JPH08261741A - Measuring method for blast furnace refractory thickness - Google Patents

Measuring method for blast furnace refractory thickness

Info

Publication number
JPH08261741A
JPH08261741A JP6439795A JP6439795A JPH08261741A JP H08261741 A JPH08261741 A JP H08261741A JP 6439795 A JP6439795 A JP 6439795A JP 6439795 A JP6439795 A JP 6439795A JP H08261741 A JPH08261741 A JP H08261741A
Authority
JP
Japan
Prior art keywords
muon
blast furnace
refractory
furnace
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6439795A
Other languages
Japanese (ja)
Inventor
Riichi Murayama
理一 村山
Toshihiko Sakai
俊彦 酒井
Masahiro Nakamura
昌弘 中村
Kanetada Nagamine
謙忠 永嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6439795A priority Critical patent/JPH08261741A/en
Publication of JPH08261741A publication Critical patent/JPH08261741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE: To provide a technology for measuring remaining thickness of refractory for blast furnace without using thermocouple, coaxial cables and radioactive elements. CONSTITUTION: Surrounding the bottom part 2 of blast furnace 1, position detection type radiation detectors 11 to 13 are arranged. By selectively making use of muon among various cosmic-rays and measuring the intensity of the muon after penetrating the furnace bottom part 2 with the position detection type radiation detectors 11 to 13, the thickness of the bottom part 2 specifically, of refractory 3 is measured quantitatively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高炉炉壁若しくは炉底部
の耐火物の残存厚さ測定技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the remaining thickness of refractory on the wall or bottom of a blast furnace.

【0002】[0002]

【従来の技術】高炉(溶鉱炉)は、周知の通り鉄鉱石を
溶融して銑鉄を製造する炉であって、厚い鉄皮に高炉用
耐火物を内張りした一種の円筒容器である。高炉の湯溜
りから炉底部にかけては溶銑による侵食が著しいので、
耐食性に優れた耐火物を十分な厚さだけ炉壁及び炉底に
巻くようにしている。一方、高炉の稼働寿命は近年の操
業方法の改善や補修技術の改良により、20年を越える
ようになってきた。それにつれて、炉底部の耐火物の損
傷を正確に計測する技術が要求されるようになってき
た。すなわち、炉底部は稼働中には補修ができないた
め、炉底部の耐火物の損耗が高炉全体の寿命を左右する
ことになるからであり、損耗状況が把握できれば、適
宜、酸化チタニウムを投入するなどの炉底部の耐火物延
命策を講じることができる。
2. Description of the Related Art A blast furnace (blast furnace) is, as is well known, a furnace for melting pig iron ore to produce pig iron, and is a kind of cylindrical vessel having a thick iron shell lined with refractory for blast furnace. Since the erosion due to the hot metal is significant from the pool of the blast furnace to the bottom of the furnace,
A refractory material with excellent corrosion resistance is wound on the furnace wall and furnace bottom in a sufficient thickness. On the other hand, the operating life of the blast furnace has been over 20 years due to recent improvements in operating methods and repair techniques. Along with this, a technique for accurately measuring damage to the refractory at the bottom of the furnace has been required. That is, because the bottom of the furnace cannot be repaired during operation, the wear of refractory at the bottom of the furnace affects the life of the entire blast furnace.If the wear status can be grasped, titanium oxide should be added as appropriate. Measures can be taken to extend the life of refractories at the bottom of the furnace.

【0003】炉底部の耐火物の損傷又は残存量を計測す
る技術には、特開昭63−100315号公報「高熱
炉耐火壁の損耗状況把握方法」、特開昭49−133
207号公報「炉壁の厚さ検出方法およびその装置」、
特開昭58−27002号公報「耐火物の厚み測定方
法」及び炉底部の耐火物中にCo60などの放射性同位
元素を埋込む方法などが提案されている。これら〜
の技術を要約して次図で説明する。
Techniques for measuring the amount of damage or residual refractory material at the bottom of the furnace are disclosed in Japanese Patent Laid-Open No. 63-100315, "Method for understanding wear state of refractory wall of high-temperature furnace", Japanese Patent Laid-Open No. 49-133.
No. 207 “Method and apparatus for detecting thickness of furnace wall”,
Japanese Unexamined Patent Publication No. 58-27002, "Method of measuring thickness of refractory material" and method of embedding radioactive isotope such as Co60 in refractory material at bottom of furnace are proposed. these~
The technology will be summarized and explained with the following figure.

【0004】図8は従来の炉底部の耐火物の損傷又は残
存量を計測する方法を示す図であり、上記及び図中の
は、温度計101(複数本)を炉底部の耐火物102
に埋込んでおき、計測温度の変化から耐火物102の残
存量を推定するものである。すなわち、耐火物102が
操業するにつれて薄くなり、温度計101の指示値が高
くなる。上記及び図中のは、耐火物102中に同軸
ケーブル104を埋設し、この同軸ケーブル104の一
端から電気パルスを入力して他端で反射して戻ってくる
までの時間を計測する。この時間は同軸ケーブル104
の長さに比例するので、同軸ケーブル104が耐火物1
02の侵食につれて短くなるに従って、伝搬時間が短く
なる。
FIG. 8 is a diagram showing a conventional method for measuring the amount of damage or remaining refractory material at the bottom of the furnace. In the above and the figures, thermometers 101 (plurality) are connected to the refractory material 102 at the bottom of the furnace.
The remaining amount of the refractory material 102 is estimated from the change in the measured temperature. That is, the refractory material 102 becomes thinner as it operates, and the indication value of the thermometer 101 becomes higher. In the above and in the figures, the coaxial cable 104 is embedded in the refractory material 102, and an electric pulse is input from one end of the coaxial cable 104, and the time taken for the electric pulse to be reflected and returned at the other end is measured. This time is coaxial cable 104
Since the coaxial cable 104 is proportional to the refractory 1
The shorter the erosion of 02, the shorter the propagation time.

【0005】上記及び図中のは、炉体鉄皮105に
孔106を開け、この孔106に金属棒107を挿入
し、この金属棒107の先端を耐火物102に当接し、
他端をハンマ108で打つことで、振動波を発生し、こ
の振動波の戻るまでの時間を加速度ピックアップ109
で検知するというものである。上記及び図中のは、
築炉時に耐火物102中に放射性同位元素111(放射
性元素111と記す)を埋め込んでおき、この放射性元
素111まで侵食が進むと、放射性元素111が溶銑中
に溶込んで消失する。そこで、炉外から放射線カウンタ
ーで調べると、放射性元素111の無いことが分かり、
侵食位置を知ることができる。
In the above and in the drawings, a hole 106 is opened in the furnace body iron shell 105, a metal rod 107 is inserted into the hole 106, and the tip of the metal rod 107 is brought into contact with the refractory material 102.
A hammer 108 strikes the other end to generate a vibration wave, and the acceleration pickup 109
It is to detect with. Above and in the figure,
When a radioactive isotope 111 (referred to as a radioactive element 111) is embedded in the refractory 102 at the time of building a furnace and the erosion progresses to the radioactive element 111, the radioactive element 111 dissolves in the hot metal and disappears. Then, when I examined it with a radiation counter from outside the reactor, I found that there was no radioactive element 111,
The erosion position can be known.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記は耐火
物102の熱伝導を間接的に計測しているものであり、
耐火物102の熱伝導率は周囲温度により変化するの
で、推定精度はよくない。また、温度計101は長期間
に渡って使用され且つ設定環境(圧力、温度等)が良く
ないので劣化する心配もあり、炉命末期の重要な時期に
信頼性のある計測ができない恐れがある。
However, the above is to indirectly measure the heat conduction of the refractory material 102,
Since the thermal conductivity of the refractory material 102 changes depending on the ambient temperature, the estimation accuracy is not good. Further, since the thermometer 101 is used for a long period of time and the setting environment (pressure, temperature, etc.) is not good, there is a risk of deterioration, and there is a possibility that reliable measurement may not be possible at an important end of the reactor life. .

【0007】上記は直接的に耐火物102の残存量を
測定できる方法ではあるが、築炉時に埋め込んだ同軸ケ
ーブル104の位置だけの情報しか得られない。すなわ
ち、同軸ケーブル104から離れた部分の状況は分から
ないことになる。また、同軸ケーブル104は炉内の腐
食性ガスの影響で劣化する恐れもある。
Although the above is a method for directly measuring the remaining amount of the refractory material 102, only information on the position of the coaxial cable 104 embedded at the time of furnace construction can be obtained. That is, the situation of the part away from the coaxial cable 104 is unknown. Further, the coaxial cable 104 may be deteriorated by the influence of corrosive gas in the furnace.

【0008】上記は、耐火物102が超音波等の振動
波を極めて通し難い物質であること、並びに鉄皮105
と耐火物102との境目112でも振動波が反射される
ため複数の振動波が混じり合い、結果的に計測の信頼性
が低下し、実用的な計測方法とはいえない。
The above is the fact that the refractory material 102 is a material that is extremely difficult for vibration waves such as ultrasonic waves to pass through, and the iron skin 105.
Since a vibration wave is also reflected at the boundary 112 between the refractory 102 and the refractory 102, a plurality of vibration waves are mixed with each other, and as a result, the reliability of measurement is deteriorated, which is not a practical measurement method.

【0009】上記は点計測、すなわち放射性元素11
1の埋っていた位置しか計測できないので、耐火物10
2の侵食進行状況を連続して知ることはできない。ま
た、放射性元素111を使用するには安全衛生上の管理
が極めて重要になり、この負担は軽くないため、近年は
殆ど使用されていない。そこで本発明の目的は上記〜
に勝る炉底厚さ計測方法を提供することにある。
The above is point measurement, that is, radioactive element 11
Refractory 10 because only the buried position of 1 can be measured
It is not possible to continuously know the progress of erosion of 2. Further, in order to use the radioactive element 111, safety and hygiene control is extremely important, and this burden is not light, so that it has not been used in recent years. Therefore, the object of the present invention is to
It is to provide a method for measuring the bottom thickness that is superior to

【0010】[0010]

【課題を解決するための手段及び作用】上記課題を解決
するために本発明は、高炉の外方に、少なくとも3枚の
位置検出型放射線検出器を、位置検出型放射線検出器の
面と直交する線が高炉を貫通し且つ、複数の位置検出型
放射線検出器を一定の間隔で互いに平行に配置する。
In order to solve the above problems, the present invention provides at least three position detection type radiation detectors outside the blast furnace at right angles to the plane of the position detection type radiation detector. Line penetrates the blast furnace, and a plurality of position detection type radiation detectors are arranged in parallel with each other at regular intervals.

【0011】ある時期の一定時間内に高炉を貫通して且
つ複数の位置検出型放射線検出器を一定方向から貫通す
るミューオンの強度を、ミューオンの入射角情報から演
算してミューオン強度の第1データとし、所定時間経過
後に同様にミューオンの入射角情報から一定方向から飛
来するミューオン強度の第2データを演算し、高炉の内
張り耐火物が侵食されるにつれて高炉におけるミューオ
ンの強度が変化することから、前記ミューオン強度変化
に基づいて高炉の耐火物の厚さを測定する。
The first data of the muon intensity is calculated by calculating the intensity of the muon which penetrates the blast furnace and penetrates the plurality of position detection type radiation detectors in a certain direction within a certain time from the incident angle information of the muon. Then, the second data of the muon intensity flying from a certain direction is similarly calculated from the incident angle information of the muon after the lapse of a predetermined time, and the intensity of the muon in the blast furnace changes as the lining furnace refractory of the blast furnace changes, The thickness of the refractory of the blast furnace is measured based on the change in the muon strength.

【0012】ミューオンは宇宙からバーン・アレン帯及
び大気を通過して地表に降り注ぐ宇宙線の一種である。
数ある宇宙線のうちのミューオンを選択した理由を説明
する。ミューオンは、中性子に次いで寿命が長く、重さ
は電子の約200倍で、+及び−の電荷を有する素粒子
であり、他の粒子との間で電磁気力のみ作用するだけ
で、強い相互作用(核力)がない。従って、パイオンや
陽子などのように電磁気力と核力の双方の相互作用をも
つものに比べ、物質貫通力が高く、また相互作用の解析
も容易である。この様な理由で、ミューオンを選択し
た。なお、同定とは事象Aと事象Bとが同一であること
を確認することである。
A muon is a type of cosmic ray that travels from the universe through the Bern-Allen belt and the atmosphere to reach the surface of the earth.
Explain the reason for choosing muon from the many cosmic rays. Muons are elementary particles that have the longest lifetime next to neutrons, the weight is about 200 times that of electrons, and have + and-charges. Only strong electromagnetic interaction with other particles causes them to interact strongly. There is no (nuclear power). Therefore, compared with pions, protons, and other materials that have both electromagnetic and nuclear interactions, the penetrating force is high and the interaction is easy to analyze. For this reason, I chose muon. The identification is to confirm that the event A and the event B are the same.

【0013】[0013]

【実施例】本発明の実施例を添付図に基づいて以下に説
明する。図1(a),(b)は本発明に係る位置検出型
放射線検出器の配置説明図であり、高炉1の炉底部2は
鉄皮(比重7.8、厚さは例えば70mm)3にカーボ
ン質耐火物(比重約2.3)4を内張りしたものであ
り、この耐火物4の内側を湯溜りといい、この湯溜りに
溶銑とコークスとの混合湯が溜る。コークスの平均比重
が0.7であるため、混合湯は平均比重が4.0程度と
なる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 (a) and 1 (b) are explanatory views of the arrangement of a position detection type radiation detector according to the present invention, in which a furnace bottom 2 of a blast furnace 1 is a steel shell (specific gravity 7.8, thickness 70 mm, for example) 3 It is a carbon refractory material (specific gravity: about 2.3) 4 lined. The inside of the refractory material 4 is called a hot water pool, in which hot water and coke mixed hot water is pooled. Since the average specific gravity of the coke is 0.7, the average specific gravity of the mixed hot water is about 4.0.

【0014】上記炉底部2の側方に、位置検出型放射線
検出器セット10(以下「放射線検出器セット10」と
略記する。)、すなわち#1位置検出型放射線検出器1
1,#2位置検出型放射線検出器12,#3位置検出型
放射線検出器13からなる3枚のプラスチック位置検出
型放射線検出器を互いに平行に且つ面に直交する直線が
前記炉底部2を貫通する位置に配置する。図中、一点鎖
線μはミューオンの飛来軌跡である。
A position detection type radiation detector set 10 (hereinafter abbreviated as "radiation detector set 10"), that is, # 1 position detection type radiation detector 1 is provided on the side of the furnace bottom 2.
The three plastic position-detection-type radiation detectors 1, 1, # 2 position-detection-type radiation detectors 12 and # 3 position-detection-type radiation detectors 13 pass through the furnace bottom part 2 with straight lines parallel to each other and orthogonal to the plane. Place it in the position you want. In the figure, the alternate long and short dash line μ is the trajectory of the muon.

【0015】以上に述べた位置検出型放射線検出器を用
いた高炉炉底厚さの測定方法を次に説明する。図2は本
発明の実施例説明図であり、#1位置検出型放射線検出
器11,#2位置検出型放射線検出器12及び#3位置
検出型放射線検出器13を配置したものであり、#1位
置検出型放射線検出器11と#2位置検出型放射線検出
器12とから入射角α1を演算し、また、#2位置検出
型放射線検出器12と#3位置検出型放射線検出器13
とから入射角α2を演算してこれらから平均入射角α3
(=(α1+α2)÷2)を求めることもできる。
A method of measuring the thickness of the bottom of the blast furnace using the above-mentioned position detection type radiation detector will be described below. FIG. 2 is an explanatory view of an embodiment of the present invention, in which # 1 position detection type radiation detector 11, # 2 position detection type radiation detector 12 and # 3 position detection type radiation detector 13 are arranged. The incident angle α1 is calculated from the 1-position detection type radiation detector 11 and the # 2 position detection type radiation detector 12, and the # 2 position detection type radiation detector 12 and the # 3 position detection type radiation detector 13 are calculated.
The incident angle α2 is calculated from and the average incident angle α3 is calculated from these.
(= (Α1 + α2) / 2) can also be obtained.

【0016】図3は3枚の位置検出型放射線検出器によ
るシステム構成図であり、図2で説明した内容をまとめ
ると、#1位置検出型放射線検出器11に付属の位置検
出器11aで入射位置を検出し、#2位置検出型放射線
検出器12に付属の位置検出器12aで入射位置を検出
し、#3位置検出型放射線検出器13に付属の位置検出
器13aで入射位置を検出し、これらの情報に基づいて
入射角決定回路14にて入射角を決定し、所定期間(例
えば50日)後にミューオン強度決定器16にてミュー
オンの強度を決定する。
FIG. 3 is a system configuration diagram of three position detection type radiation detectors. When the contents described in FIG. 2 are summarized, the position detector 11a attached to the # 1 position detection type radiation detector 11 is used for incidence. The position is detected, the incident position is detected by the position detector 12a attached to the # 2 position detection type radiation detector 12, and the incident position is detected by the position detector 13a attached to the # 3 position detection type radiation detector 13. The incident angle determination circuit 14 determines the incident angle based on these pieces of information, and the muon intensity determiner 16 determines the muon intensity after a predetermined period (for example, 50 days).

【0017】図4は築炉時の高炉炉底部におけるミュー
オンの減衰図であり、縦軸はミューオン強度、横軸は距
離を示す。一点鎖線μで示す如くミューオンが図右から
炉底部に入射したとする。すなわち、ミューオンは鉄皮
3R、耐火物4R、湯溜り5、耐火物4L、鉄皮3Lの
順で炉底部を貫通し、その後、放射線検出器セット10
に入射する。放射線検出器セット10で「ミューオン強
度の第1データ」を計測する。太線折れ線はミューオン
の強度を示し、耐火物4R,4Lは比較的比重が小さい
のでミューオンの減衰は小さく、逆に湯溜り5は内容が
溶銑とコークスの混合物であるから比重が大きいのでミ
ューオンの減衰は大きい。
FIG. 4 is an attenuation diagram of muons at the bottom of the blast furnace during furnace construction. The vertical axis represents the muon intensity and the horizontal axis represents the distance. It is assumed that muons are incident on the bottom of the furnace from the right side of the figure as indicated by the chain line μ. That is, the muon penetrates the bottom of the furnace in the order of the iron skin 3R, the refractory 4R, the basin 5, the refractory 4L, and the iron skin 3L, and then the radiation detector set 10
Incident on. The “first data of muon intensity” is measured by the radiation detector set 10. The thick broken line shows the strength of the muon, and the refractory materials 4R and 4L have relatively small specific gravity, so the muon damping is small. On the contrary, the pool 5 is a mixture of hot metal and coke, so the muon damping is large. Is big.

【0018】図5は時間経過後の高炉炉底部におけるミ
ューオンの減衰図であり、耐火物4R,4Lは溶銑など
で侵食されて、想像線で示した位置から実線の位置まで
内面が後退したことを示す。比重の小さな耐火物4R,
4Lが比重の大きな湯溜り5に置き換わったことになる
ので、放射線検出器セット10で計測される「ミューオ
ン強度の第2データ」は前記ミューオン強度の第1デー
タより、小さくなる。
FIG. 5 is a decay diagram of muons at the bottom of the blast furnace after a lapse of time, showing that the refractories 4R and 4L were eroded by hot metal or the like and the inner surface retreated from the position indicated by the imaginary line to the position indicated by the solid line. Indicates. Refractory 4R with small specific gravity,
Since 4L is replaced by the pool 5 having a large specific gravity, the "second muon intensity data" measured by the radiation detector set 10 is smaller than the first muon intensity data.

【0019】ところで、ミューオンの物質貫通力はエネ
ルギーEと貫通力X(m)との間に次の関係がある。た
だし、物質は比重7.8の鉄とした。 X=7.8×2.5×103ln(1.56・E+1) 上記式を利用し、物質の比重を変更するなどして、耐火
物や湯溜りを貫通するのに必要なミューオンの強度変化
を求めることができる。
By the way, the substance penetrating force of muons has the following relationship between the energy E and the penetrating force X (m). However, the substance was iron having a specific gravity of 7.8. X = 7.8 × 2.5 × 10 3 ln (1.56 · E + 1) By using the above formula and changing the specific gravity of the substance, the muon required to penetrate the refractory and the pool The intensity change can be obtained.

【0020】図6はミューオン強度と耐火物厚さの関係
を示すグラフであり、築炉時(耐火物最大厚さ)にミュ
ーオン強度の第1データを測っておけば、上記数式及び
各部の寸法及び比重から右下りのカーブを引くことがで
きる。従って、築炉後例えば5年目に本発明方法でミュ
ーオン強度の第2データを測れば、簡単に耐火物の厚さ
が推定できる。その後、適時計測すれば高炉改修の時期
を決定することができる。
FIG. 6 is a graph showing the relationship between the muon strength and the thickness of the refractory material. If the first data of the muon strength is measured at the time of furnace construction (maximum thickness of the refractory material), the above formula and the dimensions of each part You can also draw a curve to the right from the specific gravity. Therefore, the thickness of the refractory can be easily estimated by measuring the second data of the muon strength by the method of the present invention, for example, 5 years after the furnace is built. After that, the time for blast furnace repair can be determined by timely measurement.

【0021】図7(a),(b)は本発明に係る放射線
検出器セットの平面配置図である。 (a)は炉底部の中央を貫通するミューオンを検知する
ものである。耐火物4が平均に薄くなるとは限らないの
で、複数の放射線検出器セット10,10a,10b,
10cを配置する、又は1セットの放射線検出器セット
10を定期的に移動させてもよい。 (b)は湯溜り5の外周円の接線上に放射線検出器セッ
ト10を配置したものである。 この様に放射線検出器セット10は炉底部2の周囲の任
意の箇所に必要個数を配置すればよい。
7 (a) and 7 (b) are plan layout views of the radiation detector set according to the present invention. (A) is for detecting muons penetrating the center of the furnace bottom. Since the refractory 4 does not always become thin on average, a plurality of radiation detector sets 10, 10a, 10b,
10c may be arranged or one set of radiation detector sets 10 may be moved periodically. (B) shows the radiation detector set 10 arranged on the tangent to the outer circumference of the pool 5. In this way, the required number of radiation detector sets 10 may be arranged at an arbitrary position around the furnace bottom 2.

【0022】尚、本実施例で用いた位置検出型放射線検
出器は、二次元位置検出型の放射線検出器であればよ
い。二次元位置検出型の放射線検出器は、例えばマルチ
ワイヤ型ガス検出器、ドリフトチェンバー、半導体検出
器、シンチレーションカウンタ等が考えられる。また、
本発明方法は、高炉の耐火材の残存厚さを計測する方法
に好適であるが、高炉の他の部分、鉄皮の厚さ、耐火材
にステーブが埋められている場合にはステーブの損傷を
チェックすることができ、即ち苛酷な使用をされる高炉
炉底部等の各部の測定に広く適用して差支えない。
The position detection type radiation detector used in this embodiment may be a two-dimensional position detection type radiation detector. The two-dimensional position detection type radiation detector may be, for example, a multi-wire type gas detector, a drift chamber, a semiconductor detector, a scintillation counter or the like. Also,
The method of the present invention is suitable for measuring the remaining thickness of the refractory material of the blast furnace, but damages to other parts of the blast furnace, the thickness of the iron shell, and the stave when the stave is buried in the refractory material. Can be checked, that is, it can be widely applied to measurement of various parts such as the bottom of a blast furnace that is used severely.

【0023】[0023]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1の高炉耐火物の厚さ測定方法は、数ある
宇宙線のなかのミューオンを選択的に使用し、このミュ
ーオンが高炉を貫通した後の強度を位置検出型放射線検
出器で計測することで耐火物の残り厚さを定量計測可能
にしたものであり、従来技術の様に熱電対、同軸ケーブ
ル又は放射線元素を耐火物中に埋込む必要がなく、機器
が経年変化する心配もなく、何時でも高炉耐火物厚さを
測定できるので、極めて好ましい。
The present invention has the following effects due to the above configuration. The method for measuring the thickness of a blast furnace refractory according to claim 1 selectively uses muons among a number of cosmic rays, and measures the intensity after the muons penetrate the blast furnace with a position detection type radiation detector. It is possible to quantitatively measure the remaining thickness of the refractory, and it is not necessary to embed the thermocouple, the coaxial cable or the radiation element in the refractory as in the prior art, and there is no concern that the equipment will change over time. It is extremely preferable because the thickness of the blast furnace refractory can be measured at any time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る位置検出型放射線検出器の配置説
明図
FIG. 1 is a layout explanatory view of a position detection type radiation detector according to the present invention.

【図2】本発明に係る実施例説明図FIG. 2 is an explanatory view of an embodiment according to the present invention.

【図3】本発明に係る3枚の位置検出型放射線検出器に
よるシステム構成図
FIG. 3 is a system configuration diagram of three position detection type radiation detectors according to the present invention.

【図4】本発明に係る築炉時の高炉炉底部におけるミュ
ーオンの減衰図
FIG. 4 is an attenuation diagram of muons at the bottom of the blast furnace during furnace construction according to the present invention.

【図5】本発明に係る時間経過後の高炉炉底部における
ミューオンの減衰図
FIG. 5 is a muon attenuation diagram at the bottom of the blast furnace according to the present invention after the passage of time.

【図6】本発明に係るミューオン強度と耐火物厚さの関
係を示すグラフ
FIG. 6 is a graph showing the relationship between muon strength and refractory thickness according to the present invention.

【図7】本発明に係る放射線検出器セットの平面配置図FIG. 7 is a plan layout view of a radiation detector set according to the present invention.

【図8】従来の炉底部の耐火物の損傷又は残存量を計測
する方法を示す図
FIG. 8 is a diagram showing a conventional method for measuring the amount of damage or remaining refractory at the bottom of a furnace.

【符号の説明】[Explanation of symbols]

1…高炉、2…炉底部、3…鉄皮、4…耐火物、5…湯
溜り、10…位置検出型放射線検出器セット(放射線検
出器セット)、11…#1位置検出型放射線検出器、1
2…#2位置検出型放射線検出器、13…#3位置検出
型放射線検出器、14…入射角決定回路、16…ミュー
オン強度決定回路、21〜24…光電子増倍管、α1…
入射角、Ls…位置検出型放射線検出器の面に直交する
線。
DESCRIPTION OF SYMBOLS 1 ... Blast furnace, 2 ... Furnace bottom part, 3 ... Iron shell, 4 ... Refractory material, 5 ... Hot water pool, 10 ... Position detection type radiation detector set (radiation detector set), 11 ... # 1 position detection type radiation detector 1
2 ... # 2 position detection type radiation detector, 13 ... # 3 position detection type radiation detector, 14 ... Incident angle determination circuit, 16 ... Muon intensity determination circuit, 21-24 ... Photomultiplier tube, α1 ...
Incident angle, Ls ... A line orthogonal to the plane of the position-sensitive radiation detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永嶺 謙忠 千葉県柏市増尾台3丁目10番8号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenchu Nagamine 3-10-8 Masuodai, Kashiwa City, Chiba Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高炉炉壁若しくは炉底部の外方に、位置
検出型放射線検出器を配置し、ある時期の一定時間内に
高炉を貫通して且つ複数の位置検出型放射線検出器を一
定方向から貫通するミューオンの強度を、ミューオンの
入射角情報から演算し、この演算値をミューオン強度の
第1データとし、また、所定時間経過後に同様にミュー
オンの入射角情報から一定方向から飛来するミューオン
強度の第2データを演算し、高炉の内張り耐火物が侵食
されるにつれて高炉を貫通するミューオンの強度が変化
することから、前記ミューオン強度変化に基づいて炉壁
若しくは炉底部の耐火物の厚さを測定することを特徴と
した高炉耐火物厚さ測定方法。
1. A position detection type radiation detector is arranged outside a blast furnace wall or a bottom part of the blast furnace, and penetrates the blast furnace within a certain period of time and a plurality of position detection type radiation detectors are set in a certain direction. The intensity of the muon penetrating from the muon is calculated from the incident angle information of the muon, and this calculated value is used as the first data of the muon intensity. Also, after a predetermined time has passed, the muon intensity that similarly flies from a certain direction from the incident angle information of the muon. Of the muon penetrating the blast furnace as the refractory lining of the blast furnace is eroded, the thickness of the refractory on the furnace wall or bottom is calculated based on the muon strength change. A method for measuring the thickness of a blast furnace refractory characterized by measuring.
JP6439795A 1995-03-23 1995-03-23 Measuring method for blast furnace refractory thickness Pending JPH08261741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6439795A JPH08261741A (en) 1995-03-23 1995-03-23 Measuring method for blast furnace refractory thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6439795A JPH08261741A (en) 1995-03-23 1995-03-23 Measuring method for blast furnace refractory thickness

Publications (1)

Publication Number Publication Date
JPH08261741A true JPH08261741A (en) 1996-10-11

Family

ID=13257153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6439795A Pending JPH08261741A (en) 1995-03-23 1995-03-23 Measuring method for blast furnace refractory thickness

Country Status (1)

Country Link
JP (1) JPH08261741A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121203A (en) * 2005-10-31 2007-05-17 Nippon Steel Corp Bottom of blast furnace management method
JP2007121202A (en) * 2005-10-31 2007-05-17 Nippon Steel Corp Recognition method of wastage of refractories on blast furnace bottom
JP2008145141A (en) * 2006-12-06 2008-06-26 Nippon Steel Corp Method of estimating state in blast furnace
JP2008530581A (en) * 2005-02-17 2008-08-07 トライアンフ,オペレーティング アズ ア ジョイント ヴェンチャー バイ ザ ガバナーズ オブ ザ ユニバーシティ オブ アルバータ,ザ ユニバーシティ オブ ブリティッシュ コロンビア,カールトン Geological tomography using cosmic rays
JP2009063589A (en) * 2008-10-31 2009-03-26 Japan Aerospace Exploration Agency Radiation source position detection system and probe
WO2009088091A1 (en) * 2008-01-08 2009-07-16 Nippon Steel Corporation Refractory thickness measuring method, and apparatus therefor
JP2009530630A (en) * 2006-03-22 2009-08-27 ヴイティー ニュークリア サービシズ リミテッド Correction of radioactivity measurements using particles from atmospheric sources
JP2009258115A (en) * 2009-06-12 2009-11-05 Nippon Steel Corp Method and device for measuring thickness of refractory body
CN102433409A (en) * 2011-12-08 2012-05-02 南通宝钢钢铁有限公司 Embedding and thickness measuring method for thermocouple on erosion part of blast furnace crucible
JP2013217811A (en) * 2012-04-10 2013-10-24 Toshiba Corp Internal state observation method and internal state observation device
US9885566B2 (en) 2014-07-24 2018-02-06 Johnson Matthey Public Limited Company Apparatus for determining thickness of lining layer
JP2019012000A (en) * 2017-06-30 2019-01-24 国立大学法人名古屋大学 Method for obtaining information on blast furnace

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530581A (en) * 2005-02-17 2008-08-07 トライアンフ,オペレーティング アズ ア ジョイント ヴェンチャー バイ ザ ガバナーズ オブ ザ ユニバーシティ オブ アルバータ,ザ ユニバーシティ オブ ブリティッシュ コロンビア,カールトン Geological tomography using cosmic rays
JP2007121202A (en) * 2005-10-31 2007-05-17 Nippon Steel Corp Recognition method of wastage of refractories on blast furnace bottom
JP2007121203A (en) * 2005-10-31 2007-05-17 Nippon Steel Corp Bottom of blast furnace management method
JP2009530630A (en) * 2006-03-22 2009-08-27 ヴイティー ニュークリア サービシズ リミテッド Correction of radioactivity measurements using particles from atmospheric sources
JP2008145141A (en) * 2006-12-06 2008-06-26 Nippon Steel Corp Method of estimating state in blast furnace
WO2009088091A1 (en) * 2008-01-08 2009-07-16 Nippon Steel Corporation Refractory thickness measuring method, and apparatus therefor
JP2009063589A (en) * 2008-10-31 2009-03-26 Japan Aerospace Exploration Agency Radiation source position detection system and probe
JP4634494B2 (en) * 2008-10-31 2011-02-16 独立行政法人 宇宙航空研究開発機構 Radiation source position detection system and radiation source position detection probe
JP2009258115A (en) * 2009-06-12 2009-11-05 Nippon Steel Corp Method and device for measuring thickness of refractory body
JP4638952B2 (en) * 2009-06-12 2011-02-23 新日本製鐵株式会社 Refractory thickness measuring method and apparatus
CN102433409A (en) * 2011-12-08 2012-05-02 南通宝钢钢铁有限公司 Embedding and thickness measuring method for thermocouple on erosion part of blast furnace crucible
JP2013217811A (en) * 2012-04-10 2013-10-24 Toshiba Corp Internal state observation method and internal state observation device
US9885566B2 (en) 2014-07-24 2018-02-06 Johnson Matthey Public Limited Company Apparatus for determining thickness of lining layer
JP2019012000A (en) * 2017-06-30 2019-01-24 国立大学法人名古屋大学 Method for obtaining information on blast furnace

Similar Documents

Publication Publication Date Title
JPH08261741A (en) Measuring method for blast furnace refractory thickness
US5896429A (en) Method for measurement of blast furnace liner thickness
KR20100100948A (en) Refractory thickness measuring method, and apparatus therefor
Ismail Selection of suitable NDT methods for building inspection
Raj et al. Non-destructive testing and evaluation for structural integrity
Daw et al. Temperature monitoring options available at the Idaho national laboratory advanced test reactor
Sadri et al. Smelting Furnace Non Destructive Testing (NDT) and Monitoring
JP4638952B2 (en) Refractory thickness measuring method and apparatus
JP2002221503A (en) Distinction method for concrete-unfilled part and distinction method for tile detachment from concrete
KR101239770B1 (en) A liquid level meter using gamma rays
EP0955518A2 (en) Furnace lining measurement
US11094422B2 (en) Systems and methods for assaying an object
Nakagawa et al. On-line NDE and structural health monitoring for advanced reactors
Meyer et al. Advanced Instrumentation, Information, and Control System Technologies: Nondestructive Examination Technologies-FY11 Report
JP2011237327A (en) Measurement method of refractory thickness, and device
Naus et al. Detection of Aging of Nuclear Power Plant Structures
Park et al. Sensing solutions for assessing and monitoring of nuclear power plants
GB2411717A (en) Measurement of blast furnace liner thickness
JPS61204510A (en) Method for measuring thickness of deposit layer on inside of pipe utilizing neutron
Bakhtiari et al. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems
Wall et al. Irradiation of ultrasonic sensors and adhesive couplants for application in light water reactor primary loop piping and components
Lorenzon et al. Application of Muon Radiography to Blast Furnaces: the BLEMAB project
Meyer et al. Developing effective continuous on-line monitoring technologies to manage service degradation of nuclear power plants
Ojovan et al. Exploring the Earth’s crust and mantle using self-descending, radiation-heated, probes and acoustic emission monitoring
Alex et al. Nondestructive detection and measurement of hydrogen embrittlement