JP2009258115A - Method and device for measuring thickness of refractory body - Google Patents

Method and device for measuring thickness of refractory body Download PDF

Info

Publication number
JP2009258115A
JP2009258115A JP2009141136A JP2009141136A JP2009258115A JP 2009258115 A JP2009258115 A JP 2009258115A JP 2009141136 A JP2009141136 A JP 2009141136A JP 2009141136 A JP2009141136 A JP 2009141136A JP 2009258115 A JP2009258115 A JP 2009258115A
Authority
JP
Japan
Prior art keywords
radiation
refractory
tube material
thickness
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009141136A
Other languages
Japanese (ja)
Other versions
JP4638952B2 (en
Inventor
Takuo Uehara
拓男 上原
Hitoshi Nakamura
倫 中村
Ryoji Kawashima
良次 川島
Hironobu Yamanaka
啓伸 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009141136A priority Critical patent/JP4638952B2/en
Publication of JP2009258115A publication Critical patent/JP2009258115A/en
Application granted granted Critical
Publication of JP4638952B2 publication Critical patent/JP4638952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved refractory measuring device for solving such a problem that conventional devices cannot use radiation ray to detect each body thickness of irradiation side refractory and detection side refractory. <P>SOLUTION: This refractory body thickness measuring method includes: applying radiation to a tube material; detecting decay radiation passed through the tube material and the refractory 5 inside the tube material; also detecting both the irradiated positional surface temperature on surface of the radiation-applied tube material and the detected positional surface temperature on a surface of the decay radiation-detected tube material; then removing decay intensity of the tube material from that of the detected decay radiation to compute decay intensity of the refractory; further computing refractory body thickness from this decay intensity of the refractory; and by using the above irradiated positional surface temperature and detected positional surface temperature, computing a body thickness of both irradiation side refractory and detection side refractory from the above computed refractory body thickness. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐火物厚み測定方法及びその装置に関し、特に、放射線を用いて照射側の耐火物厚みと検出側の耐火物厚みとを検出する方法及びその装置に関する。   The present invention relates to a refractory thickness measuring method and apparatus, and more particularly, to a method and apparatus for detecting radiation-side refractory thickness and detection-side refractory thickness using radiation.

製鉄所における高炉及び熱風炉等の付帯設備又は焼結及びコークス炉等の煙突では、鉄拡石から銑鉄を取り出すために高炉及びその付帯設備は、極めて高温の雰囲気に晒されているため、鉄皮の内側に耐火物を有する。さらに、高炉は稼動開始後シャットダウンせずに連続操業するため、耐火物の剥離を内側から判断することはできず、外側から放射線を用いて検出する等の非破壊検査を行っている。
そのため、非破壊検査において管材料の耐火物の欠陥部を精度良く発見し、欠陥部を修繕することで、事故を未然に防止すると共に装置の延命化を実現することが重要な課題となっている。
In an auxiliary facility such as a blast furnace and a hot blast furnace in a steelworks or a chimney such as a sintering and coke oven, the blast furnace and its ancillary facilities are exposed to an extremely high temperature atmosphere in order to extract pig iron from an iron ore. Has a refractory inside the skin. Furthermore, since the blast furnace operates continuously without shutting down after the operation is started, it is impossible to judge the refractory peeling from the inside, and non-destructive inspection such as detection using radiation from the outside is performed.
Therefore, it is an important issue to prevent accidents and to extend the life of the equipment by accurately finding and repairing defective parts of refractories in pipe materials in non-destructive inspection. Yes.

また、放射線を用いた管材料の減肉及び付着物厚みを算出する方法として、管材料と付着物との吸収係数の比が互いに異なる少なくとも2種類の放射線の線源を用い、管の同一部分に照射し、透過放射線の強さを測定し、各々の放射線に対する減衰量から管肉厚みと付着物の厚みを算出する方法が目示されている(下記特許文献1)。   In addition, as a method of calculating the thickness of the tube material and the thickness of the deposit using radiation, at least two types of radiation sources having different absorption coefficient ratios between the tube material and the deposit are used. A method of measuring the intensity of transmitted radiation and calculating the thickness of the tube and the thickness of the deposit from the attenuation amount for each radiation is disclosed (Patent Document 1 below).

また、宇宙線であるミューオンを用いて管材料の耐火物厚みを算出する方法として、宇宙線に対する減衰量から耐火物の厚みを算出する方法が開示されている(下記特許文献2)。   Further, as a method for calculating the refractory thickness of a pipe material using a muon that is a cosmic ray, a method for calculating the thickness of the refractory from the attenuation amount with respect to the cosmic ray is disclosed (Patent Document 2 below).

特開昭63−210707号公報Japanese Unexamined Patent Publication No. 63-210707 特開平8−263741号公報JP-A-8-263741

しかしながら、提案されている方法では、測定に用いる放射線や字宙線の減衰は照射側の鉄皮及び耐火物と、検出側の鉄皮及び耐火物との両方において生じるが、照射側の耐火物の厚さと検出側の耐火物の厚さのそれぞれを判別することができない等の不都合があった。   However, in the proposed method, the radiation used for the measurement and the attenuation of the cosmic rays occur in both the iron and refractories on the irradiation side and the iron and refractories on the detection side. And the thickness of the refractory on the detection side cannot be discriminated.

上述のような問題点に鑑み、本発明は管材料内側の耐火物に対して放射線を照射し、放射線照射側の耐火物厚みと放射線検出側の耐火物厚みのそれぞれを算出することを目的とする。   In view of the problems as described above, the present invention aims to calculate the respective refractory thickness on the radiation irradiation side and refractory thickness on the radiation detection side by irradiating the refractory inside the tube material with radiation. To do.

上記課題を解決するために、耐火物厚み測定方法は、放射線を管材料に照射し、管材料と管材料内側の耐火物とを通過した減衰放射線を検出し、放射線を照射した管材料の表面の照射位置表面温度、及び、減衰放射線を検出した管材料の表面の検出位置表面温度を検出し、検出した減衰放射線の減衰強度から管材料の減衰強度を取り除いて、耐火物の減衰強度を算出し、耐火物の減衰強度から、耐火物厚みを算出し、照射位置表面温度と検出位置表面温度を用いて、耐火物厚みから照射側耐火物厚み及び検出側耐火物厚みを算出する。
管材料の減衰強度は、超音波測定により検出された管材料の厚みに基づいて算出することができる。放射線照射の照射位置と、減衰放射線の検出位置は、水平方向において同じ位置であっても良い。
In order to solve the above-mentioned problems, a method for measuring the thickness of a refractory is to irradiate a tube material with radiation, detect attenuated radiation that has passed through the tube material and the refractory inside the tube material, and then irradiate the surface of the tube material irradiated with radiation. The surface temperature of the irradiation position of the tube material and the detection surface temperature of the surface of the tube material where the attenuated radiation was detected are detected, and the attenuation intensity of the refractory is calculated by removing the attenuation intensity of the tube material from the detected attenuation intensity of the attenuation radiation. Then, the refractory thickness is calculated from the decay strength of the refractory, and the irradiation side refractory thickness and the detection side refractory thickness are calculated from the refractory thickness using the irradiation position surface temperature and the detection position surface temperature.
The attenuation strength of the tube material can be calculated based on the thickness of the tube material detected by ultrasonic measurement. The irradiation position of radiation irradiation and the detection position of attenuated radiation may be the same position in the horizontal direction.

また、上記課題を解決するために、本発明に係わる耐火物厚み測定方法は、放射線を管材料に照射し、管材料と管材料内側の耐火物とを通過した第1の減衰放射線を検出し、放射線を照射する照射位置、又は、放射線を検出する検出位置を変化し、放射線を管材料に照射し、管材料と管材料内側の耐火物とを通過した第2の減衰放射線を検出し、第1の減衰放射線の減衰強度と、第2の減衰放射線の減衰強度とを比較することで、耐火物厚みの異常を判別する。   In order to solve the above-mentioned problem, the refractory thickness measuring method according to the present invention irradiates a tube material with radiation, and detects the first attenuated radiation that has passed through the tube material and the refractory inside the tube material. The irradiation position for irradiating radiation or the detection position for detecting radiation is changed, the tube material is irradiated with radiation, and the second attenuated radiation that has passed through the tube material and the refractory inside the tube material is detected. By comparing the attenuation intensity of the first attenuation radiation and the attenuation intensity of the second attenuation radiation, an abnormality in the thickness of the refractory is determined.

さらに、上記課題を解決するために、放射線を管材料に照射する放射線照射部と、管材料と管材料内側の耐火物を通過して減衰した放射線を検出する放射線検出部と、放射線を照射した管材料の表面の照射位置表面温度、及び、減衰放射線を検出した管材料の表面の検出位置表面温度を検出する温度検出部と、減衰強度から管材料及び耐火物の厚みを算出し、算出された管材料及び耐火物の厚みから、管材料厚みを減算して耐火物厚みを算出し、照射位置表面温度と検出位置表面温度を用いて、耐火物厚みから照射側耐火物厚み及び検出側耐火物厚みを算出する演算処理部と、を有する。
管材料の減衰強度は、超音波測定により検出された管材料の厚みに基づいて算出することができる。また、放射線照射部と、放射線検出部は、水平方向において同じ位置であっても良い。
Furthermore, in order to solve the above-mentioned problems, a radiation irradiation unit for irradiating the tube material with radiation, a radiation detection unit for detecting radiation attenuated through the tube material and the refractory inside the tube material, and radiation Calculated by calculating the thickness of the tube material and refractory from the attenuation intensity, and the temperature detection unit that detects the surface temperature of the irradiation position of the surface of the tube material and the detection position surface temperature of the surface of the tube material that detected the attenuated radiation. Calculate the refractory thickness by subtracting the tube material thickness from the thickness of the pipe material and refractory, and use the irradiation position surface temperature and detection position surface temperature to calculate the irradiation side refractory thickness and detection side refractory from the refractory thickness. An arithmetic processing unit for calculating an object thickness.
The attenuation strength of the tube material can be calculated based on the thickness of the tube material detected by ultrasonic measurement. Further, the radiation irradiation unit and the radiation detection unit may be at the same position in the horizontal direction.

また、上記課題を解決するために、耐火物厚み測定装置放射線を管材料に照射する放射線照射部と、管材料と管材料内側の耐火物とを通過した第1の減衰放射線を検出し、宜つ、放射線を照射する管材料の表面を変化させ、又は、減衰放射線を検出する管材料の表面を変化させることで第2の減衰放射線を検出する放射線検出部と、第1の減衰放射線の減衰強度と、第2の減衰放射線の減衰強度とを比較することで、耐火物厚みの異常部を判別する判別部を有する。
さらに、管材料の滅衰強度は、超音波測定により検出された管材料の厚みに基づいて算出しても良い。
Further, in order to solve the above-mentioned problems, the first damped radiation that has passed through the tube material and the refractory inside the tube material is detected by detecting a radiation irradiation unit that irradiates the tube material with the refractory thickness measuring device radiation, and A radiation detector that detects the second attenuated radiation by changing the surface of the tube material that irradiates the radiation or by changing the surface of the tube material that detects the attenuated radiation; and attenuation of the first attenuated radiation By comparing the intensity and the attenuation intensity of the second attenuated radiation, a determination unit that determines an abnormal part of the refractory thickness is provided.
Further, the decay strength of the tube material may be calculated based on the thickness of the tube material detected by ultrasonic measurement.

本発明によれば、放射線を用いた耐火物の厚み測定において、測定した耐火物厚みを鉄皮表面温度により放射線照射側の耐火物厚みと放射線検出側の耐火物厚みを算出できるようにしたので、管材料内のどの部分の耐火物厚みが減少しているかを発見することができる。   According to the present invention, in the measurement of the thickness of a refractory using radiation, the thickness of the measured refractory can be calculated from the thickness of the refractory on the radiation irradiation side and the refractory thickness on the radiation detection side based on the iron skin surface temperature. It can be found in which part of the pipe material the refractory thickness is reduced.

さらに、本発明によれば、検出した放射線の減衰強度を、他の検出部又は照射部を用いて検出した放射線の減衰強度と比較することで、管材料内のどの部分の耐火物厚みが減少しているかを発見することができる。   Furthermore, according to the present invention, by comparing the attenuation intensity of the detected radiation with the attenuation intensity of the radiation detected using another detection unit or irradiation unit, the thickness of the refractory in any part of the tube material is reduced. You can discover what you are doing.

図1は、耐火物厚み測定装置の一例を示した上面図である。FIG. 1 is a top view showing an example of a refractory thickness measuring apparatus. 図2は、耐火物厚み測定装置の一例を示し側面図である。FIG. 2 is a side view showing an example of a refractory thickness measuring apparatus. 図3は、測定装置の詳細の一例を示す図である。FIG. 3 is a diagram illustrating an example of details of the measurement apparatus. 図4は、耐火物厚み測定装置による耐火物厚測定の処理フローの一例を説明する図である。FIG. 4 is a diagram for explaining an example of a processing flow of refractory thickness measurement by the refractory thickness measurement apparatus. 図5は、放射線検出部で検出された減衰放射線の減衰強度を示す図である。FIG. 5 is a diagram illustrating the attenuation intensity of the attenuated radiation detected by the radiation detection unit. 図6は、減衰強度と耐火物厚みの関係を示す図である。FIG. 6 is a diagram showing the relationship between the attenuation strength and the refractory thickness. 図7は、耐火物厚み測定装置による耐火物厚み測定の処理フローの一例を説明する図である。FIG. 7 is a diagram for explaining an example of a processing flow of refractory thickness measurement by the refractory thickness measurement apparatus. 図8は、放射線照射位置と検出位置の関係を示す図である。FIG. 8 is a diagram showing the relationship between the radiation irradiation position and the detection position. 図9は、減衰放射線の放射線強度を示すグラフである。FIG. 9 is a graph showing the radiation intensity of the attenuated radiation. 図10は、図9(a)及び(b)に示した減衰放射線をノイズ除去した減衰放射線を示す図である。FIG. 10 is a diagram showing attenuated radiation obtained by removing noise from the attenuated radiation shown in FIGS. 9A and 9B.

以下、図面を参照して、本発明の実施の形態を説明する。
図1は、耐火物厚み測定装置の一例を示した上面図である。高炉の付帯設備である焼結煙突1は、鉄鉱石を溶解して銑鉄を製造する炉であって、厚い鉄皮3に耐火物5を内張りした円筒容器又は管材料である。測定装置10は、焼結煙突1に取り付けられ且つ矢印7で示される放射線を照射する放射線照射部11、放射線の照射側50の鉄皮3aと鉄皮3aの内側の耐火物5a、放射線の検出側60の耐火物5b及び鉄皮3bを通過して減衰した放射線を検出るために半導体検出素子を備える放射線検出部14、及び、入出力部15、コンピュータ16を有する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a top view showing an example of a refractory thickness measuring apparatus. A sintered chimney 1 that is ancillary equipment of a blast furnace is a furnace that produces pig iron by melting iron ore, and is a cylindrical container or pipe material in which a refractory 5 is lined on a thick iron skin 3. The measuring device 10 is attached to the sintered chimney 1 and irradiates the radiation indicated by the arrow 7, a radiation irradiating part 11, an iron skin 3 a on the radiation irradiation side 50, a refractory 5 a inside the iron skin 3 a, and detection of radiation In order to detect radiation attenuated by passing through the refractory 5b and the iron skin 3b on the side 60, the radiation detection unit 14 including a semiconductor detection element, an input / output unit 15, and a computer 16 are provided.

放射線照射部11は、高い線量率を持つ放射線源イリジウム(Ir−192)等を収納する線源容器12と線源容器12からのガンマ線やX線等の放射線を伝送するための伝送管で接続されており、線源容器12は、管理区域からの放射線放射制御を行うための操作器13とレリーズワイヤ等で接読されている。管理区域から操作器13により線源容器12のシャッターの開閉動作をすることで、線源容器12から放射線が放出され、焼結煙突1の鉄皮3aに取り付けた放射線照射部11から、鉄皮3aに放射線が照射され、矢印7で示すように焼結煙突1を貫通し、鉄皮3bに取り付けた放射線検出部14で減衰された放射線が検出される。なお放射線検出部14は、放射線の電離作用により生じる電圧を検出する。また操作器13は、入出力部15とシリアルケーブル等で有線接続し、入出力部15を介して後述するコンピュータ16と通信接続され得る。そのため、操作器13を、コンピュータ16で操作可能となる。さらに、放射線検出部14は、検出した電圧をデジタルデータに変換し、シリアルケーブル等で接続される入出力部15を介してコンピュータ16に電圧データを送信可能である。   The radiation irradiating unit 11 is connected to a radiation source container 12 containing a radiation source iridium (Ir-192) having a high dose rate and a transmission tube for transmitting radiation such as gamma rays and X-rays from the radiation source container 12. The radiation source container 12 is read by an operation device 13 for performing radiation emission control from a management area, a release wire, and the like. By opening and closing the shutter of the radiation source container 12 by the operating device 13 from the management area, the radiation is emitted from the radiation source container 12, and from the radiation irradiation unit 11 attached to the iron skin 3 a of the sintered chimney 1, the iron skin 3a is irradiated with radiation, and as shown by an arrow 7, the radiation passing through the sintered chimney 1 is attenuated by the radiation detector 14 attached to the iron skin 3b. The radiation detector 14 detects a voltage generated by the ionizing action of radiation. The operating device 13 can be connected to the input / output unit 15 by a serial cable or the like, and can be connected to a computer 16 to be described later via the input / output unit 15. Therefore, the operation device 13 can be operated by the computer 16. Further, the radiation detection unit 14 can convert the detected voltage into digital data and transmit the voltage data to the computer 16 via the input / output unit 15 connected by a serial cable or the like.

図2は、耐火物厚み測定装置の一例を示した画面図である。焼結煙突1には、鉄皮3の内側に耐火物5が内張りされている。測定装置10は、焼結煙突1に取り付けられ、矢印7で示される放射線を照射する放射線照射部11、放射線の照射側の鉄皮3aと鉄皮3aの内側の耐火物5a、及び、放射線の検出側60の耐火物5b及び鉄皮3bを通過して減衰した放射線を検出するために半導体検出素子を備える放射線検出部14を有する。   FIG. 2 is a screen view showing an example of a refractory thickness measuring apparatus. The sintered chimney 1 is lined with a refractory 5 inside the iron skin 3. The measuring device 10 is attached to the sintered chimney 1 and irradiates a radiation irradiating unit 11 that irradiates the radiation indicated by the arrow 7; In order to detect radiation attenuated by passing through the refractory 5b and the iron shell 3b on the detection side 60, the radiation detection unit 14 including a semiconductor detection element is included.

図3は、測定装置の詳細の一例を示す図である。測定装置10は、焼結煙突1に取り付けられ、放射線を照射する放射線照射部11、鉄皮3及び図示されない耐火物5を通過して減衰した矢印7で示される放射線を検出する放射線検出部14を有する。   FIG. 3 is a diagram illustrating an example of details of the measurement apparatus. The measuring device 10 is attached to the sintered chimney 1 and is a radiation detecting unit 14 that detects radiation indicated by an arrow 7 that has passed through a radiation irradiating unit 11 that irradiates radiation, an iron shell 3 and a refractory 5 (not shown) and attenuated. Have

放射線照射部11には、放射線を照射した管材料の表面の照射位置表面温度を測定するための温度検出部36a、及び超音波により鉄皮厚さを測定する超音波測定部38aが取り付けられてもよい。放射線照射部11は、制御部31aを有し、温度検出部36aの検出した鉄皮3の温度データを記憶し、有線又は無線通信によりコンピュータ16に記録した各種検出データを送信することができる。また、制御部31aは、このデータは、記憶媒体に記録し、記憶媒体をコンピュータ16に搬送し、データの送受信を行うことも可能である。   The radiation irradiation unit 11 is provided with a temperature detection unit 36a for measuring the irradiation position surface temperature of the surface of the tube material irradiated with radiation, and an ultrasonic measurement unit 38a for measuring the thickness of the iron skin by ultrasonic waves. Also good. The radiation irradiation unit 11 includes a control unit 31a, stores temperature data of the iron skin 3 detected by the temperature detection unit 36a, and can transmit various detection data recorded in the computer 16 by wired or wireless communication. The control unit 31a can also record this data in a storage medium, transport the storage medium to the computer 16, and send and receive data.

放射線検出部14は、移動可能なようにレール35b上に取り付けられ、半導体検出素子を備えるスキャナ部37を有し、スキャナ部37の周りに、減衰放射線を検出した管材料の表面の検出位置表面温度を検出する温度検出部36bを取り付けても良い。また、放射線検出部14は、スキャナ部37の周りに、超音波測定部38bを有する。さらに、放射線検出部14には、制御部31bを有し、放射線検出部14の検出した放射線データ、超音波測定部38bが測定した超音波データ、温度検出部36bの検出した鉄皮3の温度データを記億し、有線又は無線通信によりコンピュータ16に記億した各種検検データを送信する。また、制御部31bは、これらのデータは、記憶媒体に記録し、記億媒体をコンピュータ16に搬送し、データの送受信を行うことも可能である。   The radiation detection unit 14 has a scanner unit 37 that is mounted on the rail 35b so as to be movable and includes a semiconductor detection element. Around the scanner unit 37, the detection position surface of the surface of the tube material that detected the attenuated radiation You may attach the temperature detection part 36b which detects temperature. The radiation detection unit 14 includes an ultrasonic measurement unit 38 b around the scanner unit 37. Furthermore, the radiation detection unit 14 includes a control unit 31b, and the radiation data detected by the radiation detection unit 14, the ultrasonic data measured by the ultrasonic measurement unit 38b, and the temperature of the iron skin 3 detected by the temperature detection unit 36b. The data is recorded, and various inspection data stored in the computer 16 is transmitted by wired or wireless communication. Further, the control unit 31b can record these data in a storage medium, transport the storage medium to the computer 16, and transmit / receive data.

なお、温度検出部36a、36bは、近赤外線等を検出する検出素子により温度を検出するものであっても良い。また、図示しないが、放射線照射部11も、移動可能なようにレール35a上に取り付けられ、移動可能としても良い。   The temperature detectors 36a and 36b may detect the temperature by a detection element that detects near infrared rays or the like. Moreover, although not shown in figure, the radiation irradiation part 11 is also attached on the rail 35a so that a movement is possible, and it is good also as a movement.

超音波測定部38a、38bは、超音波を鉄皮3に照射し、超音波の減衰量の変化や反射、吸収、移送時間差などの特性により鉄皮3の厚みを検出することができる。なお、超音波測定部38a、38bは、既知の超音波厚さ計により実装可能である。なお、この超音波厚さ計は、鉄皮3に付着したトランスデューサー(プローブ、探触子)と呼ばれるセンサーから発信した超音波が、測定物の反対面に反射し戻ってくる時間(伝播時間)をもとに、鉄皮3の厚さを算出する。   The ultrasonic measurement units 38 a and 38 b irradiate the iron skin 3 with ultrasonic waves, and can detect the thickness of the iron skin 3 based on characteristics such as changes in the attenuation amount of the ultrasonic waves, reflection, absorption, and transfer time difference. Note that the ultrasonic measurement units 38a and 38b can be mounted by a known ultrasonic thickness meter. The ultrasonic thickness gauge is a time (propagation time) in which ultrasonic waves transmitted from a sensor called a transducer (probe, probe) attached to the iron shell 3 are reflected back to the opposite surface of the object to be measured. ) To calculate the thickness of the iron skin 3.

また、温度検出部36a、36b、超音波測定部38a、38bは、シリアルケーブル又はイーサネット(登録商標)ケーブルで接続した入出力部15を介してコンピュータ16にデータを送信可能である。
また、温度検出部36a、36bは、超音波測定部38a、38bは、必ずしも放射線検出部14や放射線照射部11と一体化したものである必要は無く、作業員が、照射位置及び検出位置を既知の可搬型サーモトレーサを用いて測定することで、それぞれの表面温度を検出し、コンピュータ16の入力部24又は記憶部21に記録させても良い。
The temperature detection units 36a and 36b and the ultrasonic measurement units 38a and 38b can transmit data to the computer 16 via the input / output unit 15 connected by a serial cable or an Ethernet (registered trademark) cable.
Further, the temperature detectors 36a and 36b are not necessarily integrated with the radiation detectors 14 and the radiation irradiation unit 11 and the ultrasonic measurement units 38a and 38b are not necessarily integrated with the operator. Each surface temperature may be detected by measurement using a known portable thermotracer and recorded in the input unit 24 or the storage unit 21 of the computer 16.

コンピュータ16は、処理部25、処理部25の動作を規定するブログラムや各種データを記録する記憶部21、有線又は無繰通信によりデータの送受信を行う通信部22、入力部24、表示部23を有する。   The computer 16 includes a processing unit 25, a storage unit 21 that records programs and various data that define the operation of the processing unit 25, a communication unit 22 that transmits and receives data by wired or non-repetitive communication, an input unit 24, and a display unit 23. Have

コンピュータ16は、超音波測定部38a、38bで検出した鉄皮3の厚さに対応する放射線の減衰強度を、下記に示すランベルトの法則により(式1)、求めることができる。   The computer 16 can obtain the attenuation intensity of the radiation corresponding to the thickness of the iron skin 3 detected by the ultrasonic measurement units 38a and 38b according to Lambert's law shown below (Formula 1).

Figure 2009258115
Figure 2009258115

αは、線現弱係数である。ここで、xは、鉄皮厚みである。鉄皮に入射する前の放射線の放射強度をI0が鉄皮中を距離x移動したときの放射線の強度をIが算出できる。つまり、xが超音波測定部18により既知となれば、鉄皮通過後のIの強度が算出可能となる。そして、コンピュータ16は、式1を用いて算出した鉄皮の減衰強度を、検出した放射線の減衰強度から減算する。このようにして減算して算出した減衰強度は、照射側及び検出側の耐火物厚みのみの減衰強度となる。
そして、コンピュータ16は、放射線減衰強度と耐火物厚みの検量線から(後述する図6に示す)、耐火物厚みの減衰強度に対応する耐火物厚みを算出する。
α is a line weakness coefficient. Here, x is the thickness of the iron skin. It is possible to calculate I as the radiation intensity when I 0 moves the distance x through the iron skin before the radiation enters the iron skin. That is, if x is known by the ultrasonic measurement unit 18, the intensity of I after passing through the iron skin can be calculated. Then, the computer 16 subtracts the attenuation intensity of the iron skin calculated using Equation 1 from the detected attenuation intensity of the radiation. The attenuation intensity calculated by subtracting in this way is the attenuation intensity of only the refractory thickness on the irradiation side and the detection side.
Then, the computer 16 calculates the refractory thickness corresponding to the attenuation strength of the refractory thickness from the calibration curve of the radiation attenuation strength and the refractory thickness (shown in FIG. 6 described later).

コンピュータ16は、算出した耐火物厚みを、照射位置表面温度及び検出位置表面温度を用いて、照射側耐火物厚みと検出側耐火物厚みを算出する。なお、算出方法は、耐火物の伝導伝熱量と、鉄皮表面からの放射伝熱量及び対流伝熱が平衡状態にあることを想定した下記の式を用いる。なお、鉄皮の熱伝導は熱伝導率が極めて高く熱抵抗は極めて小さいため無視する。また、焼結煙突は円筒型であるが、鉄皮表面の極率は平板壁モデルを摘要できるほど小さいため、伝導伝熱量の計算式には平板壁の伝導伝熱計算式を用い、円筒形の伝導伝熱計算式は用いないこととした。   The computer 16 calculates the irradiation side refractory thickness and the detection side refractory thickness by using the irradiation position surface temperature and the detection position surface temperature for the calculated refractory thickness. The calculation method uses the following equation assuming that the conduction heat transfer amount of the refractory, the radiant heat transfer amount from the iron skin surface, and the convection heat transfer are in an equilibrium state. The heat conduction of the iron skin is neglected because the heat conductivity is extremely high and the heat resistance is extremely small. In addition, the sintered chimney is cylindrical, but the porosity of the iron skin surface is so small that a flat plate wall model can be used. Therefore, the conduction heat transfer calculation formula for the flat plate wall is used as the calculation formula for the conduction heat transfer. The conduction heat transfer calculation formula was not used.

Figure 2009258115
Figure 2009258115

Figure 2009258115
Figure 2009258115

q1は、平衡状態の照射側鉄皮からの熱量であり、放射伝熱及び対流伝熱である。また、q2は、平衝状態の検出側鉄皮からの熱量であり、放射伝熱及び対流伝熱である。t0は炉内温度、t1は炉外温度(照射側)、t2は炉外温度(検出側)、b1は照射側断熱材厚み、b2は検出側断熱材厚み、εはステファンボルツマン係数(例えば、高炉や煙突だと、0.7程度)、λは熱伝導率である。
式2の左辺は、フーリエの法則で示される伝導伝熱量を示し、式2の右辺第1項は、ステファンボルツマンの法則で示される放射伝熱を示し、式2の左辺第2項は、対流伝熱量を示す(なお、hcは、形状によって使いわけされる。垂直壁面の場合hc=2.2、上向壁面の場合hc=2.8、下向壁面の場合hc=1.5)。式3も同様である。
q1 is the amount of heat from the irradiation side skin in an equilibrium state, and is radiant heat transfer and convection heat transfer. Further, q2 is the amount of heat from the detection-side iron skin in a neutral state, and is radiant heat transfer and convection heat transfer. t0 is the temperature inside the furnace, t1 is the temperature outside the furnace (irradiation side), t2 is the temperature outside the furnace (detection side), b1 is the thickness of the heat insulating material on the irradiation side, b2 is the thickness of the heat insulating material on the detection side, and ε is the Stefan Boltzmann coefficient (for example, In the case of a blast furnace or chimney, about 0.7), λ is the thermal conductivity.
The left side of Equation 2 indicates the amount of conduction heat transfer indicated by Fourier's law, the first term on the right side of Equation 2 indicates radiant heat transfer indicated by Stefan Boltzmann's law, and the second term on the left side of Equation 2 indicates convection. The amount of heat transfer is indicated (hc is used depending on the shape. Hc = 2.2 for the vertical wall surface, hc = 2.8 for the upward wall surface, hc = 1.5 for the downward wall surface). The same applies to Equation 3.

なお、λは、検出側及び照射側同じ値とする。これは、検出側及び照射側の水平位置を同じとしたためである。つまり、一般に熱伝導率は炉内環境によって流体が染み込み、耐火物内の成分が蒸発する等の現象によって時々変化するが、高炉や煙突等の環境では、高さ方向に依存して炉内環境は共通するため、耐火物の水平位置が同じであれば、耐火物の物性は同じと考えられるからである。さらに、図2で示したように、コンクリート等の液状材料から成形した耐火物や、れんがのように予め固体の耐火物は、高さ方向において同じ形状又は物性の材料を用いられるため、物性変化前の性質も同じである。したがって、表面温度を用いて照射側耐火物厚み及び検出側耐火物厚みを算出する場合、計算精度向上のために、検出側及び照射側は熱伝導率が同じと想定される位置関係として水平位置に設置されるのが好ましい。式2及び式3を式変形することで、b1(照射側断熱材厚み)を算出するための式3、b2は(検出側断熱材厚み)を算出するための式4を、導き出すことができる。   Note that λ is the same value on the detection side and the irradiation side. This is because the horizontal positions on the detection side and the irradiation side are the same. In other words, in general, the thermal conductivity changes from time to time due to phenomena such as the fluid infiltrating the furnace environment and the components in the refractory evaporating, but in environments such as blast furnaces and chimneys, the furnace environment depends on the height direction. This is because the physical properties of the refractory are considered to be the same if the horizontal position of the refractory is the same. Furthermore, as shown in FIG. 2, refractories molded from liquid materials such as concrete, and solid refractories such as bricks, because the same shape or physical properties are used in the height direction, changes in physical properties The previous property is the same. Therefore, when calculating the irradiation side refractory thickness and the detection side refractory thickness using the surface temperature, in order to improve calculation accuracy, the detection side and the irradiation side are assumed to have the same horizontal position as the positional relationship. It is preferable to be installed in By transforming Formula 2 and Formula 3, Formula 3 for calculating b1 (irradiation-side insulation thickness) and b2 can derive Formula 4 for calculating (detection-side insulation thickness). .

Figure 2009258115
Figure 2009258115

このようにして、コンピュータ16は、伝導伝熱、対流伝熱、放射伝熱の平衡状態を想定した式を利用して、b1(照射側断熱材厚み)、b2は(検出側断熱材厚み)を算出可能である。しかしながら、式4及び式5の分母部分である対流伝熱および放射伝熱の式は、外気環境(温度、湿度、気圧、風)、表面形状の関係から算出結果と、実際の値とが一致しないことが多い。そのため、このようにして計算されたb1、b2は、精度が低いため、そのまま利用することは困難である。
一方、放射線による計測は、正確な値を算出可能である。しかしながら、照射側と検出側のトータル厚さしか算出できない。そのため、本実施例においては、放射線を用いて計測した値に対して、式3及び式4で算出した厚さb1、b2を比率計算に用いることとする。
In this way, the computer 16 uses equations assuming an equilibrium state of conduction heat transfer, convection heat transfer, and radiation heat transfer, and b1 (irradiation side heat insulating material thickness) and b2 (detection side heat insulating material thickness). Can be calculated. However, the convection heat transfer and radiant heat transfer equations, which are the denominators of Equation 4 and Equation 5, match the calculated values and actual values based on the relationship between the outside air environment (temperature, humidity, atmospheric pressure, wind) and surface shape. Often not. Therefore, b1 and b2 calculated in this way are difficult to use as they are because of low accuracy.
On the other hand, the measurement by radiation can calculate an accurate value. However, only the total thickness on the irradiation side and the detection side can be calculated. For this reason, in the present embodiment, the thicknesses b1 and b2 calculated by Expression 3 and Expression 4 are used for the ratio calculation with respect to the value measured using radiation.

Figure 2009258115
Figure 2009258115

式6は、b1及びb2から得られる比率を示す式である。この式6、及び、放射線測定値の厚さLを用いて、放射線測定値及び伝熱計算に基づく比率をL1(照射側断熱材厚み)、L2は(検出側断熱材厚み)、以下のように定義することができる。   Formula 6 is a formula which shows the ratio obtained from b1 and b2. Using this equation 6 and the thickness L of the radiation measurement value, the ratio based on the radiation measurement value and the heat transfer calculation is L1 (irradiation side heat insulating material thickness), and L2 (detection side heat insulating material thickness) is as follows: Can be defined.

Figure 2009258115
Figure 2009258115

式7及び式8では、計算精度の低い式4及び式5を、照射側の耐火物厚みと検出側の耐火物厚みを求めるための比率として利用する。このようにすることで、計算精度の高い放射線測定による耐火物厚みを、照射側耐火物厚み及び検出側耐火物厚みに分けることができる。このように、測定装置10は、照射位置表面温度及び検出位置表面温度を用いて、照射側耐火物厚み及び検出側耐火物厚みを算出可能である。   In Formula 7 and Formula 8, Formula 4 and Formula 5 with low calculation accuracy are used as a ratio for obtaining the refractory thickness on the irradiation side and the refractory thickness on the detection side. By doing in this way, the refractory thickness by the radiation measurement with high calculation accuracy can be divided into the irradiation side refractory thickness and the detection side refractory thickness. Thus, the measuring apparatus 10 can calculate the irradiation-side refractory thickness and the detection-side refractory thickness using the irradiation position surface temperature and the detection position surface temperature.

また、コンピュータ16は、表面温度を用いないで耐火物厚みの検出又は耐火物厚みの異常判断を行うこともできる。例えば、測定装置10は、放射線を照射する照射位置と放射線を検出する検出位置とを固定して管材料と前記管材料内側の耐火物とを通過した減衰放射線を検出し、次に、放射線検出部14を水平方向又は垂直方向に移動することで、検出位置を変更し、又は、放射線照射部11を水平方向又は垂直方向に移動することで、照射位置を変更して、第2の減減衰放射線を検出する。   The computer 16 can also detect the thickness of the refractory or determine whether the thickness of the refractory is abnormal without using the surface temperature. For example, the measuring apparatus 10 detects the attenuated radiation that has passed through the tube material and the refractory inside the tube material by fixing the irradiation position for irradiating the radiation and the detection position for detecting the radiation, and then detects the radiation. The detection position is changed by moving the unit 14 in the horizontal direction or the vertical direction, or the irradiation position is changed by moving the radiation irradiation unit 11 in the horizontal direction or the vertical direction, and the second attenuation is performed. Detect radiation.

そして、コンピュータ16が、検出した第1及び第2の減衰放射線の減衰強度の差が生じる場含、その減衰強度の差に対応する耐火吻の厚みを算出して、検出位置変更前と検出位置変更後(或いは、照射位直変更前と照射位置変更後)の厚みの差を放射線減衰強度と耐火物厚みの検量線から(後述する図6に示す)から求めることができる。   Then, the computer 16 calculates the thickness of the fire proof corresponding to the difference between the attenuation intensities of the first and second attenuation radiations detected, and detects the thickness before the detection position change and the detection position. The difference in thickness after the change (or before the irradiation position change and after the irradiation position change) can be obtained from the calibration curve of the radiation attenuation intensity and the refractory thickness (shown in FIG. 6 described later).

このように、検出位置又は照射位置を変更することで、放射線強度並びに耐火物厚みの差分量を求めることができる。そして差分量が大きい場合に異常箇所として検出位置又は照射位置を判別することも可能である。また、その検出した複数の減衰強度の平均値を平均耐火物厚みavLとし、差分値の変動が無く正常な状態の耐火物と判断される箇所の厚みを平均耐火物厚みavLとすることで、差分値△Lにより、平均耐火物厚みavLに差分値を加算又は減算することで耐火物厚みを求めることも可能となる。   In this way, by changing the detection position or the irradiation position, the difference amount between the radiation intensity and the refractory thickness can be obtained. When the difference amount is large, it is possible to determine the detection position or the irradiation position as an abnormal location. In addition, the average value of the detected plurality of attenuation intensities is defined as the average refractory thickness avL, and the thickness of the portion that is determined to be a normal refractory without fluctuation of the difference value is defined as the average refractory thickness avL. With the difference value ΔL, it is also possible to obtain the refractory thickness by adding or subtracting the difference value to the average refractory thickness avL.

図4を用いて、耐火物厚み測定装置による耐火物厚み測定の処理フローの一例を説明する。最初に、放射線照射部11から放射線を管状の材料からなる円筒容器である焼結煙突1の鉄皮3の裏面に照射する(ステップ101)。放射線は、焼結煙突1を通過するとき、照射側の鉄皮3aと耐火物5aとの相互作用により減衰し、焼結煙突1の内部を通過し、さらに、検出側の鉄皮3bと耐火物5bとの相互作用により減衰する。このように、管状の材料からなる円筒容器である焼結煙突1の鉄皮3a、3bと耐火物5a、5bとを通過した減衰放射線を、放射線検出部14が検出する(ステップ102)。   An example of the processing flow of the refractory thickness measurement by the refractory thickness measuring device will be described with reference to FIG. First, radiation is irradiated from the radiation irradiation unit 11 to the back surface of the iron shell 3 of the sintered chimney 1 which is a cylindrical container made of a tubular material (step 101). When the radiation passes through the sintered chimney 1, the radiation is attenuated by the interaction between the irradiation side iron skin 3 a and the refractory 5 a, passes through the inside of the sintered chimney 1, and further detects the iron side 3 b on the detection side and the refractory. It attenuates due to the interaction with the object 5b. In this way, the radiation detector 14 detects the attenuated radiation that has passed through the iron shells 3a, 3b and the refractories 5a, 5b of the sintered chimney 1, which is a cylindrical container made of a tubular material (step 102).

図5を用いて、放射線検出部14で検出された減衰放射線の減衰強度を示す。この減衰強度は、管径6600mmの焼結煙突に対して放射線照射部11に対して180度の位置にある放射線検出部14が測定したものである。測定したデータは、放射線検出部14及び放射線照射部11がレール移動により、水平位置1mm〜750mmを移動して、検出した放射線の減衰強度である。   The attenuation intensity of the attenuated radiation detected by the radiation detection unit 14 is shown using FIG. This attenuation strength is measured by the radiation detection unit 14 at a position of 180 degrees with respect to the radiation irradiation unit 11 with respect to the sintered chimney having a tube diameter of 6600 mm. The measured data is the attenuation intensity of the detected radiation when the radiation detecting unit 14 and the radiation irradiating unit 11 move in the horizontal positions 1 mm to 750 mm by the rail movement.

図4に戻ると、次に、放射線を照射した管材料の表面の照射位置表面温度、及び、減衰放射線を検出した管材料の表面の検出位置表面温度を検出する(ステップ103)。このステップでは、例えば、照射側の温度検出部36a、検出側の温度検出部36bが、検出対象となる焼結煙突の表面から発射される赤外線を検出することで温度を測定し、測定データは、入出力部15を介してコンピュータ16の記億部21に記億される。また、このステップは、作業員がサーモトレーサを用いて計測し、入力部24を介してコンピュータ16の記憶部21に記憶させても良い。   Returning to FIG. 4, next, the irradiation position surface temperature of the surface of the tube material irradiated with radiation and the detection position surface temperature of the surface of the tube material where the attenuated radiation is detected are detected (step 103). In this step, for example, the temperature detection unit 36a on the irradiation side and the temperature detection unit 36b on the detection side measure the temperature by detecting infrared rays emitted from the surface of the sintered chimney to be detected, and the measurement data is The data is stored in the storage unit 21 of the computer 16 via the input / output unit 15. In addition, this step may be measured by a worker using a thermotracer and stored in the storage unit 21 of the computer 16 via the input unit 24.

次に、検出した放射線の減衰強度から管材料の減衰強度を取り除いて、前記耐火物の減衰強度を算出する(ステップ104)。
このステップは、コンピュータ16の処理部25が、超音波測定部18が検出した鉄皮3の厚さを受信する。次に、コンピュータ16の処理部25は、受信した鉄皮3の厚さに対応する鉄皮3における放射線の減衰強度を算出する。
例えば、超音波測定部18が検出した鉄皮3の厚さが、照射側11mm、検出側11mm、トータル22mmであり、放射線の放射強度が300keVで、線減弱係数は0.864であった場合、コンピュータ16の処理部25は、上述した式1を用いて、鉄皮3の減衰強度は、300×e(−0.864×2.22)=45[μSv/s]と算出できる。次に、その鉄皮3の減衰強度を、図5で示すように検出した放射線の減衰強度から減算する。このようにすることで、図5に示される鉄皮と耐火物厚みによる減衰強度から、鉄皮3の減衰強度が減算されたため、耐火物の減衰強度が算出される。
Next, the attenuation intensity of the tube material is removed from the detected attenuation intensity of the radiation, and the attenuation intensity of the refractory is calculated (step 104).
In this step, the processing unit 25 of the computer 16 receives the thickness of the iron skin 3 detected by the ultrasonic measurement unit 18. Next, the processing unit 25 of the computer 16 calculates the attenuation intensity of the radiation in the core 3 corresponding to the received thickness of the core 3.
For example, when the thickness of the iron skin 3 detected by the ultrasonic measurement unit 18 is 11 mm on the irradiation side, 11 mm on the detection side, 22 mm in total, the radiation intensity is 300 keV, and the linear attenuation coefficient is 0.864 The processing unit 25 of the computer 16 can calculate the attenuation strength of the iron skin 3 as 300 × e (−0.864 × 2.22) = 45 [μSv / s] using the above-described Expression 1. Next, the attenuation strength of the iron skin 3 is subtracted from the detected radiation attenuation strength as shown in FIG. By doing in this way, since the attenuation strength of the iron skin 3 was subtracted from the attenuation strength by the iron skin and refractory thickness shown in FIG. 5, the attenuation strength of the refractory is calculated.

次に、耐火物の減衰強度から、耐火物厚みを算出する(ステップ105)。
図6は、減衰強度と耐火物厚みの関係を示す図である。図示のように、予め実験により求めた減衰強度と耐火物厚みの関係を利用することで、検出された減衰強度から耐火物厚みを算出すことができる。したがって、ステップ104では、鉄皮減衰強度を減算した減衰強度から、図6に示した検量線に基づいて耐火物厚みを算出する。
Next, the refractory thickness is calculated from the attenuation strength of the refractory (step 105).
FIG. 6 is a diagram showing the relationship between the attenuation strength and the refractory thickness. As shown in the drawing, the refractory thickness can be calculated from the detected attenuation strength by utilizing the relationship between the attenuation strength and the refractory thickness obtained in advance through experiments. Accordingly, in step 104, the thickness of the refractory is calculated based on the calibration curve shown in FIG. 6 from the attenuation intensity obtained by subtracting the iron core attenuation intensity.

次に、ステップ105で算出した耐火物厚みを、照射位置表面温度と検出位置表面温度を用いて、照射側耐火物厚み及び検出側耐火物厚みを算出する(ステップ106)。この算出計算は、コンピユータ20が上記したように式7及び8を用いて算出する。そして、耐火物厚み測定の処理フローは終了する。   Next, using the irradiation position surface temperature and the detection position surface temperature, the irradiation side refractory thickness and the detection side refractory thickness are calculated from the refractory thickness calculated in step 105 (step 106). This calculation is calculated by the computer 20 using the equations 7 and 8 as described above. And the processing flow of refractory thickness measurement is complete | finished.

下に示す表1は、図5に示した水平位置領域、a、b、c、d、eにおいて、上記処理フローによる計算の結果を示したものである。   Table 1 shown below shows the results of calculation by the above processing flow in the horizontal position areas a, b, c, d, and e shown in FIG.

Figure 2009258115
Figure 2009258115

伝熱計算で求めた耐火物厚みb1、b2は、伝熱計算で分配した耐火物厚みL1、L2は、上記したように伝熱計算の計算精度上一致した値となっていない。しかしながら、伝熱計算で求めた耐火物厚みb1、b2を比率計算で利用することで、計算精度が向上した耐火物厚みL1、L2を算出可能となった。   The refractory thicknesses b1 and b2 obtained by the heat transfer calculation are not equal to the refractory thicknesses L1 and L2 distributed by the heat transfer calculation in the calculation accuracy of the heat transfer calculation as described above. However, the refractory thicknesses L1 and L2 with improved calculation accuracy can be calculated by using the refractory thicknesses b1 and b2 obtained by the heat transfer calculation in the ratio calculation.

図7を用いて、耐火物厚み測定装置による耐火物厚み測定の処理フローの一例を説明する。最初に、放射線照射部11から放射線を管状の材料からなる円筒容器である焼結煙突1の鉄皮3の表面に照射し(ステップ201)、放射線検出部14は、管材料と管材料内側の耐火物とを通過した減衰放射線を検出する(ステップ202)。   An example of the processing flow of the refractory thickness measurement by the refractory thickness measurement device will be described with reference to FIG. First, the radiation irradiation unit 11 irradiates the surface of the iron shell 3 of the sintered chimney 1 which is a cylindrical container made of a tubular material (step 201), and the radiation detection unit 14 The attenuated radiation that has passed through the refractory is detected (step 202).

図8は、放射線照射位置と検出位置の関係を示す図である。ステップ201では、まず検出位置60aに対して180度の位置にある照射位置50aで放射線を放射する。   FIG. 8 is a diagram showing the relationship between the radiation irradiation position and the detection position. In step 201, radiation is first emitted at an irradiation position 50a that is 180 degrees with respect to the detection position 60a.

再び図7に戻ると、放射線を照射する照射位置、又は、放射線を検出する検出位置を変更する(ステップ203)。これは、例えば、検出位置60aを固定したまま、図8に示す照射位置50aを半時計回りに、例えば、13.1度照射位置50bを変更することを示す。また、図8に示していないが、照射位置50aを固定したまま検出位置60aを変更したことも同様に行うことが可能である。   Returning again to FIG. 7, the irradiation position for irradiating radiation or the detection position for detecting radiation is changed (step 203). This indicates, for example, that the irradiation position 50a shown in FIG. 8 is changed counterclockwise, for example, the 13.1 degree irradiation position 50b while the detection position 60a is fixed. Although not shown in FIG. 8, it is also possible to change the detection position 60a in a similar manner while the irradiation position 50a is fixed.

次に、放射線照射部11から放射線を管状の材料からなる円筒容器である焼結煙突と同様な円筒容器焼結煙突1の鉄皮3の表面に照射し(ステップ204)、管材料と前記管材料内側の耐火物とを通過した減衰放射線を検出する(ステップ205)。   Next, the radiation irradiating unit 11 irradiates the surface of the iron shell 3 of the cylindrical container sintered chimney 1 similar to the sintered chimney which is a cylindrical container made of a tubular material (step 204). The attenuated radiation that has passed through the refractory inside the material is detected (step 205).

図9に検出された減衰放射線の放射線強度を示すグラフである。(a)は、照射位置変更前の検出された放射線の減衰強度を示すグラフであり、(b)は、照射位置変更後の検出された放射線の減衰強度を示すグラフである。図(a)及び(b)のグラフの縦軸は、煙突高さ方向を示し、横軸は減衰強度である。352aで示した減衰強度波形は、他の波形と比較して大きな減衰強度を示すため、当該高さ及び位置において耐火物厚みが薄くなっていると考えられる。しかしながら、検出した放射線強度は、照射側の耐火物と検出側の耐火物によって減衰させられたものであるため、図(a)だけでは、照射位置、検出位置のどちらの耐火物厚みが薄いのか判別できない。   FIG. 10 is a graph showing the radiation intensity of the attenuated radiation detected in FIG. 9. (A) is a graph which shows the attenuation intensity of the detected radiation before an irradiation position change, (b) is a graph which shows the attenuation intensity of the detected radiation after an irradiation position change. The vertical axis of the graphs in Figs. (A) and (b) indicates the chimney height direction, and the horizontal axis indicates the attenuation strength. Since the attenuation strength waveform indicated by 352a shows a greater attenuation strength than other waveforms, it is considered that the thickness of the refractory is reduced at the height and position. However, since the detected radiation intensity is attenuated by the refractory on the irradiation side and the refractory on the detection side, the refractory thickness at the irradiation position or the detection position is thinner in FIG. Cannot be determined.

そのため、図(b)に示すように、照射位置を変更して放射線強度を検出し、高さ基準の同じ352bの波形を碓認すると、放射線の減衰強度が滅少したことが分かる。そのため、照射位置を変更することで減衰強度が減少したため、照射位置50a耐火物厚みが薄くなっていることが判別可能となる。   Therefore, as shown in FIG. 4B, when the radiation intensity is detected by changing the irradiation position and the waveform of the same height reference 352b is recognized, it can be seen that the attenuation intensity of the radiation is reduced. Therefore, since the attenuation intensity is reduced by changing the irradiation position, it is possible to determine that the thickness of the irradiation position 50a refractory is thin.

そして、図(a)及び(b)で示される検出した減衰放射線は、放射線検出部の記憶部31bに記憶される。そして、記憶部31bから図示されない記録媒体又は無線通信等を用いて、コンピュータ16の記憶部21に減衰放射線のデータを格納する。   The detected attenuated radiation shown in FIGS. (A) and (b) is stored in the storage unit 31b of the radiation detection unit. And the data of attenuation radiation are stored in the memory | storage part 21 of the computer 16 using the recording medium or radio | wireless communication etc. which are not illustrated from the memory | storage part 31b.

再び図7に戻ると、コンピュータ16の処理部は、格納した減衰放射線のデータに対してノイズ除去処理を行う(ステップ206)。この減衰放射線データは、垂直方向に標本化された信号から構成されるため、例えば、垂直方向1mm単位で標本化されたデータ値を平均化することでノイズ除去処理を実行する。   Returning to FIG. 7 again, the processing unit of the computer 16 performs noise removal processing on the stored attenuated radiation data (step 206). Since this attenuated radiation data is composed of signals sampled in the vertical direction, for example, the noise removal processing is executed by averaging data values sampled in units of 1 mm in the vertical direction.

図10(a)は、図9(a)及び(b)に示した減衰放射線をノイズ除去した減衰放射線を示す。図10(b)は、(a)に示した2つの減衰放射線を高さ方向を基準として重ね合わせた図を示す。ノイズ除去を行うことで明確になった減衰放射線によって、コンピュータ16を用いて図(a)及び(b)に示すデータの比較が実施可能になる。   FIG. 10A shows attenuated radiation obtained by removing noise from the attenuated radiation shown in FIGS. 9A and 9B. FIG. 10B shows a diagram in which the two attenuated radiations shown in FIG. The attenuation radiation clarified by performing the noise removal makes it possible to compare the data shown in FIGS.

再び図7に戻ると、照射位置の異なる2つの減衰放射線の減衰強度を比校する(ステップ207)。図10の352cに示すピーク部分は、照射位置を変えることでなくなることが明確となる。そのため、照射位置50aの位置で減衰強度が小さくなる、つまり、耐火物の剥離等が生じていることが判明する。また、コンピュータ16の処理部25は、2つの減衰放射線の減衰強度の差分△Lを検出し、差分△Lがある閾値を超えることで、耐火物の剥離が生じる異常部を判断することが可能となる(ステップ208)。また、減衰強度ではなく透過放射線強度を用いた差分△Lでも評価可能である。   Returning again to FIG. 7, the attenuation strengths of the two attenuated radiations having different irradiation positions are compared (step 207). It becomes clear that the peak portion indicated by 352c in FIG. 10 is not caused by changing the irradiation position. Therefore, it turns out that attenuation intensity becomes small at the position of the irradiation position 50a, that is, peeling of the refractory occurs. Further, the processing unit 25 of the computer 16 can detect the difference ΔL between the attenuation strengths of the two attenuated radiations and determine an abnormal part where the refractory is peeled off when the difference ΔL exceeds a certain threshold value. (Step 208). Further, it is possible to evaluate the difference ΔL using the transmitted radiation intensity instead of the attenuation intensity.

また、放射線の減衰強度を多地点で検出しコンピュータ16の記憶部21に記憶させ、その検出した複数の減衰強度の平均値を平均耐火物厚みavLとし、差分値の変動が無く正常な状態の耐火句と判断される箇所の原みを平均耐火物厚みavLとすることで、差分値ΔLにより、平均耐火物厚みavLに差分値を加算又は漬算することで耐火物厚みを求めることも可能となる。
このようにして、耐火物厚み測定の処理フローは終了する。
Further, the attenuation intensity of the radiation is detected at multiple points and stored in the storage unit 21 of the computer 16, and the average value of the detected plurality of attenuation intensities is defined as the average refractory thickness avL, and there is no fluctuation of the difference value and the normal state is obtained. It is also possible to obtain the thickness of the refractory by adding or subtracting the difference value to the average refractory thickness avL from the difference value ΔL by setting the origin of the portion judged to be a refractory phrase as the average refractory thickness avL It becomes.
Thus, the processing flow of refractory thickness measurement is completed.

焼結煙突1を例にして述べが、本発明は、焼結煙突1への適用に限定されない。本発明は、例えぱ、高炉、内張り耐火物を有する配管材料、加熱炉など非破壊検査が必要な様々な円筒容器及び/又は管材料に広く適用可能である。また、耐火物を例にしで述べたが、断熟材、保温材など非破壊検査で検査が必要な様々な管材料に内張りとなる材料に広く適用可能である。   Although the sintered chimney 1 is described as an example, the present invention is not limited to application to the sintered chimney 1. The present invention can be widely applied to various cylindrical containers and / or pipe materials that require nondestructive inspection, such as blast furnaces, piping materials having a refractory lining, and heating furnaces. In addition, the refractory is described as an example, but the present invention can be widely applied to various pipe materials that need to be inspected by nondestructive inspection, such as a maturing material and a heat insulating material.

また、以上説明した実施形態は典型例として挙げたに過ぎず、その各実施形態の構成要素を組み合わせること、その変形及びバリエーションは当業者にとって明らかであり、当業者であれば本発明の原理及び講求の範囲に記載した発明の範囲を逸脱することなく上述の実施形態の種々の変形を行えることは明らかである。   Further, the embodiments described above are merely given as typical examples, and it is obvious for those skilled in the art to combine the components of the respective embodiments, and that modifications and variations thereof will be obvious to those skilled in the art. It will be apparent that various modifications of the above-described embodiments can be made without departing from the scope of the invention as set forth in the scope of the teaching.

1 焼結煙突
3 鉄皮
5 耐火物
10 測定装置
11 放射線照射部
14 放射線検出部
20 コンピュータ
DESCRIPTION OF SYMBOLS 1 Sintering chimney 3 Iron skin 5 Refractory 10 Measurement apparatus 11 Radiation irradiation part 14 Radiation detection part 20 Computer

Claims (8)

放射線を管材料に照射し、
前記管材料と前記管材料内側の耐火物とを通過した減衰放射線を検出し、
前記放射線を照射した前記管材料の表面の照射位置表面温度、及び、前記減衰放射線を検出した前記管材料の表面の検出位置表面温度を検出し、
前記検出した減衰放射線の減衰強度から前記管材料の減衰強度を取り除いて、前記耐火物の減衰強度を算出し、
前記耐火物の減衰強度から、前記耐火物厚みを算出し、
前記照射位置表面温度と前記検出位置表面温度を用いて、前記耐火物厚みから照射側耐火物厚み及び検出側耐火物厚みを算出することを特徴とする耐火物厚み測定方法。
Irradiate the tube material with radiation,
Detecting attenuated radiation that has passed through the tube material and the refractory inside the tube material;
Detecting the irradiation position surface temperature of the surface of the tube material irradiated with the radiation, and the detection position surface temperature of the surface of the tube material detecting the attenuated radiation;
The attenuation intensity of the refractory is calculated by removing the attenuation intensity of the tube material from the attenuation intensity of the detected attenuation radiation,
From the attenuation strength of the refractory, calculate the refractory thickness,
A method for measuring a thickness of a refractory, comprising calculating an irradiation-side refractory thickness and a detection-side refractory thickness from the refractory thickness using the irradiation position surface temperature and the detection position surface temperature.
前記管材料の減衰強度は、前記超音波測定により検出された前記管材料の厚みに基づいて算出する請求項1に記載の耐火物厚み測定方法。   The refractory thickness measurement method according to claim 1, wherein the attenuation strength of the tube material is calculated based on the thickness of the tube material detected by the ultrasonic measurement. 前記放射線照射の照射位置と、前記減衰放射線の検出位置は、水平方向において同じ位置である請求項1又は2に記載の耐火物厚み測定方法。   The refractory thickness measuring method according to claim 1 or 2, wherein the irradiation position of the radiation irradiation and the detection position of the attenuated radiation are the same position in the horizontal direction. 放射線を管材料に照射し、
前記管材料と前記管材料内側の耐火物とを通過した第1の減衰放射線を検出し、
前記放射線を照射する照射位置、又は、前記放射線を検出する検出位置を変化し、
放射線を管材料に照射し、
前記管材料と前記管材料内側の耐火物とを通過した第2の減衰放射線を検出し、
前記第1の減衰放射線の透過強度又は減衰強度と、前記第2の減衰放射線の透過強度又は減衰強度とを比較することで、耐火物厚みの異常部を判別することを特徴とする耐火物厚み測定方法。
Irradiate the tube material with radiation,
Detecting first attenuated radiation that has passed through the tube material and a refractory inside the tube material;
Change the irradiation position to irradiate the radiation, or the detection position to detect the radiation,
Irradiate the tube material with radiation,
Detecting second attenuated radiation that has passed through the tube material and the refractory inside the tube material;
Refractory thickness characterized in that an abnormal portion of the refractory thickness is determined by comparing the transmission intensity or attenuation intensity of the first attenuation radiation with the transmission intensity or attenuation intensity of the second attenuation radiation. Measuring method.
放射線を管材料に照射する放射線照射部と、
前記管材料と前記管材料内側の耐火物を通過して減衰した放射線を検出する放射線検出部と、
前記放射線を照射した前記管材料の表面の照射位置表面温度、及び、前記減衰放射線を検出した前記管材料の表面の検出位置表面温度を検出する温度検出部と、
前記減衰強度から前記管材料及び前記耐火物の厚みを算出し、前記算出された管材料及び耐火物の厚みから、管材料厚みを減算して耐火物厚みを算出し、前記照射位置表面温度と前記検出位置表面温度を用いて、前記耐火物厚みから照射側耐火物厚み及び検出側耐火物厚みを算出する演算処理部と、を有することを特徴とする耐火物厚み測定装置。
A radiation irradiation unit for irradiating the tube material with radiation;
A radiation detector that detects radiation attenuated through the tube material and the refractory inside the tube material;
A temperature detection unit that detects an irradiation position surface temperature of the surface of the tube material irradiated with the radiation, and a detection position surface temperature of the surface of the tube material that detects the attenuated radiation;
Calculate the thickness of the tube material and the refractory from the attenuation strength, calculate the refractory thickness by subtracting the tube material thickness from the calculated thickness of the tube material and refractory, and the irradiation position surface temperature A refractory thickness measuring apparatus comprising: an arithmetic processing unit that calculates an irradiation side refractory thickness and a detection side refractory thickness from the refractory thickness using the detection position surface temperature.
前記管材料の減衰強度は、前記超音波測定により検出された前記管材料の厚みに基づいて算出する請求項5に記載の測定装置。   The measurement apparatus according to claim 5, wherein the attenuation strength of the tube material is calculated based on a thickness of the tube material detected by the ultrasonic measurement. 前記放射線照射部と、前記放射線検出部は、水平方向において同じ位置である請求項5又は6に記載の耐火物厚み測定方法。   The refractory thickness measuring method according to claim 5 or 6, wherein the radiation irradiating unit and the radiation detecting unit are at the same position in a horizontal direction. 放射線を管材料に照射する放射線照射部と、
前記管材料と前記管材料内側の耐火物とを通過した第1の減衰放射線を検出し、且つ、前記放射線を照射する前記管材料の表面を変化させ、又は、前記減衰放射線を検出する前記管材料の表面を変化させることで第2の減衰放射線を検出する放射線検出部と、
前記第1の減衰放射線の透過強度又は減衰強度と、前記第2の透過強度又は減衰放射線の減衰強度とを比較することで、耐火物厚みの異常部を判別する判別部を有することを特徴とする耐火物厚み測定装置。
A radiation irradiation unit for irradiating the tube material with radiation;
The tube that detects the first attenuated radiation that has passed through the tube material and the refractory inside the tube material, changes the surface of the tube material that is irradiated with the radiation, or detects the attenuated radiation. A radiation detector that detects the second attenuated radiation by changing the surface of the material;
A discrimination unit for discriminating an abnormal part of the refractory thickness by comparing the transmission intensity or attenuation intensity of the first attenuated radiation with the second transmission intensity or attenuation intensity of the attenuated radiation; Refractory thickness measuring device.
JP2009141136A 2009-06-12 2009-06-12 Refractory thickness measuring method and apparatus Active JP4638952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141136A JP4638952B2 (en) 2009-06-12 2009-06-12 Refractory thickness measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141136A JP4638952B2 (en) 2009-06-12 2009-06-12 Refractory thickness measuring method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008001349A Division JP4392449B2 (en) 2008-01-08 2008-01-08 Refractory thickness measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2009258115A true JP2009258115A (en) 2009-11-05
JP4638952B2 JP4638952B2 (en) 2011-02-23

Family

ID=41385682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141136A Active JP4638952B2 (en) 2009-06-12 2009-06-12 Refractory thickness measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4638952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119394A (en) * 2011-05-09 2013-05-22 新日铁住金株式会社 Steel ladle residual refractory material measurement method and device
US9885566B2 (en) 2014-07-24 2018-02-06 Johnson Matthey Public Limited Company Apparatus for determining thickness of lining layer
CN111854668A (en) * 2020-08-25 2020-10-30 中冶赛迪工程技术股份有限公司 Blast furnace lining thickness calculation device and method based on distributed optical fiber temperature measurement

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158744A (en) * 1961-04-21 1964-11-24 Gen Electric Flaw detection apparatus using two detectors to assure unbalance in a comparison circuit
JPS5124625A (en) * 1974-07-01 1976-02-28 Shimanterii Suee Bee Eru Semen Kaitenentotai tokunikaitenronainozairyono keishabubunno parameetaosokuteisurusochi
JPS5646406A (en) * 1979-09-26 1981-04-27 Fuji Electric Co Ltd Thickness measuring method for pipe wall of tubular material
JPS5723810A (en) * 1980-07-18 1982-02-08 Kawasaki Steel Corp Measurement for wall thickness of tube material
JPS5759110A (en) * 1980-09-26 1982-04-09 Fuji Electric Co Ltd Measuring method for wall thickness of tubular material
JPS60165508A (en) * 1984-02-08 1985-08-28 Sumitomo Light Metal Ind Ltd Measuring method of tube thickness
US5268952A (en) * 1989-11-23 1993-12-07 Valtion Teknillinen Tutkimuskeskus Measuring apparatus for measuring faults in a pipeline
JPH06229747A (en) * 1990-11-21 1994-08-19 Nippon Rutsukusu Kk Internal state inspection method for pipe
JPH08261741A (en) * 1995-03-23 1996-10-11 Sumitomo Metal Ind Ltd Measuring method for blast furnace refractory thickness
US5896429A (en) * 1997-09-15 1999-04-20 Massachusetts Institute Of Technology Method for measurement of blast furnace liner thickness
WO2007014611A1 (en) * 2005-08-03 2007-02-08 Krones Ag Method and apparatus for checking wall thickness
WO2008039070A2 (en) * 2006-09-25 2008-04-03 Röntgen Technische Dienst Arrangement and method for non destructive measurement of wall thickness and surface shapes of objects with an inner surface
JP4392449B2 (en) * 2008-01-08 2010-01-06 新日本製鐵株式会社 Refractory thickness measuring method and apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158744A (en) * 1961-04-21 1964-11-24 Gen Electric Flaw detection apparatus using two detectors to assure unbalance in a comparison circuit
JPS5124625A (en) * 1974-07-01 1976-02-28 Shimanterii Suee Bee Eru Semen Kaitenentotai tokunikaitenronainozairyono keishabubunno parameetaosokuteisurusochi
JPS5646406A (en) * 1979-09-26 1981-04-27 Fuji Electric Co Ltd Thickness measuring method for pipe wall of tubular material
JPS5723810A (en) * 1980-07-18 1982-02-08 Kawasaki Steel Corp Measurement for wall thickness of tube material
JPS5759110A (en) * 1980-09-26 1982-04-09 Fuji Electric Co Ltd Measuring method for wall thickness of tubular material
JPS60165508A (en) * 1984-02-08 1985-08-28 Sumitomo Light Metal Ind Ltd Measuring method of tube thickness
US5268952A (en) * 1989-11-23 1993-12-07 Valtion Teknillinen Tutkimuskeskus Measuring apparatus for measuring faults in a pipeline
JPH06229747A (en) * 1990-11-21 1994-08-19 Nippon Rutsukusu Kk Internal state inspection method for pipe
JPH08261741A (en) * 1995-03-23 1996-10-11 Sumitomo Metal Ind Ltd Measuring method for blast furnace refractory thickness
US5896429A (en) * 1997-09-15 1999-04-20 Massachusetts Institute Of Technology Method for measurement of blast furnace liner thickness
WO2007014611A1 (en) * 2005-08-03 2007-02-08 Krones Ag Method and apparatus for checking wall thickness
WO2008039070A2 (en) * 2006-09-25 2008-04-03 Röntgen Technische Dienst Arrangement and method for non destructive measurement of wall thickness and surface shapes of objects with an inner surface
JP4392449B2 (en) * 2008-01-08 2010-01-06 新日本製鐵株式会社 Refractory thickness measuring method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119394A (en) * 2011-05-09 2013-05-22 新日铁住金株式会社 Steel ladle residual refractory material measurement method and device
US9885566B2 (en) 2014-07-24 2018-02-06 Johnson Matthey Public Limited Company Apparatus for determining thickness of lining layer
CN111854668A (en) * 2020-08-25 2020-10-30 中冶赛迪工程技术股份有限公司 Blast furnace lining thickness calculation device and method based on distributed optical fiber temperature measurement

Also Published As

Publication number Publication date
JP4638952B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4392449B2 (en) Refractory thickness measuring method and apparatus
JP4638952B2 (en) Refractory thickness measuring method and apparatus
CA3031891A1 (en) Method to determine geometrical parameters and/or material state of an object under study by radiography
CA2303342A1 (en) Method for measurement of blast furnace liner thickness
JP5318656B2 (en) Method, apparatus and program for evaluating thermal insulation performance of coating layer
US20080084556A1 (en) Method for examining defect in steel bar and apparatus therefor
JPH08261741A (en) Measuring method for blast furnace refractory thickness
JP2653532B2 (en) Surface defect inspection equipment
JP2021071304A (en) Corrosion detection system
JP2007250556A (en) Heating cooker
CN103675020B (en) Electronic package emissivity detection system
JP3831812B2 (en) Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing
JP5544554B2 (en) Refractory thickness measuring method and apparatus
JPH09229655A (en) Inspection method for pipeline and inspection apparatus therefor
JP2008157763A (en) Moisture measuring device and method
WO2013189126A1 (en) Method related to improving signal-to-noise ratio in passive nucleonic level gauge
TWI773001B (en) Method and apparatus employing vanadium neutron detectors
JP2004245729A (en) Radiation inspection device and radiation inspection method
JP3453040B2 (en) Measuring method of pipe wall thickness and inner wall deposit thickness
JP2014066587A (en) Moisture measurement instrument and moisture measurement method
Bakhtiari et al. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems
JP4088455B2 (en) Method and apparatus for measuring thickness of multi-layer material
Kramer et al. Uncertainty of heat transfer measurements in an engulfing pool fire
Yang et al. Establishing a Micro Radiation Protection Zone
EP0955518A2 (en) Furnace lining measurement

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4638952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350