JP3453040B2 - Measuring method of pipe wall thickness and inner wall deposit thickness - Google Patents

Measuring method of pipe wall thickness and inner wall deposit thickness

Info

Publication number
JP3453040B2
JP3453040B2 JP06437297A JP6437297A JP3453040B2 JP 3453040 B2 JP3453040 B2 JP 3453040B2 JP 06437297 A JP06437297 A JP 06437297A JP 6437297 A JP6437297 A JP 6437297A JP 3453040 B2 JP3453040 B2 JP 3453040B2
Authority
JP
Japan
Prior art keywords
tube
thickness
measuring
wall
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06437297A
Other languages
Japanese (ja)
Other versions
JPH10260029A (en
Inventor
美年 四辻
礼三 舛行
Original Assignee
出光エンジニアリング株式会社
日本シーレーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光エンジニアリング株式会社, 日本シーレーク株式会社 filed Critical 出光エンジニアリング株式会社
Priority to JP06437297A priority Critical patent/JP3453040B2/en
Publication of JPH10260029A publication Critical patent/JPH10260029A/en
Application granted granted Critical
Publication of JP3453040B2 publication Critical patent/JP3453040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、加熱炉管等の各種
の配管の肉厚を外部から測定するとともに、それらの管
の内壁に付着したコーキング等の付着物の厚さを測定す
る測定方法に関する。 【0002】 【背景技術】石油精製工程の加熱炉管等に付着するコー
キング(カーボン、スケール等)のように、各種の管内
壁に付着する付着物は、流体の流速、流量に変動をきた
したり、伝熱(加熱)の支障ともなるため、定期的に除
去する必要がある。この除去作業を効率よく行うために
は、内壁付着物の状態、特に厚さを外部から検知、測定
する必要がある。 【0003】このような管内の付着物の厚さは、従来、
放射線撮影法により測定していた。すなわち、放射線同
位元素を線源とし、この線源からの放射線を測定管に照
射し、測定管を透過した放射線をフィルムに画像として
写し出し、そのフィルム上から付着物の厚さを算出して
いた。 【0004】 【発明が解決しようとする課題】しかしながら、この方
法では、フィルム撮影を行うため、フィルムの現像・乾
燥等の処理が必要であり、時間もかかるという問題があ
った。また、フィルム撮影を可能とする放射線の線源強
度は大線量を必要とするため、その取り扱いや被爆管理
が煩雑であるという問題もあった。 【0005】さらに、フィルム画像では、管の肉厚部や
付着物の部分とそれ以外の部分とは白黒濃度差で表され
るが、その濃淡の差(コントラスト)はそれほど大きく
ないため、目視での判定が難しいという問題もあった。
特に、ある程度一般的な管であれば、管の内周位置を判
定者が見当をつけて判定できるため、コントラストが小
さくても判定できるが、特に厚肉の管や大径の管では、
管の内周位置の見当をつけることができないため、濃度
差を見極めることが難しく、付着物の識別性能が低下し
たり、まったく識別できない場合もあった。 【0006】また、配管の保温性能や伝熱性能を知るに
は、管の肉厚を測定する必要があるが、従来、管の肉厚
を外部から測定する場合もフィルム撮影を行っていたた
め、同様の問題があり、肉厚を簡易にかつ正確に測定す
る方法が求められていた。 【0007】一方、測定管を透過した放射線をセンサで
電気信号に変換して付着物の厚さを測定することでフィ
ルム撮影に比べて判別性能を高めたものとして、特公平
3−19484号公報の測定方法が知られている。 【0008】しかしながら、この測定方法では、管の外
周位置を検出することが難しいため、管の肉厚を測定す
ることが困難であるという問題があった。 【0009】本発明の目的は、管の肉厚および内壁付着
物厚さを、簡単にかつ正確に測定することができる測定
方法を提供することにある。 【0010】 【課題を解決するための手段】本発明は、管の肉厚と内
壁付着物の厚さとを同時に測定する測定方法であって、
放射線を発する線源とこの線源からの放射線量を検出す
るセンサとを、測定対象の管を挟んでその管の径方向に
走査し、前記センサで検出した放射線透過線量に基づく
減衰曲線データを測定し、この測定管の減衰曲線データ
管外周部分と、予め前記測定管と同様に測定した対比
管の減衰データの管外周部分とを重ね合わせた後、前記
測定管の減衰曲線データの最小値および対比管の減衰デ
ータの最小値の差から測定管および対比管の肉厚差を求
め、この肉厚差と既知の対比管の肉厚とから測定管の肉
厚を求めるとともに、前記測定管の減衰曲線データの変
曲点と、測定管の減衰曲線データの最小値とから測定管
の内壁付着物の厚さを求めることを特徴とするものであ
る。 【0011】このような本発明においては、まず基準と
なる対比管の減衰曲線データを求めておく。すなわち、
線源およびセンサを対比管の径方向に走査して減衰曲線
データを測定する。次に、測定管の減衰曲線データを対
比管と同じ条件で測定する。 【0012】これらの各管の減衰曲線データは、放射線
が透過する厚さ(透過厚さ)が最大になる管の内壁位置
で極小値を示す。また、測定管および対比管の管外周部
分における放射線の透過厚さはほぼ同じであるため、各
減衰曲線データの管外周部分は一致する。従って、各減
衰曲線データの管外周部分を重ね合わせた後、対比管と
測定管の減衰曲線データの極小値の位置の差を求めるこ
とで、対比管の内壁位置に対する測定管の内壁位置の差
つまり肉厚差が求められ、よって予め測定した対比管の
肉厚に、前記肉厚差を加える(あるいは引く)ことで測
定管の肉厚が求められる。 【0013】また、減衰曲線データは、放射線の走査
が、内壁付着物の内表面つまり付着物がある部分から無
い部分に移動する際にも、変曲点が生じる。従って、こ
の変曲点の位置から内壁付着物の内表面の位置が求めら
れ、前述の測定管の内壁位置つまり減衰曲線データの極
小値との差から付着物の厚さが求められる。 【0014】 【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。図1には、本実施形態の走査装置
1の構成図が示されている。走査装置1は、測定対象と
なる測定管2を放射線で検査する測定治具10と、この
測定治具10で測定したデータを処理する計測器20
と、計測器20で処理されたデータを記録するレコーダ
ー30とを備えている。 【0015】測定治具10は、測定管2を挟んで配置さ
れた線源11およびセンサー12と、これらの線源11
およびセンサー12を測定管2の径方向(図1の矢印方
向)に所定のスピード(例えば50mm/分)で移動させ
る微動駆動機構13とを備えている。 【0016】線源11としては、例えば、1.48GB
qの放射能を有するコバルト60が用いられ、センサー
12としては、例えば、5mm厚さのシンチレーターと光
電子増倍管とを組み合わせたもの等が用いられている。
そして、線源11から放射線が出されると、その放射線
は、前記測定管2を通って前記センサー12で電流値と
して検知され、この電流値が計測器20に送られるよう
になっている。 【0017】計測器20には、前記センサー12からの
電流値のほかに、微動駆動機構13からの線源11、セ
ンサー12の移動距離を表す信号が入力される。そし
て、計測器20では、それらのデータに基づいて演算を
実施し、レコーダー30に放射線が透過した厚さと管2
の密度に比例した信号を出力し、図2に示すような減衰
曲線データのチャートを記録させる。 【0018】次に、このような本実施形態における測定
手順について説明する。まず、測定管2および対比管3
を、線源11、センサー12で測定して減衰曲線データ
をレコーダー30で記録する。対比管3は、測定管2と
同材質で構成された管であり、その肉厚は予め測定して
既知であり、また、その内周面にはコーキング等の付着
物は付着していないものである。 【0019】そして、レコーダー30で記録された(記
録紙に印字された)測定管2および対比管3の減衰曲線
データa,bを、図2に示すように重ねる。この際、図
2の管2,3の断面部分に示すように、測定管2および
対比管3の管外周部分における放射線の透過厚さはほぼ
同じであるため、各減衰曲線データa,bの測定開始部
分(図2のcの部分)は一致する。従って、各減衰曲線
データa,bのcの部分を重ね合わせる。 【0020】次に、測定管2、対比管3の内壁位置を決
める。各内壁位置は、減衰曲線データa,bにおける最
小値(つまり透過厚さの最大値)であるから、図2の
の位置を測定管2の内壁位置(WSI)に、の位置を
対比管3の内壁位置(WRI)に決める。 【0021】また、測定管2の内壁に付着したコーキン
グ4の内周面は、減衰曲線データaの変曲点として表さ
れるから、図2のの位置をコーキング4の変曲点(T
FP)つまりコーキング4の内周面の位置に決める。 【0022】以上のデータから、測定管2の肉厚および
コーキング付着厚さ(カーボン付着厚さ)を求める。測
定管2の肉厚を求めるには、まず、測定管2と対比管3
の肉厚差(Δt)を数式1によって求める。 【0023】 【数1】Δt=WRI−WSI 【0024】次に、測定管2の肉厚(図2のtx )を
求める。対比管3の肉厚(図2のtR )は既知である
から、肉厚差(Δt)と対比管3の肉厚(tR )か
ら測定管2の肉厚(tx )を数式2によって求める。 【0025】 【数2】tx =(tR −Δt) 【0026】さらに、コーキング4の付着厚さtc
求める。コーキング厚さ(tc )は、先に決めたコーキ
ング4による変曲点(TFP)と測定管2の内壁位置
(WSI)から数式3で求める。 【0027】 【数3】tc =(TFP−WSI) 【0028】このような本実施形態によれば、センサー
12で検出した放射線透過量から算出した減衰曲線デー
タa,bに基づいて測定管2の肉厚(tx )やコーキン
グ厚さ(tc )を求めているので、従来のフィルム撮影
による測定に比べて作業を簡単にでき、迅速にかつ定量
的に測定することができる。 【0029】また、線源11は、フィルム撮影用の線源
と比較して線源強度を小さくできる。例えば、本実施形
態のコバルト60を用いた線源11は、撮影用線源と比
較して1/140の線源強度のものが利用でき、線源強
度を大幅に小さくできて取り扱いや被爆管理を容易に行
うことができる。 【0030】さらに、本実施形態では、センサー12で
検出した放射線透過量を電気信号処理しており、変曲点
の存在を明確にできるため、目視で判定する放射線撮影
法に比べて、測定管2の肉厚が厚い場合や大径の場合で
も、コーキング付着を確実に識別できてその付着厚さを
測定することができる。 【0031】また、測定管2の減衰曲線データaを、対
比管3のデータbと比較しているため、コーキング付着
厚さだけでなく、測定管2の肉厚も測定することができ
る。さらに、データa,bを対比しているため、コーキ
ング付着量が僅かであっても、その変曲点を容易に見い
だすことができ、そのコーキング付着厚さを測定するこ
とができる。その上、例えば、測定管2の材質や比重が
不明な場合でも、測定管2と同じ材質の対比管3を用い
ることで測定が可能となるため、様々な管を簡単に測定
することができる。 【0032】さらに、測定管2の肉厚およびコーキング
付着厚さを同時に測定することができるため、測定効率
を向上することができる。 【0033】なお、本発明は前述の実施形態に限定され
るものではなく、本発明の目的を達成できる範囲での変
形、改良等は本発明に含まれるものである。 【0034】例えば、前記実施形態では、センサー12
で検出された信号を計測器20で演算し、レコーダー3
0に記録させていたが、例えば、センサー12からの信
号をコンピュータ等に入力し、コンピュータ内で入力デ
ータを処理して各内壁位置(WSI、WRI)や変曲点
(TFP)を求め、さらに各数式1〜3の演算を行って
測定管の肉厚(tx )やコーキング厚さ(tc )を求め
るようにしてもよい。 【0035】また、前記実施形態では、放射線の走査方
向が測定管1の一方向(上下方向)について行った場合
について説明したが、例えばそれと直交する方向(左右
方向)についても走査すれば、測定管2におけるコーキ
ング4の付着状態をより正確に測定することができる。 【0036】さらに、前記実施形態では、放射線の走査
に伴い、放射線透過量のデータを連続的に採取していた
が、一定間隔(寸法あるいは時間)でデータを採取して
処理してもよい。 【0037】また、対比管3としては、測定管2と材質
が同一のものに限らず、例えば一般的な炭素鋼とステン
レス鋼(SUS304)のように、放射線の透過量がほ
ぼ同程度のものであれば利用することができる。さら
に、測定管2や対比管3に用いた各材質の放射線の吸収
係数等が分かっている場合には、測定管2と対比管3と
で放射線の透過量が大きく異なる材質を用いることも可
能である。 【0038】さらに、測定管2と対比管3との口径や肉
厚は、前記実施形態のように同一のものでなくてもよい
が、同一であれば、対比管3の内壁位置に対する測定管
2の内壁位置の差をそのまま配管減肉量として測定する
ことができる。 【0039】 【実施例】次に、図1に示す実施形態において、本発明
の有用性を確認するために行った実験例について説明す
る。 【0040】実験は、実機のチューブ(測定管2)をサ
ンプリングしてコーキング付着が目視で観察できる状態
で行った。この実験によってレコーダー30に記録され
たチャートを図3に示す。このチャートに基づいて、測
定管2の肉厚およびコーキング厚さを求めたところ、目
視で測定したデータとほぼ一致し、本発明の有用性が確
認できた。 【0041】 【発明の効果】このような本発明の測定方法によれば、
管の肉厚および内壁付着物厚さを簡単にかつ正確に測定
することができるという効果がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of various pipes such as heating furnace tubes from the outside, and for measuring the thickness of caulk or the like adhered to the inner walls of the pipes. The present invention relates to a measuring method for measuring the thickness of a deposit. 2. Description of the Related Art Deposits adhering to various pipe inner walls, such as caulking (carbon, scale, etc.) adhering to a heating furnace tube or the like in a petroleum refining process, cause fluctuations in the flow velocity and flow rate of a fluid. In addition, heat transfer (heating) may be hindered, so it is necessary to periodically remove the heat. In order to perform this removal operation efficiently, it is necessary to externally detect and measure the state of the deposits on the inner wall, particularly the thickness. [0003] Conventionally, the thickness of the deposits in the tube is conventionally
It was measured by radiography. That is, a radiation isotope was used as a radiation source, radiation from the radiation source was irradiated to a measurement tube, radiation transmitted through the measurement tube was projected as an image on a film, and the thickness of the attached matter was calculated from the film. . [0004] However, in this method, there is a problem that processing such as development and drying of the film is required for photographing the film, which takes time. In addition, since the radiation source intensity required for film photography requires a large dose, there is also a problem that handling and exposure management are complicated. Further, in the film image, the thick portion of the tube or the portion of the attached matter and the other portion are represented by a black and white density difference, but the difference in the density (contrast) is not so large, so that it is visually observed. There was also a problem that determination of was difficult.
In particular, in the case of a somewhat general tube, since the judge can determine the inner circumferential position of the tube by making an aim, it can be determined even if the contrast is small, but especially in a thick tube or a large diameter tube,
Since it was not possible to determine the position of the inner circumference of the tube, it was difficult to determine the difference in concentration. Further, in order to know the heat insulation performance and heat transfer performance of a pipe, it is necessary to measure the wall thickness of the pipe. Conventionally, when measuring the wall thickness of a pipe from outside, film photography has been performed. There is a similar problem, and a method for simply and accurately measuring the wall thickness has been required. On the other hand, Japanese Patent Publication No. Hei 3-19484 discloses a technique in which radiation transmitted through a measuring tube is converted into an electric signal by a sensor to measure the thickness of an attached substance, thereby improving the discrimination performance as compared with film photography. Is known. However, this measuring method has a problem that it is difficult to detect the outer peripheral position of the pipe, and thus it is difficult to measure the wall thickness of the pipe. An object of the present invention is to provide a measuring method capable of easily and accurately measuring the wall thickness of a pipe and the thickness of an adhered substance on an inner wall. [0010] The present invention is a measuring method for simultaneously measuring the thickness of a pipe and the thickness of a deposit on an inner wall,
A radiation source that emits radiation and a sensor that detects the amount of radiation from this radiation source are scanned in the radial direction of the tube to be measured, and attenuation curve data based on the radiation transmitted dose detected by the sensor is obtained. measured, and Kangaishu portion of the attenuation curve data of the measuring tube, after superposing the Kangaishu portion of attenuation data in advance the measuring tube and contrasted tube as measured in the same manner, the minimum decay curve data of the measuring tube The thickness difference between the measurement tube and the comparison tube is determined from the difference between the measured value and the minimum value of the attenuation data of the comparison tube, and the thickness of the measurement tube is determined from the thickness difference and the thickness of the known comparison tube, and the measurement is performed. The thickness of the deposit on the inner wall of the measuring tube is obtained from the inflection point of the damping curve data of the tube and the minimum value of the damping curve data of the measuring tube. In the present invention, first, attenuation curve data of a reference tube serving as a reference is obtained. That is,
The attenuation curve data is measured by scanning the source and the sensor in the radial direction of the contrast tube. Next, the attenuation curve data of the measuring tube is measured under the same conditions as those of the comparison tube. The attenuation curve data of each of these tubes shows a minimum value at the inner wall position of the tube where the thickness (transmission thickness) through which the radiation passes is maximum. In addition, since the transmission thickness of radiation in the outer peripheral portions of the measurement tube and the comparison tube is substantially the same, the outer peripheral portions of the respective attenuation curve data match. Therefore, after superimposing the pipe outer peripheral portion of each attenuation curve data, the difference between the positions of the minimum values of the attenuation curve data of the comparison pipe and the measurement pipe is obtained, whereby the difference of the inner wall position of the measurement pipe with respect to the inner wall position of the comparison pipe is obtained. That is, the thickness difference is obtained, and thus the thickness of the measuring tube is obtained by adding (or subtracting) the thickness difference to the thickness of the comparison tube measured in advance. In the attenuation curve data, an inflection point is also generated when the radiation scanning moves from the inner surface of the inner wall deposits, that is, the portion where the deposits do not exist to the portion where the deposits do not exist. Therefore, the position of the inner surface of the deposit on the inner wall is determined from the position of the inflection point, and the thickness of the deposit is determined from the difference between the inner wall position of the measurement tube, that is, the minimum value of the attenuation curve data. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration diagram of a scanning device 1 of the present embodiment. The scanning device 1 includes a measuring jig 10 for inspecting a measuring tube 2 to be measured with radiation, and a measuring device 20 for processing data measured by the measuring jig 10.
And a recorder 30 for recording data processed by the measuring device 20. The measuring jig 10 comprises a radiation source 11 and a sensor 12 which are arranged with the measuring tube 2 interposed therebetween,
And a fine drive mechanism 13 for moving the sensor 12 at a predetermined speed (for example, 50 mm / min) in the radial direction of the measuring tube 2 (the direction of the arrow in FIG. 1). As the radiation source 11, for example, 1.48 GB
Cobalt 60 having q radioactivity is used. As the sensor 12, for example, a combination of a 5 mm-thick scintillator and a photomultiplier tube is used.
When radiation is emitted from the radiation source 11, the radiation is detected as a current value by the sensor 12 through the measuring tube 2, and the current value is sent to the measuring device 20. In addition to the current value from the sensor 12, a signal indicating the moving distance of the radiation source 11 and the sensor 12 from the fine movement driving mechanism 13 is input to the measuring device 20. Then, the measuring device 20 performs an operation based on the data, and determines the thickness of the radiation transmitted through the recorder 30 and the thickness of the tube 2.
And outputs a signal proportional to the density, and records a chart of attenuation curve data as shown in FIG. Next, the measurement procedure in this embodiment will be described. First, the measurement tube 2 and the comparison tube 3
Is measured by the radiation source 11 and the sensor 12, and the attenuation curve data is recorded by the recorder 30. The comparison tube 3 is a tube made of the same material as the measurement tube 2, and its thickness is measured in advance and is known, and no adhering matter such as caulking adheres to the inner peripheral surface thereof. It is. Then, the attenuation curve data a and b of the measurement tube 2 and the comparison tube 3 recorded (printed on the recording paper) by the recorder 30 are superimposed as shown in FIG. At this time, as shown in the cross-sectional portions of the tubes 2 and 3 in FIG. 2, the transmission thicknesses of radiation in the outer peripheral portions of the measurement tube 2 and the comparison tube 3 are almost the same. The measurement start portion (portion c in FIG. 2) coincides. Therefore, the portions c of the respective attenuation curve data a and b are superimposed. Next, the inner wall positions of the measurement tube 2 and the comparison tube 3 are determined. Since each inner wall position is the minimum value (that is, the maximum value of the transmission thickness) in the attenuation curve data a and b, the position of FIG. 2 is set to the inner wall position (WSI) of the measurement tube 2 and the position of the comparison tube 3 is set. To the inner wall position (WRI). Since the inner peripheral surface of the caulking 4 attached to the inner wall of the measuring tube 2 is represented as an inflection point of the attenuation curve data a, the position shown in FIG.
FP), that is, the position of the inner peripheral surface of the caulking 4. From the above data, the thickness of the measuring tube 2 and the thickness of the caulking (carbon adhesion) are determined. To determine the thickness of the measuring tube 2, first, the measuring tube 2 and the contrasting tube 3
Is obtained by Equation (1). ## EQU1 ## Next, the thickness of the measuring tube 2 (t x in FIG. 2) is determined. Since the thickness of the comparison tube 3 (t R in FIG. 2) is known, the thickness (t x ) of the measurement tube 2 is calculated from the thickness difference (Δt) and the thickness (t R ) of the comparison tube 3 according to Equation 2. Ask by. [0025] [Equation 2 t x = (t R -Δt) Furthermore, determining the thickness t c adhesion of coking 4. The coking thickness (t c ) is obtained by Equation 3 from the inflection point (TFP) determined by the coking 4 and the inner wall position (WSI) of the measuring tube 2. [0027] Equation 3] t c = (TFP-WSI) According to the present embodiment, the decay curve data a calculated from the amount of transmitted radiation detected by the sensor 12, the measuring tube based on the b Since the thickness (t x ) and caulking thickness (t c ) of No. 2 are obtained, the operation can be simplified, and the measurement can be performed quickly and quantitatively as compared with the conventional measurement by film photography. Further, the source 11 can reduce the source intensity as compared with the source for film photography. For example, as the radiation source 11 using the cobalt 60 of the present embodiment, a radiation source having a source intensity of 1/140 as compared with the radiography source can be used, and the radiation source intensity can be significantly reduced. Can be easily performed. Further, in the present embodiment, the radiation transmission amount detected by the sensor 12 is subjected to an electric signal processing, and the existence of an inflection point can be clarified. Even when the thickness of 2 is large or the diameter is large, it is possible to reliably identify the adhesion of caulking and measure the thickness of the adhesion. Further, since the attenuation curve data a of the measuring tube 2 is compared with the data b of the comparison tube 3, not only the thickness of the caulking adhesion but also the thickness of the measuring tube 2 can be measured. Further, since the data a and b are compared, even if the amount of coking is small, the inflection point can be easily found, and the thickness of the coking can be measured. In addition, for example, even when the material and specific gravity of the measurement tube 2 are unknown, the measurement can be performed by using the comparison tube 3 of the same material as the measurement tube 2, so that various tubes can be easily measured. . Further, since the thickness of the measuring tube 2 and the thickness of the caulking adhesion can be measured simultaneously, the measuring efficiency can be improved. The present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved. For example, in the above embodiment, the sensor 12
Is calculated by the measuring device 20 and the recorder 3
However, for example, a signal from the sensor 12 is input to a computer or the like, and the input data is processed in the computer to obtain each inner wall position (WSI, WRI) and an inflection point (TFP). The wall thickness (t x ) and the caulking thickness (t c ) of the measuring tube may be obtained by performing the calculations of the equations (1) to ( 3 ). In the above embodiment, the case where the scanning direction of the radiation is performed in one direction (vertical direction) of the measuring tube 1 has been described. The adhesion state of the caulking 4 on the tube 2 can be measured more accurately. Further, in the above-described embodiment, the radiation transmission data is continuously collected in accordance with the radiation scanning. However, the data may be collected and processed at regular intervals (dimensions or time). Further, the comparison tube 3 is not limited to the one having the same material as that of the measurement tube 2 and, for example, one having a radiation transmission amount substantially equal to that of a general carbon steel and stainless steel (SUS304). If it can be used. Furthermore, if the radiation absorption coefficient of each material used for the measurement tube 2 and the comparison tube 3 is known, it is possible to use a material that has a significantly different amount of radiation transmission between the measurement tube 2 and the comparison tube 3. It is. Further, the diameter and thickness of the measuring tube 2 and the comparison tube 3 may not be the same as in the above embodiment, but if they are the same, the measurement tube with respect to the inner wall position of the comparison tube 3 The difference between the inner wall positions in No. 2 can be directly measured as the pipe wall thinning amount. Next, a description will be given of an experimental example performed to confirm the usefulness of the present invention in the embodiment shown in FIG. The experiment was performed in a state where the tube of the actual machine (measuring tube 2) was sampled and the adhesion of caulking could be visually observed. FIG. 3 shows a chart recorded in the recorder 30 by this experiment. When the thickness and caulking thickness of the measuring tube 2 were determined based on this chart, they almost agreed with the data measured visually, confirming the usefulness of the present invention. According to the measuring method of the present invention,
There is an effect that the thickness of the pipe and the thickness of the deposit on the inner wall can be easily and accurately measured.

【図面の簡単な説明】 【図1】本発明の一実施形態の構成図である。 【図2】本実施形態における測定部位と測定によってレ
コーダーに記録されたデータとの対比図である。 【図3】本発明の実験データを示すグラフである。 【符号の説明】 1 走査装置 2 測定管 3 対比管 4 コーキング 10 測定治具 11 線源 12 センサー 13 微動駆動機構 20 計測器 30 レコーダー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of an embodiment of the present invention. FIG. 2 is a comparison diagram of a measurement site and data recorded on a recorder by measurement in the present embodiment. FIG. 3 is a graph showing experimental data of the present invention. [Description of Signs] 1 Scanning device 2 Measuring tube 3 Contrast tube 4 Caulking 10 Measuring jig 11 Radiation source 12 Sensor 13 Fine movement drive mechanism 20 Measuring device 30 Recorder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−277542(JP,A) 特開 平4−151505(JP,A) 特開 昭53−68266(JP,A) 特開 平3−148006(JP,A) 児玉潔、外3名,“γ線透過法による 地熱発電所熱水配管のシリカスケール測 定”,非破壊検査,社団法人日本非破壊 検査協会,1989年 9月,第38巻,第9 A号,p.797−798 (58)調査した分野(Int.Cl.7,DB名) G01B 15/00 - 15/08 G01N 23/00 - 23/227 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-277542 (JP, A) JP-A-4-151505 (JP, A) JP-A-53-68266 (JP, A) 148006 (JP, A) Kiyoshi Kodama and three others, “Silica scale measurement of hot water piping of geothermal power plants by gamma ray transmission method”, Nondestructive inspection, Japan Nondestructive Inspection Association, September 1989, No. 38, No. 9A, p. 797-798 (58) Field surveyed (Int.Cl. 7 , DB name) G01B 15/00-15/08 G01N 23/00-23/227

Claims (1)

(57)【特許請求の範囲】 【請求項1】 管の肉厚と内壁付着物の厚さとを同時に
測定する測定方法であって、 放射線を発する線源とこの線源からの放射線量を検出す
るセンサとを、測定対象の管を挟んでその管の径方向に
走査し、前記センサで検出した放射線透過線量に基づく
減衰曲線データを求め、 この測定管の減衰曲線データの管外周部分と、予め測定
した対比管の減衰データの管外周部分とを重ね合わせた
後、 前記測定管の減衰曲線データの最小値および対比管の減
衰データの最小値の差から測定管および対比管の肉厚差
を求め、この肉厚差と既知の対比管の肉厚とから測定管
の肉厚を求めるとともに、 前記測定管の減衰曲線データの変曲点と、測定管の減衰
曲線データの最小値とから測定管の内壁付着物の厚さを
求めることを特徴とする管の肉厚および内壁付着物厚さ
の測定方法。
(57) [Claims 1] A measuring method for simultaneously measuring the thickness of a tube and the thickness of a substance attached to an inner wall, wherein a radiation source emitting radiation and a radiation dose from the radiation source are detected. And a sensor to be scanned in the radial direction of the tube to be measured with the tube to be measured interposed therebetween, to obtain attenuation curve data based on the radiation transmission dose detected by the sensor, and a pipe outer peripheral portion of the attenuation curve data of the measurement tube, After superimposing the outer circumference portion of the attenuation data of the comparison tube measured in advance, the thickness difference between the measurement tube and the comparison tube is obtained from the difference between the minimum value of the attenuation curve data of the measurement tube and the minimum value of the attenuation data of the comparison tube. And determine the thickness of the measurement tube from this thickness difference and the known thickness of the comparison tube.From the inflection point of the attenuation curve data of the measurement tube and the minimum value of the attenuation curve data of the measurement tube, The feature is to determine the thickness of the deposit on the inner wall of the measuring tube. Method for measuring the thickness of the pipe and the thickness of deposits on the inner wall.
JP06437297A 1997-03-18 1997-03-18 Measuring method of pipe wall thickness and inner wall deposit thickness Expired - Lifetime JP3453040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06437297A JP3453040B2 (en) 1997-03-18 1997-03-18 Measuring method of pipe wall thickness and inner wall deposit thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06437297A JP3453040B2 (en) 1997-03-18 1997-03-18 Measuring method of pipe wall thickness and inner wall deposit thickness

Publications (2)

Publication Number Publication Date
JPH10260029A JPH10260029A (en) 1998-09-29
JP3453040B2 true JP3453040B2 (en) 2003-10-06

Family

ID=13256404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06437297A Expired - Lifetime JP3453040B2 (en) 1997-03-18 1997-03-18 Measuring method of pipe wall thickness and inner wall deposit thickness

Country Status (1)

Country Link
JP (1) JP3453040B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970300B2 (en) * 2012-08-30 2016-08-17 国立大学法人神戸大学 Method and apparatus for detecting thickness of coking in heating tube
JP7358291B2 (en) * 2020-04-07 2023-10-10 Jfeエンジニアリング株式会社 Method and device for estimating the thickness of deposits on the inner wall surface of the exhaust gas passage
JP7358290B2 (en) * 2020-04-07 2023-10-10 Jfeエンジニアリング株式会社 Method and device for estimating the thickness of deposits on the inner wall surface of the exhaust gas passage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
児玉潔、外3名,"γ線透過法による地熱発電所熱水配管のシリカスケール測定",非破壊検査,社団法人日本非破壊検査協会,1989年 9月,第38巻,第9A号,p.797−798

Also Published As

Publication number Publication date
JPH10260029A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US6925145B2 (en) High speed digital radiographic inspection of piping
US5864601A (en) Method and apparatus for inspecting pipes using a digitized radiograph
JPS61120950A (en) Inspection for inside of piping
JPH0224339B2 (en)
CN108333195A (en) A method of it is used to detect pipeline wall thickness and whether pipeline corrodes
JP3453040B2 (en) Measuring method of pipe wall thickness and inner wall deposit thickness
JP3079920B2 (en) Defect inspection method for painted covering materials
JP2653532B2 (en) Surface defect inspection equipment
JP3650063B2 (en) Heat transfer tube inspection device
US2957987A (en) Method of determining metal thickness, scaling, and deposits in piping
JP3487750B2 (en) Method and apparatus for measuring thickness of deposits on inner wall of pipe
JP3219565B2 (en) Defect depth position detection apparatus and method
JP2002277448A (en) Scale thickness measuring apparatus and method
JP4638952B2 (en) Refractory thickness measuring method and apparatus
JPH1090415A (en) Method for measuring contamination distribution in radioactive-contaminated pipe
CN107727671A (en) A kind of lack of penetration detecting system of pressure pipeline ray digital imaging
Chowdhury et al. Utilization and Validation of Tangential Radiographic Technique in Wall Thickness Measurement of Insulated Pipes in Moulovi Bazar Gas Processing Plant
JPH09229655A (en) Inspection method for pipeline and inspection apparatus therefor
JP4088455B2 (en) Method and apparatus for measuring thickness of multi-layer material
JPS61204510A (en) Method for measuring thickness of deposit layer on inside of pipe utilizing neutron
JP4906561B2 (en) In-pipe deposit diagnosis method
JPS5995445A (en) Measurement device for deposit on inside wall
JPH03148006A (en) Thickness measuring method of duplex pipe of different materials
JPH10141935A (en) Method for estimating eroded depth of pipe
JPH0319484B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030617

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term