JP4856366B2 - 二重反転ファンを備えたfladeガスタービンエンジン - Google Patents

二重反転ファンを備えたfladeガスタービンエンジン Download PDF

Info

Publication number
JP4856366B2
JP4856366B2 JP2004186143A JP2004186143A JP4856366B2 JP 4856366 B2 JP4856366 B2 JP 4856366B2 JP 2004186143 A JP2004186143 A JP 2004186143A JP 2004186143 A JP2004186143 A JP 2004186143A JP 4856366 B2 JP4856366 B2 JP 4856366B2
Authority
JP
Japan
Prior art keywords
fan
engine
counter
flade
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004186143A
Other languages
English (en)
Other versions
JP2005069222A (ja
JP2005069222A5 (ja
Inventor
ローリン・ジョージ・グリフィン,ザ・サード
ジェームズ・エドワード・ジョンソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2005069222A publication Critical patent/JP2005069222A/ja
Publication of JP2005069222A5 publication Critical patent/JP2005069222A5/ja
Application granted granted Critical
Publication of JP4856366B2 publication Critical patent/JP4856366B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/072Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with counter-rotating, e.g. fan rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/077Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type the plant being of the multiple flow type, i.e. having three or more flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/327Application in turbines in gas turbines to drive shrouded, high solidity propeller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、FLADE航空機ガスタービンエンジンに関し、より具体的には二重反転ファンを備えたそのようなエンジンに関する。
亜音速及び超音速の両方での様々な推力設定及び飛行速度において効率的に作動するそれらの特有の性能の故に、種々の高性能可変サイクルガスタービンエンジンが設計されている。その高性能に貢献する可変サイクルガスタービンエンジンの重要な特徴は、このエンジンが、その推力を変化させた時に、実質的に一定の吸気流量を維持できることである。この特徴により、亜音速巡航時のような、全出力エンジン設定すなわち最大推力状態よりも低い状態において、重要な性能上の利点が得られる。二重反転ファン式ガスタービンエンジンもまた、効率的に作動するそれらの特有かつ固有の性能の故に設計されかつ試験されてきた。さらに、二重反転タービンによって駆動される二重反転ファンは、エンジンのファンセクション内におけるステータベーンとエンジンのタービンセクション内における少なくとも1つのノズルとの必要性を排除する。これによって、エンジンの重量が大きく軽減する。エンジン性能に関わる1つの問題は、二重反転ファン間のファンロータトルクを均等化することが望ましいことである。
FLADEエンジン(FLADEは「fan on blade」の略語である)と呼ばれる1つの特別なタイプの可変サイクルエンジンは、半径方向内側ファンにより駆動される外側ファンに特徴があり、この外側ファンは、内側ファンを囲む内側ファンダクトとほぼ同心環状でありかつ該内側ファンダクトを囲んだ外側ファンダクト内にそのflade空気を吐出する。特許文献1に開示されている1つのこのようなエンジンでは、fladeファンと外側ファンダクトとを備えており、外側ファンダクト内で、可変案内ベーンがflade外側ファンダクトを通過する空気の量を制御することによって、サイクル可変性を制御している。高度及び飛行マッハ数のような亜音速飛行周囲条件の任意の設定における比較的広い推力範囲にわたって実質的に一定の入口空気流量を維持してスピレージ抗力を回避し、また飛行条件の範囲全体にわたってそのようにすることができるその他の高性能航空機可変サイクルガスタービンFLADEエンジンが、研究されてきた。この性能は、特に亜音速部分出力エンジン作動状態にとって必要とされる。これらの実例は、特許文献2、特許文献3、特許文献4、及び特許文献5に開示されている。
特開昭51−092917号 特開平07−197853号 米国特許第5402963号 米国特許第5261227号 特開平06−010764号 米国特許第5806303号 米国特許第5809772号 特開平10−008915号
コアエンジンの周りでのファンセクションからバイパス流路へのバイパス流量を調整でき、高いファンハブ及びバイパス流圧力比で効率的に作動して離陸及び上昇出力設定時に高い比推力を発生でき、また低いバイパス流圧力比で作動して低出力巡航作動時に良好な燃料消費率を提供できる二重反転ファン式航空機ガスタービンエンジンを得ることは非常に望ましい。エンジンのファンセクション内のステータベーンを排除し、タービン内のノズル及びベーンの数を最少化し、かつ二重反転ファン間のファンロータトルクを均等化する二重反転ファン式エンジンを得ることも望ましい。
FLADE二重反転ファン式航空機ガスタービンエンジンは、軸方向に間隔をおいて配置された第1及び第2の二重反転ファンと、第1及び第2の二重反転ファンの1つの半径方向外側に配置されかつ該第1及び第2の二重反転ファンの1つに駆動結合されたFLADEファンブレードの少なくとも1つの列とを含む。第1及び第2の二重反転ファンは、それらの間に何らのベーンも存在しないから、ベーンレス型と呼ばれる。本エンジンの例示的な実施形態はさらに、第1の二重反転ファンに駆動結合された第2の低圧タービンと、第2の二重反転ファンに駆動結合された第1の低圧タービンとを含む。第1の低圧タービンと第2の低圧タービンとは、図1に示すエンジンの第1の例示的な実施形態では互いに逆方向回転可能であって(二重反転して)、それらの間に何らのベーンも存在しないから、ベーンレス型とも呼ばれる。
コアエンジンは、第1及び第2の二重反転ファンの下流側かつ軸方向後方に配置される。ファンバイパスダクトは、第1及び第2の二重反転ファンの下流側かつ軸方向後方に配置され、コアエンジンを囲む。FLADEダクトは、第1及び第2の二重反転ファン及びファンバイパスダクトを囲み、FLADEダクトを横切ってFLADEファンブレードの列が半径方向に延びる。FLADEファンブレードの列は、図1に示すように可変の第1のFLADEベーンの軸方向前方列と可変又は固定とすることができる第2のFLADEベーンの軸方向後方列との間でFLADEダクト内に配置される。ファンバイパスダクトへの第1のバイパス入口内には、前方可変面積バイパスインゼクタドアが作動的に配置される。
本発明の例示的な実施形態では、コアエンジンは、直列の流れ関係で、コア駆動ファンステータベーンの列と、コア駆動ファンブレードの少なくとも1つの列を備えたコア駆動ファンと、高圧圧縮機と、燃焼器と、コア駆動ファンに駆動結合された高圧タービンとを有する。第1及び第2の二重反転ファンは、環状の第1のファンダクトを横切って半径方向に配置され、コア駆動ファンは、環状の第2のファンダクトを横切って半径方向に配置される。ベーンシュラウドが、コア駆動ファンステータベーンを半径方向内側ベーンハブ部分と半径方向外側ベーン先端部分とに分割する。ファンシュラウドが、コア駆動ファンブレードを半径方向内側ブレードハブ部分と半径方向外側ブレード先端部分とに分割する。ファンバイパスダクトへの第1のバイパス入口は、第2の二重反転ファンとコアエンジンへの環状のコアエンジン入口との軸方向間に配置される。
コア駆動ファンステータベーンのベーン先端部分を横切りかつコア駆動ファンブレードのブレード先端部分を横切るファン先端ダクトが、ファンバイパスダクトへの第2のバイパス入口まで延びる。本エンジンはさらに、ベーン先端部分の流れ面積を独立して変えるための第1の変更手段と、ベーンハブ部分の流れ面積を独立して変えるための第2の変更手段と含む。第1及び第2の変更手段の特定実施形態は、それぞれ独立して変化するベーン先端部分と独立して変化するベーンハブ部分とを含む。より具体的には、第1及び第2の変更手段は、ベーンハブ部分のピボット動可能な後縁ハブフラップに取り付けられた内側シャフトと、ベーン先端部分のピボット動可能な後縁先端フラップに取り付けられた外側シャフトとを含むことができる。内側シャフトは、ファンステータベーンの外側シャフト内に同軸に配置される。内側シャフトに対して回転可能な作動関係で結合された第1のレバーアームに対して、第1のユニゾンリングが作動関係で結合される。外側シャフトに対して回転可能な作動関係で結合された第2のレバーアームに対して、第2のユニゾンリングが作動関係で結合される。
FLADEダクトと流体流れ連通しかつ該FLADEダクトから空気を受けるように作動可能である複数の周方向に配置された中空のストラットが、実質的に中空のセンタボデーを構造的に支持しかつ該センタボデーに空気を流す。可変面積flade空気ノズルは、中空のセンタボデー内で軸方向に移動可能なプラグと該センタボデーの半径方向外側に配置された固定ノズルカウリングとを含む。第2の二重反転低圧タービン及びファンバイパスダクトの下流側かつ軸方向後方に配置された可変スロート面積エンジンノズルは、半径方向に固定されかつ軸方向に移動可能な外側の環状の収束/発散壁と、センタボデー上の半径方向及び軸方向に固定された環状の内側壁とを含む。
本発明の上記の態様及びその他の特徴を、添付図面に関連して行う以下の記載において説明する。
図1〜図3に示すのは、第1及び第2の二重反転ファン130、132に導かれるファン入口11を有するFLADE二重反転ファン式航空機ガスタービンエンジン1である。少なくとも1つのFLADEファンブレード5の列を有するFLADEファン2が、FLADEダクト3内に配置され、該FLADEダクト3を通してFLADE空気流80がFLADEファンブレード5によって排出される。FLADEファンブレード5の列は、第1及び第2の二重反転ファン130、132の1つの半径方向外側に配置され、該第1及び第2の二重反転ファン130、132の1つに作動可能に接続され、かつ該第1及び第2の二重反転ファン130、132の1つによって駆動される。図1において、第2のファン132は、可変の第1のFLADEベーン6の軸方向前方列と固定の第2のFLADEベーン7の軸方向後方列との間に配置されたFLADEファンブレード5の列を有するFLADEファンとして図示されている。FLADEファン2は、FLADEダクト3への環状のFLADE入口8の下流側に配置される。FLADE入口8とファン入口11とは、両者組み合さって、全体としてFLADEエンジン入口面積AIを有するFLADEエンジン入口13を形成する。第1及び第2の二重反転ファン130、132の下流側かつ軸方向後方には、環状のコアエンジン入口17を有するコアエンジン18が配置され、ほぼ軸方向に延びるその軸線又は中心線12が、前方14と後方16とに延びる。第1及び第2の二重反転ファン130、132の下流側かつ軸方向後方に配置されたファンバイパスダクト40が、コアエンジン18を囲む。FLADEダクト3が、第1及び第2の二重反転ファン130、132並びにファンバイパスダクト40を囲む。
検討する入口性能の1つの重要な基準は、ラム回復率である。良好な入口は、エンジンと整合した空気取り入れ特性と共に、低い抗力(drag)と良好な流量安定性とを有するものでなくてはならない。空気流量整合特性の重要性は、図1に示す面積を考察することによって分かり、図1においてFLADEエンジン入口13は、全エンジン空気流がそこを通過するFLADEエンジン入口面積AIと自由流の流れ面積A0とを含んでいる。任意の設定の作動飛行条件において、空気流量要件は、FLADEエンジン1のポンピング特性によって一定している。エンジンの超音速作動時に、AIが入口空気流を取り入れるには小さ過ぎる場合には、入口衝撃が入口スロートから下流方向に移動し、衝撃後の圧力回復が悪化し、エンジンの要求を満たすために入口から出る補正流量が増大する。AIが大き過ぎる場合には、FLADEエンジン入口13は、エンジンが使用できるよりも多くの空気を供給し、余分な空気をエンジンの周りにバイパスさせるか又は入口から外に戻すように「溢れ」させなくてはならなくなるので、過度な抗力(スピレージ抗力)を生じることになる。空気が多過ぎても少な過ぎても、航空機システムの性能は低下する。FLADEファン2及びFLADEダクト3は、入口からファンに送られる入口空気流量の制御を助けるように設計されかつ作動する。
ファン入口11は、図3に示すように可変の第1のFLADEベーン6と可変の第2のFLADEベーン7とを閉じることによってFLADEエンジン入口13が本質的に閉鎖された全出力状態において、本質的に全エンジン空気流15を受け入れるような寸法にされる。さらにエンジンは、図2に示すように所定の部分出力飛行状態においてfladeダクトの入口を全開し、また図3に示すように離陸のような全出力状態においてfladeダクトの入口を本質的に閉鎖するように設計されかつ作動する。
コアエンジン18は、下流方向への直列の軸方向流れ関係で、コア駆動ファンブレード36の列を有するコア駆動ファン37と、高圧圧縮機20と、燃焼器22と、高圧タービンブレード24の列を有する高圧タービン23とを含む。エンジン1の中心線12の周りに同心に配置された高圧シャフト26は、高圧圧縮機20と高圧タービンブレード24とを固定的に相互結合する。コアエンジン18は、燃焼ガスを生成する機能がある。高圧圧縮機20からの加圧された空気は、燃焼器22内で燃料と混合されかつ点火されて、燃焼ガスを発生する。高圧タービンブレード24によって燃焼ガスから幾らかの仕事が取り出されされ、高圧タービンブレード24は、コア駆動ファン37及び高圧圧縮機20を駆動する。高圧シャフト26は、周方向に間隔をおいて配置されたコア駆動ファンブレード36の単一の列を有するコア駆動ファン37を回転させ、このコア駆動ファンブレード36は、ほぼ半径方向内側に位置するブレードハブ部分39から環状のファンシュラウド108によって分離されたほぼ半径方向外側に位置するブレード先端部分38を有する。
燃焼ガスは、コアエンジン18から、それぞれ低圧タービンブレード28、29の第1及び第2の列を有する第1及び第2の二重反転(互いに逆方向回転可能な)低圧タービン19、21内に吐出される。第2の低圧タービン21は、第1の低圧シャフト30によって第1の二重反転ファン130に駆動結合され、この組合せ又は組立体は、第1の低圧スプール240と呼ばれる。第1の低圧タービン19は、第2の低圧シャフト31によって第2の二重反転ファン132に駆動結合され、この組合せ又は組立体は、第2の低圧スプール242と呼ばれる。第2の二重反転ファン132は、ほぼ半径方向外向きに延びかつ周方向に間隔をおいて配置された第2のファンブレード32の単一の列を有する。第1の二重反転ファン130は、ほぼ半径方向外向きに延びかつ周方向に間隔をおいて配置された第1のファンブレード33の単一の列を有する。FLADEファンブレード5は、主として入口空気流量要件を弾力的に整合させるために使用される。
エンジン1の一実施形態では、FLADEダクト3内に配置されたFLADEファンブレード5の列は、図1〜図3に示すように、第2の二重反転ファン132の第2のファンブレード32の列に取り付けられかつ該第2のファンブレード32の列から半径方向外向きに延びる。エンジン1の別の実施形態では、FLADEダクト3内に配置されたFLADEファンブレード5の列は、図4に示すように、第1の二重反転ファン130の第1のファンブレード33の列に取り付けられかつ該第1のファンブレード33の列から半径方向外向きに延びる。エンジン1のさらに別の実施形態では、FLADEダクト3内に配置されたFLADEファンブレード5の列は、図6及び図7に示すように、2段式の第2の二重反転ファン232の第2段ファンブレード252の列に取り付けられかつ該第2段ファンブレード252の列から半径方向外向きに延びる。
図1及び図2を参照すると、ファンバイパスダクト40への第1のバイパス入口42が、第2の二重反転ファン132とコアエンジン18への環状コアエンジン入口17との軸方向間に配置されて、第1及び第2の二重反転ファン130、132からファンバイパスダクト内への2つの同軸のバイパス流路を形成する。第1の二重反転ファン130の第1のファンブレード33と第2の二重反転ファン132の第2のファンブレード32とは、第1のファンダクト138を横切って半径方向に配置される。周方向に間隔をおいて配置された第1のファンステータベーン35の列は、第1及び第2の二重反転ファン130、132の下流側でかつ第2の二重反転ファン132とファンバイパスダクト40への第1のバイパス入口42との軸方向間で、第1のファンダクト138を横切って半径方向に配置される。第1のファンダクト138内には、第1及び第2のファンブレード33、32を含む第1及び第2の二重反転ファン130、132と、周方向に間隔をおいて配置された第1のファンステータベーン35の列とが含まれる。第1のファンステータベーン35は、必要でない場合もある。コア駆動ファン37のコア駆動ファンブレード36の列は、環状の第2のファンダクト142を横切って半径方向に配置される。第2のファンダクト142は、第1のバイパス入口42の軸方向後方で始まり、ファンバイパスダクト40の半径方向内側に配置される。環状の第1の流れスプリッタ45が、第1のバイパス入口42と第2のファンダクト142との半径方向間に配置される。
全エンジン空気流15は、FLADE入口8とファン入口11との間で分割される。ファン空気流50は、ファン入口11を通過し、次に第1及び第2の反転可能ファン130、132を通過する。ファン空気流50の第1のバイパス空気部分52は、第1のバイパス入口42内の前方可変面積バイパスインゼクタ(VABI)ドア44が開いている場合、ファンバイパスダクト40の第1のバイパス入口42を通過し、残りの空気部分54がコア駆動ファン37及びそのコア駆動ファンブレード36の列を通過する。第2のファンダクト142内の周方向に間隔をおいて配置されたコア駆動ファンステータベーン34の列は、第2のファンブレード32の列とコア駆動ファン37のコア駆動ファンブレード36との軸方向間に配置される。コア駆動ファンステータベーン34の列とコア駆動ファン37のコア駆動ファンブレード36とは、第2のファンダクト142を横切って半径方向に配置される。ベーンシュラウド106が、コア駆動ファンステータベーン34を、それぞれ半径方向内側ベーンハブ部分85と半径方向外側ベーン先端部分84とに分割する。ファンシュラウド108が、コア駆動ファンブレード36を、それぞれ半径方向内側ブレードハブ部分39と半径方向外側ブレード先端部分38とに分割する。
第2のバイパス空気流部分56は、コア駆動ファンステータベーン34のベーン先端部分84とコア駆動ファンブレード36のブレード先端部分38とを横切るファン先端ダクト146を通って、ファンバイパスダクト40に通じる第2のバイパスダクト58の第2のバイパス入口46内に導かれる。第2のバイパス入口46を通ってファンバイパスダクト40に至る流れを調整するために、第2のバイパスダクト58の後方端部に、任意選択的な中間可変面積バイパスインゼクタ(VABI)ドア83を配置することができる。バイパス空気78をコア吐出空気70と混合するために、ファンバイパスダクト40の後方端部には、後方可変面積バイパスインゼクタ(VABI)ドア49が配置される。図2〜図7の後方VABIドア49は、中空のエンジンノズルセンタボデー72を構造的に支持しかつ該中空のエンジンノズルセンタボデー72に空気を流す中空のストラット208の周方向間に配置されており、従ってこれらの図面の平面外にあるものとして示されている。
ファン先端ダクト146は、ベーンシュラウド106と、ファンシュラウド108と、ベーンシュラウド106の前方端部における第2の流れスプリッタ55とを含む。それぞれベーンハブ部分85及びベーン先端部分84の流れ面積を独立して変えるために、第1の変更手段91及び第2の変更手段92が設けられる。例示的な第1及び第2の変更手段91、92は、それぞれ独立して可変のベーンハブ部分85とベーン先端部分84とを含む(米国特許第5806303号参照)。独立して可変のベーンハブ部分85及びベーン先端部分84の設計は、ベーンハブ部分85及びベーン先端部分84の全体を独立してピボット動可能にすることを含むことができる。その他の可能な設計が、米国特許第5809772号及び特開平10−008915号に開示されている。
独立して可変のベーンハブ部分85及びベーン先端部分84の別の実施形態は、図1に示すような独立して可変のベーンハブ部分85及びベーン先端部分84のピボット動可能な後縁ハブフラップ86及び後縁先端フラップ88を含む。第1及び第2の変更手段91、92は、独立してピボット動するフラップを含むことができる。ピボット動不能のファンステータベーン設計における別の変更手段は、軸方向に運動するユニゾンリングと、ジェットエンジンにおける機械的クリアランス調整のための公知の変更手段(すなわち、異なる熱膨張及び収縮率にも拘らずクリアランスを一定に維持するために、周方向に取り巻くシュラウドセグメントを、ロータブレード先端の列に対して半径方向に遠近するように機械的に移動させる)とを含む。ピボット動不能のファンステータベーン設計におけるさらに別のそのような変更手段には、航空機などにおける翼フラップを伸展及び後退させるような公知の手段が含まれる。
図1に示す例示的な第1及び第2の変更手段91、92は、外側シャフト96内に同軸に配置された内側シャフト94を含む。内側シャフト94は、第1のユニゾンリング100により作動される第1のレバーアーム98によって回転させられる。外側シャフト96は、第2のユニゾンリング104により作動される第2のレバーアーム102によって回転させられる。内側シャフト94は、ファンステータベーン34のベーンハブ部分85のピボット動可能な後縁ハブフラップ86に取り付けられる。外側シャフト96は、ファンステータベーン34のベーン先端部分84のピボット動可能な後縁先端フラップ88に取り付けられる。レバーアーム98、102とユニゾンリング100、104とは、全てファンステータベーン34の半径方向外側に配置されることに注目されたい。その他のそのようなピボット動手段には、ジェットエンジン等における高圧圧縮機のピボット動する可変ステータベーンのための公知の手段が含まれる。
FLADEファンブレード5の列は、第1及び第2の二重反転ファン130、132の一つの半径方向外側に配置され、該第1及び第2の二重反転ファン130、132の一つに対して作動可能に結合され、かつ該第1及び第2の二重反転ファン130、132の一つによって駆動される。図1〜図3に示すエンジン1の実施形態は、第2の二重反転ファン132に結合されかつ該第2の二重反転ファン132によって駆動されるFLADEファンブレード5を有する。可変の第1のFLADEベーン6の軸方向前方列は、FLADE入口8及びFLADEダクト3内に入ることができるFLADE空気流80の量を調整するために使用される。エンジン1の部分出力推力設定時に第1のFLADEベーン6を開閉することによりFLADEダクト3を開閉することは、高度及び飛行マッハ数のような亜音速飛行周囲条件の任意の設定における比較的広い推力範囲にわたって、エンジンが本質的に一定の入口空気流量を維持し同時にスピレージ抗力を回避することを可能にし、また飛行条件の範囲全体にわたってそのようにすることを可能にする。この性能は、特に亜音速部分出力エンジン作動状態にとって必要とされる。エンジンの所定の全出力推力設定において、ベーンは本質的に閉じられる。さらに、FLADE入口の環状の面積は、この面積がファン入口11から溢れるスピレージ空気の所定の最大量を受け入れるのに十分であるように、ファン入口11の環状のファン入口面積の一部となるような寸法にされる。FLADEファンブレード及対応する可変のFLADEベーンの付加的な列も、本発明では考えられていることに注目されたい。
高圧タービン23は、燃焼器22からの流れを高圧タービンブレード24の列に向ける高圧タービン(HPT)ノズルステータベーン110の列を含む。高圧タービンブレード24の列からの流れは、次にそれぞれ互いに逆方向回転可能な(二重反転する)第2及び第1の低圧タービン21、19並びに低圧タービンブレード29、28の第2及び第1の列に向けられる。図1〜図3に示すエンジン1の例示的な実施形態は、低圧タービンブレード29、28の第2及び第1の列間に低圧ステータベーン66の列を含む。図1に示すエンジン1の例示的な実施形態では、低圧タービンブレード29、28の第2及び第1の列間に固定低圧ステータベーン66の列が組み込まれている。図2及び図3に示すエンジン1の例示的な実施形態では、低圧タービンブレード29、28の第2及び第1の列間に可変低圧ステータベーン66の列が組み込まれている。第1の低圧タービン19及びその低圧タービンブレード28の第1の列は、高圧タービンブレード24の列に対して逆方向回転可能である。第1の低圧タービン19及びその低圧タービンブレード28の第前記の列は、第2の低圧タービン21及びその低圧タービンブレード29の第2の列に対して逆方向回転可能である。
第2の二重反転低圧タービン21及びファンバイパスダクト40の下流側かつ軸方向後方には、可変スロート面積エンジンノズル218が設けられる。エンジンノズル218は、センタボデー72上の半径方向及び軸方向に固定された環状の内側壁222から半径方向外側に間隔をおいて配置された軸方向に移動可能な半径方向外側の環状の収束/発散壁220を含む。移動可能な半径方向外側の環状の収束/発散壁220は、該外側の環状の収束/発散壁220と半径方向及び軸方向に固定された環状の内側壁222との間のスロート面積A8を制御する。移動可能な半径方向外側の環状の収束/発散壁220はまた、エンジンノズル218のノズル出口面積A9も制御する。これに代えて、特開平07−197853号に開示されたようにフラップ付き可変スロート面積エンジンノズルを使用することもできる。
複数の周方向に配置された中空のストラット208は、FLADEダクト3と流体連通しかつ該FLADEダクト3から空気を受けるように作動可能である。中空のストラット208は、実質的に中空であるセンタボデー72を構造的に支持しかつ該センタボデー72に空気を流す。可変面積flade空気ノズル213は、軸方向に移動可能なプラグ172を含み、このプラグ172は、センタボデー72の半径方向外側に配置された固定ノズルカウリング174と協働して、中空ストラット208から受けたFLADE空気流80を排出し、推力の形態で仕事をエンジンに返す。任意選択的に、後方FLADE可変面積バイパスインゼクタドア144を通してFLADE空気流80の第2の部分を排気流122内に噴出させてもよい。
二重反転ファン式エンジンの主たる目標は、エンジンファンセクション内のステータベーンを排除することである。第2の目標は、タービン内のノズル又はベーンの数を最少化することである。第3のスプール、すなわち第1及び第2の二重反転低圧スプールの1つを付加する複雑さと引き換えに、ファンステータベーンを取り除くことによる重量及びコストの削減が得られる。二重反転ファン式エンジンは、典型的には第1の二重反転ファン130のホイール速度よりも幾分低い第2の二重反転ファン132のホイール速度を有する。これが、その上にFLADEファンブレード5の列を取り付けるのに第2の二重反転ファン132を選ぶ1つの理由である。そのホイール速度が低いことが、第2の二重反転ファン132を高い相対マッハ数にする理由であり、この高い相対マッハ数は第1の二重反転ファン130によって与えられる逆方向渦流の結果として生じる。第2の二重反転ファン132の低いホイール速度は、正味ファンロータトルクを均一化するために第2の二重反転ファン132における仕事部分が少なくてよいことを意味している。このように第2の二重反転ファン132からの出口渦流は十分に小さいので、下流において何らの渦流矯正ベーンも必要でない。第1の二重反転ファン130に対する第2の二重反転ファン132の1つの例示的な速度比(ロータ2の速度/ロータ1の速度)は、0.75であって、これは2つのファンの仕事比でもある。得られた仕事の分割は、第1の二重反転ファン130が57.5%、第2の二重反転ファン132が残りの42.5%である。現在の研究は、FLADEファンブレード5の列の所要エネルギーが、ファンの全エネルギーの15〜30%の範囲にあることを示している。
二重反転ファンについての1つの問題は、第1の低圧タービン19における面積比要件である。慎重な設計手法は、タービンロータの軸方向移動によるタービンブレード先端クリアランスの変動を減らすためには、タービンロータ上の外側の傾斜を小さくするか皆無にすることを示唆している。設計手法はまた、タービンブレードハブの領域における過度の空気力学的損失を回避するために、タービンブレードハブの傾斜を約30°よりも小さくすることを制約している。約1.45を超えるロータ圧力比を有する第1の低圧タービンは、避けることが望ましい。タービンロータ圧力比は、タービンブレード入口圧力をタービンブレード出口圧力で除算したものと定義される。先行技術による二重反転ファン式エンジン設計は、第1の低圧タービンが約1.9の圧力比を有することを示している。これは、望ましいものよりも遥かに大きい。
第2の低圧スプール242における全仕事は、第2の二重反転ファン132によって行われる仕事とFLADEファンブレード5によって行われる仕事との和である。第2の二重反転ファン132に駆動結合された第1の低圧タービン19によって取り出される全仕事は、タービンノズルの無い構成における上記限界値を遙かに超えた第1の低圧タービン19圧力比を必要とする。この問題に対する解決策は、第2の二重反転ファン132の仕事要件を、第1の低圧タービン19が約1.45の圧力比と一致する点まで低減することである。第2の二重反転ファン132の仕事を低減することは、次に第1の二重反転ファン130に要求される仕事に加算され、それによってファンの全仕事を回復させる。修正した段圧力比要件によって、適切なファン失速マージンが保たれなくてはならない。第1及び第2の二重反転ファン130、132のロータ速度は、それらそれぞれの圧力比要件によって決まる。第2の二重反転ファン132のロータ速度は、その圧力比要件又はそれに代えてFLADEファンブレード5の圧力比要件によって決まる。図1〜図3に示すエンジンの第2の二重反転ファン132における得られた仕事比は、約0.43であり、その速度比は、約0.73である。
離陸作動状態において騒音を低減し又は飛行中にエンジン入口空気流量を整合させるように最大エンジン空気流量性能を得るために、第1のFLADEベーン6を用いてFLADE空気流量80を調整することができる。超音速巡航状態においては、到達可能な最高比推力を可能にするように、flade空気流をその最少エネルギー吸収空気流量にまで減少させることができる。flade空気流量の調整は、第2の低圧スプール242の第1の低圧タービン19の仕事要件を変えることになる。しかしながら、第1の低圧タービン19及びその低圧タービンブレード28の第1の列は、高圧タービン23の高圧タービンブレード24の列と第2の低圧タービン21及びその低圧タービンブレード29の第2の列との間に位置している。第1の低圧タービン19の入口流量機能は、その定常状態作動域全体にわたり比較的一定に保たれることが期待される。第2の低圧タービン21の入口流量機能もまた、その定常状態作動域全体にわたり比較的一定を保たれることが期待される。従って、第1の低圧タービン19の圧力比は、比較的一定に保たれることが期待される。一定の圧力比において、第1の低圧タービン19の仕事出力は、比較的一定に保たれることになる。可変の第1のFLADEベーン6及びFLADEファンブレード5の列を閉じることによって、第1の低圧スプール240の低減した仕事入力要件と組み合わさった第1の低圧タービン19のこの一定の仕事出力は、トルク不均衡を生み出して低圧スプール240を加速することになる。第1の低圧タービン19の圧力比は、この過度なトルクを防止するために調整されなくてはならない。この調整は、低圧タービンブレード28、29の第1及び第2の列間で可変低圧ステータベーン66の列を変化させて低圧タービンブレード29の第2の列に対する入口流量を調整することによって達成される。可変スロート面積A8は、第2の低圧タービン21による過度な取り出しを回避するのを助ける。
図4に示すのは、第1の二重反転ファン130の第1のファンブレード33に取り付けられたFLADEファンブレード5を有する例示的な第2の別のFLADE二重反転ファン式航空機ガスタービンエンジン1である。固定ステータベーン67の列が、高圧タービンブレード24の列と低圧タービンブレード28の第1の列との間に配置される。それぞれ第2及び第1の二重反転低圧タービン21、19の低圧タービンブレード29、28の第2及び第1の列間には、何らの固定又は可変ベーンも存在しない。
第1の二重反転ファン130の第1のファンブレード33にFLADEファンブレード5を取り付けることは、低圧タービンブレード29の第2の列への入口流量を調整するために、低圧タービンブレード28、29の第1及び第2の列間に可変低圧ステータベーン66を配置する必要性を排除することを可能にする。FLADEファンブレード5のエネルギー要件を調整することが、第2の低圧スプール242から取り除かれて、第1の低圧スプール240に課せられる。この設計により、作動流量−圧力比要件を変更することは、可変スロート面積エンジンノズル218によって全体として対処することができる。可変スロート面積ノズルは、通常のエンジン作動にとって必要である。従って、エンジンのこの実施形態は、既に必要である特徴形状の利点を利用している。図4に示す構成は、第1の低圧タービン19の直ぐ上流に位置するベーンの列を持つベーン付きの第1の低圧タービン19と、第2の低圧タービン21の直ぐ上流に位置するベーンの列を持たないベーンレス型の第2の低圧タービン21とを示している。さらに別の構成では、ベーンレス型の第1の低圧タービン19とベーンレス型の第2の低圧タービン21とにすることができる。そのような構成では、ロータ圧力比を調整することが望ましい場合がある。
第1の二重反転ファン130の第1のファンブレード33にFLADEファンブレード5を取り付けることは、第1の二重反転ファン130の第1のファンの入口半径比と第1及び第2の二重反転ファン130、132間の仕事の分割とを調整するために、これらのファンの再設定を必要とする。第1のファンの入口半径比は、FLADEファンブレード5を考慮に入れた場合には、第1の低圧スプール240の全ファン半径比が約0.3よりも小さくならないように、大きな値に調整される必要がある。この調整は、機械的健全性を保つためのものである。第2の低圧スプールからfladeを取り除いた場合、第1の低圧タービン19の圧力比が、ベーンレス型の二重反転低圧タービン構成、つまり二重反転低圧タービン間にベーンが無い構成におけるその限界値1.45に近づくか到達するまで、そのファンロータの圧力比を増大させることができる。これに応じて全設計ファン圧力比を保つために、第2の二重反転ファン132の圧力比を減少させることができる。
第1の二重反転ファン130の先端速度は、その圧力比要件が低減したため、図2に示すそのレベルから低下する。しかしながら、FLADEファンブレード5を第1の二重反転ファン130から外向きに突出させた場合には、FLADEファンブレードの先端速度は、許容できないレベルまで上昇する可能性がある。鳥の衝突に耐えるこのようなブレード設計は、良くいっても非常に困難である。高い先端速度は、FLADEファンブレード5にとっては必要でない。実際、FLADEファンブレード5の圧力比要件は、そのような先端速度に対しては多分あまり大きくない筈である。第1の二重反転ファン130の先端速度を低下させることは、その圧力比要件を低下させることを必要とする。このことは、次ぎに第2の二重反転ファン132の圧力比要件を増大させることを必要とする。第2の二重反転ファン132の圧力比は、ノズル無しの第1の低圧タービン19構成の面積比(すなわち、圧力比)の制約条件によって設定される。
図5に示すのは、第2の二重反転ファン132の第2のファンブレード32の列に取り付けられかつ該第2のファンブレード32の列から半径方向外向きに延びるFLADEファンブレード5を有する例示的な第3の別のFLADE二重反転ファン式航空機ガスタービンエンジン1である。固定ステータベーン67の列が、高圧タービンブレード24の列と低圧タービンブレード28の第1の列との間に配置される。それぞれ第2及び第1の二重反転低圧タービン21、19の低圧タービンブレード29、28の第2及び第1の列間には、何らの固定又は可変ベーンも存在しない。
図6に示すのは、第2の二重反転ファン132が、それぞれ第1及び第2段ブレード250、252の列として示した軸方向に間隔をおいて配置されたファンブレードの2つの段又は列とそれらの間の第2段ファンベーン254の列とを有する例示的な第4の別のFLADE二重反転ファン式航空機ガスタービンエンジン1である。FLADEファンブレード5は、第2の二重反転ファン132の第2段ブレード252に取り付けられかつ該第2段ブレード252から半径方向外向きに延びる。固定ステータベーン67の列が、高圧タービンブレード24の列と低圧タービンブレード28の第1の列との間に配置される。それぞれ第2及び第1の二重反転低圧タービン21、19の低圧タービンブレード29、28の第2及び第1の列間には、何らの固定又は可変ベーンも存在しない。
図7に示すのは、第2の二重反転ファン132が、それぞれ第1及び第2段ブレード250、252として示したファンブレードの2つの段又は列を有する例示的な第5の別のFLADE二重反転ファン式航空機ガスタービンエンジン1である。FLADEファンブレード5は、第2の二重反転ファン132の第2のファンブレード32の列に取り付けられかつ該第2のファンブレード32の列から半径方向外向きに延びる。可変低圧ステータベーン66の列が、低圧タービンブレード29、28の第2及び第1の列の軸方向間に配置される。高圧タービンブレード24の列と低圧タービンブレード28の第1の列との間には、何らの固定又は可変ベーンも存在しない。
本明細書では本発明の好ましい例示的な実施形態であると考えられるものについて説明してきたが、本明細書の教示から本発明のその他の変更が当業者には明らかであろう。従って、全てのそのような変更が本発明の技術思想及び技術的範囲内に含まれるものとして特許請求の範囲で保護されることが望まれる。特許請求の範囲に示す参照符号は、本発明の技術的範囲を狭めるためのものではなく、それらを容易に理解するためのものである。
二重反転ファンを備えたFLADE航空機ガスタービンエンジンの第1の例示的な実施形態の概略断面図。 第1及び第2の二重反転ファンと高出力作動のための配列になっている移動ノズルカウルを有する可変排気ノズルとを備えたFLADE航空機ガスタービンエンジンの第2の例示的な実施形態の概略断面図。 低出力作動のための配列になっている、図2のエンジンの概略断面図。 FLADEファンブレードの列を有する第1のファンと高圧タービン及び第1の低圧タービン間の固定ベーンの列とを備えたFLADE航空機ガスタービンエンジンの第3の例示的な実施形態の概略断面図。 FLADEファンブレードの列を有する第2のファンと高圧タービン及び第1の低圧タービン間の固定ベーンの列とを備えたFLADE航空機ガスタービンエンジンの第4の例示的な実施形態の概略断面図。 FLADEファンブレードの列を有する第2のファンの第2ファン段と高圧タービン及び第1の低圧タービン間の固定ベーンの列とを備えたFLADE航空機ガスタービンエンジンの第5の例示的な実施形態の概略断面図。 FLADEファンブレードの列を有する第2のファンの第2ファン段と第1及び第2の二重反転低圧タービン間の可変ベーンの列とを備えたFLADE航空機ガスタービンエンジンの第6の例示的な実施形態の概略断面図。
符号の説明
1 FLADE二重反転ファン式航空機ガスタービンエンジン
2 FLADEファン
3 FLADEダクト
5 FLADEファンブレード
6 第1のFLADEベーン
7 第2のFLADEベーン
18 コアエンジン
19 第1の低圧タービン
20 高圧圧縮機
21 第2の低圧タービン
22 燃焼器
23 高圧タービン
37 コア駆動ファン
40 ファンバイパスダクト
58 第2のバイパスダクト
72 エンジンノズルセンタボデー
130 第1の二重反転ファン
132 第2の二重反転ファン
172 プラグ
174 ノズルカウリング
208 中空のストラット
213 可変面積flade空気ノズル
218 可変スロート面積エンジンノズル
220 外側の環状の収束/発散壁

Claims (10)

  1. 軸方向に間隔をおいて配置された第1及び第2の二重反転ファン(130、132)と、
    前記第1及び第2の二重反転ファン(130、132)の1つの半径方向外側に配置されかつ該第1及び第2の二重反転ファンの1つに駆動結合されたFLADEファンブレード(5)の少なくとも1つの列と、
    前記第1の二重反転ファン(130)に駆動結合された第2の二重反転低圧タービン(21)の下流側かつ軸方向後方に配置された可変スロート面積エンジンノズル(218)と
    を含み、
    前記可変スロート面積エンジンノズル(218)は、軸方向に移動可能な環状の収束/発散壁(220)を含み、
    前記収束/発散壁(220)は、
    前記可変スロート面積エンジンノズル(218)のセンタボデー(72)上の半径方向及び軸方向に固定された環状の内側壁(222)から半径方向外側に間隔をおいて配置され、
    該収束/発散壁(220)と前記半径方向及び軸方向に固定された環状の内側壁(222)との間のスロート面積(A8)を調整するように作動可能であり、
    前記エンジンノズル(218)のノズル出口面積(A9)を調整するように作動可能である
    ことを特徴とする、FLADE二重反転ファン式航空機ガスタービンエンジン(1)。
  2. 前記第2の二重反転ファン(132)に駆動結合された第1の低圧タービン(19)とをさらに含む、請求項1記載のエンジン(1)。
  3. 前記第1及び第2の二重反転ファン(130、132)の下流側かつ軸方向後方に配置されたコアエンジン(18)と、
    前記第1及び第2の二重反転ファン(130、132)の下流側かつ軸方向後方に配置され、かつ前記コアエンジン(18)を囲むファンバイパスダクト(40)と、
    をさらに含み、
    前記FLADEファンブレード(5)の列が、前記第1及び第2の二重反転ファン(130、132)並びにファンバイパスダクト(40)を囲むFLADEダクト(3)を横切って半径方向に延びている、
    請求項1記載のエンジン(1)。
  4. 前記FLADEファンブレード(5)の列が、可変の第1のFLADEベーン(6)の軸方向前方列と第2のFLADEベーン(7)の軸方向後方列との間で前記FLADEダクト(3)内に配置されている、請求項3記載のエンジン(1)。
  5. 前記第2の二重反転ファン(132)に駆動結合された第1の低圧タービン(19)と、前記第1の二重反転ファン(130)に駆動結合された第2の低圧タービン(21)とをさらに含む、請求項3記載のエンジン(1)。
  6. 直列の流れ関係で、コア駆動ファンステータベーン(34)の列と、コア駆動ファンブレード(36)の少なくとも1つの列を備えたコア駆動ファン(37)と、高圧圧縮機(20)と、燃焼器(22)と、前記コア駆動ファン(37)に駆動結合された高圧タービン(23)とを有するコアエンジン(18)をさらに含み、
    前記第1及び第2の二重反転ファン(130、132)が、環状の第1のファンダクト(138)を横切って半径方向に配置され、前記コア駆動ファン(37)が、環状の第2のファンダクト(142)を横切って半径方向に配置され、
    ベーンシュラウド(106)が、前記コア駆動ファンステータベーン(34)を半径方向内側ベーンハブ部分(85)と半径方向外側ベーン先端部分(84)とに分割し、
    ファンシュラウド(108)が、前記コア駆動ファンブレード(36)を半径方向内側ブレードハブ部分(39)と半径方向外側ブレード先端部分(38)とに分割し、
    ファンバイパスダクト(40)への第1のバイパス入口(42)が、前記第2の二重反転ファン(132)と前記コアエンジン(18)への環状のコアエンジン入口(17)との軸方向間に配置され、
    前記コア駆動ファンステータベーン(34)のベーン先端部分(84)を横切りかつ前記コア駆動ファンブレード(36)のブレード先端部分(38)を横切るファン先端ダクト(146)が、前記ファンバイパスダクト(40)への第2のバイパス入口(46)まで延び、
    前記ベーン先端部分(84)の流れ面積を独立して変えるための第1の変更手段(91)が設けられている、
    請求項2記載のエンジン(1)。
  7. 前記ベーンハブ部分(85)の流れ面積を独立して変えるための第2の変更手段(92)をさらに含む、請求項6記載のエンジン(1)。
  8. 前記第1及び第2の変更手段(91、92)が、それぞれ独立して変化するベーン先端部分(84)と独立して変化するベーンハブ部分(85)とを含む、請求項7記載のエンジン(1)。
  9. 前記第1のバイパス入口(42)内に前方可変面積バイパスインゼクタドア(44)をさらに含む、請求項8記載のエンジン(1)。
  10. 前記第1及び第2の変更手段(91、92)が、
    前記ベーンハブ部分(85)のピボット動可能な後縁ハブフラップ(86)に取り付けられた内側シャフト(94)と、
    前記ベーン先端部分(84)のピボット動可能な後縁先端フラップ(88)に取り付けられた外側シャフト(96)と、を含み、
    前記内側シャフト(94)が、前記ファンステータベーン(34)の外側シャフト(96)内に同軸に配置され、
    第1のユニゾンリング(100)が、第1のレバーアーム(98)に対して作動関係で結合され、該第1のレバーアーム(98)が前記内側シャフト(94)に対して回転可能な作動関係で結合され、
    第2のユニゾンリング(104)が、第2のレバーアーム(102)に対して作動関係で結合され、該第2のレバーアームが前記外側シャフト(96)に対して回転可能な作動関係で結合されている、
    請求項8記載のエンジン(1)。
JP2004186143A 2003-08-25 2004-06-24 二重反転ファンを備えたfladeガスタービンエンジン Expired - Fee Related JP4856366B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/647,881 US7246484B2 (en) 2003-08-25 2003-08-25 FLADE gas turbine engine with counter-rotatable fans
US10/647,881 2003-08-25

Publications (3)

Publication Number Publication Date
JP2005069222A JP2005069222A (ja) 2005-03-17
JP2005069222A5 JP2005069222A5 (ja) 2007-08-09
JP4856366B2 true JP4856366B2 (ja) 2012-01-18

Family

ID=34104655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186143A Expired - Fee Related JP4856366B2 (ja) 2003-08-25 2004-06-24 二重反転ファンを備えたfladeガスタービンエンジン

Country Status (3)

Country Link
US (1) US7246484B2 (ja)
EP (1) EP1510682B1 (ja)
JP (1) JP4856366B2 (ja)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144221B2 (en) 2004-07-30 2006-12-05 General Electric Company Method and apparatus for assembling gas turbine engines
US20070000232A1 (en) * 2005-06-29 2007-01-04 General Electric Company Gas turbine engine and method of operating same
US7464536B2 (en) 2005-07-07 2008-12-16 General Electric Company Methods and apparatus for assembling gas turbine engines
US7730714B2 (en) * 2005-11-29 2010-06-08 General Electric Company Turbofan gas turbine engine with variable fan outlet guide vanes
US7614210B2 (en) * 2006-02-13 2009-11-10 General Electric Company Double bypass turbofan
US7631484B2 (en) * 2006-03-13 2009-12-15 Rollin George Giffin High pressure ratio aft fan
US7758303B1 (en) 2006-07-31 2010-07-20 General Electric Company FLADE fan with different inner and outer airfoil stagger angles at a shroud therebetween
US7770381B2 (en) * 2006-12-18 2010-08-10 General Electric Company Duct burning mixed flow turbofan and method of operation
US7926290B2 (en) * 2006-12-18 2011-04-19 General Electric Company Turbine engine with modulated flow fan and method of operation
US20080148708A1 (en) * 2006-12-20 2008-06-26 General Electric Company Turbine engine system with shafts for improved weight and vibration characteristic
US7942632B2 (en) * 2007-06-20 2011-05-17 United Technologies Corporation Variable-shape variable-stagger inlet guide vane flap
US8161728B2 (en) * 2007-06-28 2012-04-24 United Technologies Corp. Gas turbines with multiple gas flow paths
US8104265B2 (en) * 2007-06-28 2012-01-31 United Technologies Corporation Gas turbines with multiple gas flow paths
US9359960B2 (en) 2007-06-28 2016-06-07 United Technologies Corporation Gas turbines with multiple gas flow paths
US8708643B2 (en) * 2007-08-14 2014-04-29 General Electric Company Counter-rotatable fan gas turbine engine with axial flow positive displacement worm gas generator
US8590286B2 (en) * 2007-12-05 2013-11-26 United Technologies Corp. Gas turbine engine systems involving tip fans
US8402742B2 (en) 2007-12-05 2013-03-26 United Technologies Corporation Gas turbine engine systems involving tip fans
US8105019B2 (en) * 2007-12-10 2012-01-31 United Technologies Corporation 3D contoured vane endwall for variable area turbine vane arrangement
US8015798B2 (en) * 2007-12-13 2011-09-13 United Technologies Corporation Geared counter-rotating gas turbofan engine
US8739548B2 (en) * 2007-12-20 2014-06-03 United Technologies Corporation Sliding ramp nozzle system for a gas turbine engine
US9212623B2 (en) * 2007-12-26 2015-12-15 United Technologies Corporation Heat exchanger arrangement for turbine engine
US8082727B2 (en) * 2008-02-26 2011-12-27 United Technologies Corporation Rear propulsor for a variable cycle gas turbine engine
US8127528B2 (en) * 2008-02-26 2012-03-06 United Technologies Corporation Auxiliary propulsor for a variable cycle gas turbine engine
US8807477B2 (en) 2008-06-02 2014-08-19 United Technologies Corporation Gas turbine engine compressor arrangement
US20140174056A1 (en) 2008-06-02 2014-06-26 United Technologies Corporation Gas turbine engine with low stage count low pressure turbine
US8800914B2 (en) 2008-06-02 2014-08-12 United Technologies Corporation Gas turbine engine with low stage count low pressure turbine
US20100054911A1 (en) * 2008-08-29 2010-03-04 General Electric Company System and method for adjusting clearance in a gas turbine
US8887485B2 (en) * 2008-10-20 2014-11-18 Rolls-Royce North American Technologies, Inc. Three spool gas turbine engine having a clutch and compressor bypass
US8191352B2 (en) * 2008-12-19 2012-06-05 General Electric Company Geared differential speed counter-rotatable low pressure turbine
US8562281B2 (en) * 2008-12-31 2013-10-22 Rolls Royce Corporation Actuator
US20110171007A1 (en) * 2009-09-25 2011-07-14 James Edward Johnson Convertible fan system
US20110167792A1 (en) * 2009-09-25 2011-07-14 James Edward Johnson Adaptive engine
US20110167831A1 (en) * 2009-09-25 2011-07-14 James Edward Johnson Adaptive core engine
US8695324B2 (en) 2009-11-20 2014-04-15 General Electric Co. Multistage tip fan
US20110120083A1 (en) * 2009-11-20 2011-05-26 Rollin George Giffin Gas turbine engine with outer fans
US9353684B2 (en) * 2009-12-11 2016-05-31 Northrop Grumman Systems Corporation Aircraft engine airflow modulation apparatus and method for engine bay cooling and cycle flow matching
US8777554B2 (en) * 2009-12-21 2014-07-15 General Electric Company Intermediate fan stage
US20110150627A1 (en) * 2009-12-21 2011-06-23 John Lewis Baughman Method of operating a fan system
WO2011162845A1 (en) * 2010-03-26 2011-12-29 Rolls-Royce North American Technologies, Inc. Adaptive fan system for a variable cycle turbofan engine
US8668444B2 (en) 2010-09-28 2014-03-11 General Electric Company Attachment stud for a variable vane assembly of a turbine compressor
US8714916B2 (en) 2010-09-28 2014-05-06 General Electric Company Variable vane assembly for a turbine compressor
US9016041B2 (en) * 2010-11-30 2015-04-28 General Electric Company Variable-cycle gas turbine engine with front and aft FLADE stages
WO2013077924A2 (en) * 2011-09-08 2013-05-30 Rolls-Royce North American Technologies Inc. Gas turbine engine system and supersonic exhaust nozzle
US9279388B2 (en) * 2011-11-01 2016-03-08 United Technologies Corporation Gas turbine engine with two-spool fan and variable vane turbine
US9057328B2 (en) * 2011-11-01 2015-06-16 United Technologies Corporation Gas turbine engine with intercooling turbine section
FR2983917B1 (fr) * 2011-12-07 2013-12-27 Snecma Tuyere convergente-divergente de turbomachine
US9157366B2 (en) * 2012-05-30 2015-10-13 United Technologies Corporation Adaptive fan with cold turbine
US20140165575A1 (en) * 2012-12-13 2014-06-19 United Technologies Corporation Nozzle section for a gas turbine engine
US10197008B2 (en) 2013-02-19 2019-02-05 United Technologies Corporation Gas turbine engine including a third flowpath exhaust nozzle
US9759133B2 (en) 2013-03-07 2017-09-12 Rolls-Royce Corporation Turbofan with variable bypass flow
US9863366B2 (en) * 2013-03-13 2018-01-09 Rolls-Royce North American Technologies Inc. Exhaust nozzle apparatus and method for multi stream aircraft engine
US9488101B2 (en) * 2013-03-14 2016-11-08 United Technologies Corporation Adaptive fan reverse core geared turbofan engine with separate cold turbine
US10400710B2 (en) * 2013-05-07 2019-09-03 General Electric Company Secondary nozzle for jet engine
US9920710B2 (en) 2013-05-07 2018-03-20 General Electric Company Multi-nozzle flow diverter for jet engine
US9909529B2 (en) 2013-09-20 2018-03-06 United Technologies Corporation Flow path routing within a gas turbine engine
US10400709B2 (en) 2013-09-20 2019-09-03 United Technologies Corporation Auxiliary device for three air flow path gas turbine engine
US10371090B2 (en) 2014-01-13 2019-08-06 United Technologies Corporation Variable area exhaust mixer for a gas turbine engine
US10030606B2 (en) 2014-01-27 2018-07-24 United Technologies Corporation Variable exhaust mixer and cooler for a three-stream gas turbine engine
US9964037B2 (en) 2014-02-26 2018-05-08 United Technologies Corporation Staged heat exchangers for multi-bypass stream gas turbine engines
GB201412189D0 (en) * 2014-07-09 2014-08-20 Rolls Royce Plc A nozzle arrangement for a gas turbine engine
US9932902B2 (en) 2014-07-15 2018-04-03 United Technologies Corporation Turbine section support for a gas turbine engine
US10287976B2 (en) 2014-07-15 2019-05-14 United Technologies Corporation Split gear system for a gas turbine engine
DE102014017393B4 (de) * 2014-09-25 2017-08-10 MTU Aero Engines AG Strömungsmaschine und Verfahren
US9951721B2 (en) 2014-10-21 2018-04-24 United Technologies Corporation Three-stream gas turbine engine architecture
US10077660B2 (en) * 2014-12-03 2018-09-18 General Electric Company Turbine engine assembly and method of manufacturing
US10119477B2 (en) 2015-01-20 2018-11-06 United Technologies Corporation Gas turbine engine with a multi-spool driven fan
US9803557B2 (en) 2015-01-20 2017-10-31 United Technologies Corporation Gas turbine engine and blocker door assembly
US11236639B2 (en) * 2015-02-10 2022-02-01 Raytheon Technologies Corporation Gas turbine engine and an airflow control system
US11808210B2 (en) 2015-02-12 2023-11-07 Rtx Corporation Intercooled cooling air with heat exchanger packaging
US10731560B2 (en) 2015-02-12 2020-08-04 Raytheon Technologies Corporation Intercooled cooling air
US10371055B2 (en) 2015-02-12 2019-08-06 United Technologies Corporation Intercooled cooling air using cooling compressor as starter
US10161316B2 (en) * 2015-04-13 2018-12-25 United Technologies Corporation Engine bypass valve
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10480419B2 (en) 2015-04-24 2019-11-19 United Technologies Corporation Intercooled cooling air with plural heat exchangers
US10221862B2 (en) 2015-04-24 2019-03-05 United Technologies Corporation Intercooled cooling air tapped from plural locations
US10100739B2 (en) * 2015-05-18 2018-10-16 United Technologies Corporation Cooled cooling air system for a gas turbine engine
US10030558B2 (en) * 2015-06-29 2018-07-24 General Electric Company Power generation system exhaust cooling
US10215070B2 (en) * 2015-06-29 2019-02-26 General Electric Company Power generation system exhaust cooling
US10794288B2 (en) 2015-07-07 2020-10-06 Raytheon Technologies Corporation Cooled cooling air system for a turbofan engine
US10443508B2 (en) 2015-12-14 2019-10-15 United Technologies Corporation Intercooled cooling air with auxiliary compressor control
US10151217B2 (en) * 2016-02-11 2018-12-11 General Electric Company Turbine frame cooling systems and methods of assembly for use in a gas turbine engine
ITUA20161507A1 (it) 2016-03-09 2017-09-09 Gen Electric Turbomotore a gas con una derivazione d'aria.
US10669940B2 (en) 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US10550768B2 (en) 2016-11-08 2020-02-04 United Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10794290B2 (en) 2016-11-08 2020-10-06 Raytheon Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10961911B2 (en) 2017-01-17 2021-03-30 Raytheon Technologies Corporation Injection cooled cooling air system for a gas turbine engine
US10995673B2 (en) 2017-01-19 2021-05-04 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox
US10577964B2 (en) 2017-03-31 2020-03-03 United Technologies Corporation Cooled cooling air for blade air seal through outer chamber
US10711640B2 (en) 2017-04-11 2020-07-14 Raytheon Technologies Corporation Cooled cooling air to blade outer air seal passing through a static vane
US10364750B2 (en) * 2017-10-30 2019-07-30 General Electric Company Thermal management system
CN108005812B (zh) * 2017-12-04 2019-06-18 中国航空发动机研究院 采用自适应机匣和自适应风扇的智能发动机
US10738703B2 (en) 2018-03-22 2020-08-11 Raytheon Technologies Corporation Intercooled cooling air with combined features
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
US10718233B2 (en) 2018-06-19 2020-07-21 Raytheon Technologies Corporation Intercooled cooling air with low temperature bearing compartment air
US11255268B2 (en) 2018-07-31 2022-02-22 Raytheon Technologies Corporation Intercooled cooling air with selective pressure dump
US11512667B2 (en) * 2019-02-25 2022-11-29 Rolls-Royce North American Technologies Inc. Anti-unstart for combined cycle high mach vehicles
CN110005544A (zh) * 2019-05-12 2019-07-12 西北工业大学 自驱动外涵道环形扇叶压缩装置
US11274631B2 (en) * 2020-02-27 2022-03-15 Rolls-Royce North American Technologies Inc. Methodology for minimizing aerodynamic buzz in an exhaust nozzle
IT202000006439A1 (it) 2020-03-26 2021-09-26 Ge Avio Srl Metodo e apparecchiatura per raffreddare una porzione di un motore a turbina contro-rotante
US20230340906A1 (en) * 2022-04-05 2023-10-26 General Electric Company Counter-rotating turbine

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363419A (en) 1965-04-27 1968-01-16 Rolls Royce Gas turbine ducted fan engine
FR1458200A (fr) * 1965-06-09 1966-03-04 Snecma Tuyère à corps central pour propulseur à réaction
FR1455278A (fr) 1965-08-05 1966-04-01 Snecma Turboréacteur à double flux
US3673802A (en) * 1970-06-18 1972-07-04 Gen Electric Fan engine with counter rotating geared core booster
DE2149619A1 (de) * 1971-10-05 1973-04-19 Motoren Turbinen Union Turbinenstrahltriebwerk fuer senkrechtoder kurzstartende bzw. landende flugzeuge
US4790133A (en) * 1986-08-29 1988-12-13 General Electric Company High bypass ratio counterrotating turbofan engine
GB2194292A (en) * 1986-08-29 1988-03-02 Gen Electric High bypass ratio counterrotating turbofan engine
US5307624A (en) 1990-04-04 1994-05-03 General Electric Company Variable area bypass valve assembly
CA2091473A1 (en) 1992-04-20 1993-10-21 Mark J. Wagner Bypass injector valve for variable cycle aircraft engines
US5402963A (en) 1992-09-15 1995-04-04 General Electric Company Acoustically shielded exhaust system for high thrust jet engines
US5261227A (en) 1992-11-24 1993-11-16 General Electric Company Variable specific thrust turbofan engine
US5388964A (en) 1993-09-14 1995-02-14 General Electric Company Hybrid rotor blade
US5402638A (en) 1993-10-04 1995-04-04 General Electric Company Spillage drag reducing flade engine
US5404713A (en) * 1993-10-04 1995-04-11 General Electric Company Spillage drag and infrared reducing flade engine
US5806303A (en) 1996-03-29 1998-09-15 General Electric Company Turbofan engine with a core driven supercharged bypass duct and fixed geometry nozzle
US5809772A (en) 1996-03-29 1998-09-22 General Electric Company Turbofan engine with a core driven supercharged bypass duct
US5794432A (en) 1996-08-27 1998-08-18 Diversitech, Inc. Variable pressure and variable air flow turbofan engines
EP0952330A3 (en) * 1998-04-13 2000-05-24 Nikkiso Company, Ltd. Turbofan engine including fans with reduced speed
USH2032H1 (en) * 1999-10-01 2002-07-02 The United States Of America As Represented By The Secretary Of The Air Force Integrated fan-core twin spool counter-rotating turbofan gas turbine engine
JP2002221092A (ja) * 2001-01-24 2002-08-09 Isamu Nemoto 可変ジェットノズル付き高バイパス比ターボファン・エンジン
US7063505B2 (en) * 2003-02-07 2006-06-20 General Electric Company Gas turbine engine frame having struts connected to rings with morse pins

Also Published As

Publication number Publication date
US20050047942A1 (en) 2005-03-03
EP1510682A2 (en) 2005-03-02
EP1510682A3 (en) 2009-03-18
US7246484B2 (en) 2007-07-24
EP1510682B1 (en) 2011-10-05
JP2005069222A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4856366B2 (ja) 二重反転ファンを備えたfladeガスタービンエンジン
JP4953924B2 (ja) 内側及び外側翼形部間のシュラウドの位置において異なる内側及び外側翼形部食違い角を有するfladeファン
JP4619089B2 (ja) 固定ジオメトリ入口を備えたfladeガスタービンエンジン
JP4820545B2 (ja) 後方flade式エンジン
JP2607051B2 (ja) 航空機フレード・ガスタービンエンジン及び航空機フレード・ガスタービンエンジンを運転する方法
JP4820619B2 (ja) Flade式ガスタービンエンジンおよび航空機
JP2686419B2 (ja) 航空機フレード・ガスタービンエンジン及び航空機フレード・ガスタービンエンジンを運転する方法
JP4559180B2 (ja) 可変圧力比ファンシステムを有するガスタービンエンジン
US8459035B2 (en) Gas turbine engine with low fan pressure ratio
EP3825538B1 (en) Variable area fan nozzle bearing track
US5261227A (en) Variable specific thrust turbofan engine
JP4920228B2 (ja) ガスタービンエンジンを組み立てるための方法及び装置
US20110167784A1 (en) Method of operating a convertible fan engine
US20120124964A1 (en) Gas turbine engine with improved fuel efficiency
US20110167792A1 (en) Adaptive engine
US10041442B2 (en) Variable area fan nozzle
CA2853694C (en) Gas turbine engine with geared architecture
US20150192298A1 (en) Gas turbine engine with improved fuel efficiency
US20150132106A1 (en) Gas turbine engine with low fan pressure ratio
EP2809936B1 (en) Gas turbine engine with improved fuel efficiency

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101117

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110427

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4856366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees