JP4842014B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4842014B2
JP4842014B2 JP2006147020A JP2006147020A JP4842014B2 JP 4842014 B2 JP4842014 B2 JP 4842014B2 JP 2006147020 A JP2006147020 A JP 2006147020A JP 2006147020 A JP2006147020 A JP 2006147020A JP 4842014 B2 JP4842014 B2 JP 4842014B2
Authority
JP
Japan
Prior art keywords
refrigerant pipe
gas refrigerant
rotor
pressure gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006147020A
Other languages
Japanese (ja)
Other versions
JP2007315706A (en
Inventor
宏治 内藤
憲一 中村
和幹 浦田
訓良 山田
克 外岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006147020A priority Critical patent/JP4842014B2/en
Publication of JP2007315706A publication Critical patent/JP2007315706A/en
Application granted granted Critical
Publication of JP4842014B2 publication Critical patent/JP4842014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気調和機に係り、特に、1台の室外機に接続された複数台の室内機が冷暖同時運転をおこなう空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner in which a plurality of indoor units connected to one outdoor unit perform simultaneous cooling and heating operations.

1台の室外機に接続される複数台の室内機で冷房運転と暖房運転を同時におこなうマルチ型冷暖同時運転空気調和機は、室外機側から高圧ガス冷媒配管、低圧ガス冷媒配管、液冷媒配管の3本の接続配管が引き出されている。一方、複数台の室内機側には、それぞれガス冷媒配管、液冷媒配管の2本の接続配管があり、各室内機側の液冷媒配管は、室外機側の液冷媒配管と接続される。また、各室内機に対してそれぞれ冷暖切替えユニットが設けられており、冷暖切替えユニットを制御して、各室内機側のガス冷媒配管と、室外機側の高圧ガス冷媒配管及び低圧ガス冷媒配管との接続を切替えて各室内機の冷房運転と暖房運転との切替えをおこなっている。   A multi-type cooling / heating simultaneous operation air conditioner that simultaneously performs cooling operation and heating operation with multiple indoor units connected to one outdoor unit is a high-pressure gas refrigerant pipe, low-pressure gas refrigerant pipe, liquid refrigerant pipe from the outdoor unit side These three connection pipes are drawn out. On the other hand, there are two connection pipes, a gas refrigerant pipe and a liquid refrigerant pipe, on the side of the plurality of indoor units, and the liquid refrigerant pipe on each indoor unit side is connected to the liquid refrigerant pipe on the outdoor unit side. In addition, a cooling / heating switching unit is provided for each indoor unit, and the cooling / heating switching unit is controlled so that the gas refrigerant pipe on each indoor unit side, the high-pressure gas refrigerant pipe and the low-pressure gas refrigerant pipe on the outdoor unit side, Is switched to switch between cooling operation and heating operation of each indoor unit.

特許文献1には、室外機側の高圧ガス冷媒配管と室内機側のガス冷媒配管との接続の切替えを第1開閉弁で制御し、室外機側の低圧ガス冷媒配管と室内機側のガス冷媒配管との接続の切替えを第2開閉弁で制御することが記載されている。これによれば、各開閉弁の開閉を制御することで、複数台の室内機をすべて暖房運転にすること、すべて冷房運転にすること、あるいは冷房運転と暖房運転を同時におこなうことができるとされている。   In Patent Document 1, switching of connection between the high-pressure gas refrigerant pipe on the outdoor unit side and the gas refrigerant pipe on the indoor unit side is controlled by a first on-off valve, and the low-pressure gas refrigerant pipe on the outdoor unit side and the gas on the indoor unit side are controlled. It is described that the switching of the connection with the refrigerant pipe is controlled by a second on-off valve. According to this, by controlling the opening and closing of each on-off valve, it is said that all the indoor units can be in a heating operation, all in a cooling operation, or a cooling operation and a heating operation can be performed simultaneously. ing.

特開平02−093263号公報Japanese Patent Laid-Open No. 02-093263

しかしながら、上記特許文献1では、開閉弁の構成について詳細に記載されていない。このような開閉弁として、例えば、ピストンを上下させて開閉をおこなう電磁弁を使用することが考えられるが、一般的に電磁弁のピストン口径は小さいため、冷媒の流路が絞られ圧力損失が増大する。このような圧力損失を低減するためには、ピストン口径を大きくする必要があり、そのためには電磁弁自体のサイズが大きくなるという問題がある。   However, Patent Document 1 does not describe the configuration of the on-off valve in detail. As such an on-off valve, for example, it is conceivable to use an electromagnetic valve that opens and closes by moving the piston up and down.However, since the piston diameter of the electromagnetic valve is generally small, the flow path of the refrigerant is restricted and the pressure loss is reduced. Increase. In order to reduce such pressure loss, it is necessary to increase the piston diameter, and there is a problem that the size of the solenoid valve itself is increased.

また、電磁弁は、冷媒の流路を開又は閉のいずれか一方に選択することしかできないので問題となる。すなわち、例えば複数台の室内機が冷暖同時運転をおこなっている場合に、冷房運転をおこなっている室内機側のガス冷媒配管と室外機側の高圧ガス冷媒配管との接続を完全に閉にすると、冷凍サイクル回路を循環できなくなった高圧ガス冷媒が冷却されて凝縮し、液冷媒となって配管内に溜まりこむ場合がある。これを回避するためには、閉にした電磁弁をバイパスして冷媒を微少に流すためのバイパス配管が必要となる。   In addition, the solenoid valve is problematic because it can only select either the open or closed refrigerant flow path. That is, for example, when a plurality of indoor units are performing simultaneous cooling and heating, if the connection between the gas refrigerant pipe on the indoor unit side performing the cooling operation and the high-pressure gas refrigerant pipe on the outdoor unit side is completely closed The high-pressure gas refrigerant that can no longer circulate in the refrigeration cycle circuit is cooled and condensed, and may become liquid refrigerant and accumulate in the piping. In order to avoid this, a bypass pipe for bypassing the closed solenoid valve and allowing the refrigerant to flow slightly is required.

本発明は、冷媒の圧力損失を低減し、かつ、冷媒の流量を調整することのできる冷暖切替えユニットを実現することを課題とする。   This invention makes it a subject to implement | achieve the cooling / heating switching unit which can reduce the pressure loss of a refrigerant | coolant and can adjust the flow volume of a refrigerant | coolant.

上記課題を解決するため、本発明の空気調和機は、冷媒を循環する配管に、圧縮機及び室外熱交換器を有する室外機と、室内熱交換器及び室内膨張弁を有する複数台の室内機とを接続して冷凍サイクルを形成してなり、複数台の室内機側の各ガス冷媒配管と、室外機側の低圧ガス冷媒配管及び高圧ガス冷媒配管の少なくとも一方とを接続して各室内機の冷暖房運転を切替える冷暖切替えユニットを備えており、各冷暖切替えユニットを、ガス冷媒配管、前記低圧ガス冷媒配管及び前記高圧ガス冷媒配管がそれぞれ接続される接続口が形成された円筒型のシリンダと、この円筒型のシリンダに嵌装されガス冷媒配管、低圧ガス冷媒配管及び高圧ガス冷媒配管を互いに連通する冷媒流路が形成された円筒型のロータと、この円筒型のロータの回転位相を制御して冷暖房運転を切替える切替え制御手段とで構成することを特徴とする。 To solve the above problems, an air conditioner of the present invention, the pipe for circulating the refrigerant, the compressor and an outdoor unit having an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger and an indoor expansion valve by plugging it to form a refrigeration cycle, a plurality of the respective gas refrigerant pipe of the indoor unit side, at least one of a the connection to the indoor low-pressure gas refrigerant pipe and the high pressure gas refrigerant pipe of the outdoor unit side A cylindrical cylinder having a cooling / heating switching unit for switching the cooling / heating operation of the machine, wherein each cooling / heating switching unit is connected to a gas refrigerant pipe, a low-pressure gas refrigerant pipe and a high-pressure gas refrigerant pipe. When this cylindrical cylinder gas refrigerant pipe is fitted into a cylindrical refrigerant flow path is formed to communicate with each other a low-pressure gas refrigerant pipe and the high pressure gas refrigerant pipe rotor, the rotation of the cylindrical rotor By controlling the phase, characterized in that configured in the switching control means switching the cooling and heating operations.

すなわち、円筒型のロータには、室内機側のガス冷媒配管と室外機側のガス冷媒配管(以下、各冷媒配管という。)を連通する冷媒流路が形成されており、この冷媒流路を、各冷媒配管と同等以上の流路面積とすることができる。そして、切替え制御手段で各冷媒配管を連通する位置にロータの回転位相を制御することによって、冷媒の圧力損失を低減して冷媒を流通することができる。その結果、冷暖切替えユニットのサイズを抑制しつつ、冷媒を流通させる時の冷媒の圧力損失を低減することができる。ここで、冷暖切替えユニットは、室内側のガス冷媒配管、室外側の高圧ガス冷媒配管、室外側の低圧ガス冷媒配管の3本の配管が接続される単一の切替えユニットで構成され、ロータの回転位相を制御することによって、3本の配管相互あるいは室内側のガス冷媒配管と任意の一方ガス冷媒配管とを圧力損失の少ない冷媒流路で連通することができる。 That is, the cylindrical rotor is formed with a refrigerant flow path that connects the gas refrigerant pipe on the indoor unit side and the gas refrigerant pipe on the outdoor unit side (hereinafter referred to as each refrigerant pipe). The channel area can be equal to or greater than that of each refrigerant pipe. Then, by controlling the rotational phase of the rotor to a position where each refrigerant pipe communicates with the switching control means, it is possible to reduce the pressure loss of the refrigerant and distribute the refrigerant. As a result, it is possible to reduce the pressure loss of the refrigerant when the refrigerant is circulated while suppressing the size of the cooling / heating switching unit. Here, the cooling / heating switching unit is composed of a single switching unit to which three pipes of a gas refrigerant pipe on the indoor side, a high-pressure gas refrigerant pipe on the outdoor side, and a low-pressure gas refrigerant pipe on the outdoor side are connected. By controlling the rotational phase, the three pipes or the indoor gas refrigerant pipe and any one of the gas refrigerant pipes can be communicated with each other through a refrigerant flow path with little pressure loss.

また、切替え制御手段でロータの回転位相を制御して、ロータに形成された冷媒流路と各冷媒配管との重なり部分の面積を調整することによって、冷媒流路を開又は閉の一方に選択するだけでなく、冷媒の流量を任意に調整することができる。これによれば、例えば複数台の室内機が冷暖同時運転をおこなっている場合に、冷房運転をおこなっている室内機側のガス冷媒配管と室外機側の高圧ガス冷媒配管との接続を完全に閉にすることなく、冷媒を微少に流通させる冷媒流路を形成することができるので、従来用いられていたバイパス配管を省くことができる。   In addition, by controlling the rotation phase of the rotor with the switching control means and adjusting the area of the overlapping portion between the refrigerant flow path formed in the rotor and each refrigerant pipe, the refrigerant flow path is selected to be either open or closed In addition, the flow rate of the refrigerant can be arbitrarily adjusted. According to this, for example, when a plurality of indoor units are performing simultaneous cooling and heating operations, the connection between the gas refrigerant pipe on the indoor unit side that is performing the cooling operation and the high-pressure gas refrigerant pipe on the outdoor unit side is completely established. Since it is possible to form a refrigerant flow path through which the refrigerant is circulated minutely without being closed, it is possible to omit a conventionally used bypass pipe.

このように、本発明の空気調和機によれば、冷媒の圧力損失を低減し、かつ、冷媒の流量を調整することのできる冷暖房切替えユニットを実現することができる。Thus, according to the air conditioner of the present invention, it is possible to realize an air conditioning switching unit that can reduce the pressure loss of the refrigerant and adjust the flow rate of the refrigerant.

本発明によれば、冷媒の圧力損失を低減し、かつ、冷媒の流量を調整することのできる冷暖切替えユニットを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cooling / heating switching unit which can reduce the pressure loss of a refrigerant | coolant and can adjust the flow volume of a refrigerant | coolant is realizable.

以下、本発明を適用してなる空気調和機の実施例を図1〜図11を用いて説明する。なお、以下の説明では、同一機能部品については同一符号を付して重複説明を省略する。   Hereinafter, an embodiment of an air conditioner to which the present invention is applied will be described with reference to FIGS. In the following description, the same functional parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施例の空気調和機の全体構成を示す模式図である。図1に示すように本実施例の空気調和機1は、1台の室外機2に対して3台の室内機3a〜3cが並列に接続されて構成されている。室内機3の台数はこれに限らず増減することができる。室外機2は、圧縮機5a〜5c、四方弁6a、6b、室外熱交換器7a、7b、室外膨張弁8a、8b、レシーバ9、過冷却熱交換器10、過冷却バイパス膨張弁11、アキュムレータ12などで構成されており、各室内機3は、それぞれ室内熱交換器14a〜14c、室内膨張弁15a〜15cなどで構成されている。なお、四方弁6a、6bに代えて電磁弁などを使用しても良い。   FIG. 1 is a schematic diagram showing the overall configuration of the air conditioner of the present embodiment. As shown in FIG. 1, the air conditioner 1 of the present embodiment is configured by connecting three indoor units 3 a to 3 c in parallel to one outdoor unit 2. The number of indoor units 3 is not limited to this and can be increased or decreased. The outdoor unit 2 includes compressors 5a to 5c, four-way valves 6a and 6b, outdoor heat exchangers 7a and 7b, outdoor expansion valves 8a and 8b, a receiver 9, a supercooling heat exchanger 10, a supercooling bypass expansion valve 11, and an accumulator. 12 and the like, and each indoor unit 3 includes indoor heat exchangers 14a to 14c, indoor expansion valves 15a to 15c, and the like. An electromagnetic valve or the like may be used in place of the four-way valves 6a and 6b.

また、各室内機3に対して、室内熱交換器14a〜14cからそれぞれ引き出された室内機側のガス冷媒配管17a〜17cと、室外機2から引き出され各室内機3に対して分岐する室外機側の高圧ガス冷媒配管18a〜18c及び低圧ガス冷媒配管19a〜19cの少なくとも一方とをそれぞれ接続して冷暖房運転を切替える冷暖切替えユニット20a〜20cが設けられている。   Further, for each indoor unit 3, the indoor unit-side gas refrigerant pipes 17 a to 17 c drawn from the indoor heat exchangers 14 a to 14 c and the outdoor led out from the outdoor unit 2 and branched to each indoor unit 3. Cooling / heating switching units 20a to 20c for switching the cooling / heating operation by connecting at least one of the high-pressure gas refrigerant pipings 18a to 18c and the low-pressure gas refrigerant pipings 19a to 19c on the machine side are provided.

次に、このような空気調和機1で形成された冷凍サイクル内の冷媒の流れを説明する。本実施例では、室内機3aが暖房運転、室内機3b、3cが冷房運転をしている場合を例に説明する。圧縮機5a〜5cで圧縮された高圧ガス冷媒は、一部が四方弁6aを介して室外熱交換器7aへ送られ、残りは四方弁6b及び高圧ガス冷媒阻止弁22を介して高圧ガス冷媒配管18へ送られる。   Next, the flow of the refrigerant in the refrigeration cycle formed by such an air conditioner 1 will be described. In the present embodiment, an example will be described in which the indoor unit 3a is in a heating operation and the indoor units 3b and 3c are in a cooling operation. A part of the high-pressure gas refrigerant compressed by the compressors 5a to 5c is sent to the outdoor heat exchanger 7a through the four-way valve 6a, and the rest is supplied to the high-pressure gas refrigerant through the four-way valve 6b and the high-pressure gas refrigerant blocking valve 22. It is sent to the pipe 18.

ここで、冷暖切替えユニット20aの第1の切替え弁24aは開、第2の切替え弁25aは閉となっており、冷暖切替えユニット20b、cの第1の切替え弁24b、cは閉となっているため、高圧ガス冷媒配管18に送られた高圧ガス冷媒は、暖房運転を行う室内機3aへ送られる。第1の切替え弁24aを介して冷暖切替えユニット20aを通過した高圧ガス冷媒は、室内側のガス冷媒配管17aを介して室内機3aへ送られ、室内熱交換器14aで室内空気と熱交換して凝縮し、液冷媒となった後、室内膨張弁15aを介して液冷媒配管27へ送られる。   Here, the first switching valve 24a of the cooling / heating switching unit 20a is opened, the second switching valve 25a is closed, and the first switching valves 24b, c of the cooling / heating switching unit 20b, c are closed. Therefore, the high-pressure gas refrigerant sent to the high-pressure gas refrigerant pipe 18 is sent to the indoor unit 3a that performs the heating operation. The high-pressure gas refrigerant that has passed through the cooling / heating switching unit 20a through the first switching valve 24a is sent to the indoor unit 3a through the indoor-side gas refrigerant pipe 17a, and exchanges heat with indoor air in the indoor heat exchanger 14a. The liquid refrigerant is condensed and then sent to the liquid refrigerant pipe 27 via the indoor expansion valve 15a.

一方、室外熱交換器7aへ送られた高圧ガス冷媒は、室外空気と熱交換して凝縮し、液冷媒となり、室外膨張弁8a、レシーバ9、過冷却熱交換器10、液冷媒阻止弁29を介して液冷媒配管27へ送られる。ここで、室外膨張弁8bは閉止されており、室外熱交換器7bには冷媒は流れない。   On the other hand, the high-pressure gas refrigerant sent to the outdoor heat exchanger 7a is condensed by exchanging heat with the outdoor air to become liquid refrigerant, and the outdoor expansion valve 8a, the receiver 9, the supercooling heat exchanger 10, and the liquid refrigerant blocking valve 29. To the liquid refrigerant pipe 27. Here, the outdoor expansion valve 8b is closed, and the refrigerant does not flow into the outdoor heat exchanger 7b.

暖房運転をおこなっている室内機3a及び室外機2から液冷媒配管27へ送られた液冷媒は、冷房運転をおこなう室内機3b、3cへ送られ、室内膨張弁15b、15cで膨張し、室内熱交換器14b、14cで室内空気と熱交換し低圧ガス冷媒となり、室内機側のガス接続配管17b、17cを介して冷暖切替えユニット20b、20cへ送られる。ここで、冷暖切替えユニット20b、20cの第1の切替え弁24b、24cは閉、第2の切替え弁25b、25cは開となっているので、第2の切替え弁25b、25cを通った低圧ガス冷媒は低圧ガス冷媒配管19、低圧ガス冷媒阻止弁30、アキュムレータ12を介して、圧縮機5a〜5cに戻り再循環する。   The liquid refrigerant sent from the indoor unit 3a and the outdoor unit 2 performing the heating operation to the liquid refrigerant pipe 27 is sent to the indoor units 3b and 3c performing the cooling operation, and is expanded by the indoor expansion valves 15b and 15c. The heat exchangers 14b and 14c exchange heat with room air to form a low-pressure gas refrigerant, which is sent to the cooling / heating switching units 20b and 20c via the gas connection pipes 17b and 17c on the indoor unit side. Here, since the first switching valves 24b and 24c of the cooling / heating switching units 20b and 20c are closed and the second switching valves 25b and 25c are opened, the low-pressure gas that has passed through the second switching valves 25b and 25c. The refrigerant returns to the compressors 5a to 5c through the low-pressure gas refrigerant pipe 19, the low-pressure gas refrigerant blocking valve 30, and the accumulator 12, and is recirculated.

このように、冷暖切替えユニット20a〜20cにおいて、第1の切替え弁24a〜24c及び第2の切替え弁25a〜25cを切替え制御することで、各室内機3の冷房運転及び暖房運転を独立に制御することが可能となる。   As described above, in the cooling / heating switching units 20a to 20c, the first switching valves 24a to 24c and the second switching valves 25a to 25c are switched and controlled, so that the cooling operation and the heating operation of each indoor unit 3 are independently controlled. It becomes possible to do.

次に、本発明の特徴部である冷暖切替えユニット20a〜20cの詳細を説明する。なお、冷暖切替えユニット20a〜20cにおける第1の切替え弁24a〜24cと第2の切替え弁25a〜25cはすべて同一の構成なので、代表して第1の切替え弁24aを用いて説明をおこなう。   Next, the details of the cooling / heating switching units 20a to 20c, which are features of the present invention, will be described. Since the first switching valves 24a to 24c and the second switching valves 25a to 25c in the cooling / heating switching units 20a to 20c have the same configuration, the first switching valve 24a will be representatively described.

図2(a)は、第1の切替え弁24aの縦断面を示す図であり、図2(b)は、図2(a)におけるb−b線の断面を示す図である。図2に示すように、第1の切替え弁24aは、室内機側のガス冷媒配管17及び室外機側の高圧ガス冷媒配管18がそれぞれ接続される接続口31が形成された円筒型のシリンダ32と、円筒型のシリンダ32の内部に嵌装され、室内機側のガス冷媒配管17と室外機側の高圧ガス冷媒配管18とを連通する冷媒流路33が形成された円筒型のロータ34と、円筒型のロータ34の回転位相を制御して冷暖房運転を切替える切替え制御手段35とで構成されている。   Fig.2 (a) is a figure which shows the longitudinal cross-section of the 1st switching valve 24a, FIG.2 (b) is a figure which shows the cross section of the bb line in Fig.2 (a). As shown in FIG. 2, the first switching valve 24 a includes a cylindrical cylinder 32 in which connection ports 31 to which the gas refrigerant pipe 17 on the indoor unit side and the high-pressure gas refrigerant pipe 18 on the outdoor unit side are respectively connected are formed. And a cylindrical rotor 34 that is fitted inside a cylindrical cylinder 32 and has a refrigerant flow path 33 that communicates the gas refrigerant pipe 17 on the indoor unit side and the high-pressure gas refrigerant pipe 18 on the outdoor unit side, The switching control means 35 controls the rotation phase of the cylindrical rotor 34 to switch the cooling / heating operation.

続いて、ロータ34の回転位相を制御する切替え制御手段35について図3を用いて説明する。図3(a)は、切替え制御手段35の縦断面を示す図であり、図3(b)、(c)は図3(a)におけるb−b線、c−c線の断面図である。本実施例では、ロータ34の回転機構にステップモータを使用している。図3に示すように、ステップモータは鉄心にコイルを巻きつけた固定子38と磁性体で形成された回転子39で構成される。図3では固定子38を6個に分けているが個数はこれ以上でも以下でも良い。   Next, the switching control means 35 for controlling the rotation phase of the rotor 34 will be described with reference to FIG. 3A is a diagram showing a longitudinal section of the switching control means 35, and FIGS. 3B and 3C are sectional views taken along lines bb and cc in FIG. 3A. . In this embodiment, a step motor is used for the rotation mechanism of the rotor 34. As shown in FIG. 3, the step motor includes a stator 38 having a coil wound around an iron core and a rotor 39 formed of a magnetic material. Although the stator 38 is divided into six in FIG. 3, the number may be more or less.

固定子38a、bに電流を流した場合を仮定すると、回転子39は図3に示す位置で停止する。この状態で、固定子38a、bの電流を切り固定子38c、dに電流を流すと回転子39は30°時計方向に回転する。固定子38c、dの電流を切り固定子38e、fに電流を流すと回転子39は更に30°時計方向に回転する。ここで、電流のON/OFF回数を制御することによりロータ34の回転位相を制御することができ、また、電流を流す順番を逆にすることにより、逆回転も可能である。また、固定子39の数を増やすことにより、より微細な位相調整が可能となる。本実施例では、以下に説明するギア機構により、回転位相の微細な調整をおこなっている。   Assuming that a current is passed through the stators 38a and 38b, the rotor 39 stops at the position shown in FIG. In this state, when the current of the stators 38a and 38b is turned off and the current is passed through the stators 38c and 38d, the rotor 39 rotates 30 ° clockwise. When the current of the stators 38c and d is cut off and the current is passed through the stators 38e and 38f, the rotor 39 further rotates 30 ° clockwise. Here, the rotational phase of the rotor 34 can be controlled by controlling the number of times the current is turned on and off, and reverse rotation is also possible by reversing the order in which the current flows. Further, by increasing the number of stators 39, finer phase adjustment is possible. In this embodiment, the rotational phase is finely adjusted by the gear mechanism described below.

図3(a)に示すように、回転子39と歯車40は動力伝達機構41を介して固定されており、ステップモータにより回転子39が回転すると、その回転と同位相で歯車40が回転する。また、歯車40とかみあう歯車42は動力伝達機構43を介してロータ34と固定されているので、歯車40の回転に伴って歯車42が回転すると、歯車42と同位相でロータ34は回転する。ここで、歯車40の回転を歯車42に伝達する際に、例えば歯車40の歯数がN1、歯車42の歯数N2とすると、歯車40の1回転に対し歯車42はN1/N2回転するので、歯車40の歯数を歯車42より少なくすることで、より微細な回転位相調整が可能となる。なお、本実施例では、2つの歯車でロータ34の回転位相を微調整しているが、歯車の個数を増やして更に微細に位相調整してもよい。また、ギア機構を省いて動力伝達機構41を直接ロータ34に固定し、ステップモータの回転制御のみでロータ34の回転位相を制御してもよい。   As shown in FIG. 3A, the rotor 39 and the gear 40 are fixed via a power transmission mechanism 41. When the rotor 39 is rotated by the step motor, the gear 40 is rotated in the same phase as the rotation. . Since the gear 42 that meshes with the gear 40 is fixed to the rotor 34 via the power transmission mechanism 43, when the gear 42 rotates as the gear 40 rotates, the rotor 34 rotates in the same phase as the gear 42. Here, when the rotation of the gear 40 is transmitted to the gear 42, for example, if the number of teeth of the gear 40 is N1 and the number of teeth N2 of the gear 42, the gear 42 rotates N1 / N2 with respect to one rotation of the gear 40. By making the number of teeth of the gear 40 smaller than that of the gear 42, a finer rotation phase adjustment can be performed. In this embodiment, the rotational phase of the rotor 34 is finely adjusted with two gears. However, the phase may be finely adjusted by increasing the number of gears. Alternatively, the power transmission mechanism 41 may be directly fixed to the rotor 34 without the gear mechanism, and the rotation phase of the rotor 34 may be controlled only by the rotation control of the step motor.

次に、室内機3の冷暖房の運転状況に対するロータ34の回転位相制御について説明する。図4(a)に示すように、室内機3が暖房運転をおこなっている場合は、基本的に、第1の切替え弁24を開にして第2の切替え弁25を閉にすればよい。第1の切替え弁24を開にするためには、室外機側の高圧ガス冷媒配管18と室内側のガス冷媒配管17が連通するようにロータ34の回転位相を制御すればよい。第2の切替え弁25を閉にするためには、室外機側の高圧ガス冷媒配管19又は室内側のガス冷媒配管17と冷媒流路33が接しなくなる位置にロータ34を回転させればよい。   Next, the rotation phase control of the rotor 34 with respect to the operating condition of the air conditioning of the indoor unit 3 will be described. As shown to Fig.4 (a), when the indoor unit 3 is performing heating operation, what is necessary is just to open the 1st switching valve 24 and close the 2nd switching valve 25 fundamentally. In order to open the first switching valve 24, the rotational phase of the rotor 34 may be controlled so that the high-pressure gas refrigerant pipe 18 on the outdoor unit side and the gas refrigerant pipe 17 on the indoor side communicate with each other. In order to close the second switching valve 25, the rotor 34 may be rotated to a position where the refrigerant passage 33 is not in contact with the high-pressure gas refrigerant pipe 19 on the outdoor unit side or the gas refrigerant pipe 17 on the indoor side.

図4(b)に示すように、冷房運転時は第1の切替え弁24は閉、第2の切替え弁25は開となるようにロータ34を回転させて使用する。また、図4(c)に示すように全室冷房運転時に、室外機側の高圧ガス冷媒配管18にも低圧ガス冷媒を流す場合には、第1の切替え弁24及び第2の切替え弁25が共に開となるようにロータ34を回転させて使用してもよい。   As shown in FIG. 4B, during the cooling operation, the rotor 34 is rotated so that the first switching valve 24 is closed and the second switching valve 25 is opened. As shown in FIG. 4C, when the low-pressure gas refrigerant is caused to flow through the high-pressure gas refrigerant pipe 18 on the outdoor unit side during the all-room cooling operation, the first switching valve 24 and the second switching valve 25 are used. The rotor 34 may be rotated so that both are open.

このように、本実施例の第1及び第2の切替え弁では、ロータ34に冷媒流路33を形成しているので、従来用いられている電磁弁のピストン口径のような制約を受けず、冷媒流路33を、冷媒を循環する配管と同じ大きさで形成することができる。したがって、冷暖切替えユニット20のサイズを抑制しつつ、冷媒を流通させる時の冷媒の圧力損失を低減することができる。   As described above, in the first and second switching valves of the present embodiment, the refrigerant flow path 33 is formed in the rotor 34, so that there is no restriction such as the piston diameter of a conventionally used electromagnetic valve, The refrigerant flow path 33 can be formed with the same size as the pipe for circulating the refrigerant. Therefore, it is possible to reduce the pressure loss of the refrigerant when the refrigerant is circulated while suppressing the size of the cooling / heating switching unit 20.

ところで、本実施例のように1台の室外機2に複数台の室内機3が接続され、各室内機3で冷房運転と暖房運転を同時におこなう場合は、第1及び第2の切替え弁を開又は閉に選択するだけでは問題が生じる場合がある。すなわち、例えば、室外機2が冷暖同時運転中、室外機側の高圧ガス冷媒配管18に高圧ガス冷媒が存在する状態で第1の切替え弁24を完全に閉にすると、室外機側の高圧ガス冷媒配管18の放熱により高圧ガス冷媒が徐々に凝縮し室外機側の高圧ガス冷媒配管18の閉塞枝管部に液冷媒として溜まり、冷凍サイクル全体は冷媒不足となる場合がある。このような問題を解決するために、本実施例の空気調和機では、以下のようにして冷媒流量の調整をおこなっている。   By the way, when a plurality of indoor units 3 are connected to one outdoor unit 2 as in this embodiment, and each of the indoor units 3 performs a cooling operation and a heating operation at the same time, the first and second switching valves are set. Problems may arise if only opening or closing is selected. That is, for example, when the outdoor unit 2 is in the simultaneous cooling and heating operation and the high pressure gas refrigerant is present in the high pressure gas refrigerant pipe 18 on the outdoor unit side, if the first switching valve 24 is completely closed, the high pressure gas on the outdoor unit side is closed. In some cases, the high-pressure gas refrigerant is gradually condensed by the heat radiation of the refrigerant pipe 18 and accumulates as a liquid refrigerant in the closed branch pipe portion of the high-pressure gas refrigerant pipe 18 on the outdoor unit side, and the entire refrigeration cycle may be insufficient. In order to solve such a problem, in the air conditioner of the present embodiment, the refrigerant flow rate is adjusted as follows.

図5(a)は、室外機2が冷暖同時運転をおこなっている状態で、冷房運転をおこなう室内機に対する冷暖切替えユニット20を示す図である。このように、第1の切替え弁24を完全に閉にするのではなく、ロータ34の回転位相を制御することによって、冷媒流路33と、室内機側のガス冷媒配管17及び室外機側の高圧ガス冷媒配管18との重なり部分の面積がわずかに形成されるようにしている。   Fig.5 (a) is a figure which shows the cooling / heating switching unit 20 with respect to the indoor unit which performs air_conditionaing | cooling operation in the state in which the outdoor unit 2 is performing simultaneous cooling / heating operation. In this way, the first switching valve 24 is not completely closed, but the rotational phase of the rotor 34 is controlled, whereby the refrigerant flow path 33, the gas refrigerant pipe 17 on the indoor unit side, and the outdoor unit side are controlled. The area of the overlapping part with the high-pressure gas refrigerant pipe 18 is formed slightly.

このように、切替え制御手段35によってロータ34の回転位相を制御することによって、第1の切替え弁24には、微少に冷媒が流れ続けるので、液冷媒の溜まり込みの問題を解決することができる。その結果、従来は第1の切替え弁24をバイパスして冷媒を微少に流すためのバイパス配管を設けていたが、本実施例によれば、バイパス配管を設けることなく冷媒を微少に流通させることができる。   Thus, by controlling the rotation phase of the rotor 34 by the switching control means 35, the refrigerant continues to flow slightly through the first switching valve 24, so that the problem of liquid refrigerant accumulation can be solved. . As a result, the bypass pipe for passing the refrigerant by bypassing the first switching valve 24 has been conventionally provided. However, according to the present embodiment, the refrigerant can be circulated minutely without providing the bypass pipe. Can do.

また、通常の冷房運転時は第2の切替え弁25が開になるようにロータ34の回転位相を制御するが、外気低温冷房時にこのようにすると吸入圧力まで室内圧力が低下して冷房能力が過剰に出すぎたり、蒸発温度が0℃以下となりドレン水が凍結したりする場合がある。これに対して図5(b)に示すように、第2の切替え弁25の冷媒流路を絞り、冷媒循環量を減らすと同時に蒸発圧力を上げることにより、冷房能力過剰やドレン水凍結を防止できる。ここで、暖房運転時にも閉止角度で同様に漏れがあり暖房能力を低下させるため、ロータ34の回転位相を調整し、室内配管と低圧配管が繋がらない角度にしてもよい。   Further, during the normal cooling operation, the rotational phase of the rotor 34 is controlled so that the second switching valve 25 is opened. However, when the outside air is cooled at a low temperature, the indoor pressure is reduced to the suction pressure and the cooling capacity is increased. In some cases, the liquid may be excessively discharged, or the evaporation temperature may be 0 ° C. or lower and the drain water may freeze. On the other hand, as shown in FIG. 5B, the refrigerant flow path of the second switching valve 25 is throttled to reduce the refrigerant circulation amount and at the same time increase the evaporation pressure, thereby preventing excessive cooling capacity and drain water freezing. it can. Here, in the heating operation as well, there is a leakage at the closing angle and the heating capacity is lowered. Therefore, the rotation phase of the rotor 34 may be adjusted so that the indoor piping and the low-pressure piping are not connected.

図6に、ロータ34に形成する冷媒流路33の変形例を示す。このように、ロータ34には、径方向に形成された第1の貫通穴45と、第1の貫通穴45と略直交する径方向に形成され第1の貫通穴45より穴径の小さい第2の貫通穴46が形成されている。   FIG. 6 shows a modification of the refrigerant flow path 33 formed in the rotor 34. As described above, the rotor 34 has a first through hole 45 formed in the radial direction and a first through hole 45 formed in a radial direction substantially orthogonal to the first through hole 45 and having a smaller hole diameter than the first through hole 45. Two through holes 46 are formed.

このように冷媒流路33を形成することで、図6(a)に示すように、冷暖房同時運転時に冷房運転をおこなう室内機に対する冷暖切替えユニット20では、第1の貫通穴45で室外機側の低圧ガス冷媒配管19に対して圧力損失を少なく冷媒を流通し、第2の貫通穴46で室外機側の高圧ガス冷媒配管18から微少に冷媒を流し続けることができる。特に、このような冷媒流路33を形成することで、ロータ34の回転位相の制御を微細におこなう必要がなくなるため、上述したギア機構などを省いた簡素な切替え制御手段35で、かつ、バイパス配管を設けることなく冷媒を微少に流すことができるので有用である。   By forming the refrigerant flow path 33 in this way, as shown in FIG. 6A, in the cooling / heating switching unit 20 for the indoor unit that performs the cooling operation during the cooling / heating simultaneous operation, the first through hole 45 allows the outdoor unit side. Thus, the refrigerant can be circulated through the low-pressure gas refrigerant pipe 19 with little pressure loss, and the refrigerant can continue to flow slightly from the high-pressure gas refrigerant pipe 18 on the outdoor unit side through the second through hole 46. In particular, by forming such a refrigerant flow path 33, it is not necessary to finely control the rotational phase of the rotor 34. Therefore, the simple switching control means 35 that omits the above-described gear mechanism and the like, and bypass This is useful because the refrigerant can be made to flow minutely without providing piping.

また、図6(b)に示すように、外気低温冷房時は、各切替え弁において第2の貫通穴46を用いることにより、図5(b)と同様の状態を形成することができる。さらに、図6(c)、(d)に示すようにロータ34の回転位相を制御することで、暖房運転にも対応することができる。   Moreover, as shown in FIG.6 (b), at the time of external air low temperature cooling, the state similar to FIG.5 (b) can be formed by using the 2nd through-hole 46 in each switching valve. Furthermore, as shown in FIGS. 6C and 6D, it is possible to cope with the heating operation by controlling the rotation phase of the rotor 34.

なお、本実施例のように穴径の小さな第2の貫通穴46を形成することに代えて、ロータ34自体の加工公差を大きくしてシリンダ32との間に隙間を設け、この隙間を利用して微少に冷媒を流してもよい。また、第1の貫通穴45、第2の貫通穴46などの冷媒流路33は、本実施例では直線状に形成されているが、これに限らず、途中で折れ曲がるような流路として、これに対応させて室外機側の低圧ガス冷媒配管19、室外機側の高圧ガス冷媒配管18、室内側のガス冷媒配管17を接続してもよい。   Instead of forming the second through hole 46 having a small hole diameter as in the present embodiment, the clearance of the rotor 34 itself is increased to provide a gap with the cylinder 32, and this gap is used. Then, the refrigerant may be slightly flowed. In addition, the refrigerant flow path 33 such as the first through hole 45 and the second through hole 46 is formed in a straight line in this embodiment, but is not limited thereto, and as a flow path that bends in the middle, Correspondingly, the low pressure gas refrigerant pipe 19 on the outdoor unit side, the high pressure gas refrigerant pipe 18 on the outdoor unit side, and the gas refrigerant pipe 17 on the indoor side may be connected.

以上述べてきたように、本実施例によれば、ロータ34に冷媒流路33を形成し、切替え制御手段35でロータ34の回転位相を制御することによって、冷暖切替えユニット20のサイズを抑制しつつ、冷媒の圧力損失を低減することができる。また、切替え制御手段35でロータ34の回転位相を微細に制御し、あるいは冷媒流路33を第1の貫通穴45、第2の貫通穴46で構成することによって、バイパス配管を設けることなく、必要に応じて冷媒を微少に流すことも可能である。   As described above, according to the present embodiment, the refrigerant flow path 33 is formed in the rotor 34 and the rotation control unit 35 controls the rotational phase of the rotor 34, thereby suppressing the size of the cooling / heating switching unit 20. Meanwhile, the pressure loss of the refrigerant can be reduced. Further, by controlling the rotation phase of the rotor 34 with the switching control means 35 finely, or by configuring the refrigerant flow path 33 with the first through hole 45 and the second through hole 46, without providing a bypass pipe, It is also possible to flow the refrigerant as small as necessary.

さらに、従来のピストン式電磁弁で一般的に使用される機構は、電磁弁の前後差圧で弁を持ち上げる方式なのでパイロット電磁弁が余分に必要であり、冷媒の流れが非常に少ない領域では弁が持ち上がらない状況があったが、本実施例ではロータ34にステップモータで与えられる回転力を直接的、あるいは途中ギア機構などを用いて間接的に伝達するため、差圧に関係なく開閉することが可能である。   Furthermore, since the mechanism generally used in the conventional piston type solenoid valve is a system that lifts the valve with the differential pressure across the solenoid valve, an extra pilot solenoid valve is required, and in the region where the flow of refrigerant is very small However, in this embodiment, the rotational force applied by the step motor to the rotor 34 is transmitted directly or indirectly using a gear mechanism or the like, so that it opens and closes regardless of the differential pressure. Is possible.

また、従来のピストン式電磁弁では、電磁弁の開閉をおこなうに際して冷媒を急激に流動させ、あるいは冷媒の流動を急激に閉止するため騒音が大きかったが、本実施例によれば、ロータ34の回転に伴って序々に冷媒を流動させるため、切替え弁の開閉に伴う騒音を抑制することができる。   Further, in the conventional piston type solenoid valve, when the solenoid valve is opened and closed, the refrigerant suddenly flows or the refrigerant flow is suddenly closed, so that the noise is loud. Since the refrigerant gradually flows along with the rotation, noise accompanying opening and closing of the switching valve can be suppressed.

本発明の空気調和機の第2実施例について説明する。第1実施例と第2実施例で異なるのは、冷暖切替えユニット20の構成のみであるので、他の部分の説明は省略する。   A second embodiment of the air conditioner of the present invention will be described. Since only the configuration of the cooling / heating switching unit 20 is different between the first embodiment and the second embodiment, description of other parts is omitted.

図7は、本発明の第2実施例に係る冷暖切替えユニット20の構成を示す図である。本実施例では、第1実施例と異なり、冷媒流路33が形成されたロータ34をロータ軸方向に移動させることによって、各切替え弁に接続される冷媒配管相互の接続を切替えている。ロータ34は、コイル50に電流を流して発生する電磁力によってロータ軸方向に移動する。
図7(a)は、冷暖切替えユニット20の縦断面を示す図であり、図7(b)は、図7(a)におけるb−b線の断面図である。図7に示すように、室外機2が冷暖房同時運転をおこなっている状態で冷房運転をおこなう室内機3に対する冷暖切替えユニット20では、第1の切替え弁24のロータ34に形成された冷媒流路33と、第1の切替え弁24に接続される冷媒配管との重なり部分の面積が小さくなるようにロータ34の軸方向の位置を調整している。これに対して、第2の切替え弁25においては、重なり部分の面積が大きくなるようにロータ34の軸方向の位置を制御している。
FIG. 7 is a diagram showing a configuration of the cooling / heating switching unit 20 according to the second embodiment of the present invention. In the present embodiment, unlike the first embodiment, the connection between the refrigerant pipes connected to each switching valve is switched by moving the rotor 34 in which the refrigerant flow path 33 is formed in the rotor axial direction. The rotor 34 moves in the axial direction of the rotor by an electromagnetic force generated by passing a current through the coil 50.
Fig.7 (a) is a figure which shows the longitudinal cross-section of the cooling / heating switching unit 20, and FIG.7 (b) is sectional drawing of the bb line | wire in Fig.7 (a). As shown in FIG. 7, in the cooling / heating switching unit 20 for the indoor unit 3 that performs the cooling operation in the state where the outdoor unit 2 performs the cooling and heating simultaneous operation, the refrigerant flow path formed in the rotor 34 of the first switching valve 24. The position of the rotor 34 in the axial direction is adjusted so that the area of the overlapping portion of 33 and the refrigerant pipe connected to the first switching valve 24 is reduced. On the other hand, in the second switching valve 25, the position of the rotor 34 in the axial direction is controlled so that the area of the overlapping portion is increased.

これにより、第1の切替え弁24では冷媒が微少に流れ、第2の切替え弁では、圧力損失を少なく冷媒を流すことができる。また、外気低温冷房時には、図7(c)、(d)のようにロータ34の軸方向の位置を制御することで、図5(b)と同様の冷媒流路を形成することができ、外気低温時の冷房能力過多や凍結防止を図ることができる。   As a result, the refrigerant can flow slightly through the first switching valve 24, and the refrigerant can flow through the second switching valve with little pressure loss. Further, at the time of low temperature cooling of the outside air, by controlling the position of the rotor 34 in the axial direction as shown in FIGS. 7C and 7D, a refrigerant flow path similar to that in FIG. 5B can be formed. Excessive cooling capacity and freezing can be prevented when the outside temperature is low.

このように、本実施例では、ロータ34のロータ軸方向の動きに対応して冷媒流路を圧力損失の少ない開の状態、又は完全な閉の状態にすることができ、また、冷媒流路33と、切替え弁に接続された冷媒配管との重なり部分の面積を調整し、冷媒流量を調整することによって、バイパス配管を設けることなく高圧ガス冷媒枝管の冷媒溜まり込み防止を図ることができる。   Thus, in the present embodiment, the refrigerant flow path can be opened or completely closed with little pressure loss in accordance with the movement of the rotor 34 in the rotor axial direction. By adjusting the area of the overlapping portion of 33 and the refrigerant pipe connected to the switching valve and adjusting the refrigerant flow rate, it is possible to prevent the refrigerant from being accumulated in the high-pressure gas refrigerant branch pipe without providing a bypass pipe. .

図8は、ロータ34に形成する冷媒流路33の変形例である。冷媒流路33は、ロータ34の径方向に形成された第1の貫通穴45と、第1の貫通穴45と軸方向の異なる位置に形成され第1の貫通穴より穴径の小さい第2の貫通穴46で構成されている。このような構成として、ロータ34の軸方向の位置を調整することでも、図8(a)〜(d)に示すように、圧力損失を少なく冷媒を流す開の状態、必要に応じて冷媒を微少に流す微開の状態、完全に冷媒の流れを遮断する閉の状態を形成することができる。なお、ここでは、ロータ34ごとに貫通穴を2種類形成しているが、これに限らず、穴径の異なる貫通穴をさらに増やしてもよい。   FIG. 8 is a modification of the refrigerant flow path 33 formed in the rotor 34. The refrigerant flow path 33 has a first through hole 45 formed in the radial direction of the rotor 34, and a second hole having a hole diameter smaller than that of the first through hole formed at a position different from the first through hole 45 in the axial direction. The through-hole 46 is comprised. As shown in FIGS. 8A to 8D, adjusting the axial position of the rotor 34 as such a configuration also allows the refrigerant to flow in an open state in which the refrigerant flows with little pressure loss, as required. A slightly open state that allows a slight flow, and a closed state that completely blocks the refrigerant flow can be formed. Here, although two types of through holes are formed for each rotor 34, the present invention is not limited to this, and through holes having different hole diameters may be further increased.

本発明の空気調和機の第3実施例について説明する。第1実施例と第3実施例で異なるのは、冷暖切替えユニット20の構成のみであるので、他の部分の説明は省略する。   A third embodiment of the air conditioner of the present invention will be described. Since only the configuration of the cooling / heating switching unit 20 is different between the first embodiment and the third embodiment, description of other parts is omitted.

図9(a)は、本発明の第3実施例に係る冷暖切替えユニット20の縦断面を示す図である。図9(b)〜図9(d)は、図9(a)におけるb−b線の断面であり、それぞれの室内機の運転状況に応じた状態を示す図である。図9に示すように、本実施例では、第1実施例と異なり、室外機側の高圧ガス冷媒配管18及び低圧ガス冷媒配管19のそれぞれに切替え弁を設けるのではなく、室内機側のガス冷媒配管17、室外機側の高圧ガス冷媒配管18及び低圧ガス冷媒配管19(以下、3本の冷媒配管という。)の合流部に切替え弁を1つ設けている。つまり、3本の冷媒配管が接続される切替え弁を1つ設けている。   Fig.9 (a) is a figure which shows the longitudinal cross-section of the cooling / heating switching unit 20 which concerns on 3rd Example of this invention. FIG. 9B to FIG. 9D are cross-sectional views taken along the line bb in FIG. 9A, and are diagrams illustrating states according to the operation status of each indoor unit. As shown in FIG. 9, in this embodiment, unlike the first embodiment, the switching valve is not provided in each of the high pressure gas refrigerant pipe 18 and the low pressure gas refrigerant pipe 19 on the outdoor unit side, but the gas on the indoor unit side is provided. One switching valve is provided at the junction of the refrigerant pipe 17, the high-pressure gas refrigerant pipe 18 on the outdoor unit side, and the low-pressure gas refrigerant pipe 19 (hereinafter referred to as three refrigerant pipes). That is, one switching valve to which three refrigerant pipes are connected is provided.

図9(b)〜図9(d)に示すように、ロータ34は、3本の冷媒配管が接続される高さ位置では、約1/2が欠けるように形成されており、欠けた部分が冷媒流路33となる。図9(b)は室内機が暖房運転時を示しており、図9(b)に示すようにロータ34の回転位相を制御することで、室外機側の高圧ガス冷媒配管18と室内機側のガス冷媒配管17だけが連通し、室内機側のガス冷媒配管17と室外機側の低圧ガス冷媒配管19は連通しない。
また、図9(c)に示すように、室内機が冷房運転時には、室内機側のガス冷媒配管17と室外機側の低圧ガス冷媒配管19だけが連通し、室外機側の高圧ガス冷媒配管18と室内機側のガス冷媒配管17は連通しないようにロータ34を回転させる。このときの回転角度は図では180°となる。さらに、図9(d)に示す全室冷房運転時に室外機側の高圧ガス冷媒配管18にも低圧ガス冷媒を流す場合には、3本の冷媒配管がすべて連通するようにロータ34の回転位相を制御する。このときの回転角度は90°である。
As shown in FIGS. 9B to 9D, the rotor 34 is formed so that about 1/2 is cut off at the height position where the three refrigerant pipes are connected. Becomes the refrigerant flow path 33. FIG. 9B shows the indoor unit in the heating operation, and the high-pressure gas refrigerant pipe 18 on the outdoor unit side and the indoor unit side are controlled by controlling the rotation phase of the rotor 34 as shown in FIG. 9B. Only the gas refrigerant pipe 17 of the indoor unit communicates, and the gas refrigerant pipe 17 of the indoor unit and the low pressure gas refrigerant pipe 19 of the outdoor unit do not communicate.
As shown in FIG. 9C, when the indoor unit is in cooling operation, only the gas refrigerant pipe 17 on the indoor unit side and the low-pressure gas refrigerant pipe 19 on the outdoor unit side communicate with each other, and the high-pressure gas refrigerant pipe on the outdoor unit side. The rotor 34 is rotated so that 18 and the gas refrigerant pipe 17 on the indoor unit side do not communicate with each other. The rotation angle at this time is 180 ° in the figure. Further, when the low-pressure gas refrigerant is caused to flow also through the high-pressure gas refrigerant pipe 18 on the outdoor unit side during the all-room cooling operation shown in FIG. 9D, the rotational phase of the rotor 34 is set so that all three refrigerant pipes communicate with each other. To control. The rotation angle at this time is 90 °.

本実施例によれば、ロータ34に形成する冷媒流路33を大きくすることができるので、従来のピストン式電磁弁と比べ、冷媒を流通する時の圧力損失を低減できる。また、従来の三方弁、四方弁のように高低圧の差圧を利用しバルブスライドを移動させ切替える方式では、高低圧を導入するためのキャピラリや、キャピラリを切替えるパイロットバルブが必要であった。しかし、本実施例の構成によれば、高低圧の差圧に関係なく切替えることができ、キャピラリやパイロットバルブも不要なため機構も簡単になる。   According to the present embodiment, since the refrigerant flow path 33 formed in the rotor 34 can be enlarged, the pressure loss when the refrigerant flows can be reduced as compared with the conventional piston type electromagnetic valve. Further, in the conventional method of switching the valve slide by using a high-low pressure differential pressure, such as a three-way valve and a four-way valve, a capillary for introducing high-low pressure and a pilot valve for switching the capillary are required. However, according to the configuration of the present embodiment, switching can be performed regardless of the differential pressure between high and low pressures, and the mechanism is simplified because neither a capillary nor a pilot valve is required.

さらに、第1の実施例と同様に、ロータ34の回転位相を微細に制御して、冷媒流路33と、3本の冷媒配管との重なり部分の面積を調整することで、冷媒を微少に流すこともできる。その結果、従来設けられていたようなバイパス配管を省いて、高圧ガス冷媒枝管の冷媒溜まり込みなどの防止を図ることができる。   Further, similarly to the first embodiment, the rotational phase of the rotor 34 is finely controlled to adjust the area of the overlapping portion of the refrigerant flow path 33 and the three refrigerant pipes, thereby reducing the refrigerant to a small amount. It can also be shed. As a result, it is possible to prevent the accumulation of refrigerant in the high-pressure gas refrigerant branch pipe by omitting the bypass pipe as conventionally provided.

次に、本実施例の冷暖切替えユニット20の第1変形例を、図10を用いて説明する。図10(a)は冷暖切替えユニット20の縦断面を示す図であり、図10(b)、(c)、(d)は、図10(a)におけるb−b線の断面図である。同様に、図10(e)、(f)、(g)はe−e線の断面図、図10(h)、(i)、(j)はh−h線の断面図である。本変形例では、3本の冷媒配管をそれぞれロータ軸方向の異なる位置でシリンダ32に接続し、各冷媒配管に対応させてロータ34の冷媒流路33を形成している。室外機側の高圧ガス冷媒配管、室外機側の低圧ガス冷媒配管に対応する位置では約1/4、室内機側のガス冷媒配管に対応する位置では約1/2欠けるように冷媒流路33が形成されている。また、この欠けた面は高さ方向にそれぞれ繋がっている。   Next, a first modification of the cooling / heating switching unit 20 of this embodiment will be described with reference to FIG. FIG. 10A is a diagram showing a longitudinal section of the cooling / heating switching unit 20, and FIGS. 10B, 10C, and 10D are sectional views taken along the line bb in FIG. 10A. Similarly, FIGS. 10 (e), (f), and (g) are cross-sectional views taken along the line ee, and FIGS. 10 (h), (i), and (j) are cross-sectional views taken along the line hh. In this modification, three refrigerant pipes are connected to the cylinder 32 at different positions in the rotor axial direction, and the refrigerant flow path 33 of the rotor 34 is formed corresponding to each refrigerant pipe. Refrigerant flow path 33 so that about 1/4 is cut off at a position corresponding to the high-pressure gas refrigerant pipe on the outdoor unit side and low-pressure gas refrigerant pipe on the outdoor unit side, and about 1/2 is cut off at a position corresponding to the gas refrigerant pipe on the indoor unit side. Is formed. The chipped surfaces are connected to each other in the height direction.

図10(b)、(e)、(h)に示す室内機が暖房運転時には、室外機側の高圧ガス冷媒配管18と室内機側のガス冷媒配管17がそれぞれの流路流路33で連通し、かつ、室内機側のガス冷媒配管17と室外機側の低圧ガス冷媒配管19は連通しないようにロータ34の回転位相を制御する。これに対して冷房運転時には、図10(c)、(f)、(i)のように、室内機側のガス冷媒配管17と室外機側の低圧ガス冷媒配管19のみが連通するようにロータ34の回転位相を制御する。更に、全室冷房運転時には、図10(d)、(g)、(j)のように3本の冷媒配管がそれぞれの冷媒流路33で連通するようにロータ34の回転位相を制御する。また、ロータ34の回転位相を微細に制御して、冷媒流路33と3本の冷媒配管との重なり部分の面積を調整することで、冷媒流量を任意に制御することができる。   When the indoor unit shown in FIGS. 10B, 10E, and 10H is in a heating operation, the high pressure gas refrigerant pipe 18 on the outdoor unit side and the gas refrigerant pipe 17 on the indoor unit side communicate with each other through the flow path 33. In addition, the rotational phase of the rotor 34 is controlled so that the gas refrigerant pipe 17 on the indoor unit side and the low-pressure gas refrigerant pipe 19 on the outdoor unit side do not communicate with each other. On the other hand, during the cooling operation, as shown in FIGS. 10C, 10 </ b> F, and 10 </ b> I, the rotor is arranged such that only the gas refrigerant pipe 17 on the indoor unit side and the low-pressure gas refrigerant pipe 19 on the outdoor unit side communicate with each other. The rotational phase of 34 is controlled. Further, during the all-room cooling operation, the rotational phase of the rotor 34 is controlled so that the three refrigerant pipes communicate with each other through the respective refrigerant flow paths 33 as shown in FIGS. 10 (d), 10 (g), and 10 (j). Further, the flow rate of the refrigerant can be arbitrarily controlled by finely controlling the rotation phase of the rotor 34 and adjusting the area of the overlapping portion of the refrigerant flow path 33 and the three refrigerant pipes.

このように、本変形例によれば3本の冷媒配管を高さ方向の異なる位置に接続させ、これに対応させてロータ34に冷媒流路33を形成しているので、図9に示した第3実施例と同様の動作が可能である。さらに、第3実施例ではシリンダ32とロータ33の接触面が円周の約1/2程度であるのに対し、本変形例では上部と下部が円周の約3/4まで広がっているため、回転動作が安定する。   In this way, according to this modification, the three refrigerant pipes are connected to different positions in the height direction, and the refrigerant flow path 33 is formed in the rotor 34 corresponding to this, so that it is shown in FIG. The same operation as in the third embodiment is possible. Furthermore, in the third embodiment, the contact surface between the cylinder 32 and the rotor 33 is about ½ of the circumference, whereas in the present modification, the upper and lower parts extend to about 3/4 of the circumference. , Rotation operation is stable.

図11は、第3の実施例の冷暖切替えユニット20における第2変形例を示す図である。図11(a)に示すように、本変形例では、室外機側の高圧ガス冷媒配管18と室外機側の低圧ガス冷媒配管19が、ロータ軸方向の異なる位置でシリンダ32に接続されている。ここで、室内機側のガス冷媒配管17は、室外機側の高圧ガス冷媒配管18の接続位置から室外機側の低圧ガス冷媒配管19の接続位置までの範囲でシリンダ32に接続することができる。   FIG. 11 is a diagram illustrating a second modification of the cooling / heating switching unit 20 according to the third embodiment. As shown in FIG. 11A, in this modification, the high pressure gas refrigerant pipe 18 on the outdoor unit side and the low pressure gas refrigerant pipe 19 on the outdoor unit side are connected to the cylinder 32 at different positions in the rotor axial direction. . Here, the gas refrigerant pipe 17 on the indoor unit side can be connected to the cylinder 32 in a range from the connection position of the high-pressure gas refrigerant pipe 18 on the outdoor unit side to the connection position of the low-pressure gas refrigerant pipe 19 on the outdoor unit side. .

本変形例では、上述した変形例と機能は同じであるが、ロータ34が、上部及び下部で別々に設けられており、それぞれのロータ34に対応させて切替え制御手段35が設けられている。上部及び下部のロータ34は、それぞれ約1/4欠けるように形成されており、この欠けた部分が冷媒流路33となる。図11(b)
、(c)、(d)は図11(a)におけるb−b線の断面であり、図11(e)、(f)、(g)はe−e線の断面である。図11(b)、(e)のように室内機3が暖房運転時には、室外機側の高圧ガス冷媒配管18と室内機側のガス冷媒配管17のみが連通するように、上部と下部のロータ34のそれぞれの回転位相を制御する。室内機が冷房運転時には図11(c)、(f)のように、全室冷房運転時には、図11(d)、(g)のように上部及び下部のロータ34の回転位相をそれぞれ制御すればよい。また、各ロータ34の回転位相を微細に制御することによって、必要に応じて冷媒に流量を任意に制御することもできる。
In this modified example, the function is the same as that of the modified example described above, but the rotor 34 is provided separately in the upper part and the lower part, and the switching control means 35 is provided corresponding to each rotor 34. Each of the upper and lower rotors 34 is formed so as to lack about ¼, and the lacked portion serves as the refrigerant flow path 33. FIG. 11 (b)
, (C) and (d) are cross sections taken along the line bb in FIG. 11 (a), and FIGS. 11 (e), (f) and (g) are cross sections taken along the line ee. When the indoor unit 3 is in the heating operation as shown in FIGS. 11B and 11E, the upper and lower rotors are connected so that only the high-pressure gas refrigerant pipe 18 on the outdoor unit side and the gas refrigerant pipe 17 on the indoor unit side communicate with each other. Each of the rotational phases of 34 is controlled. When the indoor unit is in cooling operation, the rotational phases of the upper and lower rotors 34 are controlled as shown in FIGS. 11 (d) and 11 (g), respectively, as shown in FIGS. 11 (c) and 11 (f). That's fine. Further, the flow rate of the refrigerant can be arbitrarily controlled as necessary by finely controlling the rotation phase of each rotor 34.

このように、本変形例によれば、上部及び下部のロータ34を約1/4しか切り欠いていないので、上述した第3実施例、第1変形例に比べてロータ34の回転動作が安定する。さらに、強度を保つことができ、加工も容易である。   As described above, according to this modification, the upper and lower rotors 34 are cut out by only about ¼, so that the rotational operation of the rotor 34 is more stable than the third embodiment and the first modification described above. To do. Furthermore, strength can be maintained and processing is easy.

第1実施例の空気調和機の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the air conditioner of 1st Example. 第1実施例の第1の切替え弁の構成を示す図である。It is a figure which shows the structure of the 1st switching valve of 1st Example. 第1実施例の切替え制御手段の構成を示す図である。It is a figure which shows the structure of the switching control means of 1st Example. 第1実施例のロータの回転位相制御を示す図である。It is a figure which shows the rotational phase control of the rotor of 1st Example. 第1実施例のロータの回転位相制御を示す図である。It is a figure which shows the rotational phase control of the rotor of 1st Example. 第1実施例のロータに形成する冷媒流路の変形例を示す図である。It is a figure which shows the modification of the refrigerant | coolant flow path formed in the rotor of 1st Example. 第2実施例の冷暖切替えユニットの構成を示す図である。It is a figure which shows the structure of the cooling / heating switching unit of 2nd Example. 第2実施例のロータに形成する冷媒流路の変形例を示す図である。It is a figure which shows the modification of the refrigerant | coolant flow path formed in the rotor of 2nd Example. 第3実施例の冷暖切替えユニットの構成を示す図である。It is a figure which shows the structure of the cooling / heating switching unit of 3rd Example. 第3実施例の冷暖切替えユニットの第1変形例を示す図である。It is a figure which shows the 1st modification of the cooling / heating switching unit of 3rd Example. 第3実施例の冷暖切替えユニットの第2変形例を示す図である。It is a figure which shows the 2nd modification of the cooling / heating switching unit of 3rd Example.

符号の説明Explanation of symbols

1 空気調和機
2 室外機
3 室内機
5 圧縮機
7 室外熱交換器
14 室内熱交換器
15 室内膨張弁
17 室内機側のガス冷媒配管
18 室外機側の高圧ガス冷媒配管
19 室外機側の低圧ガス冷媒配管
20 冷暖切替えユニット
24 第1の切替え弁
25 第2の切替え弁
31 接続口
32 シリンダ
33 冷媒流路
34 ロータ
35 切替え制御手段
45 第1の貫通穴
46 第2の貫通穴
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 5 Compressor 7 Outdoor heat exchanger 14 Indoor heat exchanger 15 Indoor expansion valve 17 Gas refrigerant pipe 18 on the indoor unit side High-pressure gas refrigerant pipe 19 on the outdoor unit side Low pressure on the outdoor unit side Gas refrigerant pipe 20 Cooling / heating switching unit 24 First switching valve 25 Second switching valve 31 Connection port 32 Cylinder 33 Refrigerant flow path 34 Rotor 35 Switching control means 45 First through hole 46 Second through hole

Claims (3)

冷媒を循環する配管に、圧縮機及び室外熱交換器を有する室外機と、室内熱交換器及び室内膨張弁を有する複数台の室内機とを接続して冷凍サイクルを形成してなり、前記複数台の室内機側の各ガス冷媒配管と、前記室外機側の低圧ガス冷媒配管及び高圧ガス冷媒配管の少なくとも一方とを接続して前記各室内機の冷暖房運転を切替える冷暖切替えユニットを備えた空気調和機において、
前記各冷暖切替えユニットは、前記ガス冷媒配管、前記低圧ガス冷媒配管及び前記高圧ガス冷媒配管がそれぞれ接続される接続口が形成された円筒型のシリンダと、該円筒型のシリンダに嵌装され前記ガス冷媒配管、前記低圧ガス冷媒配管及び前記高圧ガス冷媒配管を互いに連通する冷媒流路が形成された円筒型のロータと、該円筒型のロータの回転位相を制御して冷暖房運転を切替える切替え制御手段とを備えてなることを特徴とする空気調和機。
An refrigeration cycle is formed by connecting an outdoor unit having a compressor and an outdoor heat exchanger and a plurality of indoor units having an indoor heat exchanger and an indoor expansion valve to a pipe circulating the refrigerant. pedestal and the gas refrigerant pipe of the indoor unit side, with a heating and cooling switching unit and at least one connection to the outdoor unit side of the low-pressure gas refrigerant pipe and the high pressure gas refrigerant pipe switching the cooling and heating operations of the indoor units In air conditioner,
Wherein each heating and cooling switching unit, pre-outs scan refrigerant pipe, a front SL low-pressure gas refrigerant pipe and the high-pressure gas refrigerant pipe is cylindrical connection port to be connected is formed the cylinder, a cylindrical type cylinder Kiga scan refrigerant pipe before being fitted, before Symbol control and cylindrical rotor coolant flow path is formed to communicate with each other a low-pressure gas refrigerant pipe and the high-pressure gas refrigerant pipe, the rotational phase of the cylinder type rotor And an air conditioner characterized by comprising switching control means for switching between heating and cooling operations.
前記冷暖切替えユニットは、前記ガス冷媒配管と前記低圧ガス冷媒配管と前記高圧ガス冷媒配管とが、それぞれ前記ロータの軸方向の異なる位置で前記シリンダに接続され、前記各冷媒配管に対応させて前記ロータの前記冷媒流路が形成されてなることを特徴とする請求項1に記載の空気調和機。 In the cooling / heating switching unit, the gas refrigerant pipe, the low-pressure gas refrigerant pipe, and the high-pressure gas refrigerant pipe are connected to the cylinder at different positions in the axial direction of the rotor, and correspond to the refrigerant pipes. The air conditioner according to claim 1, wherein the refrigerant flow path of the rotor is formed . 前記切替え制御手段は、前記ロータの回転位相を制御することにより、前記冷媒流路と前記各配管とが重なり連通する流路の面積を調整することを特徴とする請求項1又は2に記載の空気調和機。 It said switching control means controls the rotational phase of the rotor, according to claim 1 or 2, characterized in that adjusting the area of the flow path wherein the respective pipes and the refrigerant passage is communicated with the overlap Air conditioner.
JP2006147020A 2006-05-26 2006-05-26 Air conditioner Active JP4842014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147020A JP4842014B2 (en) 2006-05-26 2006-05-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147020A JP4842014B2 (en) 2006-05-26 2006-05-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007315706A JP2007315706A (en) 2007-12-06
JP4842014B2 true JP4842014B2 (en) 2011-12-21

Family

ID=38849721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147020A Active JP4842014B2 (en) 2006-05-26 2006-05-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP4842014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591732A (en) * 2013-10-23 2014-02-19 Tcl空调器(中山)有限公司 Air-conditioning system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008148A1 (en) * 2010-07-13 2012-01-19 ダイキン工業株式会社 Refrigerant flow path switching unit
JP6029382B2 (en) * 2012-08-27 2016-11-24 三菱重工業株式会社 Air conditioner
CN108775728B (en) * 2018-07-20 2023-08-04 珠海格力电器股份有限公司 Multi-split water chiller-heater unit
JP2020201009A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Refrigerant cycle system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217574A (en) * 1985-07-15 1987-01-26 ミサワホ−ム株式会社 Composite type heat pump device
JPS62153666A (en) * 1985-12-25 1987-07-08 ミサワホ−ム株式会社 Composite type heat pump device
JP2698118B2 (en) * 1988-09-30 1998-01-19 三洋電機株式会社 Air conditioner
JPH06249542A (en) * 1993-02-23 1994-09-06 Mitsubishi Heavy Ind Ltd Air conditioner
JPH09310931A (en) * 1996-05-23 1997-12-02 Mitsubishi Heavy Ind Ltd Air conditioner
JP4029262B2 (en) * 2001-10-18 2008-01-09 株式会社日立製作所 Air conditioner
JP4205901B2 (en) * 2002-06-25 2009-01-07 株式会社不二工機 Electric switching valve
JP2005069431A (en) * 2003-08-27 2005-03-17 Pacific Ind Co Ltd Control valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591732A (en) * 2013-10-23 2014-02-19 Tcl空调器(中山)有限公司 Air-conditioning system
CN103591732B (en) * 2013-10-23 2016-08-17 Tcl空调器(中山)有限公司 Air conditioning system

Also Published As

Publication number Publication date
JP2007315706A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4309207B2 (en) Multi-air conditioner with simultaneous heating and heating
KR100757442B1 (en) Air conditioner
JP5866000B2 (en) Air conditioning and hot water supply system
EP2339269B1 (en) Air conditioner
JP2008513725A (en) Heat pump with reheat and economizer functions
JP4842014B2 (en) Air conditioner
JP4553761B2 (en) Air conditioner
JP2020165585A (en) Unit for refrigerating device, heat source unit, and refrigerating device
CN109937332B (en) Air conditioner
JP5104002B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP4303032B2 (en) Air conditioner
JP2014126350A (en) Air conditioner
JP2009210139A (en) Multiple-type air conditioner
JP2008116073A (en) Air conditioning apparatus
KR100468474B1 (en) Cooling and heating system
JP2010048506A (en) Multi-air conditioner
JP5377041B2 (en) Refrigeration cycle equipment
JP2006317063A (en) Air conditioner
WO2021065678A1 (en) Air conditioner
JP2006170541A (en) Air conditioner
JP5217710B2 (en) Air conditioner
JP2010127504A (en) Air conditioning device
KR20040094101A (en) By-pass device with variable flow rate of multi air-conditioner system
JP5593853B2 (en) Air conditioning and hot water supply system
WO2023139713A1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Ref document number: 4842014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250