧延材の局所平坦形状を改善する方法である。   When the elongation detected on the cold rolling mill outlet side is smaller than the target elongation, the cold rolled material shape control method of the present invention injects high pressure and / or low temperature air into the small elongation portion. If the detected elongation is larger than the target elongation, either stop the air injection of the large elongation portion or inject high temperature air to make the portion difficult to extend. This is a method for improving the local flat shape of the material to be rolled.

以下に、本発明を、図を参照して具体的に説明する。
本発明の冷間圧延材の形状制御方法は、図1(イ)、(ロ)に示すように、冷間圧延機1入側の被圧延材2の幅方向に沿って複数のエアーノズル3を配置し、冷間圧延機1出側の圧延材4の平坦形状を形状検出ロール5により検出し、この検出結果を、形状検出器7で形状検出信号に変換し、これを形状制御器8と形状表示器9に送信する。
Hereinafter, the present invention will be specifically described with reference to the drawings.
The cold rolled material shape control method according to the present invention includes a plurality of air nozzles 3 along the width direction of the material 2 to be rolled on the cold rolling mill 1 entry side, as shown in FIGS. , And the flat shape of the rolled material 4 on the exit side of the cold rolling mill 1 is detected by the shape detection roll 5, and the detection result is converted into a shape detection signal by the shape detector 7, which is converted into the shape controller 8. To the shape display 9.

形状制御器8では形状設定器10で設定した目標平坦形状と検出平坦形状を入力して両者間の形状偏差を算出し、これを基にエアーノズル3のエアー噴射条件を決定し、エアー調整器11に送信する。   The shape controller 8 inputs the target flat shape and the detected flat shape set by the shape setter 10, calculates the shape deviation between them, determines the air injection conditions of the air nozzle 3 based on this, and the air adjuster 11 to send.

エアー調整器11は、全体の流量を調整するエアーバルブ12およびエアーノズル3ごとの流量を調整するエアーバルブ13を具備し、圧延機1入側に配置したエアーノズル3からのエアーの噴射圧力などを調節する。   The air adjuster 11 includes an air valve 12 that adjusts the overall flow rate and an air valve 13 that adjusts the flow rate of each air nozzle 3, and includes an air injection pressure from the air nozzle 3 arranged on the entrance side of the rolling mill 1. Adjust.

この間、被圧延材の幅全体の平坦形状は、ワークロールベンダ、中間ロールベンダ、圧下レベリングなどにより自動制御される。図1で14はワークロール、15はワイピング用エアーノズルである。   During this time, the flat shape of the entire width of the material to be rolled is automatically controlled by a work roll bender, an intermediate roll bender, a reduction leveling, or the like. In FIG. 1, 14 is a work roll, and 15 is an air nozzle for wiping.

発明において、被圧延材の板厚t(mm)とワークロールの直径D(mm)の比(t
/D)を1.0×10−3未満に規定する理由は、(t/D)が1.0×10−3以上で
は、エアー噴射圧力または/および温度を調整しても局所平坦形状の充分な制御効果が得
られないためである。これは被圧延材の厚みtが薄いほどあるいはワークロールの直径D
が大きいほど、エアーの温度または/および圧力調整の効果が出易いことに基づくもので
ある。

In the present invention, the ratio of the thickness t (mm) of the material to be rolled to the diameter D (mm) of the work roll (t
/ D) is defined as less than 1.0 × 10 −3 when (t / D) is 1.0 × 10 −3 or more, even if the air injection pressure or / and the temperature are adjusted, the local flat shape This is because a sufficient control effect cannot be obtained. This is because the thickness t of the material to be rolled is thinner or the diameter D of the work roll.
It is based on the fact that the effect of adjusting the temperature or / and pressure of air is more likely to be produced as the value of is larger.

発明において、前記エアーノズルから噴射されるエアーの平均衝突圧力P0を、被圧
延材の2次元降伏応力の5%以上に規定する理由は、エアーの平均衝突圧力P0が被圧延
材の2次元降伏応力の5%未満では充分な制御効果が得られなかったためである。




In the present invention, the reason why the average impingement pressure P 0 of the air injected from the air nozzle is specified to be 5% or more of the two-dimensional yield stress of the material to be rolled is that the average collision pressure P 0 of the air This is because a sufficient control effect could not be obtained at less than 5% of the two-dimensional yield stress.




本発明において、エアーノズルから噴射されるエアーの平均衝突圧力P0は、各エアーの被圧延材に掛かる圧力を測定し、その合計を噴射ノズル数で除して求められる。 In the present invention, the average collision pressure P 0 of air sprayed from the air nozzle is obtained by measuring the pressure applied to the material to be rolled for each air and dividing the total by the number of spray nozzles.

本発明では、被圧延材の厚さが薄いほどその効果が発現され易いため、特に、厚さが0.1mm以下の箔が望ましい。   In this invention, since the effect is expressed easily so that the thickness of a material to be rolled is thin, foil with a thickness of 0.1 mm or less is particularly desirable.

[実施例1]
図1に示した6段冷間圧延機(ワークロールの直径80、135、185mm)などを用いたリバース圧延により、厚み0.1mm〜0.25mm、幅680mmの銅板(圧延材)を製造した。最終圧延時に圧延機出側の圧延材の両端近傍に伸び差率が−5I−unitの伸び率が小さい箇所が存在し、その箇所をエアー噴射により冷却した。その結果、図2に示すように、エアー噴射箇所は最終圧延時における偏差が低減し、伸び率の偏差(伸び差率)が1I−unitに減少した。これは伸び差率が小さい部分が局部的に冷却され、最終圧延時にその部分の伸びを増加させたことによる。
[Example 1]
A copper plate (rolled material) having a thickness of 0.1 mm to 0.25 mm and a width of 680 mm was manufactured by reverse rolling using the 6-stage cold rolling mill (work roll diameter 80, 135, 185 mm) shown in FIG. . At the time of final rolling, there was a portion with a small elongation difference of −5 I-unit in the vicinity of both ends of the rolled material on the exit side of the rolling mill, and the portion was cooled by air injection. As a result, as shown in FIG. 2, the deviation at the time of final rolling was reduced at the air injection location, and the deviation in elongation (elongation difference) was reduced to 1 I-unit. This is because a portion having a small elongation difference rate is locally cooled and the elongation of the portion is increased at the time of final rolling.

エアーの平均衝突圧力P0は被圧延材の2次元降伏応力2Km(400MPa)の5%以上とした。被圧延材の温度は50℃、噴射エアーの温度は15℃であった。前記平坦形状の制御とは別に、被圧延材の幅全体の平坦形状をワークロールベンダ、中間ロールベンダ、圧下レベリングにより自動制御した。 The average impingement pressure P 0 of air was set to 5% or more of the 2D yield stress 2 km (400 MPa) of the material to be rolled. The temperature of the material to be rolled was 50 ° C., and the temperature of the jet air was 15 ° C. Apart from the control of the flat shape, the flat shape of the entire width of the material to be rolled was automatically controlled by a work roll bender, an intermediate roll bender, and a reduction leveling.

なお、前記伸び差率(I−unit)は、圧延機出側に設置している形状検出ロールの検出信号から算出した。図2にはワークロール径135mm、銅板厚みが0.1mmの場合を示した。   In addition, the said elongation difference rate (I-unit) was computed from the detection signal of the shape detection roll installed in the rolling mill delivery side. FIG. 2 shows a case where the work roll diameter is 135 mm and the copper plate thickness is 0.1 mm.

[実施例2]
エアーノズルから噴射されるエアーの平均衝突圧力Pを被圧延材の2次元降伏応力の2.5%になるように設定した他は実施例1と同じ方法により銅板を製造し、実施例1と同じ調査を行った。
[Example 2]
Another set an average collision pressure P 0 of the air ejected from the air nozzle so that the 2.5% 2-dimensional yield stress of the rolled material to produce a copper plate in the same manner as in Example 1, Example 1 The same survey was conducted.

[比較例1]
エアーを圧延機出側で噴射した他は実施例1と同じ方法により銅板を製造し、実施例1と同じ調査を行った。
[Comparative Example 1]
A copper plate was produced by the same method as in Example 1 except that air was injected on the exit side of the rolling mill, and the same investigation as in Example 1 was performed.

[比較例2]
エアー噴射を行わなかった他は実施例1と同じ方法により銅板を製造し、実施例1と同じ調査を行った。
[Comparative Example 2]
A copper plate was produced by the same method as in Example 1 except that air injection was not performed, and the same investigation as in Example 1 was performed.

実施例1、2および比較例1、2の調査結果を表1に示した。表1のNo.1、10は図2に示したものである。   The investigation results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1. No. in Table 1 Reference numerals 1 and 10 are those shown in FIG.

Figure 0004865598
Figure 0004865598

表1から明らかなように、本発明例のNo.1〜8はいずれも伸び差率が4I−unit以下で局所平坦形状が優れた。中でも(t/D)が1.0×10−3未満のNo.1、2、4〜6が特に優れ、さらに板厚の薄いNo.1、4、5はエアー噴射による効果が顕著に現れた。なお、No.3、7、8では伸び差率がやや大きくなったが、その理由は、No.3は被圧延材が厚く、No.7はワークロール径が小さく、ともに(t/D)が1.0×10−3以上になったためであり、No.8はエアーの平均噴射力Pが被圧延材の2次元降伏応力の5%未満と低かったためである。 As is apparent from Table 1, No. of the present invention example. 1 to 8 all had an elongation difference of 4 I-unit or less and an excellent local flat shape. Among them, No. having a (t / D) of less than 1.0 × 10 −3 . Nos. 1, 2, 4 to 6 are particularly excellent, and the thin plate No. In 1, 4 and 5, the effect of air injection appeared remarkably. In addition, No. The elongation difference rate was slightly increased in 3, 7, and 8. No. 3 is a thick material to be rolled. No. 7 is because the diameter of the work roll was small, and both (t / D) became 1.0 × 10 −3 or more. 8 is because the average air injection force P 0 was as low as less than 5% of the two-dimensional yield stress of the material to be rolled.

一方、比較例1は、圧延機出側でエアーを噴射する方法であるため、エアーの平均噴射力が高いにも係わらず局所平坦形状が充分には改善できなかった。そのうえ騒音が大きく作業環境が著しく悪化した。   On the other hand, since the comparative example 1 is a method of injecting air on the exit side of the rolling mill, the local flat shape could not be sufficiently improved although the average air injection force was high. In addition, there was a lot of noise and the working environment was significantly worsened.

本発明の冷間圧延材の形状制御方法の実施形態を示す(イ)は平面要部説明図、(ロ)は側面要部説明図である。(A) which shows embodiment of the shape control method of the cold-rolled material of this invention is a plane principal part explanatory drawing, (b) is a side principal part explanatory drawing. 本発明の冷間圧延材の幅方向における伸び差率(I−unit)である。It is an elongation difference rate (I-unit) in the width direction of the cold rolled material of the present invention.

符号の説明Explanation of symbols

1 冷間圧延機
2 被圧延材
3 エアーノズル
4 圧延材
5 形状検出ロール
6 エアーノズルの配置区域
7 形状検出器
8 形状制御器
9 形状表示器
10形状設定器
11エアー調整器
12全体の流量を調整するエアーバルブ
13エアーノズルごとの流量を調整するエアーバルブ
14ワークロール
15ワイピング用エアーノズル
DESCRIPTION OF SYMBOLS 1 Cold rolling mill 2 Rolled material 3 Air nozzle 4 Rolled material 5 Shape detection roll 6 Air nozzle arrangement area 7 Shape detector 8 Shape controller 9 Shape indicator 10 Shape setter 11 Air flow rate of the entire air adjuster 12 Air valve to be adjusted 13 Air valve to adjust the flow rate for each air nozzle 14 Work roll 15 Air nozzle for wiping

Claims (6)

冷間圧延機入側の被圧延材の幅方向に沿って複数のエアーノズルを配置し、前記冷間圧
延機出側の圧延材の平坦形状をエアーノズル配置区域ごとにオンラインで検出し、この検
出結果と目標とする平坦形状との間の形状偏差から各エアーノズルのエアー噴射条件を算
出し、この算出した噴射条件に従って前記複数のエアーノズルからエアーを噴射して圧延
材の平坦形状を制御する冷間圧延材の形状制御方法であって、
前記被圧延材の板厚tと前記冷間圧延機のワークロールの直径Dの比(t/D)が1.
0×10 −3 未満であることを特徴とする冷間圧延材の形状制御方法。
A plurality of air nozzles are arranged along the width direction of the material to be rolled on the cold rolling mill entry side, and the flat shape of the rolling material on the cold rolling mill exit side is detected online for each air nozzle arrangement area. The air injection condition of each air nozzle is calculated from the shape deviation between the detection result and the target flat shape, and the flat shape of the rolled material is controlled by injecting air from the plurality of air nozzles according to the calculated injection condition. a shape control method of a cold-rolled material you,
The ratio (t / D) of the thickness t of the material to be rolled and the diameter D of the work roll of the cold rolling mill is 1.
A shape control method for a cold rolled material, wherein the shape control method is less than 0 × 10 −3 .
前記エアーノズルから噴射されるエアーの平均衝突圧力P0が、被圧延材の2次元降伏
応力の5%以上であることを特徴とする請求項1に記載の冷間圧延材の形状制御方法。
The shape control method for a cold-rolled material according to claim 1, wherein an average collision pressure P 0 of air injected from the air nozzle is 5% or more of a two-dimensional yield stress of the material to be rolled.
前記エアーノズルから噴射するエアーの平均衝突圧力、温度、または平均衝突圧力と温
度を調節して、被圧延材の平坦形状を制御することを特徴とする請求項1または2に記載
の冷間圧延材の形状制御方法。
The cold rolling according to claim 1 or 2 , wherein the flat shape of the material to be rolled is controlled by adjusting an average collision pressure, temperature, or average collision pressure and temperature of air sprayed from the air nozzle. Material shape control method.
前記被圧延材の板厚tが0.1mm以下であることを特徴とする請求項1乃至のいず
れかに記載の冷間圧延材の形状制御方法。
The shape control method of the cold-rolled material according to any one of claims 1 to 3 , wherein a thickness t of the material to be rolled is 0.1 mm or less.
冷間圧延機入側の被圧延材の幅方向に沿って配置され、被圧延材の幅方向に移動可能な
複数のエアーノズルと、前記冷間圧延機出側の圧延材の平坦形状を検出する形状検出器と
、前記平坦形状の目標形状を設定する形状設定器と、前記検出形状と目標形状との形状偏
差から各エアーノズルのエアー噴射条件を算出し、この算出結果を信号に変換する形状制
御器と、前記信号を受けて前記エアーノズルからエアーを噴射するエアー調整器を備えた
ことを特徴とする冷間圧延材の形状制御装置。
A plurality of air nozzles arranged along the width direction of the material to be rolled on the cold rolling mill inlet side and movable in the width direction of the material to be rolled; and a rolling material on the cold rolling mill outlet side A shape detector for detecting a flat shape, a shape setting device for setting the target shape of the flat shape, and an air injection condition of each air nozzle from a shape deviation between the detected shape and the target shape, and calculating the calculation result A shape control device for a cold-rolled material, comprising: a shape controller for converting into a signal; and an air adjuster for receiving the signal and injecting air from the air nozzle.
前記被圧延材の板厚tが0.1mm以下であることを特徴とする請求項5に記載の冷間
圧延材の形状制御装置。
6. The cold rolled material shape control apparatus according to claim 5, wherein a thickness t of the material to be rolled is 0.1 mm or less.
JP2007052176A 2006-03-29 2007-03-02 Shape control method and shape control apparatus for cold rolled material Expired - Fee Related JP4865598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052176A JP4865598B2 (en) 2006-03-29 2007-03-02 Shape control method and shape control apparatus for cold rolled material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006090490 2006-03-29
JP2006090490 2006-03-29
JP2007052176A JP4865598B2 (en) 2006-03-29 2007-03-02 Shape control method and shape control apparatus for cold rolled material

Publications (2)

Publication Number Publication Date
JP2007290034A JP2007290034A (en) 2007-11-08
JP4865598B2 true JP4865598B2 (en) 2012-02-01

Family

ID=38761157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052176A Expired - Fee Related JP4865598B2 (en) 2006-03-29 2007-03-02 Shape control method and shape control apparatus for cold rolled material

Country Status (1)

Country Link
JP (1) JP4865598B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586602A (en) * 1978-12-25 1980-06-30 Kawasaki Steel Corp Skinpass rolling method for cold rolled steel strip
JPS5758909A (en) * 1980-09-29 1982-04-09 Nippon Steel Corp Controller for rolled shape
JPS6195708A (en) * 1984-10-16 1986-05-14 Ishikawajima Harima Heavy Ind Co Ltd Shape control device of rolling sheet
JPH02197309A (en) * 1989-01-23 1990-08-03 Sumitomo Metal Ind Ltd Method for controlling sheet shape by coolant
JPH07323321A (en) * 1994-05-31 1995-12-12 Kawasaki Steel Corp Method for passing hor rolled steel strip through rolling mill
JP4128816B2 (en) * 2002-07-12 2008-07-30 株式会社日立製作所 Method and apparatus for shape control of cold rolling mill

Also Published As

Publication number Publication date
JP2007290034A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US8414716B2 (en) Cooling method of hot-rolled steel strip
JP2014124634A (en) Method and apparatus for cooling hot rolled steel strip
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
EP2929949B1 (en) Device for cooling hot-rolled steel sheet
KR101016461B1 (en) Configuration Control Method and Apparatus of Cold Rolling Mill
JP5617321B2 (en) Steel plate manufacturing method using pump for driving cooling device
JP4865598B2 (en) Shape control method and shape control apparatus for cold rolled material
EP2764932B1 (en) Method for cooling hot-rolled steel sheet
JP2008254062A (en) Secondary cooling device for continuous casting machine, and secondary cooling method therefor
JP3958992B2 (en) Sheet shape control method in cold rolling
JP4623230B2 (en) T-section steel hot rolling line cooling device, T-section steel manufacturing equipment and manufacturing method
JP5146062B2 (en) Steel plate rolling method and equipment
TWI731415B (en) Cooling device for hot-rolled steel sheet and cooling method for hot-rolled steel sheet
JP2000192146A (en) Method for cooling steel plate and device therefor
JP5663848B2 (en) Hot-rolled steel sheet cooling device and operation control method thereof
JP7151265B2 (en) Cooling device for hot-rolled steel sheet and method for cooling hot-rolled steel sheet
JP5640416B2 (en) Flange bending prevention method, flange bending prevention device and T-shaped steel manufacturing equipment for T-section steel
JP3946733B2 (en) Shape control method and shape control apparatus in rolling mill
US20200377967A1 (en) Steel material cooling device and cooling method
JP5773789B2 (en) Multi-stage rolling mill
JP4432669B2 (en) H-shaped steel cooling method and cooling line equipment
JPH10314803A (en) Method for straightening bend of rail
JP2020075290A (en) Rolling method for steel piece with rectangular cross section, continuous casting rolling facility and rolling facility
JP2003025008A (en) Control method for cooling metallic material to be rolled in hot rolling
JP2003145208A (en) Rolling mill and rolling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees