JP4853804B2 - Blast furnace bottom management method - Google Patents

Blast furnace bottom management method Download PDF

Info

Publication number
JP4853804B2
JP4853804B2 JP2005316615A JP2005316615A JP4853804B2 JP 4853804 B2 JP4853804 B2 JP 4853804B2 JP 2005316615 A JP2005316615 A JP 2005316615A JP 2005316615 A JP2005316615 A JP 2005316615A JP 4853804 B2 JP4853804 B2 JP 4853804B2
Authority
JP
Japan
Prior art keywords
furnace
intensity
blast furnace
muon
furnace bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005316615A
Other languages
Japanese (ja)
Other versions
JP2007121203A (en
Inventor
昭彦 篠竹
操 橋本
誠章 内藤
朝夫 圃中
眞六 松崎
謙忠 永嶺
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005316615A priority Critical patent/JP4853804B2/en
Publication of JP2007121203A publication Critical patent/JP2007121203A/en
Application granted granted Critical
Publication of JP4853804B2 publication Critical patent/JP4853804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、ミュオン計測と熱電対による温度計測を補完的に用いてミュオン計測により耐火物厚みの長期的変位を把握し、これを基準として熱電対による温度計測により、耐火物への付着物、厚み等短期的変化を管理する高炉炉底管理方法に関する。   The present invention uses muon measurement and temperature measurement by thermocouple to complement each other and grasps long-term displacement of refractory thickness by muon measurement, and by using temperature measurement by thermocouple as a reference, deposits on refractory, The present invention relates to a blast furnace bottom management method for managing short-term changes such as thickness.

高炉の改修時期の決定、高炉の保守、制御などに際し、高炉炉底をなす底盤および側壁の耐火物、例えば耐火レンガの浸食による損耗量を推定することは重要な事項である。   It is important to estimate the amount of wear caused by erosion of refractories on the bottom and side walls of the blast furnace bottom, such as refractory bricks, when determining the blast furnace renovation time, maintaining and controlling the blast furnace.

炉底耐火物の損耗量を推定する方法の一つとして、耐火レンガ内の2点に埋め込んだ熱電対の計測温度に基づいて、2点間の温度と距離およびその耐火レンガの熱伝導率から熱流束を計算し、炉内稼動面の温度を例えば溶銑の凝固する温度に仮定して残存厚みを算出する方法で推定する方法が提案されている(特許文献1)。   As one method of estimating the amount of wear of the bottom refractory, based on the measured temperature of the thermocouple embedded in two points in the refractory brick, from the temperature and distance between the two points and the thermal conductivity of the refractory brick A method has been proposed in which a heat flux is calculated and estimated by a method of calculating the remaining thickness assuming that the temperature of the working surface in the furnace is the temperature at which the hot metal solidifies, for example (Patent Document 1).

また、炉底耐火物の損耗量を推定する他の方法として、宇宙線ミュオンを利用して高炉炉底耐火物の損耗量(残存厚)を計測する方法が提案されている(特許文献2)。   As another method for estimating the wear amount of the bottom refractory, a method of measuring the wear amount (residual thickness) of the blast furnace bottom refractory using cosmic ray muons has been proposed (Patent Document 2). .

この宇宙線ミュオンを利用した計測方法は、高炉炉底を通過したミュオンの強度を測定し、築炉時に計測したミュオン強度の第1データと、時間経過後のミュオン強度の第2データと、予め求めておいたミュオンの強度変化と耐火物厚さとの関係を示す特性線に基づいて、第2データの取得時におけるミュオン強度から耐火物の厚さを推定する。   The measurement method using this cosmic ray muon measures the intensity of the muon that has passed through the bottom of the blast furnace furnace, the first data of the muon intensity measured at the time of building the furnace, the second data of the muon intensity after the passage of time, The thickness of the refractory is estimated from the muon strength at the time of acquiring the second data based on the characteristic line indicating the relationship between the muon strength change and the refractory thickness.

この特性線は、ミュオンの物質貫通力はエネルギーEと貫通力X(m)との間に以下の関係を有するとして得ており、物質の比重を7.8の鉄としている。   This characteristic line is obtained by assuming that the material penetration force of muon has the following relationship between energy E and penetration force X (m), and the specific gravity of the material is iron of 7.8.

X=7.8×2.5×103In(1.56・E+1)
そして、築炉時(耐火物最大厚さ)に上記第1データを測っておくことで、上記数式及び各部の寸法及び比重から右下がりの特性線を引くことができる。したがって、適宜ミュオン強度を測定することで、耐火物の厚さが推定でき、高炉の改修時期の決定が行える。
特開2002−266011号公報 特開平8−261741号公報
X = 7.8 × 2.5 × 10 3 In (1.56 · E + 1)
Then, by measuring the first data at the time of furnace building (maximum refractory thickness), it is possible to draw a characteristic line that falls to the right from the above formula and the dimensions and specific gravity of each part. Therefore, by appropriately measuring the muon strength, the thickness of the refractory can be estimated, and the blast furnace renovation time can be determined.
Japanese Patent Laid-Open No. 2002-266011 JP-A-8-261741

上記した熱電対を用いた高炉炉底耐火物の損耗量推定方法にあっては、推定した損耗量に対して実際に残存している耐火レンガの厚みが厚いというように、推定損耗量と実際の損耗量とに大きな差が生じることがあった。   In the method for estimating the amount of blast furnace bottom refractory wear using a thermocouple as described above, the estimated amount of wear and the actual amount of refractory bricks are actually thicker than the estimated amount of wear. There may be a large difference in the amount of wear.

このように損耗量に差が生じる原因の一つとして、レンガの耐溶銑性が向上したことが考えられる。   As one of the causes for the difference in the amount of wear in this way, it can be considered that the resistance to hot metal of the brick has been improved.

一方、上記したミュオンを利用して高炉炉底耐火物の損耗量を計測する方法にあっては、築炉時に計測した第1データのミュオン強度と耐火物の厚さを起点として描かれる特性線を使用し、実際に操業されている高炉内を通過したミュオンの強度をこの特性線にプロットし、そのときの耐火物厚さが高炉炉底の耐火物の厚さと推定している。   On the other hand, in the method of measuring the wear amount of the blast furnace bottom refractory using the above-described muon, the characteristic line drawn from the muon strength and the thickness of the refractory of the first data measured at the time of building the furnace is used. Is used to plot the intensity of the muon that has passed through the actual blast furnace in operation, and the thickness of the refractory at that time is estimated as the thickness of the refractory at the bottom of the blast furnace.

本発明の目的は、このような観点に鑑みなされたもので、ミュオン計測と熱電対による温度計測を補完的に用いて、ミュオン計測により耐火物厚みの長期的変位を把握し、これを基準として熱電対による温度計測により耐火物への付着物厚み等短期的変化を管理する高炉炉底管理方法を提供しようとするものである。   The purpose of the present invention is made in view of such a viewpoint, and the long-term displacement of the refractory thickness is grasped by the muon measurement using the muon measurement and the temperature measurement by the thermocouple in a complementary manner. It is intended to provide a blast furnace bottom management method that manages short-term changes such as the thickness of deposits on refractories by measuring temperature with a thermocouple.

本発明は、上記課題を解決するためになされたもので、その要旨は次の通りである。   The present invention has been made to solve the above problems, and the gist thereof is as follows.

) 高炉炉底耐火物内に配置された温度計測手段により計測した計測温度に応じて該炉底耐火物の残存厚みを推定し、宇宙線ミュオンを利用して該温度計測した炉底耐火物と炉内との境界位置を推定する境界位置推定手段で推定した該境界位置により該残存厚みを補完する高炉炉底管理方法であって、前記境界位置推定手段は、宇宙線ミュオンを計測する計測部により高炉炉底を透過して飛来する炉底透過宇宙線ミュオン強度と、該炉底透過宇宙線ミュオンの飛来方向の判別情報と、高炉を透過しない非透過宇宙線ミュオン強度とを一定時間蓄積し、炉底耐火物の密度の既知情報及び炉内物質の密度の既知情報に基づいて複数の平均密度を設定し、該平均密度ごとに炉底における炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比の分布モデルを求め、前記分布モデルを用いて炉底耐火物と炉内物質の境界と想定される領域の前記強度比の平均と前記平均密度の関係を表す強度比―密度特性線を求め、前記強度比―密度特性線を用いて、前記蓄積された実測データにおける炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比に対応する平均密度を特定し、該特定された平均密度に基づいて炉底耐火物と炉内物質の境界位置を推定することを特徴とする高炉炉底管理方法。 (1) in accordance with the measured temperature measured by the temperature measuring means arranged in the furnace bottom refractory of the blast furnace to estimate the remaining thickness of the hearth refractory, the furnace bottom measured temperature by using a cosmic ray muons the boundary position estimated at the boundary position estimating means for estimating a boundary position between the refractory and the furnace a blast furnace bottom management method that complements the remaining thickness, the boundary position estimating means, measures a cosmic ray muons the measuring unit for the furnace bottom transparently woo Chusen muons intensity flying passes through the furnace bottom of a blast furnace, and the furnace SokoToru over woo Chusen muons incident direction of the determination information, non-permeate space which does not transmit blast furnace The line muon intensity is accumulated for a certain period of time, and a plurality of average densities are set based on the known information on the density of the furnace bottom refractory and the known information on the density of the material in the furnace, and the bottom penetration of the furnace bottom is determined for each average density. over woo Chusen muon intensity and nontransparent cosmic rays Myuo Obtains a distribution model of the intensity ratio of the intensity, using a pre-Symbol distribution model, representative of the average density of the relationship with the average of the intensity ratio of the area to be assumed boundary of the furnace bottom refractory and furnace material strength ratio - determined density characteristic line, the intensity ratio - using density characteristic line corresponding to the intensity ratio between RosokoToru over woo Chusen muon intensity and nontransparent cosmic ray muons intensity in the stored measured data average blast furnace bottom management method characterized by identifying the density to estimate the boundary position of the furnace bottom refractory and furnace material based on the average density which is the identified.

高炉の炉底耐火物内に配置された温度計測手段により計測した計測温度に応じて該炉底耐火物の残存厚みを推定し、宇宙線ミュオンを利用して該温度計測した炉底耐火物の損耗量を推定する損耗量推定手段で推定した該損耗量により該残存厚みを補完する高炉炉底管理方法であって、前記損耗量推定手段は、宇宙線ミュオンを計測する計測部により、高炉の炉底を透過して飛来する炉底透過宇宙線ミュオン強度と、該炉底透過宇宙線ミュオンの飛来方向の判別情報と、高炉を透過しない非透過宇宙線ミュオン強度とを一定時間蓄積し、炉底耐火物の密度の既知情報及び炉内物質の密度の既知情報に基づいて複数の平均密度を設定し、該平均密度ごとに炉底における炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比の第1の分布モデルを求め、前記第1の分布モデルを用いて、炉底耐火物と炉内物質の境界と想定される領域の前記強度比の平均と前記平均密度の関係を表す強度比―密度特性線を求め、前記強度比―密度特性線を用いて、蓄積された実測データにおける炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比に対応する平均密度を特定し、複数の損耗量を設定し、前記特定された平均密度を用いて該損耗量ごとに炉底における炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比の第2の分布モデルを求め、前記第2の分布モデルを用いて、炉底耐火物と炉内物質の境界と想定される領域の前記強度比の平均と前記損耗量の関係を表す強度比―損耗量特性線を求め、前記強度比―損耗量特性線を用いて、前記蓄積された実測データにおける炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比に対応する損耗量を特定し、該特定された損耗量を炉底耐火物の損耗量と推定することを特徴とする高炉炉底管理方法。 ( 2 ) The bottom of the furnace where the residual thickness of the bottom refractory is estimated according to the temperature measured by the temperature measuring means arranged in the bottom refractory of the blast furnace, and the temperature is measured using a cosmic ray muon A blast furnace bottom management method for complementing the remaining thickness by the wear amount estimated by a wear amount estimation means for estimating a wear amount of a refractory, wherein the wear amount estimation means is measured by a measuring unit that measures a cosmic ray muon. , Stored for a certain period of time the core bottom transmission cosmic ray muon intensity transmitted through the bottom of the blast furnace, the discrimination information of the flying direction of the core bottom transmission cosmic ray muon, and the non-transparent cosmic ray muon intensity that does not transmit through the blast furnace A plurality of average densities are set based on the known information on the density of the furnace bottom refractory and the known information on the density of the material in the furnace, and the furnace bottom transmitted cosmic ray muon intensity and the non-transparent universe at the furnace bottom for each average density. Strength ratio with line muon intensity A first distribution model is obtained, and using the first distribution model, an intensity ratio representing a relationship between an average of the intensity ratio and an average density of a region assumed to be a boundary between a furnace refractory and an in-furnace material− Obtain the density characteristic line, and use the intensity ratio-density characteristic line to identify the average density corresponding to the intensity ratio between the bottom transmitted cosmic ray muon intensity and the non-transmitted cosmic ray muon intensity in the accumulated measured data, A plurality of wear amounts are set, and a second distribution model of the intensity ratio between the bottom transmitted cosmic ray muon intensity and the non-transmitted cosmic ray muon intensity at the bottom of the furnace is determined for each amount of wear using the specified average density. Using the second distribution model, a strength ratio-amount of wear characteristic line representing the relationship between the average of the strength ratio of the region assumed to be the boundary between the bottom refractory and the in-furnace material and the amount of wear is obtained. , Using the strength ratio-amount of wear characteristic line, the accumulation Identifying the amount of wear corresponding to the intensity ratio between the bottom-through cosmic ray muon intensity and the non-transparent cosmic ray muon intensity in the measured data obtained, and estimating the specified amount of wear as the amount of wear of the bottom refractory A blast furnace bottom management method characterized by the above.

)前記境界位置推定手段は、前記高炉炉底を透過して飛来する炉底透過宇宙線ミュオンの計測は、前記高炉炉外で、該高炉から水平方向に離れた位置で行うことを特徴とする(1)記載の高炉炉底管理方法。 (3) the boundary position estimating means, measures the hearth transparently woo Chusen muons flying in through the furnace bottom of the blast furnace, outside the furnace of the blast furnace, at a position spaced horizontally from the high furnace The blast furnace bottom management method according to (1), wherein the method is performed.

)前記境界位置推定手段は、前記高炉炉底を透過して飛来する炉底透過宇宙線ミュオンの計測は、前記温度計測手段により計測した前記炉底耐火物を計測対象として、該炉底の周囲の複数箇所で同時あるいは時間をずらして行い、各計測位置での計測結果に基づいて該計測対象の境界位置を二次元で推定することを特徴とする()に記載の高炉炉底管理方法。 (4) the boundary position estimating means, measures the hearth transparently woo Chusen muons flying in through the furnace bottom of the blast furnace, the furnace bottom refractory measured by the temperature measuring means as a measurement target, ( 1 ) characterized in that the measurement is performed simultaneously at multiple locations around the furnace bottom or at different times, and the boundary position of the measurement target is estimated in two dimensions based on the measurement results at each measurement position. Blast furnace bottom management method.

)前記境界位置推定手段は、前記高炉炉底を透過して飛来する炉底透過の宇宙線ミュオンの計測は、前記高炉の炉底基礎部で行うことを特徴とする(1)に記載の高炉炉底管理方法。
(6)前記損耗量推定手段は、前記高炉の炉底を透過して飛来する炉底透過の宇宙線ミュオンの計測は、前記高炉の炉底基礎部で行うことを特徴とする(2)に記載の高炉炉底管理方法。
(5) the boundary position estimating means, measures of cosmic-ray muons in the furnace bottom permeation flying passes through the furnace bottom of the blast furnace, and carrying out a furnace bottom base portion of the blast furnace (1) The blast furnace bottom management method described.
(6) In the feature (2), the wear amount estimation means performs measurement of a cosmic ray muon transmitted through the bottom of the blast furnace and transmitted through the bottom of the blast furnace. The blast furnace bottom management method described.

本発明によれば、炉底耐火物を通して熱電対などの温度計測手段により計測した計測温度に基づく耐火物の残存厚推定値を、宇宙線ミュオンを利用した高炉炉底の炉内と耐火物との境界位置の判定結果により補完するので、耐火物の残存厚をより一層高精度に推定することができる。   According to the present invention, the estimated thickness of the refractory based on the measured temperature measured by a temperature measuring means such as a thermocouple through the bottom refractory, the refractory inside the blast furnace bottom using the cosmic ray muon, and the refractory Therefore, the remaining thickness of the refractory can be estimated with higher accuracy.

第1の実施の形態
図1は本発明の第1の実施の形態による高炉炉底管理方法を説明する縦断面図、図2は図1の平面図を示す。図3は宇宙線ミュオンの計測装置の概略構成を示す斜視図である。
First Embodiment FIG. 1 is a longitudinal sectional view for explaining a blast furnace bottom management method according to a first embodiment of the present invention, and FIG. 2 is a plan view of FIG. FIG. 3 is a perspective view showing a schematic configuration of a measuring device for cosmic ray muons.

図1及び図2において、高炉1は、グランドレベル(GL)に対して高さHの位置に設けられており、炉底2の底盤3及び側壁4は耐火物としての耐火レンガ5により内張りされている。6は出銑口のレベルを示す。   1 and 2, the blast furnace 1 is provided at a height H with respect to the ground level (GL), and the bottom plate 3 and the side walls 4 of the furnace bottom 2 are lined with refractory bricks 5 as refractories. ing. 6 indicates the level of the tap.

炉底2をなす底盤3および側壁4の耐火物としての耐火レンガ5に、温度計測手段である第1の熱電対9aと第1の熱電対9bを一組として複数組配置され、例えば出銑口6の下部のように損耗量の大きな部位にも配置される。   A plurality of sets of first thermocouples 9a and first thermocouples 9b, which are temperature measuring means, are arranged on a refractory brick 5 as a refractory for the bottom 3 and the side wall 4 forming the furnace bottom 2, for example, It is also arranged at a part where the amount of wear is large, such as the lower part of the mouth 6.

第1の熱電対9aは炉内に近い側に位置し、第2の熱電対9bはその後方に配置される。各部位に配置された各組の第1の熱電対9aと第2の熱電対9bからの検知信号は、残存厚(以下残厚と略す)を演算する残厚演算器10aに入力され、各部位における耐火レンガの残存厚を演算し、モニター、プリンタなどの表示器10bに演算結果である残厚を表示する。   The 1st thermocouple 9a is located in the near side in a furnace, and the 2nd thermocouple 9b is arrange | positioned in the back. Detection signals from the first thermocouple 9a and the second thermocouple 9b of each set arranged in each part are input to a remaining thickness calculator 10a that calculates a remaining thickness (hereinafter abbreviated as remaining thickness). The remaining thickness of the refractory brick at the part is calculated, and the remaining thickness as the calculation result is displayed on the display 10b such as a monitor or a printer.

耐火レンガに対する第1の熱電対9aと第2の熱電対9bとの配置位置d1、d2は決まっており、また耐火レンガの熱伝導率も決まっている。したがって、図2(b)に示すように、耐火レンガ内の2点(d1、d2)に埋め込んだ第1の熱電対9a、第2の熱電対9bの計測温度(t1、t2)に基づいて、2点間の温度と距離およびその耐火レンガの熱伝導率から熱流束を計算することにより図2(b)に示す温度‐耐火レンガの残厚特性線図が得られる。そして、炉内稼動面の温度を例えば溶銑の凝固する温度である1150度に仮定すると、このときの耐火レンガの残存厚みd3を算出することができる。   The arrangement positions d1 and d2 of the first thermocouple 9a and the second thermocouple 9b with respect to the refractory brick are determined, and the thermal conductivity of the refractory brick is also determined. Therefore, as shown in FIG. 2B, based on the measured temperatures (t1, t2) of the first thermocouple 9a and the second thermocouple 9b embedded in the two points (d1, d2) in the refractory brick. By calculating the heat flux from the temperature and distance between two points and the thermal conductivity of the refractory brick, the temperature-refractory brick residual thickness characteristic diagram shown in FIG. 2B is obtained. And assuming that the temperature of the working surface in the furnace is, for example, 1150 degrees which is the temperature at which the hot metal solidifies, the remaining thickness d3 of the refractory brick at this time can be calculated.

このようにして推定した耐火レンガの残厚は、あくまでも耐火レンガの内端面に炉内の溶銑が接していて、例えば耐火レンガの間に溶銑が入り込んでいないこと、あるいは耐火レンガ内に溶銑が滲み込んでいないことを前提としている。   The remaining thickness of the refractory brick estimated in this way is that the hot metal in the furnace is in contact with the inner end face of the refractory brick, for example, that no hot metal has entered between the refractory bricks, or the hot metal has oozed into the refractory brick. It is assumed that it is not included.

本実施の形態は、一組の熱電対9a、9bにより温度計測している耐火レンガと炉内の境界位置を、宇宙線ミュオンの計測により判定する判定手段(以下境界位置計測装置と称す)により判定し、該境界位置により前記熱電対に基づいて推定した耐火レンガの残厚を補完するようにしたもので、以下に境界位置計測装置について説明する。   In the present embodiment, a determination means (hereinafter referred to as a boundary position measuring device) for determining the boundary position in the furnace and the refractory brick whose temperature is measured by a pair of thermocouples 9a and 9b by measuring the cosmic ray muon. The boundary position measuring device will be described below, which is determined and supplemented with the remaining thickness of the refractory brick estimated based on the thermocouple based on the boundary position.

本実施の形態において、宇宙線ミュオン(以下ミュオンと称す)μの計測により耐火レンガと炉内の境界位置を計測する計測装置11は、高炉1から水平方向に距離L離れた位置に配置し、高炉1側から到来するミュオンμを計測すると共に、高炉1を透過しないで到来したミュオンμも計測するようにしている。   In the present embodiment, the measuring device 11 that measures the boundary position between the refractory brick and the furnace by measuring the cosmic ray muon (hereinafter referred to as muon) μ is arranged at a distance L from the blast furnace 1 in the horizontal direction, The muon μ coming from the blast furnace 1 side is measured, and the muon μ coming without passing through the blast furnace 1 is also measured.

図3において、本実施の形態における宇宙線ミュオンの計測装置11は、前部計測面を高炉に向けて設置される計測部12と、計測部12で計測した計測結果に基づいて、ミュオンの強度と計測した宇宙線ミュオンの入射方向(水平方向の角度と仰角)を求めて記憶部13に記憶すると共に、後述する損耗状態の判定を行う判定部14を有する演算部15とにより構成されている。演算部15での演算結果は表示器16に表示される。表示形態としては、演算結果を表で表示したり、図5〜図8に示す図表、F/B強度比の分布モデル図などをカラー表示により表示させたりすることができ、特にF/B強度比の分布モデル図をカラー表示させることにより、図5(e)、図7(f)に示すF/B強度比のレベルをカラーによるグラディエーション化で視覚により判別することができる。   In FIG. 3, the cosmic ray muon measuring device 11 according to the present embodiment includes a measuring unit 12 installed with the front measurement surface facing the blast furnace, and the muon intensity based on the measurement result measured by the measuring unit 12. And the calculated incident direction (horizontal angle and elevation angle) of the cosmic ray muon and stored in the storage unit 13 and a calculation unit 15 having a determination unit 14 for determining a wear state to be described later. . The calculation result in the calculation unit 15 is displayed on the display 16. As the display form, the calculation results can be displayed in a table, the charts shown in FIGS. 5 to 8, the distribution model diagram of the F / B intensity ratio, etc. can be displayed in color display, especially the F / B intensity. By displaying the ratio distribution model diagram in color, the F / B intensity ratio levels shown in FIGS. 5E and 7F can be visually discriminated by coloration.

なお、本実施の形態では、炉底2の底盤レンガから見て、水平距離Lを高炉炉床径の0.8〜1.6倍で、炉底中央のレンガ残存推定位置を見上げる仰角が5〜25度の位置に計測部12を配置している。   In the present embodiment, the horizontal distance L is 0.8 to 1.6 times the blast furnace hearth diameter when viewed from the bottom brick of the furnace bottom 2, and the elevation angle looking up the estimated brick remaining position in the center of the furnace bottom is 5 to 25 degrees. The measuring unit 12 is arranged at the position.

計測部12は、前側検出器121と、該前側検出器121と同じ構成の後側検出器122とを対向配置し、前側検出器121と後側検出器122との間に鉄板123を配置した構成としている。   The measurement unit 12 has a front detector 121 and a rear detector 122 having the same configuration as the front detector 121 arranged to face each other, and an iron plate 123 is arranged between the front detector 121 and the rear detector 122. It is configured.

前側検出器121と後側検出器122は、垂直方向に延びる水平方向検知用の第1の検知部124を水平方向にm行配置すると共に、水平方向に延びる垂直方向検知用の第2の検出部125を垂直方向にn列配置し、これらm行の第1の検知部124とn列の第2の検知部125を前後に配置した構成としている。第1の検知部124と第2の検知部125とは、例えばアルミニュウムケース内に例えばミュオンの入射により発光するプラスチックシンチレータを長さ方向に沿って配設すると共に、該プラスチックシンチレータの後方に複数個の光電子増倍管を該アルミニュウムケースの長さ方向に沿って等ピッチに配設した構成としている。   The front detector 121 and the rear detector 122 are arranged with m rows of first detection units 124 for detecting the horizontal direction extending in the vertical direction in the horizontal direction, and the second detection for detecting the vertical direction extending in the horizontal direction. The units 125 are arranged in n columns in the vertical direction, and the m rows of the first detection units 124 and the n columns of the second detection units 125 are arranged in the front-rear direction. The first detection unit 124 and the second detection unit 125 include, for example, a plastic scintillator that emits light by, for example, muon incidence in an aluminum case along the length direction, and a plurality of the rear side of the plastic scintillator. The photomultiplier tubes are arranged at an equal pitch along the length direction of the aluminum case.

したがって、プラスチックシンチレータが発光すると、その発光点の後方位置における光電子増倍管からパルス信号が出力されることになる。この場合、第1の検知部124と第2の検知部125とからそれぞれパルス信号が出力される。   Therefore, when the plastic scintillator emits light, a pulse signal is output from the photomultiplier tube at a position behind the light emitting point. In this case, pulse signals are output from the first detection unit 124 and the second detection unit 125, respectively.

また、前側検出器121及び後側検出器122における第1の検出部124同士、第2の検出部125同士の位置関係は予め設定され、第1の検知部124の水平方向に並ぶ各列は例えば高炉炉底2の中心点から径方向における距離が予め判明し、第2の検知部125の垂直方向に並ぶ各列は高炉炉底2の所定点に対して垂直方向における距離が予め判明している。   Further, the positional relationship between the first detectors 124 and the second detectors 125 in the front detector 121 and the rear detector 122 is set in advance, and each row of the first detectors 124 arranged in the horizontal direction is For example, the distance in the radial direction from the center point of the blast furnace bottom 2 is known in advance, and the distance in the vertical direction with respect to a predetermined point on the blast furnace bottom 2 is known in advance for each row arranged in the vertical direction of the second detector 125. ing.

ここで、ある瞬間に高炉炉底2を透過したミュオンμを検知したとする。ミュオンμは前側検出器121の第1の検出部124と第2の検出部125を透過し、さらに鉄板123を透過したミュオンμは後側検出器122を透過する。水平方向にm行に並んだ第1の検出部124に着目すると、ミュオンμが透過した前側検出器121では左端から例えば6番目であり、後側検出器122にあっては左端から7番目であったとすると、水平方向におけるミュオンμの入射角が求まり、高炉炉底に対するこのミュオンμの水平方向における飛来軌跡が求まる。   Here, it is assumed that muon μ transmitted through the blast furnace bottom 2 is detected at a certain moment. Muon μ passes through the first detector 124 and the second detector 125 of the front detector 121, and muon μ that passes through the iron plate 123 passes through the rear detector 122. Focusing on the first detectors 124 arranged in m rows in the horizontal direction, the front detector 121 through which muon μ is transmitted is, for example, sixth from the left end, and the rear detector 122 is seventh from the left end. If there is, the incident angle of the muon μ in the horizontal direction is obtained, and the flying locus of the muon μ in the horizontal direction with respect to the blast furnace bottom is obtained.

また、垂直方向にn列並んだ第2の検出部125に着目すると、ミュオンμが透過した前側検出器121では例えば下から4番目であり、後側検出器122にあっては下から3番目であったとすると、高炉側から飛来したミュオンμの仰角が求まり、高炉炉底2に対するこのミュオンμの仰角方向における飛来軌跡が求まる。   Focusing on the second detectors 125 arranged in n rows in the vertical direction, the front detector 121 through which muon μ is transmitted is, for example, the fourth from the bottom, and the rear detector 122 is the third from the bottom. If so, the elevation angle of the muon μ flying from the blast furnace side is obtained, and the flight locus in the elevation angle direction of the muon μ with respect to the blast furnace bottom 2 is obtained.

これらの飛来軌跡は千差万別であり、計測部12に到来するミュオンμは計測部12の一点に集中することはなく、高炉炉底2に対する水平平面においては図4に示すように、飛来軌跡が疎の部分もあれば密の部分もあり、また交差する部分も存在するが、このような計測を長時間にわたって行うと、炉底2の炉内7の全域、及び側壁4、底盤3のみを透過したミュオンμを計測することができる。また、仰角方向においても同様である。   These flying trajectories are various, and the muon μ arriving at the measuring unit 12 does not concentrate on one point of the measuring unit 12, but on the horizontal plane with respect to the blast furnace bottom 2, as shown in FIG. There are sparse and dense portions, and there are also intersecting portions. When such measurement is performed over a long period of time, the entire region of the furnace bottom 7 of the furnace bottom 2, the side walls 4, the bottom plate 3. It is possible to measure the muon μ that has passed through only. The same applies to the elevation direction.

なお、計測部12を炉底2の底盤3よりも上方に配置している場合には、炉底2の底盤3を透過したミュオンμについては計測できないので、本実施の形態では計測部12を炉底2の底盤3よりも少し下の位置に配置することにより、炉底2の底盤3を透過したミュオンμの計測を可能としている。   In addition, when the measurement part 12 is arrange | positioned upwards from the base 3 of the furnace bottom 2, since it cannot measure about the muon mu which permeate | transmitted the base 3 of the furnace bottom 2, in this Embodiment, the measurement part 12 is used. By arranging it at a position slightly below the bottom plate 3 of the furnace bottom 2, it is possible to measure the muon μ transmitted through the bottom plate 3 of the furnace bottom 2.

ミュオンに比べ数10倍近い多量の軟成分(電子、ガンマ線など)バックグラウンドを除去するために、中間に置いた鉄による軟成分がつくる多重発生信号を用いた;前方(後方)カウンターを通ったミュオンはそのまま鉄中を直進し後方(前方)カウンターに単一の信号を与えるが、軟成分は鉄中で多数の粒子と光子に変わるため、後方(前方)カウンターに複数の信号を与える。   In order to remove the background of a large amount of soft components (electrons, gamma rays, etc.) nearly tens of times that of muon, we used multiple generated signals created by soft components due to iron in the middle; The muon goes straight through the iron and gives a single signal to the rear (front) counter, but the soft component turns into a large number of particles and photons in the iron, so it gives multiple signals to the rear (front) counter.

また、本実施の形態では、前側検出器121において高炉側から飛来したミュオンμの強度の検出(以下F強度とする)を行うと共に、後側検出器122において、高炉を通過していないミュオンμの強度を併せて検出(以下B強度とする)し、このF強度およびB強度の値を上記記憶部13に記憶している。   In the present embodiment, the intensity of muon μ flying from the blast furnace side is detected by the front detector 121 (hereinafter referred to as F intensity), and the muon μ not passing through the blast furnace is detected by the rear detector 122. Are also detected (hereinafter referred to as B intensity), and the values of the F intensity and B intensity are stored in the storage unit 13.

前側検出器121で計測したミュオンμのF強度は、高炉を透過するので、高炉を透過することなく後側検出器122で計測されたミュオンμのB強度はF強度よりも大きい。また、密度の大きい銑鉄が存在する炉底2の炉内を透過したF強度は、銑鉄(密度が約7g/cm3)に比べて密度の小さい耐火レンガ(耐火レンガの成分はカーボンで、密度が約2g/cm3)を透過したF強度よりも小さいことはいうまでもないことである。そうすると、高炉を透過しないミュオンμの計測強度であるB強度との対比(F/B)でF強度を調べると、そのミュオンμの透過した飛来軌跡が炉底2の炉内を透過したものであるのか、耐火レンガのみを透過したものであるのかを判断することができる。 Since the F intensity of the muon μ measured by the front detector 121 passes through the blast furnace, the B intensity of the muon μ measured by the rear detector 122 without passing through the blast furnace is larger than the F intensity. In addition, the F strength transmitted through the furnace at the bottom 2 where the high density of pig iron is present is a refractory brick with a density lower than that of pig iron (density is about 7 g / cm 3 ). Needless to say, is less than the F intensity transmitted through about 2 g / cm 3 ). Then, when the F intensity is examined by comparison with the B intensity (F / B), which is the measured intensity of the muon μ that does not permeate the blast furnace, the flying trajectory that the muon μ permeates penetrates the inside of the furnace at the bottom 2 of the furnace. It is possible to determine whether there is a fire brick or only through it.

本実施の形態では、このF/B強度比とミュオンμの透過した物質の密度(Density)との間に相関関係があることに着目し、炉底2の炉内が全て鉄で満たされたと仮定し、そのときの物質の密度(density)を7.8g/cm3とした状態1、5.85g/cm3とした状態2、3.9g/cm3とした状態3、1.95g/cm3とした状態4について、炉底2におけるF/B強度比の分布モデルをモンテカルロシミュレーション(Monte Carlo Simulation)に基づいて作成し、これらの状態1〜状態4により得られた密度とF/B強度比の特性線を得ている。 In this embodiment, paying attention to the fact that there is a correlation between the F / B intensity ratio and the density (Density) of the substance permeated by muon μ, the furnace inside the furnace bottom 2 is completely filled with iron. assumed, and a state 3,1.95g / cm 3 which was state 2,3.9g / cm 3 density of material (density) was state 1,5.85g / cm 3, which was 7.8 g / cm 3 at that time For state 4, a distribution model of F / B intensity ratio in the bottom 2 is created based on Monte Carlo Simulation, and the density and F / B intensity ratio characteristics obtained in these states 1 to 4 are obtained. Getting a line.

ここで、状態1の密度は例えば鉄に相当し、状態2の密度は例えばコークスと鉄との混合物(鉄の比重が大)に相当し、状態3の密度は例えばコークスと鉄の混合物(コークス比率が大)に相当し、状態4の密度は例えば耐火レンガに近い値である。   Here, the density in state 1 corresponds to, for example, iron, the density in state 2 corresponds to, for example, a mixture of coke and iron (the specific gravity of iron is large), and the density in state 3 corresponds to, for example, a mixture of coke and iron (coke The density in state 4 is a value close to that of refractory bricks, for example.

図5の(a)〜(d)は状態1〜状態4におけるこのF/B強度比の分布モデルを夫々示し、X方向は水平方向、Y方向は仰角方向、Z方向はF/B強度値を示している。また、図5において、X方向は図2のαで示すように、計測部12の中心点から炉底2の炉壁の外周面に接する左端の接線を0(mrad)とし、右端の接線まで時計回りに1000(mrad)スキャンした状態(計測部12の中心点と炉心の中心を結ぶ位置は丁度500mradとなっている)を示し、Y方向は図1のβで示すように、水平線を0(mrad)とし、仰角500(mrad)までスキャンした状態を示している。   FIGS. 5A to 5D show distribution models of the F / B intensity ratio in states 1 to 4, respectively. The X direction is the horizontal direction, the Y direction is the elevation direction, and the Z direction is the F / B intensity value. Is shown. In FIG. 5, the X direction is 0 (mrad) from the center point of the measuring section 12 to the outer peripheral surface of the furnace wall of the furnace bottom 2, as indicated by α in FIG. It shows a state of 1000 (mrad) scanning in the clockwise direction (the position connecting the center point of the measuring unit 12 and the center of the core is just 500 mrad), and the Y direction is 0 on the horizontal line as indicated by β in FIG. (Mrad), and a state of scanning up to an elevation angle of 500 (mrad) is shown.

なお、モンテカルロシミュレーションによるF/B強度比の分布モデルの作成方法についての説明は省略するが、図5(a)〜(d)(f)に示すF/B強度比の分布モデル図は、F/B強度比を等高線として表し、F/B強度比が高いほど等高線が高い位置に存在するので、図5の各モデル図は周囲から中心に向かって等高線が低くなっている。また築炉時における炉底2の底盤3、及び側壁4の耐火レンガ5の厚さといった炉底構造が予め判明しているので、操業の開始後における耐火レンガと溶銑との境目となる位置は、この炉底2のデータから築炉時における耐火レンガの表面から後退した位置となる。なお、図5(e)に等高線とF/B強度比との関係を示し、上から下に向かってF/B強度比が小さくなり、これを色彩によるグラディエーション化を施して示すと、一番上が赤色、一番下が濃紺色となり、その間をオレンジ色、黄色、黄緑色、緑色、青色と順次変化することで示され、これに対応して図5(a)〜(d)(f)のF/B強度比の分布モデル図は外周側の等高線が暖色系で、中心部が寒色系で示される。なお、図5(a)〜(d)(f)の等高線の一部に示す数値はF/B強度比値を示す。また、後述する図6〜図8についても同様である。   Although description of a method for creating an F / B intensity ratio distribution model by Monte Carlo simulation is omitted, the F / B intensity ratio distribution model diagrams shown in FIGS. The / B intensity ratio is expressed as a contour line, and the higher the F / B intensity ratio is, the higher the contour line is, so that each model diagram in FIG. 5 has a lower contour line from the periphery toward the center. In addition, since the furnace bottom structure such as the thickness of the bottom 3 of the furnace bottom 2 and the thickness of the refractory brick 5 on the side wall 4 has been known in advance, the position that becomes the boundary between the refractory brick and the hot metal after the start of operation is From the data of the furnace bottom 2, the position is set back from the surface of the refractory brick at the time of building. FIG. 5 (e) shows the relationship between the contour line and the F / B intensity ratio. When the F / B intensity ratio decreases from the top to the bottom, and this is shown by gradation by color, The top color is red, and the bottom color is dark blue, and the color changes between orange, yellow, yellow-green, green, and blue in order, and correspondingly, FIGS. 5 (a) to (d) ( In the distribution model diagram of the F / B intensity ratio in f), the contour lines on the outer peripheral side are shown in a warm color system, and the center is shown in a cold color system. In addition, the numerical value shown to a part of contour line of Fig.5 (a)-(d) (f) shows F / B intensity ratio value. The same applies to FIGS. 6 to 8 described later.

図5(a)において、X方向に500(mrad)の位置が炉底2の水平方向における中心位置であり、仰角において、水平と略等しい0〜150(mrad)程度の範囲にあっては底盤3の耐火レンガのみを透過するものと推測できるので、この範囲でのF/B強度比は大きい値を示している。仰角をさらに上げ、150〜200(mrad)の範囲にあってはF/B強度比が徐々に低下する傾向にあり、仰角が350〜500(mrad)の範囲に達すると、F/B強度比が大きく低下する。ここで仰角が500(mrad)で、水平方向が500(mrad)の位置は炉底2の底盤3表面よりも上方に位置しているので、この位置でのF/B強度比は銑鉄を透過したミュオンμのF/B強度比とすることができ、この位置でのF/B強度比は0.257である。したがって、図5(a)より、炉内の充填物の密度を7.8g/cm3とした状態1にあっては、密度7.8g/cm3でのF/B強度比が0.257として与えられる。 In FIG. 5 (a), the position of 500 (mrad) in the X direction is the center position in the horizontal direction of the furnace bottom 2, and the bottom plate is in the range of about 0 to 150 (mrad) which is substantially equal to the horizontal in elevation angle. Since it can be estimated that only the refractory brick 3 is transmitted, the F / B intensity ratio in this range shows a large value. When the elevation angle is further increased, the F / B intensity ratio tends to gradually decrease in the range of 150 to 200 (mrad). When the elevation angle reaches the range of 350 to 500 (mrad), the F / B intensity ratio is increased. Is greatly reduced. Here, since the elevation angle is 500 (mrad) and the horizontal direction is 500 (mrad), it is located above the surface of the bottom 3 of the furnace bottom 2, so the F / B intensity ratio at this position passes through pig iron. The F / B intensity ratio of this muon μ can be obtained, and the F / B intensity ratio at this position is 0.257. Thus, from FIG. 5 (a), the is a density of the packing in the furnace in a state 1 where the 7.8g / cm 3, F / B intensity ratio at a density 7.8 g / cm 3 is given as 0.257.

図5(b)に示す炉内充填物の密度を5.85g/cm3とした場合のF/B強度比の分布モデルにおいて、仰角400〜500(mrad)での炉内中心部に存在する部分のF/B強度比が0.341として与えられる。 In the distribution model of the F / B intensity ratio when the density of the packing in the furnace shown in FIG. 5 (b) is 5.85 g / cm 3 , a part existing in the center of the furnace at an elevation angle of 400 to 500 (mrad) The F / B intensity ratio is given as 0.341.

図5(c)に示す炉内充填物の密度を3.1g/cm3とした場合のF/B強度比の分布モデルにおいて、仰角400〜500(mrad)での炉内中心部に存在する部分のF/B強度比が0.426として与えられる。 In the distribution model of the F / B intensity ratio when the density of the filling in the furnace shown in FIG. 5 (c) is 3.1 g / cm 3 , a portion existing in the center of the furnace at an elevation angle of 400 to 500 (mrad) The F / B intensity ratio is given as 0.426.

図5(d)に示す炉内充填物の密度を1.95g/cm3とした場合のF/B強度比の分布モデルにおいて、仰角400〜500(mrad)での炉内中心部に存在する部分におけるF/B強度比が0.554として与えられる。 In the distribution model of the F / B intensity ratio when the density of the packing in the furnace shown in FIG. 5 (d) is 1.95 g / cm 3 , the part existing in the center of the furnace at an elevation angle of 400 to 500 (mrad) The F / B intensity ratio at is given as 0.554.

このように、密度と、各密度におけるF/B強度比との関係を示したのが図6である。   Thus, FIG. 6 shows the relationship between the density and the F / B intensity ratio at each density.

図6は、縦軸にF/B強度比、横軸に密度(g/cm3)を表しており、図5の(a)〜(d)に示す4点をプロットして得たF/B強度比-密度特性線を示している。 FIG. 6 shows the F / B intensity ratio on the vertical axis and the density (g / cm 3 ) on the horizontal axis, and F / P obtained by plotting the four points shown in FIGS. 5 (a) to (d). A B intensity ratio-density characteristic line is shown.

この図6に示すF/B強度比‐密度特性線を用いることにより、実際に測定したミュオン強度のF/B強度比が判明すれば、炉底2の炉内に充填されている物質の密度を推定することが可能となる。これは、耐火レンガと炉内充填物との境目がわかれば耐火レンガの厚みを推定できるということに基づくものである。   If the F / B intensity ratio of the actually measured muon intensity is determined by using the F / B intensity ratio-density characteristic line shown in FIG. 6, the density of the substance filled in the furnace in the furnace bottom 2 is determined. Can be estimated. This is based on the fact that the thickness of the refractory brick can be estimated if the boundary between the refractory brick and the filling in the furnace is known.

図5(f)は計測部12で計測したミュオンμの飛来軌跡、及びF値及びB値を実測値のデータとし、これらの実測データに基づくモンテカルロシミュレーションによるF/B強度比の分布モデルを示しており、図5(f)において最もF/B強度比が低い値は0.341である。そして、図6の特性線において、実測値によるF/B強度比0.341に対応する密度(g/cm3)は6.3470である。 FIG. 5 (f) shows the distribution model of the F / B intensity ratio by Monte Carlo simulation based on the measured data of the flying trajectory of the muon μ measured by the measuring unit 12, the F value and the B value. In FIG. 5 (f), the lowest F / B intensity ratio is 0.341. In the characteristic line of FIG. 6, the density (g / cm 3 ) corresponding to the actually measured F / B intensity ratio of 0.341 is 6.3470.

したがって、炉底2の炉内に充填されている物質の密度(g/cm3)が6.3470として推定できることになる。なお、図6(a)は図5(f)に示す実測値のF/B強度比の分布モデル図、図6(b)は図5(d)に示すF/B強度比の分布モデル図である。 Therefore, the density (g / cm 3 ) of the substance filled in the furnace at the furnace bottom 2 can be estimated as 6.3470. 6A is a distribution model diagram of the actual F / B intensity ratio shown in FIG. 5F, and FIG. 6B is a distribution model diagram of the F / B intensity ratio shown in FIG. 5D. It is.

上述のように、炉底2の炉内に充填されている物質の密度が特定できたので、炉内充填物質を透過したミュオンμのF/B強度比と、耐火レンガを透過したF/B強度比とに明確な差が生じている。また、予め判明している築炉時の耐火レンガの内端面の位置、例えば炉底2の底盤3の損耗量を確認するのであれば、築炉時における底盤3の内面高さ、また炉底2の側壁4の損耗量を確認するのであれば該側壁4の内面位置から耐火レンガの厚み方向に入り込んだ複数点でのF/B強度比のそれぞれについて、上述した図5および図6と同様にモンテカルロシミュレーションによるF/B強度比の分布モデルを作成することでF/B強度比‐耐火レンガの損耗量(現存する厚み)との関係を示す特性線を得ることができる。   As described above, since the density of the material filled in the furnace of the furnace bottom 2 has been specified, the F / B intensity ratio of the muon μ that has permeated the material filled in the furnace and the F / B that has permeated the refractory brick. There is a clear difference in intensity ratio. If the position of the inner end face of the refractory brick at the time of building the furnace, for example, the amount of wear of the bottom board 3 of the furnace bottom 2 is confirmed, the height of the inner surface of the bottom board 3 at the time of building the furnace, If the amount of wear of the side wall 4 is confirmed, each of the F / B intensity ratios at a plurality of points entering the thickness direction of the refractory bricks from the inner surface position of the side wall 4 is the same as in FIG. 5 and FIG. In addition, by creating a distribution model of F / B strength ratio by Monte Carlo simulation, it is possible to obtain a characteristic line showing the relationship between F / B strength ratio-amount of wear of refractory bricks (existing thickness).

図7は、炉底2の底盤3の損耗量の計測方法を説明する図で、(a)は底盤3が損耗していない状態を基準点とし、この基準点を0cmとして以下、50cm損耗した状態(−50cm)、100cm損耗した状態(―100cm)の位置関係を示し、(b)〜(d)は上記した(a)に示す3つの状態について、ミュオンμのF/B強度比の分布モデル図をモンテカルロシミュレーションにより作成したものを示し、(b)は0cmの損耗状態、(c)は50cmの損耗状態、(d)は100cmの損耗状態を示す。なお、(b)〜(d)のモンテカルロシミュレーションによるF/B強度比の分布モデル図の作成に際し、炉底2の炉内物質の密度(g/cm3)を図6に示す特性線により求めた6.347としている。 FIG. 7 is a diagram for explaining a method for measuring the amount of wear of the bottom plate 3 of the furnace bottom 2. FIG. 7A shows a state in which the bottom plate 3 is not worn. The positional relationship between the state (−50 cm) and the worn state (−100 cm) is shown. (B) to (d) are distributions of the F / B intensity ratio of muon μ for the three states shown in (a) above. A model diagram created by Monte Carlo simulation is shown, (b) shows a worn state of 0 cm, (c) shows a worn state of 50 cm, and (d) shows a worn state of 100 cm. In preparing the distribution model diagram of F / B intensity ratio by Monte Carlo simulation (b) to (d), the density (g / cm 3 ) of the substance in the furnace bottom 2 is obtained from the characteristic line shown in FIG. 6.347.

図7の(b)〜(d)に示すF/B強度比の分布モデル図は、図5の(a)〜(d)と同様にF/B強度比を等高線により表したもので、外周側から中心側に向かうに従って等高線の示すF/B強度比が小さくなっている。また、X方向、Y方向およびZ方向についても図5と同様である。   The distribution model diagram of the F / B intensity ratio shown in (b) to (d) of FIG. 7 represents the F / B intensity ratio with contour lines in the same manner as (a) to (d) of FIG. The F / B intensity ratio indicated by the contour lines decreases from the side toward the center. Further, the X direction, the Y direction, and the Z direction are the same as those in FIG.

図7(b)〜(d)において、X方向の位置を炉の中心を通る500(mrad)として、(b)〜(d)のいずれにおいても検出器側では炉底レンガを、遠方側では炉内銑鉄部を通るような、(b)〜(d)において一定の光路(仰角)を選べば、光路は炉内で炉底レンガと炉内銑鉄部の境界を横切ることになり、またレンガ損耗量によって境界が相違するため、(b)〜(d)それぞれにおいてレンガ部と銑鉄部の通過距離が変わり、F/B強度比が異なることになる。   7 (b) to (d), the position in the X direction is set to 500 (mrad) passing through the center of the furnace, and in any of (b) to (d), the furnace bottom brick is used on the detector side, and on the far side. If a constant light path (elevation angle) is selected in (b) to (d) that passes through the pig iron part in the furnace, the light path will cross the boundary between the bottom brick and the pig iron part in the furnace, and the brick Since the boundary is different depending on the amount of wear, the passing distance between the brick portion and the pig iron portion changes in each of (b) to (d), and the F / B strength ratio differs.

このようにして求めたF/B強度比は、損耗量0cmでは0.929、損耗量−50cmでは0.895、損耗量−100cmでは0.87であった。なお、図7(e)は実測値に基づくF/B強度比の分布モデル図を示し、図5(f)と同一のものである。   The F / B strength ratio thus determined was 0.929 at a wear amount of 0 cm, 0.895 at a wear amount of −50 cm, and 0.87 at a wear amount of −100 cm. FIG. 7E shows a distribution model diagram of the F / B intensity ratio based on the actually measured values, which is the same as FIG. 5F.

図8は、縦軸をF/B強度比、横軸を損耗量としたF/B強度比‐損耗量特性線図を示し、上記した3点のデータ(0cmでは0.929、−50cmでは0.895、−100cmでは0.87)をプロットすることにより得られる。なお、図8(b)、(c)(d)に示すF/B強度比の分布モデル図は、図7(b)、(c)(d)に示すF/B強度比の分布モデル図にそれぞれ対応している。   FIG. 8 shows an F / B strength ratio-abrasion amount characteristic diagram with the F / B strength ratio on the vertical axis and the wear amount on the horizontal axis. The above three data points (0.929 at 0 cm, 0.895 at −50 cm, It can be obtained by plotting 0.87) at -100 cm. The distribution model diagrams of the F / B intensity ratios shown in FIGS. 8B, 8C, and 8D are the distribution model diagrams of the F / B intensity ratios shown in FIGS. 7B, 7C, and 7D. It corresponds to each.

図8(a)は実測値に基づいて作成したF/B強度比の分布モデル図で、図5(f)、図6(a)、図7(e)のF/B強度比の分布モデル図と同一である。   FIG. 8A is a distribution model diagram of the F / B intensity ratio created based on the actual measurement values, and the distribution model of the F / B intensity ratio in FIGS. 5F, 6A, and 7E. It is the same as the figure.

このようにして得られたF/B強度比‐損耗量特性線図は、図8(a)に示す実測値に基づいて作成したF/B強度比の分布モデル図において、X方向で500(mrad)の位置で、Y方向におけるF/B強度比が最も大きいところはミュオンμが耐火レンガのみを透過していることを示し、この位置が炉底2の底盤3表面と炉内に充填されている物質との境界を示すので、この位置におけるF/B強度比が判明すれば、炉底2の底盤3の損耗量が導き出されることになる。図8(a)の実測値において炉内に充填された物質との境界位置におけるF/B強度比は0.914で、そのときの損耗量は20.734cmであった。   The F / B strength ratio-wear amount characteristic diagram obtained in this way is a distribution model diagram of F / B strength ratio created based on the actual measurement values shown in FIG. mrad), where the F / B intensity ratio in the Y direction is the largest, it indicates that muon μ penetrates only the refractory bricks, and this position fills the bottom 3 surface of the furnace bottom 2 and the furnace. Since the boundary with the substance is shown, if the F / B intensity ratio at this position is known, the amount of wear of the bottom plate 3 of the furnace bottom 2 is derived. The F / B intensity ratio at the boundary position with the substance filled in the furnace in the measured value in FIG. 8A was 0.914, and the amount of wear at that time was 20.734 cm.

図5〜図8を参照しながら説明した上述のモンテカルロシミュレーションによるF/B強度比の分布モデルの作成及び図6に示すF/B強度比‐密度特性線、図8に示すF/B強度比‐損耗量特性線図の作成、実測値のF/B強度比の分布モデルからのデータの抽出、この抽出したデータから密度、損耗量を演算する処理は図3に示す演算部15の判定部14により実行される。   Creation of F / B intensity ratio distribution model by the above-mentioned Monte Carlo simulation described with reference to FIGS. 5 to 8, F / B intensity ratio-density characteristic line shown in FIG. 6, F / B intensity ratio shown in FIG. -Creation of a wear amount characteristic diagram, extraction of data from a distribution model of F / B intensity ratio of actual measurement values, processing for calculating density and wear amount from the extracted data is performed by the determination unit of the calculation unit 15 shown in FIG. 14 is executed.

本実施の形態では、炉底2の底盤3の全域を計測対象とし、図1、および図2に示すように、一組の熱電対9a、9bが配置されている部分がカバーされており、水平方向の角度、仰角との座標から特定される一組の熱電対9a、9bの配置位置における炉内と耐火レンガの境界をそれぞれ決定する。   In the present embodiment, the entire area of the bottom plate 3 of the furnace bottom 2 is a measurement target, and as shown in FIGS. 1 and 2, a portion where a set of thermocouples 9a and 9b is disposed is covered. The boundary between the inside of the furnace and the refractory brick is determined at the position where the pair of thermocouples 9a and 9b specified from the coordinates of the horizontal angle and the elevation angle.

炉内と耐火レンガの境界位置d4が決定すると、図2(b)に示す一組の熱電対9a、9bの温度計測に基づく残厚d3と比較する。図2(b)では境界位置(残厚)d4が熱電対の温度計測に基づく残厚d3よりも大きい。この場合、ミュオンμを利用して求めた残厚d4を参考にして、残厚の推定値を決定する。   When the boundary position d4 between the inside of the furnace and the refractory brick is determined, it is compared with the remaining thickness d3 based on the temperature measurement of the pair of thermocouples 9a and 9b shown in FIG. In FIG. 2B, the boundary position (remaining thickness) d4 is larger than the remaining thickness d3 based on the thermocouple temperature measurement. In this case, an estimated value of the remaining thickness is determined with reference to the remaining thickness d4 obtained using the muon μ.

ただし、ミュオンμ計測により精度の良い耐火物残厚を推定するには週から月単位の期間が必要であるため、ミュオン計測は長期的な耐火物残厚変化の推定に用い、時から日単位の付着物厚み変化など短期的な炉内状況変化は熱電対による温度計測を用いるという補完的な炉内管理方法が可能である。   However, since it takes a week to month period to accurately estimate the remaining refractory thickness by muon μ measurement, muon measurement is used to estimate the long-term change in refractory residual thickness. For a short-term change in the furnace condition such as a change in the thickness of the deposit, a complementary in-furnace management method using temperature measurement with a thermocouple is possible.

なお、上記した実施の形態では、ミュオンμを利用して炉内と耐火レンガとの境界の判別を炉底2の全体にわたって行っているが、炉底2の各所に点在して配置した一対の熱電対9a、9bに対し、この熱電対が配置されている箇所だけを狙うように高さ、水平角度、仰角などを調節して計測部12を配置し、上記の手法により得た耐火レンガの損耗プロファイルを適用することで、当該熱電対9a、9bの計測対象とする耐火レンガの残厚(損耗量)を高精度に推定することができる。このように、高炉の築炉時から継続して監視していなくても、高炉の操業途中からの耐火レンガの損耗量の推測が可能となるのは、F/B強度比を利用していることによる。   In the embodiment described above, the muon μ is used to determine the boundary between the inside of the furnace and the refractory brick over the entire furnace bottom 2. Refractory bricks obtained by the above-described method by arranging the measuring section 12 with the height, horizontal angle, elevation angle, etc. adjusted so as to aim only at the location where the thermocouple is disposed, with respect to the thermocouples 9a, 9b By applying this wear profile, the remaining thickness (wear amount) of the refractory bricks to be measured by the thermocouples 9a and 9b can be estimated with high accuracy. As described above, the F / B strength ratio is used to estimate the wear amount of the refractory bricks during the operation of the blast furnace even if it is not continuously monitored since the blast furnace was built. It depends.

ミュオンμを利用した炉底2の耐火レンガの残厚(損耗量)の推定方法としては、上記した方法以外に以下の方法がある。   As a method for estimating the remaining thickness (amount of wear) of the refractory brick on the furnace bottom 2 using the muon μ, there are the following methods in addition to the method described above.

第2の実施の形態
図9は本発明の第2の実施の形態を示す。
Second Embodiment FIG. 9 shows a second embodiment of the present invention.

本第2の実施の形態は、炉底2の底盤3の損耗量を計測するために、計測部12を炉底基礎部8に配置し、上方から炉底2の底盤3を透過するミュオンμを計測する。この場合、計測部12は計測面を垂直線と直交させて水平面と一致するように設置する。炉底基礎部8に計測部12を設置するのは、高炉1の改修などの築炉時に埋設することにより行われる。   In the second embodiment, in order to measure the amount of wear of the bottom plate 3 of the furnace bottom 2, the measuring unit 12 is disposed on the furnace bottom base portion 8, and the muon μ passing through the bottom plate 3 of the furnace bottom 2 from above. Measure. In this case, the measurement unit 12 is installed so that the measurement surface is orthogonal to the vertical line and coincides with the horizontal plane. The measurement unit 12 is installed in the furnace bottom base 8 by being embedded at the time of building a furnace such as refurbishing the blast furnace 1.

上記した第1の実施の形態において、計測部12の後側検出器122は計測部12に到達するミュオンμの入射角(水平方向及び垂直方向の角度)を計測する役割と、前側検出器121及び鉄板123側とは反対側から到来するミュオンμの強度を計測することで高炉1を全く透過していないミュオンμの強度を得る役割を有していたが、本第2の実施の形態のように、計測部12の計測面を垂直線に対して直交させるように設置すると、炉底基礎部8に埋設されている計測部12の後側検出器122にはその背面側からミュオンμが到来することがないので、前記B強度を計測することができない。   In the first embodiment described above, the rear detector 122 of the measuring unit 12 measures the incident angle (horizontal and vertical angles) of the muon μ reaching the measuring unit 12, and the front detector 121. And the role of obtaining the intensity of the muon μ that does not pass through the blast furnace 1 by measuring the intensity of the muon μ coming from the side opposite to the iron plate 123 side. As described above, when the measurement surface of the measurement unit 12 is installed so as to be orthogonal to the vertical line, the rear detector 122 of the measurement unit 12 embedded in the furnace bottom base 8 has a muon μ from the back side. Since it does not arrive, the B intensity cannot be measured.

そこで、本実施の形態では、B強度を計測するために地上にB強度検出器124を設置している。このB強度検出器124は、例えば前側検出器121を構成する第1の検出部124或いは第2の検出部125と同一構成のものを使用することができ、計測面を垂直線に対して直交するように配置し、高炉1を透過したミュオンμが到来しないようにしている。   Therefore, in the present embodiment, the B intensity detector 124 is installed on the ground in order to measure the B intensity. For this B intensity detector 124, for example, one having the same configuration as the first detection unit 124 or the second detection unit 125 constituting the front detector 121 can be used, and the measurement plane is orthogonal to the vertical line. The muon μ that has passed through the blast furnace 1 does not arrive.

本第2の実施の形態のように、計測部12を炉底基礎部8に埋設することにより、炉底2の底盤3を全体的に直接観察できるので、図5〜図8に示すモンテカルロシミュレーションによって得られるF/B強度比の分布モデル図の精度も高くなり、底盤3の耐火レンガの損耗量の推定精度がより一層高くなる。したがって、底盤3の任意の箇所に配置した熱電対9a、9bにより温度計測される耐火レンガ5と炉内の境界を確実に判定することができる。   Since the bottom plate 3 of the furnace bottom 2 can be directly observed as a whole by embedding the measuring unit 12 in the furnace bottom base 8 as in the second embodiment, the Monte Carlo simulation shown in FIGS. The accuracy of the distribution model diagram of the F / B intensity ratio obtained by the above is also increased, and the estimation accuracy of the amount of wear of the refractory brick of the bottom board 3 is further increased. Therefore, it is possible to reliably determine the boundary between the refractory brick 5 and the furnace in which the temperature is measured by the thermocouples 9a and 9b arranged at arbitrary locations on the bottom board 3.

図5から図8に示すF/B強度比の分布モデル図において、X方向を水平方向の角度、Y方向を仰角、Z方向をF/B強度比としているが、本第2の実施の形態では、X方向が炉底2の中心からの水平方向の角度、Y方向は垂直線に対する角度として示される。   In the F / B intensity ratio distribution model diagrams shown in FIGS. 5 to 8, the X direction is the horizontal angle, the Y direction is the elevation angle, and the Z direction is the F / B intensity ratio. Then, the X direction is shown as an angle in the horizontal direction from the center of the furnace bottom 2, and the Y direction is shown as an angle with respect to the vertical line.

第3の実施の形態
上記した第1の実施の形態では、計測部12を高炉1から水平方向に離れた位置に設置し、一箇所のみで炉底2を透過したミュオンμを計測し、仰角方向のデータを加えることにより、図5〜図8に示すように3次元的にF/B強度比の分布モデル図を作成し、底盤3の損耗量を計測している。
Third Embodiment In the first embodiment described above, the measuring unit 12 is installed at a position away from the blast furnace 1 in the horizontal direction, the muon μ that has passed through the furnace bottom 2 is measured at only one location, and the elevation angle is measured. By adding direction data, a distribution model diagram of the F / B intensity ratio is created three-dimensionally as shown in FIGS. 5 to 8 and the amount of wear of the bottom board 3 is measured.

これに対し、本第3の実施の形態は、炉底2の周囲の複数箇所で炉底2を透過したミュオンμの計測を行うことにより、底盤3だけでなく、側壁4の耐火レンガと炉内との境界を2次元的に容易に得ることができる。   On the other hand, in the third embodiment, by measuring the muon μ that has passed through the furnace bottom 2 at a plurality of locations around the furnace bottom 2, not only the bottom board 3 but also the refractory brick and furnace of the side wall 4 are used. The boundary with the inside can be easily obtained two-dimensionally.

したがって、図5〜図8に示すモンテカルロシミュレーションによって得られるF/B強度比の分布モデル図が二次元で表示でき、炉底2の底盤3又は側壁4における耐火レンガの損耗量の推定が高精度に行える。したがって、熱電対9a、9bを配置した耐火レンガと炉内の境界位置を高精度に判定することができる。   Therefore, the distribution model diagram of the F / B intensity ratio obtained by the Monte Carlo simulation shown in FIG. 5 to FIG. 8 can be displayed in two dimensions, and the amount of wear of the refractory bricks on the bottom plate 3 or the side wall 4 of the furnace bottom 2 can be estimated with high accuracy. It can be done. Therefore, it is possible to determine the boundary position between the refractory brick and the furnace in which the thermocouples 9a and 9b are arranged with high accuracy.

ここで、炉底2の周囲の複数箇所で炉底2を透過したミュオンμの計測を行う方法として、例えば、計測部12を炉底2の周囲に複数配置することにより実現できる。この場合、計測部12を配置箇所の数だけ用意する必要があり、また複数箇所で同時にミュオンμの計測を行わなければならない必要性もなく、またミュオンμの計測期間も長いので、一つの計測部12を複数の計測箇所に移動して計測することも可能である。   Here, as a method of measuring the muon μ that has passed through the furnace bottom 2 at a plurality of locations around the furnace bottom 2, for example, it can be realized by arranging a plurality of measuring units 12 around the furnace bottom 2. In this case, it is necessary to prepare as many measuring units 12 as the number of arrangement locations, and it is not necessary to measure muon μ simultaneously at a plurality of locations, and the measurement period of muon μ is long. It is also possible to measure by moving the unit 12 to a plurality of measurement locations.

以上のように、上記した各実施の形態にあっては、炉底2を透過して計測部12で計測するミュオンμは種々の飛来軌跡を辿ったものであるため、これらのデータを蓄積することにより、モンテカルロシミュレーションを用いて炉底2の炉内及び底盤、側壁の状態を二次元として容易に推定可能である。   As described above, in each of the above-described embodiments, the muon μ that passes through the furnace bottom 2 and is measured by the measurement unit 12 follows various flight trajectories, and thus accumulates these data. Thus, it is possible to easily estimate the state of the inside of the furnace bottom 2, the bottom plate, and the side wall as two-dimensional using Monte Carlo simulation.

そして、F/B強度比を用いることによりミュオンμが実際に透過した物質(一つの物質もあれば複数の物質の混合物もある)の密度を知ることができ、炉底2の炉内及び底盤、側壁との状態をF/B強度比と密度の関係で表すことができる。このことから、実際に計測したデータから炉内に存在すると思える物質の密度が推定できれば、この炉内物質と底盤あるいは側壁との境界位置が判明する。   By using the F / B intensity ratio, it is possible to know the density of the substance (there is one substance or a mixture of a plurality of substances) that muon μ has actually permeated. The state of the side wall can be expressed by the relationship between the F / B intensity ratio and the density. From this, if the density of the substance that seems to exist in the furnace can be estimated from the actually measured data, the boundary position between the substance in the furnace and the bottom plate or the side wall can be determined.

また、実測値に基づいて炉内物資の密度が推定できたので、例えば築炉時における耐火レンガを基準とし、この基準値および複数の損耗量とF/B強度比との関係を求めておけば、実測値における炉内物質と耐火レンガとの境界位置でのF/B強度比から耐火レンガの損耗量を推定することができる。   In addition, since the density of materials in the furnace could be estimated based on the actual measurement values, for example, using refractory bricks at the time of building as a reference, the relationship between this reference value and a plurality of wear amounts and the F / B strength ratio can be obtained. For example, the wear amount of the refractory brick can be estimated from the F / B intensity ratio at the boundary position between the in-furnace material and the refractory brick in the actual measurement value.

このように、ミュオンμの透過した物質固有の情報とすることができるF/B強度比を用いることにより、従来のように、特定の入射角度で測定したミュオンμの強度を操業開始から継続して測定せずに済み、操業の途中からでも、また特定箇所での損耗量の測定が可能となる。   In this way, by using the F / B intensity ratio that can be information specific to the substance transmitted by muon μ, the intensity of muon μ measured at a specific incident angle is continued from the start of operation as in the past. This makes it possible to measure the amount of wear at a specific location even during the operation.

また、図8に示す特性線により最終的に耐火レンガの損耗量を推定できるようにしているが、図5〜図8に示す実測値のF/B強度比の分布モデル図中に、耐火レンガと炉内物質との境界位置を示すようにすること、あるいは耐火レンガの損耗により初期位置から現在の後退した位置を示すようにしても良い。特に、第2の実施の形態、及び第3の実施の形態のように、F/B強度比の分布モデル図を高精度に作成するのに有利な方法では、耐火レンガと炉内物質との境界位置などの表示をより一層高精度に行える。   Moreover, although the amount of wear of a refractory brick can be finally estimated from the characteristic line shown in FIG. 8, the refractory brick is shown in the distribution model diagram of the F / B intensity ratio of the actual measurement values shown in FIGS. It may be possible to indicate the boundary position between the refractory and the in-furnace material, or indicate the current retreated position from the initial position due to wear of the refractory bricks. In particular, as in the second embodiment and the third embodiment, in a method advantageous for creating a distribution model diagram of the F / B intensity ratio with high accuracy, there is a difference between refractory bricks and in-furnace materials. Display of the boundary position and the like can be performed with higher accuracy.

本発明の第1の実施の形態による高炉炉底管理方法を説明する縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view explaining the blast furnace bottom management method by the 1st Embodiment of this invention. (a)は図1の平面図および熱電対を用いた残厚計測装置のブロック図、(b)は熱電対を用いた温度‐耐火レンガ厚みの関係を示す特性線図。(A) is a plan view of FIG. 1 and a block diagram of a remaining thickness measuring device using a thermocouple, and (b) is a characteristic diagram showing a relationship between temperature and refractory brick thickness using a thermocouple. 図1、図2に示すミュオンの計測装置の概略構成を示す斜視図。FIG. 3 is a perspective view showing a schematic configuration of a muon measuring apparatus shown in FIGS. 1 and 2. ミュオンの飛来軌跡を示す図。The figure which shows a muon's flight locus. (a)〜(d)は炉内物質の密度を変数とし、密度とF/B強度比との関係を示すF/B強度比の分布モデル図、(e)はF/B強度比のレベルを示す図、(f)は実測値を示すF/B強度比の分布モデル図。(A) to (d) are F / B intensity ratio distribution model diagrams showing the relationship between the density and the F / B intensity ratio, with the density of the material in the furnace as a variable, and (e) is the F / B intensity ratio level. (F) is a distribution model diagram of F / B intensity ratio showing actual measurement values. F/B強度比と密度との関係を示す特性線図で、(a)は実測値でのF/B強度比の分布モデル図、(b)は図5の(d)に示すF/B強度比の分布モデル図FIG. 6 is a characteristic diagram showing the relationship between the F / B intensity ratio and the density, where (a) is a distribution model diagram of the F / B intensity ratio in actual measurement values, and (b) is the F / B shown in FIG. Distribution model of intensity ratio (a)は炉底の底盤の損耗量を変数として示す縦断面図、(b)〜(d)は損耗量とF/B強度比との関係を示すF/B強度比の分布モデル図、(e)は実測値のF/B強度比の分布モデル図、(f)はF/B強度比のレベルを示す図。(A) is a longitudinal sectional view showing the wear amount of the bottom of the furnace bottom as a variable, (b) to (d) are F / B strength ratio distribution model diagrams showing the relationship between the wear amount and the F / B strength ratio, (E) is a distribution model diagram of F / B intensity ratio of measured values, and (f) is a diagram showing the level of F / B intensity ratio. F/B強度比と損耗量との関係を示す特性線図で、(a)は実測値のF/B強度比の分布モデル図、(b)〜(d)は図7の(b)〜(d)に示すF/B強度比の分布モデル図。FIG. 7 is a characteristic diagram showing the relationship between the F / B strength ratio and the amount of wear, where (a) is a distribution model diagram of F / B strength ratio of actual measurement values, and (b) to (d) are (b) to (b) of FIG. The distribution model figure of F / B intensity ratio shown to (d). 本発明の第2の実施の形態による高炉炉底耐火物の損耗状態確認方法を説明する縦断面図。The longitudinal cross-sectional view explaining the wear state confirmation method of the blast furnace bottom refractory by the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 高炉
2 炉底
3 底盤
4 側壁
5 耐火レンガ
6 出銑口
7 炉内
8 炉底基礎部
9a、9b 熱電対
10a 残厚演算器
10b 表示器
11 計測装置
12 計測部
121 前側検出器
122 後側検出器
123 鉄板
124 第1の検出部
125 第2の検出部
13 記憶部
14 判定部
15 演算部
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Furnace bottom 3 Bottom board 4 Side wall 5 Refractory brick 6 Outlet 7 Furnace 8 Furnace bottom base part 9a, 9b Thermocouple 10a Remaining thickness calculator 10b Display unit 11 Measuring device 12 Measuring part 121 Front detector 122 Rear side Detector 123 Iron plate 124 First detection unit 125 Second detection unit 13 Storage unit 14 Determination unit 15 Calculation unit

Claims (6)

高炉炉底耐火物内に配置された温度計測手段により計測した計測温度に応じて該炉底耐火物の残存厚みを推定し、宇宙線ミュオンを利用して該温度計測した炉底耐火物と炉内との境界位置を推定する境界位置推定手段で推定した該境界位置により該残存厚みを補完する高炉炉底管理方法であって、
前記境界位置推定手段は、宇宙線ミュオンを計測する計測部により高炉炉底を透過して飛来する炉底透過宇宙線ミュオン強度と、該炉底透過宇宙線ミュオンの飛来方向の判別情報と、高炉を透過しない非透過宇宙線ミュオン強度とを一定時間蓄積し、
炉底耐火物の密度の既知情報及び炉内物質の密度の既知情報に基づいて複数の平均密度を設定し、該平均密度ごとに炉底における炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比の分布モデルを求め、
記分布モデルを用いて炉底耐火物と炉内物質の境界と想定される領域の前記強度比の平均と前記平均密度の関係を表す強度比―密度特性線を求め、
前記強度比―密度特性線を用いて、前記蓄積された実測データにおける炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比に対応する平均密度を特定し、該特定された平均密度に基づいて炉底耐火物と炉内物質の境界位置を推定することを特徴とする高炉炉底管理方法。
Estimating the remaining thickness of the hearth refractories in accordance with the measured temperature measured by the temperature measuring means arranged in the furnace bottom refractory in the blast furnace, and the furnace bottom refractory measured temperature by using a cosmic ray muons the boundary position estimated at the boundary position estimating means for estimating a boundary position between the furnace a blast furnace bottom management method that complements the remaining thickness,
The boundary position estimating means, the measuring unit for measuring cosmic rays muons, and the furnace bottom transparently woo Chusen muons intensity flying passes through the furnace bottom of a blast furnace, traveling direction of the furnace SokoToru over woo Chusen muon And the non-transparent cosmic ray muon intensity that does not penetrate the blast furnace for a certain period of time,
Based on the known information of densities of known information and furnace material density of the furnace bottom refractory sets a plurality of average density, furnace SokoToru over woo Chusen in the furnace bottom in each said mean density muon intensity and nontransparent Space Find the distribution model of the intensity ratio with the line muon intensity,
Using pre SL distribution model, the intensity ratio representing the average density relationship between the average of the intensity ratio of the area to be assumed boundary of the furnace bottom refractory and furnace materials - calculated density characteristic line,
The intensity ratio - using density characteristic line, identifies the average density corresponding to the intensity ratio between RosokoToru over woo Chusen muon intensity and nontransparent cosmic ray muons intensity in the stored measured data are the specific blast furnace bottom management method characterized by estimating the boundary position of the furnace bottom refractory and furnace material based on the average density.
高炉の炉底耐火物内に配置された温度計測手段により計測した計測温度に応じて該炉底耐火物の残存厚みを推定し、宇宙線ミュオンを利用して該温度計測した炉底耐火物の損耗量を推定する損耗量推定手段で推定した該損耗量により該残存厚みを補完する高炉炉底管理方法であって、
前記損耗量推定手段は、宇宙線ミュオンを計測する計測部により、高炉の炉底を透過して飛来する炉底透過宇宙線ミュオン強度と、該炉底透過宇宙線ミュオンの飛来方向の判別情報と、高炉を透過しない非透過宇宙線ミュオン強度とを一定時間蓄積し、
炉底耐火物の密度の既知情報及び炉内物質の密度の既知情報に基づいて複数の平均密度を設定し、該平均密度ごとに炉底における炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比の第1の分布モデルを求め、
前記第1の分布モデルを用いて、炉底耐火物と炉内物質の境界と想定される領域の前記強度比の平均と前記平均密度の関係を表す強度比―密度特性線を求め、
前記強度比―密度特性線を用いて、蓄積された実測データにおける炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比に対応する平均密度を特定し、
複数の損耗量を設定し、前記特定された平均密度を用いて該損耗量ごとに炉底における炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比の第2の分布モデルを求め、
前記第2の分布モデルを用いて、炉底耐火物と炉内物質の境界と想定される領域の前記強度比の平均と前記損耗量の関係を表す強度比―損耗量特性線を求め、
前記強度比―損耗量特性線を用いて、前記蓄積された実測データにおける炉底透過宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比に対応する損耗量を特定し、該特定された損耗量を炉底耐火物の損耗量と推定することを特徴とする高炉炉底管理方法。
The residual thickness of the bottom refractory is estimated according to the temperature measured by the temperature measuring means arranged in the bottom refractory of the blast furnace, and the temperature of the bottom refractory measured using the cosmic ray muon is estimated. A blast furnace bottom management method for complementing the remaining thickness by the wear amount estimated by a wear amount estimation means for estimating a wear amount,
The wear amount estimation means includes a measurement unit that measures the cosmic ray muon, a furnace bottom transmitted cosmic ray muon intensity transmitted through the bottom of the blast furnace, and discrimination information of the flying direction of the cosmic ray muon. , Accumulated non-transparent cosmic ray muon intensity that does not penetrate the blast furnace for a certain period of time,
A plurality of average densities are set based on the known information on the density of the bottom refractory and the known information on the density of the in-furnace material, and the bottom transmitted cosmic ray muon intensity and the non-transmitted cosmic ray muon in the furnace bottom are set for each average density. Find a first distribution model of intensity ratio to intensity,
Using the first distribution model, an intensity ratio-density characteristic line representing a relationship between the average of the intensity ratio and the average density of a region assumed to be a boundary between the bottom refractory and the in-furnace material is obtained;
Using the intensity ratio-density characteristic line, specify the average density corresponding to the intensity ratio between the furnace bottom transmitted cosmic ray muon intensity and the non-transmitted cosmic ray muon intensity in the accumulated measured data,
A plurality of wear amounts are set, and a second distribution model of the intensity ratio between the bottom transmitted cosmic ray muon intensity and the non-transmitted cosmic ray muon intensity at the bottom of the furnace is determined for each amount of wear using the specified average density. Seeking
Using the second distribution model, a strength ratio-amount of wear characteristic line representing the relationship between the average of the strength ratio of the region assumed to be the boundary between the furnace bottom refractory and the in-furnace material and the amount of wear is obtained.
Using the intensity ratio-amount of wear characteristic line, the amount of wear corresponding to the intensity ratio between the bottom-transmitted cosmic ray muon intensity and the non-transmitted cosmic ray muon intensity in the accumulated measured data is identified, and the identified A blast furnace bottom management method, wherein the amount of wear is estimated as the amount of wear of a refractory at the bottom.
前記境界位置推定手段は、前記高炉炉底を透過して飛来する炉底透過宇宙線ミュオンの計測は、前記高炉炉外で、該高炉から水平方向に離れた位置で行うことを特徴とする請求項1に記載の高炉炉底管理方法。 The boundary position estimating means, measures the hearth transparently woo Chusen muons flying in through the furnace bottom of the blast furnace, outside the furnace of the blast furnace, to perform at a position spaced horizontally from the high furnace The blast furnace bottom management method according to claim 1, wherein the blast furnace bottom management method is provided. 前記境界位置推定手段は、前記高炉炉底を透過して飛来する炉底透過宇宙線ミュオンの計測は、前記温度計測手段により計測した前記炉底耐火物を計測対象として、該炉底の周囲の複数箇所で同時あるいは時間をずらして行い、各計測位置での計測結果に基づいて該計測対象の境界位置を二次元で推定することを特徴とする請求項に記載の高炉炉底管理方法。 The boundary position estimating means, measures the hearth transparently woo Chusen muons flying in through the furnace bottom of the blast furnace, the furnace bottom refractory measured by the temperature measuring means as a measurement target, the furnace bottom 2. The blast furnace bottom according to claim 1 , wherein the boundary position of the measurement target is estimated two-dimensionally based on the measurement result at each measurement position at a plurality of locations around the same time or at different times. Management method. 前記境界位置推定手段は、前記高炉炉底を透過して飛来する炉底透過の宇宙線ミュオンの計測は、前記高炉の炉底基礎部で行うことを特徴とする請求項に記載の高炉炉底管理方法。 The boundary position estimating means, measures of cosmic-ray muons in the furnace bottom permeation flying passes through the furnace bottom of the blast furnace, blast furnace according to claim 1, characterized in that the furnace bottom base portion of the blast furnace Furnace bottom management method. 前記損耗量推定手段は、前記高炉の炉底を透過して飛来する炉底透過の宇宙線ミュオンの計測は、前記高炉の炉底基礎部で行うことを特徴とする請求項2に記載の高炉炉底管理方法。 3. The blast furnace according to claim 2 , wherein the wear amount estimation means performs measurement of a cosmic ray muon transmitted through the bottom of the blast furnace and transmitted at the bottom of the blast furnace. Furnace bottom management method.
JP2005316615A 2005-10-31 2005-10-31 Blast furnace bottom management method Expired - Fee Related JP4853804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316615A JP4853804B2 (en) 2005-10-31 2005-10-31 Blast furnace bottom management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316615A JP4853804B2 (en) 2005-10-31 2005-10-31 Blast furnace bottom management method

Publications (2)

Publication Number Publication Date
JP2007121203A JP2007121203A (en) 2007-05-17
JP4853804B2 true JP4853804B2 (en) 2012-01-11

Family

ID=38145194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316615A Expired - Fee Related JP4853804B2 (en) 2005-10-31 2005-10-31 Blast furnace bottom management method

Country Status (1)

Country Link
JP (1) JP4853804B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145141A (en) * 2006-12-06 2008-06-26 Nippon Steel Corp Method of estimating state in blast furnace
JP4392449B2 (en) * 2008-01-08 2010-01-06 新日本製鐵株式会社 Refractory thickness measuring method and apparatus
RU2503953C2 (en) * 2008-08-27 2014-01-10 ЛОС АЛАМОС НЭШНЛ СЕКЬЮРИТИ, ЭлЭлСи Building image by charged particles generated by space beams
JP5638912B2 (en) * 2010-10-15 2014-12-10 電気化学工業株式会社 Density distribution estimation method inside reactor using muon
GB2530394B (en) 2014-07-24 2017-11-22 Johnson Matthey Plc Apparatus for determining thickness of lining layer
JP2019152497A (en) * 2018-03-01 2019-09-12 国立大学法人九州大学 Method and device for nondestructive inspection of structure using muography

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261741A (en) * 1995-03-23 1996-10-11 Sumitomo Metal Ind Ltd Measuring method for blast furnace refractory thickness
JP3252724B2 (en) * 1996-10-22 2002-02-04 住友金属工業株式会社 Refractory thickness measurement method and apparatus
JP2000155101A (en) * 1998-11-20 2000-06-06 Yuasa Corp Method and apparatus for quantifying element
JP2005010139A (en) * 2003-05-29 2005-01-13 Jfe Steel Kk Residual thickness measuring method and device for furnace refractory using elastic wave
JP2005082862A (en) * 2003-09-09 2005-03-31 Nippon Steel Corp Method and device for estimating inner surface position in reaction vessel, and computer program
JP4106445B2 (en) * 2005-03-31 2008-06-25 大学共同利用機関法人 高エネルギー加速器研究機構 Method for obtaining internal structure information of large structures by horizontal cosmic ray muon multiple division type detection means

Also Published As

Publication number Publication date
JP2007121203A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4853804B2 (en) Blast furnace bottom management method
JP4853803B2 (en) Blast furnace bottom management method
US9804031B2 (en) Apparatus and method to calculate energy dissipated from an object
US7607825B2 (en) Method and apparatus for monitoring the formation of deposits in furnaces
KR101238982B1 (en) Method for inspecting insulating performance of wall
JP2008145141A (en) Method of estimating state in blast furnace
KR20090075829A (en) Coke-oven wall-surface evaluating apparatus, coke-oven wall-surface repair supporting apparatus, coke-oven wall-surface evaluating method, coke-oven wall-surface repair supporting method, and computer program
CN103322960B (en) A kind of ring formation of rotary kiln layer thickness detection method and device
WO1999014581A1 (en) Method for measurement of blast furnace liner thickness
JP2009162652A (en) Refractory material thickness measuring method and device
van Herwijnen et al. A field method for measuring slab stiffness and weak layer fracture energy
JPH08261741A (en) Measuring method for blast furnace refractory thickness
Silva et al. Tube defects inspection technique by using Compton gamma-rays backscattering
EP3870922B1 (en) Method for monitoring the wear of a refractory lining of a blast furnace and computer program implementing such method
JP5638912B2 (en) Density distribution estimation method inside reactor using muon
CN115074471B (en) Online intelligent slag iron runner management and control method, device, system and medium
Birri et al. FY2022 Progress Report on Viscosity and Thermal Conductivity Measurements of Molten Salts
CA2764987A1 (en) Apparatus for detecting and displaying varying levels of a metal melt
US9885566B2 (en) Apparatus for determining thickness of lining layer
JP2005172683A (en) Method of determining kind of defect by infrared method in concrete check system
Aoyagi et al. Detection of the boundary between oil and water in a container by dynamic heat conduction
CN204989494U (en) Radiant flux detection equipment is distinguishd in space
KR20190078403A (en) Monitoring apparatus for outputting amount of molten steel
KR101068965B1 (en) Measuring apparatus for flame velocity of sintering furnace and method using it
JP4315122B2 (en) Raceway depth measurement method and depth measurement device for coke-filled vertical furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees