WO2023139713A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023139713A1
WO2023139713A1 PCT/JP2022/001911 JP2022001911W WO2023139713A1 WO 2023139713 A1 WO2023139713 A1 WO 2023139713A1 JP 2022001911 W JP2022001911 W JP 2022001911W WO 2023139713 A1 WO2023139713 A1 WO 2023139713A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
point
pipe
outdoor
Prior art date
Application number
PCT/JP2022/001911
Other languages
French (fr)
Japanese (ja)
Inventor
勇輝 水野
傑 鳩村
皓亮 宮脇
淳 西尾
祐治 本村
博紀 鷲山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/001911 priority Critical patent/WO2023139713A1/en
Priority to JP2023574966A priority patent/JPWO2023139713A1/ja
Publication of WO2023139713A1 publication Critical patent/WO2023139713A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present disclosure relates to a two-pipe air conditioner in which the outdoor unit has a heat exchanger between refrigerants.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a two-pipe air conditioner equipped with an outdoor unit having a heat exchanger between refrigerants that can suppress the increase in size of the outdoor unit housing and that allows counterflow between refrigerants in both cooling and heating operations.
  • An air conditioner includes an outdoor unit that includes a compressor, a first switching valve, a first outdoor heat exchanger, and a first outdoor expansion valve; an indoor unit that cools or heats a room; a first pipe through which refrigerant flowing out of the outdoor unit and flowing into the indoor unit flows; and a second pipe through which the refrigerant flowing out of the indoor unit and flowing into the outdoor unit flows; and a rectifying circuit that determines the flow direction of the refrigerant that has flowed into the outdoor unit through the second pipe; a heat exchanger between refrigerants that cools the refrigerant flowing into the suction side of the compressor with the refrigerant branched from the refrigerant flowing in the rectifying circuit; a first pipe that connects the first outdoor heat exchanger and the first pipe; a second pipe that connects the second pipe and the first switching valve; A third pipe connecting the first point and the third point, and a fourth pipe connecting the second point and the fourth point, where the first point and the second point are arranged
  • the heat exchanger between refrigerants exchanges heat between the refrigerant flowing through the pipe that branches from any point between the third valve and the fifth valve, between the fourth valve and the sixth valve, and between the sixth point and the fifth point and that is connected between the first switching valve and the suction side of the compressor, and the refrigerant flowing through the fifth pipe.
  • the six valves of the first valve, the second valve, the third valve, the fourth valve, the fifth valve, and the sixth valve can counterflow the refrigerant in the heat exchanger between mediums. Therefore, it is possible to suppress an increase in the size of the outdoor unit housing.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1.
  • FIG. 2 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C in the air conditioner according to Embodiment 1.
  • FIG. 4 is a refrigerant circuit diagram showing the flow of refrigerant in operating state D in the air conditioner according to Embodiment 1.
  • FIG. 4 is a refrigerant circuit diagram and a water circuit diagram of an air conditioner according to Modification 1 of Embodiment 1.
  • FIG. 4 is a refrigerant circuit diagram and a water circuit diagram in an operating state A in the air conditioner according to Modification 1 of Embodiment 1;
  • FIG. 4 is a refrigerant circuit diagram and a water circuit diagram in an operating state B in the air conditioner according to Modification 1 of Embodiment 1;
  • FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state C in the air conditioner according to Modification 1 of Embodiment 1;
  • FIG. 8 is a refrigerant circuit diagram and a water circuit diagram in an operating state D in the air conditioner according to Modification 1 of Embodiment 1; 2 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2.
  • FIG. 8 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner according to Embodiment 2.
  • FIG. 8 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner according to Embodiment 2.
  • FIG. 8 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C in the air conditioner according to Embodiment 2.
  • FIG. 10 is a refrigerant circuit diagram showing the flow of refrigerant in an operating state D in the air conditioner according to Embodiment 2;
  • FIG. 8 is a refrigerant circuit diagram and a water circuit diagram of an air conditioner according to Modification 1 of Embodiment 2;
  • FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state A in the air conditioner according to Modification 1 of Embodiment 2;
  • FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state B in the air conditioner according to Modification 1 of Embodiment 2;
  • FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state C in the air conditioner according to Modification 1 of Embodiment 2;
  • FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state D in the air conditioner according to Modification 1 of Embodiment 2;
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner 100 according to Embodiment 1.
  • the air conditioner 100 has an outdoor unit 101, a repeater 102, a first indoor unit 103a, a second indoor unit 103b and a third indoor unit 103c.
  • the outdoor unit 101 and the repeater 102 are connected by two pipes, a forward pipe t10 and a return pipe t11.
  • Refrigerant flowing out from the outdoor unit 101 and flowing into the repeater 102 flows out to the forward pipe t10.
  • the refrigerant that has flowed into the repeater 102 flows out of the repeater 102 and flows through the first indoor unit 101a, the second indoor unit 103b, and the third indoor unit 103c depending on the operating state.
  • Refrigerant flowing out of the first indoor unit 101a, the second indoor unit 103b, and the third indoor unit 103c and flowing into the outdoor unit 101 via the relay unit 102 flows through the return pipe t11.
  • the repeater 102 and the first indoor unit 103a are connected by two pipes t12a and t13a.
  • the repeater 102 and the second indoor unit 103b are connected by two pipes t12b and t13b.
  • the repeater 102 and the third indoor unit 103c are connected by two pipes t12c and t13c.
  • the outdoor unit 101 includes a compressor 1, a first outdoor four-way valve 2a, a first outdoor heat exchanger 3a, a subcooling heat exchanger 4, a first outdoor expansion valve 5a, a second outdoor expansion valve 5b, a first check valve 6a, a second check valve 6b, a third check valve 6c, a fourth check valve 6d and a fifth check valve 6e.
  • the "check valve” is a valve that has a valve that closes due to the pressure difference before and after the valve, and that allows flow only from the high pressure side to the low pressure side.
  • the compressor 1 compresses and discharges the refrigerant.
  • the first outdoor four-way valve 2a switches the flow direction of the refrigerant discharged from the compressor 1 and outputs the refrigerant, thereby switching between cooling and heating.
  • the first outdoor heat exchanger 3a exchanges heat between the refrigerant output from the first outdoor four-way valve 2a and the outside air.
  • the first outdoor four-way valve 2a is an example of a refrigerant channel switching device that switches the flow direction of the refrigerant.
  • the refrigerant flow switching device may be composed of a combination of two-way valves or three-way valves. Further, when the air conditioner 100 is exclusively for cooling or only for heating and there is no need to switch the flow direction of the refrigerant, the refrigerant channel switching device may not be provided.
  • the first check valve 6a, the second check valve 6b, the third check valve 6c and the fourth check valve 6d constitute a rectifying circuit r.
  • the rectifier circuit r determines the flow direction of the refrigerant flowing out from the outdoor unit 101 to the forward pipe t10 and the flow direction of the refrigerant flowing into the outdoor unit 101 through the return pipe t11.
  • the outdoor unit 101 has a first pipe t1, a second pipe t2, a third pipe t3, a fourth pipe t4 and a fifth pipe t5.
  • the first pipe t1 connects the first outdoor heat exchanger 3a and the forward pipe t10.
  • the second pipe t2 connects the return pipe t11 and the first outdoor four-way valve 2a.
  • the third point p3 and the fourth point p4 from the side closer to the return pipe t11.
  • the third pipe t3 connects the first point p1 and the third point p3.
  • the fourth pipe t4 connects the second point p2 and the fourth point p4.
  • the fifth pipe t5 connects the fifth point p5 and the sixth point p6, and the refrigerant flows from the sixth point p6 to the fifth point p5.
  • a sixth pipe t6 branches off from the fifth pipe t5 and connects between the first outdoor four-way valve 2a and the suction side of the compressor 1 .
  • the sixth pipe t6 may branch from the third pipe t3 between the third check valve 6c and the fifth check valve 6e and lead between the first outdoor four-way valve 2a and the suction side of the compressor 1.
  • the sixth pipe t6 may be branched from the first pipe t1 or the third pipe t3 between the fourth check valve 6d and the first outdoor expansion valve 5a and may be led between the first outdoor four-way valve 2a and the suction side of the compressor 1.
  • the supercooling heat exchanger 4 cools the refrigerant flowing into the suction side of the compressor 1 with the refrigerant diverted from the refrigerant flowing to the rectifying circuit r.
  • the subcooling heat exchanger 4 branches from between the sixth point p6 and the fifth point p5 and flows in the sixth pipe t6 that is connected between the first outdoor four-way valve 2a and the suction side of the compressor 1. Heat exchange is performed between the refrigerant flowing in the fifth pipe t5 and the refrigerant flowing from the sixth point p6 to the fifth point p5.
  • the subcooling heat exchanger 4 may exchange heat between the refrigerant flowing in a pipe (not shown) branched from between the third check valve 6c and the fifth check valve 6e and connected between the first outdoor four-way valve 2a and the suction side of the compressor 1, and the refrigerant flowing from the sixth point p6 to the fifth point p5 in the fifth pipe t5.
  • the supercooling heat exchanger 4 may exchange heat between the refrigerant flowing in a pipe (not shown) branched from between the fourth check valve 6d and the first outdoor expansion valve 5a and connected between the first outdoor four-way valve 2a and the suction side of the compressor 1, and the refrigerant flowing from the sixth point p6 to the fifth point p5 in the fifth pipe t5.
  • the fifth check valve 6e is added to the rectifying circuit r, and the first outdoor expansion valve 5a is used to counterflow the refrigerant flowing through the supercooling heat exchanger 4 in cooling and heating.
  • the first check valve 6a of the rectifier circuit r is provided in the second pipe t2, allows the refrigerant in the second pipe t2 to flow from the third point p3 to the fourth point p4, and prevents it from flowing in the opposite direction.
  • the second check valve 6b is provided in the fourth pipe t4, allows the refrigerant in the fourth pipe t4 to flow from the fourth point p4 to the second point p2, and prevents the refrigerant from flowing in the opposite direction.
  • the third check valve 6c is provided in the third pipe t3, allows the refrigerant in the third pipe t3 to flow from the third point p3 to the first point p1, and prevents the refrigerant from flowing in the opposite direction.
  • the fourth check valve 6d is provided in the first pipe t1, allows the refrigerant in the first pipe t1 to flow from the first point p1 to the second point p2, and prevents the refrigerant from flowing in the opposite direction.
  • the fifth check valve 6e is provided in the third pipe t3 and allows the refrigerant in the third pipe t3 to flow from the first point p1 to the sixth point p6 between the first point p1 and the third check valve 6c, and prevents it from flowing in the opposite direction.
  • the first outdoor expansion valve 5a adjusts the pressure of the refrigerant flowing through the first pipe t1.
  • the first outdoor expansion valve 5a is provided in the first pipe t1, and the refrigerant in the first pipe t1 can be allowed to flow from the fifth point p5 between the first point p1 and the fourth check valve 6d to the first point p1, and can be prevented from flowing in the opposite direction. It is possible to allow the flow from the point p5 to the first point p1 and prevent the reverse flow.
  • the first outdoor expansion valve 5a of the present embodiment allows the flow from the fifth point p5 between the first point p1 and the fourth check valve 6d to the first point p1 due to the pressure difference across the first outdoor expansion valve 5a in a specific operating state (operating state B described later), and prevents the reverse flow.
  • the first outdoor expansion valve 5a reduces the pressure of the refrigerant flowing from the fifth point p5 to the first point p1 during heating operation, and is closed so that the refrigerant does not flow during cooling operation.
  • the second outdoor expansion valve 5b is provided in the sixth pipe t6, allowing the refrigerant in the sixth pipe t6 to flow from between the sixth point p6 and the fifth point p5 to the seventh point p7, and can prevent the refrigerant from flowing in the opposite direction.
  • the second outdoor expansion valve 5b adjusts the pressure of the refrigerant flowing through the sixth pipe t6.
  • the repeater 102 includes a first on-off valve 7a, a second on-off valve 7b, a first three-way valve 8a, a second three-way valve 8b and a third three-way valve 8c.
  • the first on-off valve 7a, the second on-off valve 7b, the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c determine the flow path through which the refrigerant flowing through the forward pipe t10 flows into the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c, depending on the operating state.
  • first on-off valve 7a, the second on-off valve 7b, the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c determine the flow path of the refrigerant flowing out of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c until it flows into the return pipe t11.
  • the first three-way valve 8a has a first port connected to the first indoor heat exchanger 9a, a second port connected to the forward pipe t10 and the first on-off valve 7a, and a third port connected to the return pipe t11 and the second on-off valve 7b.
  • the second three-way valve 8b has a first port connected to the second indoor heat exchanger 9b, a second port connected to the forward pipe t10 and the first on-off valve 7a, and a third port connected to the return pipe t11 and the second on-off valve 7b.
  • the third three-way valve 8c has a first port connected to the third indoor heat exchanger 9c, a second port connected to the forward pipe t10 and the first on-off valve 7a, and a third port connected to the return pipe t11 and the second on-off valve 7b.
  • the forward pipe t10 is connected to a pipe that connects to the first on-off valve 7a, the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
  • the return pipe t11 is connected to a pipe connected to the second on-off valve 7b, the first three-way valve 8a, the second three-way valve 8b and the third three-way valve 8c.
  • the first indoor unit 103a has a first indoor heat exchanger 9a and a first indoor expansion valve 10a connected to the first indoor heat exchanger 9a.
  • the second indoor unit 103b has a second indoor heat exchanger 9b and a second indoor expansion valve 10b connected to the second indoor heat exchanger 9b.
  • the third indoor unit 103c has a third indoor heat exchanger 9c and a third indoor expansion valve 10c connected to the third indoor heat exchanger 9c.
  • the first indoor heat exchanger 9a is connected to the first port of the first three-way valve 8a by a pipe t13a.
  • the first indoor expansion valve 10a is connected to the first on-off valve 7a and the second on-off valve 7b of the repeater 102 by a pipe t12a.
  • the second indoor heat exchanger 9b is connected to the first port of the second three-way valve 8b by a pipe t13b.
  • the second indoor expansion valve 10b is connected to the first on-off valve 7a and the second on-off valve 7b of the repeater 102 by pipes t12a and t12b.
  • the third indoor heat exchanger 9c is connected to the first port of the third three-way valve 8c by a pipe t13c.
  • the third indoor expansion valve 10c is connected to the first on-off valve 7a and the second on-off valve 7b of the repeater 102 by pipes t12a and t12c.
  • Control device 200 controls the compressor 1 of the outdoor unit 101, the first outdoor four-way valve 2a, the first outdoor expansion valve 5a, the second outdoor expansion valve 5b, the first check valve 6a, the second check valve 6b, the third check valve 6c, the fourth check valve 6d and the fifth check valve 6e according to the operating state of the air conditioner 100.
  • the control device 200 controls the first on-off valve 7a, the second on-off valve 7b, the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c of the repeater 102 according to the operating state of the air conditioner 100.
  • the control device 200 controls the first indoor expansion valve 10a of the first indoor unit 103a, the second indoor expansion valve 10b of the second indoor unit 103b, and the third indoor expansion valve 10c of the third indoor unit 103c according to the operating state of the air conditioner 100.
  • operating state A is the operating state when all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing cooling operation.
  • operating state B some of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c perform cooling operation, and some or all of the others perform heating operation.
  • operating state B is an operating state in which the cooling load of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is greater than the heating load of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c.
  • operating state C some of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are in cooling operation, and the other part or all are in heating operation.
  • operating state C is an operating state in which the heating load of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is greater than the cooling load of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c.
  • Operating state D is an operating state when all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c perform the heating operation.
  • the control device 200 switches the first outdoor four-way valve 2a to the cooling side, closes the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, opens the first on-off valve 7a, and closes the second on-off valve 7b.
  • the control device 200 opens the first port, closes the second port, and opens the third port of the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
  • the control device 200 switches the first outdoor four-way valve 2a to the cooling side, opens the first outdoor expansion valve 5a, closes the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b.
  • the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a of the first indoor unit 103a that is performing the heating operation.
  • the first port of the second three-way valve 8b of the second indoor unit 103b that is performing cooling operation is opened, the second port is closed, and the third port is opened.
  • the first port, the second port and the third port of the third three-way valve 8c of the third indoor unit 103c, which is in cooling operation, are opened.
  • the control device 200 switches the first outdoor four-way valve 2a to the heating side, opens the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and opens the second on-off valve 7b.
  • the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a of the first indoor unit 103a that is performing the heating operation.
  • the first port, the second port, and the third port of the second three-way valve 8b of the second indoor unit 103b that is performing the heating operation are opened.
  • the first port, the second port and the third port of the third three-way valve 8c of the third indoor unit 103c, which is in cooling operation are opened.
  • the control device 200 switches the first outdoor four-way valve 2a to the heating side, opens the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b.
  • the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
  • the processing circuit of the control device 200 is dedicated hardware
  • the processing circuit is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • Each functional unit implemented by the processing circuit may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
  • the processing circuit of the control device 200 is a CPU
  • each function executed by the processing circuit is implemented by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the storage unit.
  • the CPU implements each function of the processing circuit by reading and executing a program stored in the storage unit.
  • a part of the functions of the processing circuit may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
  • FIG. 2 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner 100 according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner 100 according to Embodiment 1.
  • FIG. 4 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C in the air conditioner 100 according to Embodiment 1.
  • FIG. FIG. 5 is a refrigerant circuit diagram showing the flow of refrigerant in operating state D in the air conditioner 100 according to Embodiment 1.
  • the arrows indicate the direction of coolant flow.
  • FIG. 2 shows a state in which all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing cooling operation.
  • the main circuit and three bypass circuits are formed.
  • the refrigerant flows through the compressor 1, the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first on-off valve 7a, the first indoor expansion valve 10a, the first indoor heat exchanger 9a, the first three-way valve 8a, the first check valve 6a, the first outdoor four-way valve 2a, and the compressor 1 again.
  • the refrigerant branched from between the subcooling heat exchanger 4 of the main circuit and the fourth check valve 6d is a pipe t6 between the first outdoor four-way valve 2a and the suction side of the compressor 1.
  • the refrigerant flowing through the pipe t6 flows through the second outdoor expansion valve 5b and the supercooling heat exchanger 4 in that order, and joins between the first outdoor four-way valve 2a of the main circuit and the suction side of the compressor 1.
  • the refrigerant branched from between the first on-off valve 7a and the first indoor expansion valve 10a of the main circuit flows in the order of the second indoor expansion valve 10b, the second indoor heat exchanger 9b, and the second three-way valve 8b, and joins between the first three-way valve 8a and the first check valve 6a of the main circuit.
  • the refrigerant branched from between the first on-off valve 7a and the first indoor expansion valve 10a of the main circuit flows in the order of the third indoor expansion valve 10c, the third indoor heat exchanger 9c, and the third three-way valve 8c, and joins between the first three-way valve 8a and the first check valve 6a of the main circuit.
  • FIG. 3 shows a state in which the first indoor unit 103a is in heating operation, and the second indoor unit 103b and third indoor unit 103c are in cooling operation.
  • a main circuit and two bypass circuits are formed.
  • the compressor 1 the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the fifth check valve 6e, the supercooling heat exchanger 4, the fourth check valve 6d, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the second indoor expansion valve 10b, the second indoor heat exchanger 9b, the second three-way valve 8b, the first check valve 6a, the first outdoor Refrigerant flows through the four-way valve 2a and then through the compressor 1 again.
  • the refrigerant branched from between the first outdoor heat exchanger 3a and the fifth check valve 6e of the main circuit flows into the first outdoor expansion valve 5a and joins between the subcooling heat exchanger 4 of the main circuit and the fourth check valve 6d.
  • the refrigerant branched from between the first indoor expansion valve 10a and the second indoor expansion valve 10b of the main circuit flows through the third indoor expansion valve 10c, the third indoor heat exchanger 9c, the pipe t13c, and the third three-way valve 8c in that order, and joins the refrigerant from the second three-way valve 8b of the main circuit.
  • FIG. 4 shows a state in which the first indoor unit 103a and the second indoor unit 103b are in heating operation, and the third indoor unit 103c is in cooling operation.
  • a main circuit and two bypass circuits are formed.
  • the compressor 1 the first outdoor four-way valve 2a, the second check valve 6b, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the third indoor expansion valve 10c, the third indoor heat exchanger 9c, the third three-way valve 8c, the third check valve 6c, the subcooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, the first outdoor four-way valve 2a,
  • the refrigerant flows in order of the compressor 1 again.
  • the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the second three-way valve 8b, the second indoor heat exchanger 9b, and the second indoor expansion valve 10b in that order, and joins between the first indoor expansion valve 10a and the third indoor expansion valve 10c of the main circuit.
  • the refrigerant branched from between the subcooling heat exchanger 4 of the main circuit and the first outdoor expansion valve 5a flows to the second outdoor expansion valve 5b, and joins between the first outdoor four-way valve 2a of the main circuit and the compressor 1.
  • FIG. 5 shows a state in which all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing heating operation.
  • the main circuit and three bypass circuits are formed.
  • the refrigerant flows through the compressor 1, the first outdoor four-way valve 2a, the second check valve 6b, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the second on-off valve 7b, the third check valve 6c, the subcooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, the first outdoor four-way valve 2a, and the compressor 1 again.
  • the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the second three-way valve 8b, the second indoor heat exchanger 9b, and the second indoor expansion valve 10b in that order, and joins between the first indoor expansion valve 10a and the second on-off valve 7b of the main circuit.
  • the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows in the order of the third three-way valve 8c, the third indoor heat exchanger 9c, and the third indoor expansion valve 10c, and joins between the first indoor expansion valve 10a and the second on-off valve 7b of the main circuit.
  • the refrigerant branched from between the supercooling heat exchanger 4 and the first outdoor expansion valve 5a of the main circuit flows to the second outdoor expansion valve 5b and the supercooling heat exchanger 4, and joins between the first outdoor four-way valve 2a and the compressor 1 of the main circuit.
  • Modification 1 of Embodiment 1 two types of heat media, refrigerant and water, form circuits independently without being mixed, and only heat is exchanged through the first refrigerant-water heat exchanger 12a and the second refrigerant-water heat exchanger 12b.
  • first refrigerant-water heat exchanger 12a and the second refrigerant-water heat exchanger 12b for example, plate heat exchangers, shell-and-tube heat exchangers, or the like are used.
  • FIG. 6 is a refrigerant circuit diagram and a water circuit diagram of the air conditioner 100 according to Modification 1 of Embodiment 1.
  • FIG. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • Modification 1 the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c in the air conditioner 100 of the first embodiment are different.
  • the repeater 102 includes a first on-off valve 7a, a second on-off valve 7b, a first refrigerant-water heat exchanger 12a, a second refrigerant-water heat exchanger 12b, a first relay four-way valve 13a, a second relay four-way valve 13b, a first pump 14a, a second pump 14b, a first mixed flow three-way valve 15a, a second mixed flow three-way valve 15b, a third mixed flow three-way valve 15c, and a first branch flow three-way valve 1. 6a, a second three-way diverter valve 16b and a third three-way diverter valve 16c.
  • the first on-off valve 7a is connected to the forward pipe t10.
  • the first on-off valve 7a is connected to the second on-off valve 7b, the first relay expansion valve 11a and the second relay expansion valve 11b.
  • the second on-off valve 7b is connected to the return pipe t11.
  • the second on-off valve 7b is connected to the first on-off valve 7a, the first relay expansion valve 11a and the second relay expansion valve 11b.
  • the first relay expansion valve 11a is connected to the first on-off valve 7a, the second on-off valve 7b and the second relay expansion valve 11b.
  • the first relay expansion valve 11a adjusts the pressure of the refrigerant flowing through the first refrigerant-water heat exchanger 12a.
  • the second relay expansion valve 11b is connected to the first on-off valve 7a, the second on-off valve 7b and the first relay expansion valve 11a.
  • the second relay expansion valve 11b adjusts the pressure of the refrigerant flowing through the second refrigerant-water heat exchanger 12b.
  • the first refrigerant-water heat exchanger 12a is connected to the first relay expansion valve 11a and the first relay four-way valve 13a, and exchanges heat between the refrigerant flowing out from the forward pipe t10 of the outdoor unit 101 and water as a heat medium.
  • the first refrigerant-water heat exchanger 12b is connected to the second relay expansion valve 11b and the second relay four-way valve 13b, and exchanges heat between the refrigerant flowing out from the forward pipe t10 of the outdoor unit 101 and water as a heat medium.
  • the first relay four-way valve 13a is connected to the forward pipe t10, the first refrigerant-water heat exchanger 12a and the return pipe t11, and switches the flow of refrigerant flowing out of the forward pipe t10.
  • the second relay four-way valve 13b is connected to the forward pipe t10, the second refrigerant-water heat exchanger 12b, and the return pipe t11, and switches the flow of refrigerant flowing out of the forward pipe t10.
  • the discharge part of the first pump 14a is connected to the first refrigerant-water heat exchanger 12a.
  • the first pump 14a applies pressure to the heat medium flowing through the first refrigerant-water heat exchanger 12a.
  • the discharge of the second pump 14b is connected to the second refrigerant-water heat exchanger 12b.
  • the second pump 14b applies pressure to the heat medium flowing through the second refrigerant-water heat exchanger 12b.
  • the first mixed flow three-way valve 15a is connected between the first refrigerant-water heat exchanger 12a, the second refrigerant-water heat exchanger 12b, and the first indoor heat exchanger 9a.
  • the second mixed flow three-way valve 15b is connected between the first refrigerant-water heat exchanger 12a, the second refrigerant-water heat exchanger 12b, and the second indoor heat exchanger 9b.
  • the third mixed flow three-way valve 15c is connected between the first refrigerant-water heat exchanger 12a, the second refrigerant-water heat exchanger 12b and the third indoor heat exchanger 9c.
  • the first diverting three-way valve 16a is connected between the second pump 14b, the first indoor heat exchanger 9a, and the first pump 14a.
  • a second diverting three-way valve 16b is connected between the second pump 14b, the second indoor heat exchanger 9b and the first pump 14a.
  • a third diverting three-way valve 16c is connected between the second pump 14b, the third indoor heat exchanger 9c and the first pump 14a.
  • the first mixed flow three-way valve 15a, the second mixed flow three-way valve 15b and the third mixed flow three-way valve 15c are connected to each other.
  • the first flow dividing three-way valve 16a, the second flow dividing three-way valve 16b and the third flow dividing three-way valve 16c are connected to each other.
  • the first mixed flow three-way valve 15a, the second mixed flow three-way valve 15b, the third mixed flow three-way valve 15c, the first divided flow three-way valve 16a, the second divided flow three-way valve 16b, and the third divided flow three-way valve 16c are switched according to the operating state of the air conditioner 100.
  • the first indoor unit 103a includes a first indoor heat exchanger 9a connected to the first mixed three-way valve 15a and the first split three-way valve 16a.
  • the second indoor unit 103b includes a second indoor heat exchanger 9b connected to the second mixed three-way valve 15b and the second split three-way valve 16b.
  • the third indoor unit 103c includes a third indoor heat exchanger 9c connected to the third mixed three-way valve 15c and the third split three-way valve 16c.
  • Control device 200 In the case of "operating state A”, the control device 200 "opens” the first on-off valve 7a and “closes” the second on-off valve 7b. In the case of “operating state B”, the control device 200 "closes” the first on-off valve 7a and “closes” the second on-off valve 7b. In the case of “operating state C”, the control device 200 "closes” the first on-off valve 7a and “closes” the second on-off valve 7b. In the case of “operating state D”, the control device 200 "closes” the first on-off valve 7a and “opens” the second on-off valve 7b.
  • control device 200 switches the first relay four-way valve 13a so that the refrigerant flowing out of the first refrigerant-water heat exchanger 12a flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow in.
  • control device 200 switches the second relay four-way valve 13b so that the refrigerant flowing out of the second refrigerant-water heat exchanger 12a flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow.
  • control device 200 switches the first relay four-way valve 13a so that the refrigerant from the forward pipe t10 flows into the first refrigerant-water heat exchanger 12a and the refrigerant flowing out of the second refrigerant-water heat exchanger 12b does not flow.
  • control device 200 switches the second relay four-way valve 13b so that the refrigerant flowing out of the second indoor expansion valve 10b flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow.
  • the control device 200 switches the first relay four-way valve 13a so that the refrigerant from the forward pipe t10 flows into the first refrigerant-water heat exchanger 12a and the refrigerant from the return pipe t11 does not flow.
  • the controller 200 switches the second relay four-way valve 13b so that the refrigerant from the forward pipe t10 flows into the second refrigerant-water heat exchanger 12b and the refrigerant from the return pipe t11 does not flow.
  • Distribution of cold water or hot water to the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is performed by opening and closing the first mixed three-way valve 15a, the second mixed three-way valve 15b, the third mixed three-way valve 15c, the first divided three-way valve 16a, the second divided three-way valve 16b, and the third divided three-way valve 16c.
  • FIG. 7 is a refrigerant circuit diagram and a water circuit diagram of the operating state A in the air conditioner 100 according to Modification 1 of Embodiment 1.
  • FIG. The refrigerant flow in the outdoor unit 101 is the same as in FIG.
  • the main circuit and one bypass circuit are formed.
  • the refrigerant flows through the compressor 1, the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first on-off valve 7a, the first relay expansion valve 11a, the first refrigerant-water heat exchanger 12a, the first relay four-way valve 13a, the first check valve 6a, the first outdoor four-way valve 2a, and the compressor 1 again.
  • the refrigerant branched from between the first on-off valve 7a and the first relay expansion valve 11a flows through the second relay expansion valve 11b, the second refrigerant-water heat exchanger 12b, and the second relay four-way valve 13b in that order, and joins the refrigerant flowing out of the first relay four-way valve 13a.
  • the refrigerant branched from between the supercooling heat exchanger 4 of the main circuit and the fourth check valve 6d flows through the second outdoor expansion valve 5b and the supercooling heat exchanger 4 in that order, and joins between the first outdoor four-way valve 2a of the main circuit and the suction side of the compressor 1.
  • FIG. 8 is a refrigerant circuit diagram and a water circuit diagram of the operating state B in the air conditioner 100 according to Modification 1 of Embodiment 1.
  • FIG. The refrigerant flow in the outdoor unit 101 is the same as in FIG.
  • the main circuit and one bypass circuit are formed.
  • the compressor 1 the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first relay four-way valve 13a, the first refrigerant-water heat exchanger 12a, the first relay expansion valve 11a, the second relay expansion valve 11b, the second refrigerant-water heat exchanger 12b, the second relay four-way valve 13b, the first check valve 6a, the second Refrigerant flows in the order of the one-outdoor four-way valve 2a and the compressor 1 again.
  • the refrigerant branched from between the first outdoor heat exchanger 3a and the fifth check valve 6e of the main circuit flows to the first outdoor expansion valve 5a and joins between the subcooling heat exchanger 4 of the main circuit and the fourth check valve 6d.
  • FIG. 9 is a refrigerant circuit diagram and a water circuit diagram of the operating state C in the air conditioner 100 according to Modification 1 of Embodiment 1.
  • FIG. The refrigerant flow in the outdoor unit 101 is the same as in FIG.
  • the main circuit and one bypass circuit are formed.
  • the compressor 1 the first outdoor four-way valve 2a, the second check valve 6b, the first relay four-way valve 13a, the first refrigerant-water heat exchanger 12a, the first relay expansion valve 11a, the second relay expansion valve 11b, the second refrigerant-water heat exchanger 12b, the second relay four-way valve 13b, the third check valve 6c, the supercooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a,
  • the refrigerant flows in order of the first outdoor four-way valve 2a and the compressor 1 again.
  • the refrigerant branched from between the subcooling heat exchanger 4 of the main circuit and the first outdoor expansion valve 5a flows into the second outdoor expansion valve 5b and the subcooling heat exchanger 4, and the first outdoor four-way valve 2a of the main circuit joins between the compressor 1.
  • FIG. 10 is a refrigerant circuit diagram and a water circuit diagram of the operating state D in the air conditioner 100 according to Modification 1 of Embodiment 1.
  • FIG. The refrigerant flow in the outdoor unit 101 is the same as in FIG.
  • the main circuit and one bypass circuit are formed.
  • the refrigerant flows through the compressor 1, the first outdoor four-way valve 2a, the second check valve 6b, the first relay four-way valve 13a, the first refrigerant-water heat exchanger 12a, the first relay expansion valve 11a, the second on-off valve 7b, the third check valve 6c, the subcooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, the first outdoor four-way valve 2a, and the compressor 1 again.
  • the refrigerant branched from between the second check valve 6b and the first relay four-way valve 13a flows through the second relay four-way valve 13b, the second refrigerant-water heat exchanger 12b, and the second relay expansion valve 11b in that order, and joins the refrigerant flowing out of the first relay four-way valve 13a.
  • the refrigerant branched from between the subcooling heat exchanger 4 of the main circuit and the first outdoor expansion valve 5a flows into the second outdoor expansion valve 5b, and joins between the first outdoor four-way valve 2a of the main circuit and the compressor 1.
  • the subcooling heat exchanger 4 of the air conditioner 100 of Embodiment 1 exchanges heat between the refrigerant flowing in the pipe branching between the sixth point p6 and the fifth point p5 and connecting between the first outdoor four-way valve 2a and the suction side of the compressor 1, and the refrigerant flowing through the fifth pipe t5.
  • the locations where the refrigerant branches may be between the third check valve 6c and the fifth check valve 6e and between the fourth check valve 6d and the first outdoor expansion valve 5a.
  • an outdoor unit 101 is equipped with five first check valves 6a, second check valves 6b, third check valves 6c, fourth check valves 6d, and fifth check valves 6e. According to the air conditioner 100 of Embodiment 1, counterflow of the refrigerant can be achieved in the subcooling heat exchanger 4 with five valves, so that the size of the housing of the outdoor unit 101 can be suppressed.
  • FIG. 11 is a refrigerant circuit diagram of the air conditioner 100 according to Embodiment 2.
  • the outdoor unit 101 of the air conditioner 100 according to Embodiment 2 includes, in addition to the air conditioner 100 shown in Embodiment 1, a second outdoor four-way valve 2b, a second outdoor heat exchanger 3b, a third outdoor expansion valve 5c, and a sixth check valve 6f.
  • the sixth check valve 6f plays the role of the first outdoor expansion valve 5a in FIG.
  • the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are the same as those shown in FIG. In FIG. 11, the same parts as in FIG. 1 are given the same reference numerals, and different parts will be explained.
  • the sixth check valve 6f is provided in the first pipe t1 between the first point p1 and the fifth point p5.
  • the sixth check valve 6f reduces the pressure of the refrigerant flowing from the fifth point p5 to the first point p1 during the heating operation, and is closed so that the refrigerant does not flow during the cooling operation.
  • the first outdoor expansion valve 5a is provided in the first pipe t1 between the first outdoor heat exchanger 3a and the first point p1.
  • the second outdoor four-way valve 2b is connected to the compressor 1 in parallel with the first outdoor four-way valve 2a.
  • the second outdoor four-way valve 2b switches the flow direction of the refrigerant discharged from the compressor 1 and outputs the refrigerant, thereby switching between cooling and heating.
  • the second outdoor heat exchanger 3b exchanges heat between the refrigerant output from the second outdoor four-way valve 2b and the outside air.
  • the third outdoor expansion valve 5c is provided in the first pipe t1 between the second outdoor heat exchanger 3b and the first point p1.
  • Control device 200 In "operating state A", the control device 200 switches the first outdoor four-way valve 2a and the second outdoor four-way valve 2b to the cooling side, opens the first outdoor expansion valve 5a and the third outdoor expansion valve 5c, opens the second outdoor expansion valve 5b, opens the first on-off valve 7a, and closes the second on-off valve 7b.
  • the control device 200 opens the first port, closes the second port, and opens the third port of the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
  • the control device 200 switches the first outdoor four-way valve 2a to the cooling side, opens the first outdoor expansion valve 5a, closes the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b.
  • the control device 200 switches the second outdoor four-way valve 2b to the heating side and closes the third outdoor expansion valve 5c.
  • the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a of the first indoor unit 103a that is performing the heating operation.
  • the first port of the second three-way valve 8b of the second indoor unit 103b that is performing cooling operation is opened, the second port is closed, and the third port is opened.
  • the first port, the second port and the third port of the third three-way valve 8c of the third indoor unit 103c, which is in cooling operation, are opened.
  • the control device 200 switches the first outdoor four-way valve 2a to the heating side, opens the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and opens the second on-off valve 7b.
  • the control device 200 switches the second outdoor four-way valve 2b to the heating side and opens the third outdoor expansion valve 5c.
  • the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a of the first indoor unit 103a that is performing the heating operation.
  • the first port, the second port, and the third port of the second three-way valve 8b of the second indoor unit 103b that is performing the heating operation are opened.
  • the first port, the second port and the third port of the third three-way valve 8c of the third indoor unit 103c, which is in cooling operation, are opened.
  • the control device 200 switches the first outdoor four-way valve 2a and the second outdoor four-way valve 2b to the heating side, opens the first outdoor expansion valve 5a and the third outdoor expansion valve 5c, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b.
  • the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
  • FIG. 12 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner 100 according to Embodiment 2.
  • FIG. 13 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner 100 according to Embodiment 2.
  • FIG. 14 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C in the air conditioner 100 according to Embodiment 2.
  • FIG. FIG. 15 is a refrigerant circuit diagram showing the flow of refrigerant in operating state D in the air conditioner 100 according to Embodiment 2.
  • FIG. 12 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner 100 according to Embodiment 2.
  • FIG. 13 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner 100 according to Embodiment 2.
  • FIG. 14 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C
  • the arrows indicate the direction of coolant flow.
  • the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are the same as those shown in FIG. 12, 13, 14 and 15, the same parts as in FIG. 1 are given the same reference numerals, and different parts will be explained.
  • FIG. 12 shows a state in which all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing cooling operation.
  • the main circuit and four bypass circuits are formed.
  • the compressor 1 the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the first outdoor expansion valve 5a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first on-off valve 7a, the first indoor expansion valve 10a, the first indoor heat exchanger 9a, the first three-way valve 8a, the first check valve 6a, the first outdoor four-way valve 2a, the compressor again.
  • the refrigerant flows in the order of 1.
  • the refrigerant branched from between the compressor 1 of the main circuit and the first outdoor four-way valve 2a flows through the second outdoor four-way valve 2b, the second outdoor heat exchanger 3b, and the third outdoor expansion valve 5c in that order, and joins between the first outdoor expansion valve 5a and the fifth check valve 6e of the main circuit.
  • the refrigerant branched from between the supercooling heat exchanger 4 of the main circuit and the fourth check valve 6d flows in the order of the second outdoor expansion valve 5b and the supercooling heat exchanger 4, and joins between the first outdoor four-way valve 2a of the main circuit and the suction side of the compressor 1.
  • the refrigerant branched from between the first on-off valve 7a and the first indoor expansion valve 10a of the main circuit flows through the second indoor expansion valve 10b, the second indoor heat exchanger 9b, and the second three-way valve 8b in that order, and joins between the first three-way valve 8a and the first check valve 6a of the main circuit.
  • the refrigerant branched from between the first on-off valve 7a and the first indoor expansion valve 10a of the main circuit flows in the order of the third indoor expansion valve 10c, the third indoor heat exchanger 9c, and the third three-way valve 8c, and joins between the first three-way valve 8a and the first check valve 6a of the main circuit.
  • FIG. 13 shows a state in which the first indoor unit 103a is in heating operation, and the second indoor unit 103b and third indoor unit 103c are in cooling operation.
  • the main circuit and one bypass circuit are formed.
  • the compressor 1 the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the first outdoor expansion valve 5a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the second indoor expansion valve 10b, the second indoor heat exchanger 9b, the second three-way valve 8b, the first Refrigerant flows through the check valve 6a, the first outdoor four-way valve 2a, and the compressor 1 again.
  • the refrigerant branched from between the first indoor expansion valve 10a and the second indoor expansion valve 10b of the main circuit flows through the third indoor expansion valve 10c, the third indoor heat exchanger 9c, and the third three-way valve 8c in that order, and joins between the second three-way valve 8b and the first check valve 6a of the main circuit.
  • FIG. 14 shows a state in which the first indoor unit 103a and the second indoor unit 103b are in heating operation, and the third indoor unit 103c is in cooling operation.
  • the main circuit and three bypass circuits are formed.
  • the compressor 1 the first outdoor four-way valve 2a, the second check valve 6b, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the third indoor expansion valve 10c, the third indoor heat exchanger 9c, the third three-way valve 8c, the third check valve 6c, the subcooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, the first The refrigerant flows in the order of the outdoor four-way valve 2a and the compressor 1 again.
  • the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the second three-way valve 8b, the second indoor heat exchanger 9b, and the second indoor expansion valve 10b in that order, and joins between the first indoor expansion valve 10a and the third indoor expansion valve 10c of the main circuit.
  • the refrigerant branched from between the supercooling heat exchanger 4 of the main circuit and the first outdoor expansion valve 5a flows into the second outdoor expansion valve 5b and the supercooling heat exchanger 4, and joins between the first outdoor four-way valve 2a and the compressor 1 of the main circuit.
  • the refrigerant branched from between the sixth check valve 6f and the first outdoor expansion valve 5a of the main circuit flows into the third outdoor expansion valve 5c, the second outdoor expansion valve 5b, and the second outdoor four-way valve 2b, and joins between the first outdoor four-way valve 2a of the main circuit and the compressor 1.
  • FIG. 15 shows a state in which all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing heating operation.
  • the main circuit and four bypass circuits are formed.
  • the compression machine 1 the first outdoor four -sided valve, the second reverse valve 6B, the first three -sided dialect 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the second opening and closing valve 6c, the third reverse valve 6c, the supercooled heat exchanger 4, the first outdoor expansion valve 5a, the first outrage.
  • the refrigerant flows in the order of outdoor heat exchangers, 2A, 1st outdoor four -sided valve, and compressor 1 again.
  • the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the second three-way valve 8b, the second indoor heat exchanger 9b, and the second indoor expansion valve 10b in that order, and joins between the first indoor expansion valve 10a and the second on-off valve 7b of the main circuit.
  • the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the third three-way valve 8c, the third indoor heat exchanger 9c, and the third indoor expansion valve 10c in that order, and joins between the first indoor expansion valve 10a and the second on-off valve 7b of the main circuit.
  • the refrigerant branched from between the supercooling heat exchanger 4 and the first outdoor expansion valve 5a of the main circuit flows to the second outdoor expansion valve 5b and the supercooling heat exchanger 4, and joins between the first outdoor four-way valve 2a and the compressor 1 of the main circuit.
  • the refrigerant branched from between the sixth check valve 6f and the first outdoor expansion valve 5a of the main circuit flows into the third outdoor expansion valve 5c, the second outdoor heat exchanger 3b, and the second outdoor four-way valve 2b, and joins between the first outdoor four-way valve 2a of the main circuit and the compressor 1.
  • Modification 1 of Embodiment 2 two types of heat media, refrigerant and water, form circuits independently without being mixed, and heat is only exchanged through the first refrigerant-water heat exchanger 12a and the second refrigerant-water heat exchanger 12b.
  • Refrigerant-water heat exchangers include, for example, plate heat exchangers and shell-and-tube heat exchangers.
  • FIG. 16 is a refrigerant circuit diagram and a water circuit diagram of an air conditioner 100 according to Modification 1 of Embodiment 2.
  • FIG. The same parts as those in FIG. 11 are denoted by the same reference numerals, and the description thereof is omitted.
  • Modification 1 of Embodiment 2 the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c in the air conditioner 100 of Embodiment 2 are different.
  • the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are the same as the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c of Modification 1 of Embodiment 1 shown in FIG.
  • Control device 200 In "operating state A", the control device 200 switches the first outdoor four-way valve 2a and the second outdoor four-way valve 2b to the cooling side, opens the first outdoor expansion valve 5a and the third outdoor expansion valve 5c, opens the second outdoor expansion valve 5b, opens the first on-off valve 7a, and closes the second on-off valve 7b.
  • the control device 200 switches the first relay four-way valve 13a so that the refrigerant flowing out of the first refrigerant-water heat exchanger 12a flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow in in the case of "operating state A".
  • control device 200 switches the second relay four-way valve 13b so that the refrigerant flowing out of the second refrigerant-water heat exchanger 12a flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow.
  • control device 200 switches the first outdoor four-way valve 2a to the cooling side, opens the first outdoor expansion valve 5a, closes the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b.
  • the control device 200 switches the second outdoor four-way valve 2b to the heating side and closes the third outdoor expansion valve 5c.
  • control device 200 switches the first outdoor four-way valve 2a to the heating side, opens the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and opens the second on-off valve 7b.
  • the control device 200 switches the second outdoor four-way valve 2b to the heating side and opens the third outdoor expansion valve 5c.
  • control device 200 switches the first relay four-way valve 13a so that the refrigerant from the forward pipe t10 flows into the first refrigerant-water heat exchanger 12a and the refrigerant flowing out of the second refrigerant-water heat exchanger 12b does not flow.
  • control device 200 switches the second relay four-way valve 13b so that the refrigerant flowing out of the second indoor expansion valve 10b flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow.
  • the control device 200 switches the first outdoor four-way valve 2a and the second outdoor four-way valve 2b to the heating side, opens the first outdoor expansion valve 5a and the third outdoor expansion valve 5c, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b.
  • the controller 200 switches the first relay four-way valve 13a so that the refrigerant from the forward pipe t10 flows into the first refrigerant-water heat exchanger 12a and the refrigerant from the return pipe t11 does not flow.
  • the controller 200 switches the second relay four-way valve 13b so that the refrigerant from the forward pipe t10 flows into the second refrigerant-water heat exchanger 12b and the refrigerant from the return pipe t11 does not flow.
  • FIG. 17 is a refrigerant circuit diagram and a water circuit diagram of the operating state A in the air conditioner 100 according to Modification 1 of Embodiment 2.
  • FIG. 18 is a refrigerant circuit diagram and a water circuit diagram of the operating state B in the air conditioner 100 according to Modification 1 of Embodiment 2.
  • FIG. 19 is a refrigerant circuit diagram and a water circuit diagram of the operating state C in the air conditioner 100 according to Modification 1 of Embodiment 2.
  • FIG. 20 is a refrigerant circuit diagram and a water circuit diagram of the operating state D in the air conditioner 100 according to Modification 1 of Embodiment 2.
  • FIG. 18 is a refrigerant circuit diagram and a water circuit diagram of the operating state B in the air conditioner 100 according to Modification 1 of Embodiment 2.
  • FIG. 19 is a refrigerant circuit diagram and a water circuit diagram of the operating state C in the air conditioner 100 according to Modification 1 of Embodiment 2.
  • FIG. 20 is a refrig
  • the operation of the outdoor unit 101 in the operating state A, the operating state B, the operating state C, and the operating state D of the outdoor unit 101 in the air conditioner 100 according to the modified example 1 of the second embodiment is the same as the operation in the operating state A, the operating state B, the operating state C, and the operating state D of the outdoor unit 101 in the air conditioner 100 described in the second embodiment.
  • the operations of the repeater 102 in the operating state A, the operating state B, the operating state C, and the operating state D of the air conditioner 100 according to Modification 1 of Embodiment 2 are the same as those of the repeater 102 in the air conditioner 100 described in Modification 1 of Embodiment 1.
  • the operations of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c in the air conditioner 100 according to Modification 1 of Embodiment 2 in the operation state A, the operation state B, the operation state C, and the operation state D are the same as the operations of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c in the air conditioner 100 described in Modification 1 of Embodiment 1.
  • the subcooling heat exchanger 4 of the air conditioner 100 of Embodiment 2 exchanges heat between the refrigerant flowing in the pipe branching between the sixth point p6 and the fifth point p5 and connecting between the first outdoor four-way valve 2a and the suction side of the compressor 1, and the refrigerant flowing through the fifth pipe t5.
  • the locations where the refrigerant branches may be between the third check valve 6c and the fifth check valve 6e and between the fourth check valve 6d and the first outdoor expansion valve 5a.
  • the outdoor unit 101 is equipped with six first check valves 6a, second check valves 6b, third check valves 6c, fourth check valves 6d, fifth check valves 6e and sixth check valves 6f. According to the air-conditioning apparatus 100 of Embodiment 2, the counterflow of the refrigerant can be achieved in the subcooling heat exchanger 4 with six valves, so that the size of the housing of the outdoor unit 101 can be suppressed.
  • the forward pipe t10 is also called the first pipe
  • the return pipe t11 is also called the second pipe
  • the first outdoor four-way valve 2a is also called the first switching valve
  • the second outdoor four-way valve 2b is also called the second switching valve.
  • the subcooling heat exchangers 4 of Embodiments 1 and 2 are also referred to as refrigerant heat exchangers.
  • the first check valve 6a, the second check valve 6b, the third check valve 6c, the fourth check valve 6d, the fifth check valve 6e, and the sixth check valve 6f are also referred to as the first valve, the second valve, the third valve, the fourth valve, the fifth valve, and the sixth valve, respectively.
  • the first outdoor expansion valve 5a is also called a sixth valve.
  • Embodiments 1 and 2 are presented as examples and are not intended to limit the scope of claims. Embodiments 1 and 2 can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of Embodiments 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This air conditioner comprises a rectifier circuit and an inter-refrigerant heat exchanger. The rectifier circuit is provided with: a first valve that allows refrigerant in a second pipe to flow from a third point to a fourth point and prevents the reverse flow; a second valve that allows the refrigerant in a fourth pipe to flow from the fourth point to a second point and prevents the reverse flow; a third valve that allows the refrigerant in a third pipe to flow from the third point to a first point and prevents the reverse flow; and a fourth valve that allows the refrigerant in a first pipe to flow from the first point to the second point and prevents the reverse flow. An outdoor unit is provided with: a fifth valve that allows the refrigerant in the third pipe to flow from the first point to a sixth point between the first point and the third valve and prevents the reverse flow; a sixth valve that allows the refrigerant in the first pipe to flow from a fifth point between the first point and the fourth valve to the first point and can prevent the reverse flow; and a fifth pipe that connects the fifth point and the sixth point and causes the refrigerant to flow from the sixth point to the fifth point. The inter-refrigerant heat exchanger exchanges heat between the refrigerant flowing in the fifth pipe and the refrigerant flowing in the pipe that branches off from any of the points between the third valve and the fifth valve, between the fourth valve and the sixth valve, and between the sixth point and the fifth point and is connected between a first switching valve and the suction side of a compressor.

Description

空気調和装置air conditioner
 本開示は、室外機が冷媒間熱交換器を有する2菅式の空気調和装置に関する。 The present disclosure relates to a two-pipe air conditioner in which the outdoor unit has a heat exchanger between refrigerants.
 冷媒間熱交換器を有し、室外機と中継機とが2本の連絡配管で接続された空気調和装置がある(例えば、特許文献1参照)。特許文献1に記載された空気調和装置では、室外機内にある4個の逆止弁によって、室外機と中継機を繋ぐ往管と復管とを、全運転モードで統一し、2管式での冷暖同時運転が可能である。また、特許文献1に記載された空気調和装置では、冷房運転にて、冷媒間熱交換器である過冷却熱交換器内の高圧冷媒と低圧冷媒が対向流となる。また、暖房運転にて、過冷却熱交換器内の高圧冷媒と低圧冷媒とが並行流となる。 There is an air conditioner in which an outdoor unit and a repeater are connected by two connecting pipes (for example, see Patent Document 1). In the air conditioner described in Patent Document 1, the forward pipe and the return pipe that connect the outdoor unit and the repeater are unified in all operation modes by four check valves in the outdoor unit, and simultaneous cooling and heating operation is possible in a two-pipe system. Further, in the air conditioner described in Patent Document 1, the high-pressure refrigerant and the low-pressure refrigerant in the subcooling heat exchanger, which is a heat exchanger between refrigerants, flow counter-currently in cooling operation. Also, in heating operation, the high-pressure refrigerant and the low-pressure refrigerant in the subcooling heat exchanger flow in parallel.
国際公開第2012/101672号(図10参照)International Publication No. 2012/101672 (see FIG. 10)
 2菅式の空気調和装置において、「冷房と暖房との両運転で冷媒間熱交換器の対向流化」を成立させるためには、例えば、特開2003-075026号公報に示すように、4個の弁を必要とする。 In a two-pipe air conditioner, in order to achieve "counterflow of heat exchangers between refrigerants in both cooling and heating operations", for example, as shown in Japanese Patent Application Laid-Open No. 2003-075026, four valves are required.
 従って、従来技術の組み合わせにて「冷房と暖房との両運転で冷媒間熱交換器の対向流化」と「2管式の空気調和装置」とを両立するには、それぞれ4個ずつの弁、つまり合計8個の弁が必要となる。しかし、これら2つを両立するために、8個の弁を搭載すると室外機筐体が大型化するという問題があった。 Therefore, in order to achieve both "counterflow refrigerant heat exchanger in both cooling and heating operation" and "two-pipe air conditioning system" by combining conventional technologies, four valves each, that is, a total of eight valves are required. However, if eight valves are installed in order to satisfy both of these two requirements, there is a problem that the outdoor unit casing becomes large.
 本開示は、上記実情に鑑みてなされたものであり、室外機筐体の大型化を抑制することができ、冷房と暖房との両運転で、冷媒間の対向流化が可能である冷媒間熱交換器を有する室外機を備えた2菅式の空気調和装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to provide a two-pipe air conditioner equipped with an outdoor unit having a heat exchanger between refrigerants that can suppress the increase in size of the outdoor unit housing and that allows counterflow between refrigerants in both cooling and heating operations.
 本開示に係る空気調和装置は、圧縮機、第1切替弁、第1室外熱交換器及び第1室外膨張弁を備えた室外機と、室内を冷房又は暖房する室内機と、前記室外機から流出して前記室内機に流入する冷媒が流れる第1管と、前記室内機から流出して前記室外機に流入する前記冷媒が流れる第2管とを具備し、前記室外機は、前記室外機から前記第1管へ流出する前記冷媒の流れ方向及び前記第2管を経て前記室外機に流入した前記冷媒の流れ方向を定める整流回路と、前記整流回路へ流れる前記冷媒から分流した前記冷媒で、前記圧縮機の吸入側へ流入する冷媒を冷却する冷媒間熱交換器と、前記第1室外熱交換器と前記第1管とを接続する第1配管と、前記第2管と前記第1切替弁とを接続する第2配管と、前記第1配管の途中の2つの点のうち前記第1室外熱交換器に近い側から第1点と第2点、前記第2配管の途中の2つの点のうち前記第2管に近い側から第3点と第4点としたとき、前記第1点と前記第3点とを接続する第3配管と、前記第2点と前記第4点とを接続する第4配管とを具備し、前記整流回路は、前記第2配管に設けられ、前記第2配管内の前記冷媒が前記第3点から前記第4点へ流れることを許容し、逆に流れることを防止する第1弁と、前記第4配管に設けられ、前記第4配管内の前記冷媒が前記第4点から前記第2点へ流れることを許容し、逆に流れることを防止する第2弁と、前記第3配管に設けられ、前記第3配管内の前記冷媒が前記第3点から前記第1点へ流れることを許容し、逆に流れることを防止する第3弁と、前記第1配管に設けられ、前記第1配管内の前記冷媒が前記第1点から前記第2点へ流れることを許容し、逆に流れることを防止する第4弁とを具備し、前記室外機は、前記第3配管に設けられ、前記第3配管内の前記冷媒が、前記第1点から前記第1点と前記第3弁との間の第6点へ流れることを許容し、逆に流れることを防止する第5弁と、前記第1配管に設けられ、前記第1配管内の前記冷媒が、前記第1点と前記第4弁との間の第5点から前記第1点へ流れることを許容し、逆に流れることを防止することができる第6弁と、前記第5点と前記第6点とを接続し、前記第6点から前記第5点へ前記冷媒が流れる第5配管とを具備し、前記冷媒間熱交換器は、前記第3弁と前記第5弁との間、前記第4弁と前記第6弁との間、及び前記第6点と前記第5点との間のいずれかの箇所から分岐して前記第1切替弁と前記圧縮機の吸入側との間に接続する配管内を流れる前記冷媒と、前記第5配管内を流れる前記冷媒との間で熱交換する。 An air conditioner according to the present disclosure includes an outdoor unit that includes a compressor, a first switching valve, a first outdoor heat exchanger, and a first outdoor expansion valve; an indoor unit that cools or heats a room; a first pipe through which refrigerant flowing out of the outdoor unit and flowing into the indoor unit flows; and a second pipe through which the refrigerant flowing out of the indoor unit and flowing into the outdoor unit flows; and a rectifying circuit that determines the flow direction of the refrigerant that has flowed into the outdoor unit through the second pipe; a heat exchanger between refrigerants that cools the refrigerant flowing into the suction side of the compressor with the refrigerant branched from the refrigerant flowing in the rectifying circuit; a first pipe that connects the first outdoor heat exchanger and the first pipe; a second pipe that connects the second pipe and the first switching valve; A third pipe connecting the first point and the third point, and a fourth pipe connecting the second point and the fourth point, where the first point and the second point are arranged from the side, and the third point and the fourth point are arranged from the two points on the middle of the second pipe which are closer to the second pipe. a first valve provided in the fourth pipe to allow the refrigerant in the fourth pipe to flow from the fourth point to the second point and prevent reverse flow; a third valve provided in the third pipe to allow the refrigerant in the third pipe to flow from the third point to the first point and prevent reverse flow; and a third valve provided in the first pipe to allow the refrigerant in the first pipe to flow from the first point to the second point a fifth valve provided in the third pipe to allow the refrigerant in the third pipe to flow from the first point to a sixth point between the first point and the third valve and prevent reverse flow; and a fifth pipe that connects the fifth point and the sixth point so that the refrigerant flows from the sixth point to the fifth point. Heat exchange is performed between the refrigerant flowing in the pipe connected between and the refrigerant flowing in the fifth pipe.
 本開示の空気調和装置は、冷媒間熱交換器は、第3弁と第5弁との間、第4弁と第6弁との間、及び第6点と第5点との間のいずれかの箇所から分岐して第1切替弁と圧縮機の吸入側との間に接続する配管内を流れる冷媒と、第5管を流れる冷媒との間で熱交換する。本開示の空気調和装置によれば、第1弁、第2弁、第3弁、第4弁、第5弁及び第6弁の6つの弁で媒体間熱交換器において冷媒の対向流化を図ることができるので、室外機筐体の大型化を抑制することができる。 In the air conditioner of the present disclosure, the heat exchanger between refrigerants exchanges heat between the refrigerant flowing through the pipe that branches from any point between the third valve and the fifth valve, between the fourth valve and the sixth valve, and between the sixth point and the fifth point and that is connected between the first switching valve and the suction side of the compressor, and the refrigerant flowing through the fifth pipe. According to the air conditioner of the present disclosure, the six valves of the first valve, the second valve, the third valve, the fourth valve, the fifth valve, and the sixth valve can counterflow the refrigerant in the heat exchanger between mediums. Therefore, it is possible to suppress an increase in the size of the outdoor unit housing.
実施形態1に係る空気調和装置の冷媒回路図である。1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置における運転状態Aの冷媒の流れを示す冷媒回路図である。2 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置における運転状態Bの冷媒の流れを示す冷媒回路図である。3 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置における運転状態Cの冷媒の流れを示す冷媒回路図である。3 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C in the air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置における運転状態Dの冷媒の流れを示す冷媒回路図である。4 is a refrigerant circuit diagram showing the flow of refrigerant in operating state D in the air conditioner according to Embodiment 1. FIG. 実施形態1の変形例1に係る空気調和装置の冷媒回路図及び水回路図である。FIG. 4 is a refrigerant circuit diagram and a water circuit diagram of an air conditioner according to Modification 1 of Embodiment 1. FIG. 実施形態1の変形例1に係る空気調和装置における運転状態Aの冷媒回路図及び水回路図である。FIG. 4 is a refrigerant circuit diagram and a water circuit diagram in an operating state A in the air conditioner according to Modification 1 of Embodiment 1; 実施形態1の変形例1に係る空気調和装置における運転状態Bの冷媒回路図及び水回路図である。FIG. 4 is a refrigerant circuit diagram and a water circuit diagram in an operating state B in the air conditioner according to Modification 1 of Embodiment 1; 実施形態1の変形例1に係る空気調和装置における運転状態Cの冷媒回路図及び水回路図である。FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state C in the air conditioner according to Modification 1 of Embodiment 1; 実施形態1の変形例1に係る空気調和装置における運転状態Dの冷媒回路図及び水回路図である。FIG. 8 is a refrigerant circuit diagram and a water circuit diagram in an operating state D in the air conditioner according to Modification 1 of Embodiment 1; 実施形態2に係る空気調和装置の冷媒回路図である。2 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2. FIG. 実施形態2に係る空気調和装置における運転状態Aの冷媒の流れを示す冷媒回路図である。8 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner according to Embodiment 2. FIG. 実施形態2に係る空気調和装置における運転状態Bの冷媒の流れを示す冷媒回路図である。8 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner according to Embodiment 2. FIG. 実施形態2に係る空気調和装置における運転状態Cの冷媒の流れを示す冷媒回路図である。8 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C in the air conditioner according to Embodiment 2. FIG. 実施形態2に係る空気調和装置における運転状態Dの冷媒の流れを示す冷媒回路図である。FIG. 10 is a refrigerant circuit diagram showing the flow of refrigerant in an operating state D in the air conditioner according to Embodiment 2; 実施形態2の変形例1に係る空気調和装置の冷媒回路図及び水回路図である。FIG. 8 is a refrigerant circuit diagram and a water circuit diagram of an air conditioner according to Modification 1 of Embodiment 2; 実施形態2の変形例1に係る空気調和装置における運転状態Aの冷媒回路図及び水回路図である。FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state A in the air conditioner according to Modification 1 of Embodiment 2; 実施形態2の変形例1に係る空気調和装置における運転状態Bの冷媒回路図及び水回路図である。FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state B in the air conditioner according to Modification 1 of Embodiment 2; 実施形態2の変形例1に係る空気調和装置における運転状態Cの冷媒回路図及び水回路図である。FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state C in the air conditioner according to Modification 1 of Embodiment 2; 実施形態2の変形例1に係る空気調和装置における運転状態Dの冷媒回路図及び水回路図である。FIG. 10 is a refrigerant circuit diagram and a water circuit diagram in an operating state D in the air conditioner according to Modification 1 of Embodiment 2;
 以下、図面を参照して、実施形態に係る空気調和装置について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。本開示は、以下の各実施形態で説明する構成のうち、組合せ可能な構成のあらゆる組合せを含み得る。明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施形態における組み合わせのみに限定するものではなく、他の実施形態に記載した構成要素を別の実施形態に適用することができる。 An air conditioner according to an embodiment will be described below with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description is given only when necessary. The present disclosure may include any combination of configurations that can be combined among the configurations described in each of the following embodiments. Forms of components appearing throughout the specification are merely examples, and are not limited to the forms described in the specification. In particular, the combination of components is not limited only to the combinations in each embodiment, and the components described in other embodiments can be applied to other embodiments.
実施形態1.
<空気調和装置100の構成>
 図1は、実施形態1に係る空気調和装置100の冷媒回路図である。図1に示すように、空気調和装置100は、室外機101、中継機102、第1室内機103a、第2室内機103b及び第3室内機103cを有する。室外機101と中継機102とは、往管t10と復管t11との2本の配管で接続される。
Embodiment 1.
<Configuration of air conditioner 100>
FIG. 1 is a refrigerant circuit diagram of an air conditioner 100 according to Embodiment 1. FIG. As shown in FIG. 1, the air conditioner 100 has an outdoor unit 101, a repeater 102, a first indoor unit 103a, a second indoor unit 103b and a third indoor unit 103c. The outdoor unit 101 and the repeater 102 are connected by two pipes, a forward pipe t10 and a return pipe t11.
 往管t10には、室外機101から流出して中継機102に流入する冷媒が流出する。中継機102に流入した冷媒は、中継機102から流出し、運転状態に応じて、第1室内機101a、第2室内機103b及び第3室内機103cを流れる。復管t11には、第1室内機101a、第2室内機103b及び第3室内機103cから流出して中継機102を介して室外機101に流入する冷媒が流れる。 Refrigerant flowing out from the outdoor unit 101 and flowing into the repeater 102 flows out to the forward pipe t10. The refrigerant that has flowed into the repeater 102 flows out of the repeater 102 and flows through the first indoor unit 101a, the second indoor unit 103b, and the third indoor unit 103c depending on the operating state. Refrigerant flowing out of the first indoor unit 101a, the second indoor unit 103b, and the third indoor unit 103c and flowing into the outdoor unit 101 via the relay unit 102 flows through the return pipe t11.
 中継機102と第1室内機103aとは、2本の配管t12a及び配管t13aで接続される。中継機102と第2室内機103bとは、2本の配管t12b及び配管t13bで接続される。中継機102と第3室内機103cとは、2本の配管t12c及び配管t13cで接続される。 The repeater 102 and the first indoor unit 103a are connected by two pipes t12a and t13a. The repeater 102 and the second indoor unit 103b are connected by two pipes t12b and t13b. The repeater 102 and the third indoor unit 103c are connected by two pipes t12c and t13c.
<室外機101>
 室外機101は、圧縮機1、第1室外四方弁2a、第1室外熱交換器3a、過冷却熱交換器4、第1室外膨張弁5a、第2室外膨張弁5b、第1逆止弁6a、第2逆止弁6b、第3逆止弁6c、第4逆止弁6d及び第5逆止弁6eを具備する。
<Outdoor unit 101>
The outdoor unit 101 includes a compressor 1, a first outdoor four-way valve 2a, a first outdoor heat exchanger 3a, a subcooling heat exchanger 4, a first outdoor expansion valve 5a, a second outdoor expansion valve 5b, a first check valve 6a, a second check valve 6b, a third check valve 6c, a fourth check valve 6d and a fifth check valve 6e.
 ここで、「逆止弁」は弁の前後の圧力差によって閉まる弁を有し、圧力が高い側から低い側にしか流れないようにされた弁である。 Here, the "check valve" is a valve that has a valve that closes due to the pressure difference before and after the valve, and that allows flow only from the high pressure side to the low pressure side.
 圧縮機1は、冷媒を圧縮して吐出する。第1室外四方弁2aは、圧縮機1から吐出された冷媒の流れ方向を切り替えて出力し、冷房と暖房とを切り替える。第1室外熱交換器3aは、第1室外四方弁2aから出力された冷媒と外気との熱交換を行なう。 The compressor 1 compresses and discharges the refrigerant. The first outdoor four-way valve 2a switches the flow direction of the refrigerant discharged from the compressor 1 and outputs the refrigerant, thereby switching between cooling and heating. The first outdoor heat exchanger 3a exchanges heat between the refrigerant output from the first outdoor four-way valve 2a and the outside air.
 なお、第1室外四方弁2aは、冷媒の流れ方向を切り替える冷媒流路切替装置の一例である。冷媒流路切替装置は、二方弁又は三方弁の組み合わせで構成されていてもよい。また、空気調和装置100が冷房専用又は暖房専用であって冷媒の流れ方向を切り替える必要が無い場合には、冷媒流路切替装置を設けなくてよい。 The first outdoor four-way valve 2a is an example of a refrigerant channel switching device that switches the flow direction of the refrigerant. The refrigerant flow switching device may be composed of a combination of two-way valves or three-way valves. Further, when the air conditioner 100 is exclusively for cooling or only for heating and there is no need to switch the flow direction of the refrigerant, the refrigerant channel switching device may not be provided.
 第1逆止弁6a、第2逆止弁6b、第3逆止弁6c及び第4逆止弁6dは、整流回路rを構成する。整流回路rは、室外機101から往管t10へ流出する冷媒の流れの方向及び復管t11を経て室外機101に流入した冷媒の流れ方向を定める。 The first check valve 6a, the second check valve 6b, the third check valve 6c and the fourth check valve 6d constitute a rectifying circuit r. The rectifier circuit r determines the flow direction of the refrigerant flowing out from the outdoor unit 101 to the forward pipe t10 and the flow direction of the refrigerant flowing into the outdoor unit 101 through the return pipe t11.
 室外機101は、第1配管t1、第2配管t2、第3配管t3、第4配管t4及び第5配管t5を有する。 The outdoor unit 101 has a first pipe t1, a second pipe t2, a third pipe t3, a fourth pipe t4 and a fifth pipe t5.
 第1配管t1は、第1室外熱交換器3aと往管t10とを接続する。第2配管t2は、復管t11と第1室外四方弁2aとを接続する。第1配管t1途中の2つの点のうち第1室外熱交換器3aに近い側から第1点p1と第2点p2、第2配管t2途中の2つの点のうち復管t11に近い側から第3点p3と第4点p4とする。第3配管t3は、第1点p1と第3点p3とを接続する。第4配管t4は、第2点p2と第4点p4とを接続する。第1配管t1途中の第4逆止弁6dと第6弁である第1室外膨張弁5aとの間の点を第5点p5、第3配管t3途中の第3逆止弁6cと第5逆止弁6eとの間の点を第6点p6とする。第5配管t5は、第5点p5と第6点p6とを接続し、第6点p6から第5点p5へ冷媒が流れる。第6配管t6は、第5配管t5から分岐して第1室外四方弁2aと圧縮機1の吸入側との間に接続する。 The first pipe t1 connects the first outdoor heat exchanger 3a and the forward pipe t10. The second pipe t2 connects the return pipe t11 and the first outdoor four-way valve 2a. Of the two points on the first pipe t1, from the side closer to the first outdoor heat exchanger 3a, the first point p1 and the second point p2, and from the two points on the second pipe t2, the third point p3 and the fourth point p4 from the side closer to the return pipe t11. The third pipe t3 connects the first point p1 and the third point p3. The fourth pipe t4 connects the second point p2 and the fourth point p4. The point between the fourth check valve 6d on the first pipe t1 and the first outdoor expansion valve 5a, which is the sixth valve, is the fifth point p5, and the point between the third check valve 6c and the fifth check valve 6e on the third pipe t3 is the sixth point p6. The fifth pipe t5 connects the fifth point p5 and the sixth point p6, and the refrigerant flows from the sixth point p6 to the fifth point p5. A sixth pipe t6 branches off from the fifth pipe t5 and connects between the first outdoor four-way valve 2a and the suction side of the compressor 1 .
 第6配管t6は、第3逆止弁6cと第5逆止弁6eとの間の第3配管t3から分岐して第1室外四方弁2aと圧縮機1の吸入側との間に導いても良い。また、第6配管t6は、第4逆止弁6dと第1室外膨張弁5aとの間の第1配管t1又は第3配管t3から分岐して第1室外四方弁2aと圧縮機1の吸入側との間に導いても良い。 The sixth pipe t6 may branch from the third pipe t3 between the third check valve 6c and the fifth check valve 6e and lead between the first outdoor four-way valve 2a and the suction side of the compressor 1. The sixth pipe t6 may be branched from the first pipe t1 or the third pipe t3 between the fourth check valve 6d and the first outdoor expansion valve 5a and may be led between the first outdoor four-way valve 2a and the suction side of the compressor 1.
 過冷却熱交換器4は、整流回路rへ流れる冷媒から分流した冷媒で圧縮機1の吸入側へ流入する冷媒を冷却する。過冷却熱交換器4は、第6点p6と第5点p5との間から分岐して第1室外四方弁2aと圧縮機1の吸入側との間に接続する第6配管t6内を流れる冷媒と、第5配管t5内を第6点p6から第5点p5へ流れる冷媒との間で熱交換する。また、過冷却熱交換器4は、第3逆止弁6cと第5逆止弁6eとの間から分岐して第1室外四方弁2aと圧縮機1の吸入側との間に接続する配管(図示せず)内を流れる冷媒と、第5配管t5内を第6点p6から第5点p5へ流れる冷媒との間で熱交換しても良い。過冷却熱交換器4は、第4逆止弁6dと第1室外膨張弁5aとの間から分岐して第1室外四方弁2aと圧縮機1の吸入側との間に接続する配管(図示せず)内を流れる冷媒と、第5配管t5内を第6点p6から第5点p5へ流れる冷媒との間で熱交換しても良い。 The supercooling heat exchanger 4 cools the refrigerant flowing into the suction side of the compressor 1 with the refrigerant diverted from the refrigerant flowing to the rectifying circuit r. The subcooling heat exchanger 4 branches from between the sixth point p6 and the fifth point p5 and flows in the sixth pipe t6 that is connected between the first outdoor four-way valve 2a and the suction side of the compressor 1. Heat exchange is performed between the refrigerant flowing in the fifth pipe t5 and the refrigerant flowing from the sixth point p6 to the fifth point p5. In addition, the subcooling heat exchanger 4 may exchange heat between the refrigerant flowing in a pipe (not shown) branched from between the third check valve 6c and the fifth check valve 6e and connected between the first outdoor four-way valve 2a and the suction side of the compressor 1, and the refrigerant flowing from the sixth point p6 to the fifth point p5 in the fifth pipe t5. The supercooling heat exchanger 4 may exchange heat between the refrigerant flowing in a pipe (not shown) branched from between the fourth check valve 6d and the first outdoor expansion valve 5a and connected between the first outdoor four-way valve 2a and the suction side of the compressor 1, and the refrigerant flowing from the sixth point p6 to the fifth point p5 in the fifth pipe t5.
 実施形態1では、整流回路rに第5逆止弁6eを加え、第1室外膨張弁5aを利用することにより、冷房及び暖房において、過冷却熱交換器4に流れる冷媒の対向流化を行なうものである。 In Embodiment 1, the fifth check valve 6e is added to the rectifying circuit r, and the first outdoor expansion valve 5a is used to counterflow the refrigerant flowing through the supercooling heat exchanger 4 in cooling and heating.
 整流回路rの第1逆止弁6aは、第2配管t2に設けられ、第2配管t2内の冷媒が第3点p3から第4点p4へ流れることを許容し、逆に流れることを防止する。第2逆止弁6bは、第4配管t4に設けられ、第4配管t4内の冷媒が第4点p4から第2点p2へ流れることを許容し、逆に流れることを防止する。第3逆止弁6cは、第3配管t3に設けられ、第3配管t3内の冷媒が第3点p3から第1点p1へ流れることを許容し、逆に流れることを防止する。第4逆止弁6dは、第1配管t1に設けられ、第1配管t1内の冷媒が第1点p1から第2点p2へ流れることを許容し、逆に流れることを防止する。 The first check valve 6a of the rectifier circuit r is provided in the second pipe t2, allows the refrigerant in the second pipe t2 to flow from the third point p3 to the fourth point p4, and prevents it from flowing in the opposite direction. The second check valve 6b is provided in the fourth pipe t4, allows the refrigerant in the fourth pipe t4 to flow from the fourth point p4 to the second point p2, and prevents the refrigerant from flowing in the opposite direction. The third check valve 6c is provided in the third pipe t3, allows the refrigerant in the third pipe t3 to flow from the third point p3 to the first point p1, and prevents the refrigerant from flowing in the opposite direction. The fourth check valve 6d is provided in the first pipe t1, allows the refrigerant in the first pipe t1 to flow from the first point p1 to the second point p2, and prevents the refrigerant from flowing in the opposite direction.
 第5逆止弁6eは、第3配管t3に設けられ、第3配管t3内の冷媒が、第1点p1から第1点p1と第3逆止弁6cとの間の第6点p6へ流れることを許容し、逆に流れることを防止する。 The fifth check valve 6e is provided in the third pipe t3 and allows the refrigerant in the third pipe t3 to flow from the first point p1 to the sixth point p6 between the first point p1 and the third check valve 6c, and prevents it from flowing in the opposite direction.
 第1室外膨張弁5aは、第1配管t1を流れる冷媒の圧力を調整する。第1室外膨張弁5aは、第1配管t1に設けられ、第1配管t1内の冷媒が、第1点p1と第4逆止弁6dとの間の第5点p5から第1点p1へ流れることを許容し、逆に流れることを防止することができる。点p5から第1点p1へ流れることを許容し、逆に流れることを防止することができる。本実施の形態の第1室外膨張弁5aは、特定の運転状態(後述する運転状態B)のときに第1室外膨張弁5aの前後の圧力差により、第1点p1と第4逆止弁6dとの間の第5点p5から第1点p1へ流れることを許容し、逆に流れることを防止するものである。 The first outdoor expansion valve 5a adjusts the pressure of the refrigerant flowing through the first pipe t1. The first outdoor expansion valve 5a is provided in the first pipe t1, and the refrigerant in the first pipe t1 can be allowed to flow from the fifth point p5 between the first point p1 and the fourth check valve 6d to the first point p1, and can be prevented from flowing in the opposite direction. It is possible to allow the flow from the point p5 to the first point p1 and prevent the reverse flow. The first outdoor expansion valve 5a of the present embodiment allows the flow from the fifth point p5 between the first point p1 and the fourth check valve 6d to the first point p1 due to the pressure difference across the first outdoor expansion valve 5a in a specific operating state (operating state B described later), and prevents the reverse flow.
 第1室外膨張弁5aは、暖房運転時に第5点p5から第1点p1に流れる冷媒の圧力を減圧し、冷房運転時に冷媒が流れないように閉じられる。 The first outdoor expansion valve 5a reduces the pressure of the refrigerant flowing from the fifth point p5 to the first point p1 during heating operation, and is closed so that the refrigerant does not flow during cooling operation.
 第2室外膨張弁5bは、第6配管t6に設けられ、第6配管t6内の冷媒が、第6点p6と第5点p5との間から第7点p7へ流れることを許容し、逆に流れることを防止することができる。第2室外膨張弁5bは、第6配管t6を流れる冷媒の圧力を調整する。 The second outdoor expansion valve 5b is provided in the sixth pipe t6, allowing the refrigerant in the sixth pipe t6 to flow from between the sixth point p6 and the fifth point p5 to the seventh point p7, and can prevent the refrigerant from flowing in the opposite direction. The second outdoor expansion valve 5b adjusts the pressure of the refrigerant flowing through the sixth pipe t6.
<中継機102>
 中継機102は、第1開閉弁7a、第2開閉弁7b、第1三方弁8a、第2三方弁8b及び第3三方弁8cを備える。第1開閉弁7a、第2開閉弁7b、第1三方弁8a、第2三方弁8b及び第3三方弁8cは、運転状態に応じて、往管t10を流れる冷媒が第1室内機103a、第2室内機103b及び第3室内機103cに流入するまでの流路を決定する。また、第1開閉弁7a、第2開閉弁7b、第1三方弁8a、第2三方弁8b及び第3三方弁8cは、運転状態に応じて、第1室内機103a、第2室内機103b及び第3室内機103cから流出する冷媒が復管t11へ流入するまでの流路を決定する。
<Relay machine 102>
The repeater 102 includes a first on-off valve 7a, a second on-off valve 7b, a first three-way valve 8a, a second three-way valve 8b and a third three-way valve 8c. The first on-off valve 7a, the second on-off valve 7b, the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c determine the flow path through which the refrigerant flowing through the forward pipe t10 flows into the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c, depending on the operating state. In addition, the first on-off valve 7a, the second on-off valve 7b, the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c determine the flow path of the refrigerant flowing out of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c until it flows into the return pipe t11.
 第1三方弁8aは、第1室内熱交換器9aに接続された第1ポートと、往管t10及び第1開閉弁7aに接続された第2ポートと、復管t11及び第2開閉弁7bに接続された第3ポートとを有する。第2三方弁8bは、第2室内熱交換器9bに接続された第1ポートと、往管t10及び第1開閉弁7aに接続された第2ポートと、復管t11及び第2開閉弁7bに接続された第3ポートとを有する。第3三方弁8cは、第3室内熱交換器9cに接続された第1ポートと、往管t10及び第1開閉弁7aに接続された第2ポートと、復管t11及び第2開閉弁7bに接続された第3ポートとを有する。 The first three-way valve 8a has a first port connected to the first indoor heat exchanger 9a, a second port connected to the forward pipe t10 and the first on-off valve 7a, and a third port connected to the return pipe t11 and the second on-off valve 7b. The second three-way valve 8b has a first port connected to the second indoor heat exchanger 9b, a second port connected to the forward pipe t10 and the first on-off valve 7a, and a third port connected to the return pipe t11 and the second on-off valve 7b. The third three-way valve 8c has a first port connected to the third indoor heat exchanger 9c, a second port connected to the forward pipe t10 and the first on-off valve 7a, and a third port connected to the return pipe t11 and the second on-off valve 7b.
 往管t10は、第1開閉弁7a、第1三方弁8a、第2三方弁8b及び第3三方弁8cに接続する配管に接続する。復管t11は、第2開閉弁7b、第1三方弁8a、第2三方弁8b及び第3三方弁8cに接続する配管に接続する。 The forward pipe t10 is connected to a pipe that connects to the first on-off valve 7a, the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c. The return pipe t11 is connected to a pipe connected to the second on-off valve 7b, the first three-way valve 8a, the second three-way valve 8b and the third three-way valve 8c.
<室内機>
 第1室内機103aは、第1室内熱交換器9a及び第1室内熱交換器9aに接続された第1室内膨張弁10aを有する。第2室内機103bは、第2室内熱交換器9b及び第2室内熱交換器9bに接続された第2室内膨張弁10bを有する。第3室内機103cは、第3室内熱交換器9c及び第3室内熱交換器9cに接続された第3室内膨張弁10cを有する。
<Indoor unit>
The first indoor unit 103a has a first indoor heat exchanger 9a and a first indoor expansion valve 10a connected to the first indoor heat exchanger 9a. The second indoor unit 103b has a second indoor heat exchanger 9b and a second indoor expansion valve 10b connected to the second indoor heat exchanger 9b. The third indoor unit 103c has a third indoor heat exchanger 9c and a third indoor expansion valve 10c connected to the third indoor heat exchanger 9c.
 第1室内熱交換器9aは、配管t13aにより第1三方弁8aの第1ポートに接続される。第1室内膨張弁10aは、配管t12aにより中継機102の第1開閉弁7a及び第2開閉弁7bに接続される。第2室内熱交換器9bは、配管t13bにより第2三方弁8bの第1ポートに接続される。第2室内膨張弁10bは、配管t12a及び配管t12bにより中継機102の第1開閉弁7a及び第2開閉弁7bに接続される。第3室内熱交換器9cは、配管t13cにより第3三方弁8cの第1ポートに接続される。第3室内膨張弁10cは、配管t12a及び配管t12cにより中継機102の第1開閉弁7a及び第2開閉弁7bに接続される。 The first indoor heat exchanger 9a is connected to the first port of the first three-way valve 8a by a pipe t13a. The first indoor expansion valve 10a is connected to the first on-off valve 7a and the second on-off valve 7b of the repeater 102 by a pipe t12a. The second indoor heat exchanger 9b is connected to the first port of the second three-way valve 8b by a pipe t13b. The second indoor expansion valve 10b is connected to the first on-off valve 7a and the second on-off valve 7b of the repeater 102 by pipes t12a and t12b. The third indoor heat exchanger 9c is connected to the first port of the third three-way valve 8c by a pipe t13c. The third indoor expansion valve 10c is connected to the first on-off valve 7a and the second on-off valve 7b of the repeater 102 by pipes t12a and t12c.
<制御装置200>
 制御装置200は、空気調和装置100の運転状態に応じて、室外機101の圧縮機1、第1室外四方弁2a、第1室外膨張弁5a、第2室外膨張弁5b、第1逆止弁6a、第2逆止弁6b、第3逆止弁6c、第4逆止弁6d及び第5逆止弁6eを制御する。
<Control device 200>
The control device 200 controls the compressor 1 of the outdoor unit 101, the first outdoor four-way valve 2a, the first outdoor expansion valve 5a, the second outdoor expansion valve 5b, the first check valve 6a, the second check valve 6b, the third check valve 6c, the fourth check valve 6d and the fifth check valve 6e according to the operating state of the air conditioner 100.
 制御装置200は、空気調和装置100の運転状態に応じて、中継機102の第1開閉弁7a、第2開閉弁7b、第1三方弁8a、第2三方弁8b及び第3三方弁8cを制御する。 The control device 200 controls the first on-off valve 7a, the second on-off valve 7b, the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c of the repeater 102 according to the operating state of the air conditioner 100.
 制御装置200は、空気調和装置100の運転状態に応じて、第1室内機103aの第1室内膨張弁10a、第2室内機103bの第2室内膨張弁10b及び第3室内機103cの第3室内膨張弁10cを制御する。 The control device 200 controls the first indoor expansion valve 10a of the first indoor unit 103a, the second indoor expansion valve 10b of the second indoor unit 103b, and the third indoor expansion valve 10c of the third indoor unit 103c according to the operating state of the air conditioner 100.
 運転状態のうち、「運転状態A」は、第1室内機103a、第2室内機103b及び第3室内機103cの全てが冷房運転を行なっている場合の運転状態である。「運転状態B」は、第1室内機103a、第2室内機103b及び第3室内機103cの一部が冷房運転を行ない、他の一部又は全部が暖房運転を行う。かつ、「運転状態B」は、第1室内機103a、第2室内機103b及び第3室内機103cの冷房負荷の方が第1室内機103a、第2室内機103b及び第3室内機103cの暖房負荷よりも大きい運転状態である。「運転状態C」は、第1室内機103a、第2室内機103b及び第3室内機103cの一部が冷房運転を行い、他の一部又は全部が暖房運転を行う。かつ、「運転状態C」は、第1室内機103a、第2室内機103b及び第3室内機103cの暖房運転の負荷の方が第1室内機103a、第2室内機103b及び第3室内機103cの冷房負荷よりも大きい場合の運転状態である。「運転状態D」は、第1室内機103a、第2室内機103b及び第3室内機103cの全てが暖房運転を行う場合の運転状態である。 Of the operating states, "operating state A" is the operating state when all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing cooling operation. In "operating state B", some of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c perform cooling operation, and some or all of the others perform heating operation. In addition, "operating state B" is an operating state in which the cooling load of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is greater than the heating load of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c. In "operating state C", some of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are in cooling operation, and the other part or all are in heating operation. In addition, "operating state C" is an operating state in which the heating load of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is greater than the cooling load of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c. "Operating state D" is an operating state when all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c perform the heating operation.
 制御装置200は、「運転状態A」の場合、第1室外四方弁2aを冷房側に切替え、第1室外膨張弁5aを閉、第2室外膨張弁5bを開、第1開閉弁7aを開及び第2開閉弁7bを閉にする。制御装置200は、第1室内機103a、第2室内機103b及び第3室内機103cの運転状態が冷房運転の場合、第1三方弁8a、第2三方弁8b及び第3三方弁8cの第1ポートを開、第2ポートを閉及び第3ポートを開にする。 In the case of "operating state A", the control device 200 switches the first outdoor four-way valve 2a to the cooling side, closes the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, opens the first on-off valve 7a, and closes the second on-off valve 7b. When the operating state of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is cooling operation, the control device 200 opens the first port, closes the second port, and opens the third port of the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
 制御装置200は、「運転状態B」の場合、第1室外四方弁2aを冷房側に切替え、第1室外膨張弁5aを開、第2室外膨張弁5bを閉、第1開閉弁7aを閉及び第2開閉弁7bを閉にする。制御装置200は、第1室内機103a、第2室内機103b及び第3室内機103cの状態が運転状態Bの場合、暖房運転を行なっている第1室内機103aの第1三方弁8aの第1ポートを開、第2ポートを開及び第3ポートを開にする。冷房運転を行なっている第2室内機103bの第2三方弁8bの第1ポートを開、第2ポートを閉及び第3ポートを開にする。冷房運転を行なっている第3室内機103cの第3三方弁8cの第1ポートを開、第2ポートを閉及び第3ポートを開にする。 In the case of "operating state B", the control device 200 switches the first outdoor four-way valve 2a to the cooling side, opens the first outdoor expansion valve 5a, closes the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b. When the state of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is the operating state B, the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a of the first indoor unit 103a that is performing the heating operation. The first port of the second three-way valve 8b of the second indoor unit 103b that is performing cooling operation is opened, the second port is closed, and the third port is opened. The first port, the second port and the third port of the third three-way valve 8c of the third indoor unit 103c, which is in cooling operation, are opened.
 制御装置200は、「運転状態C」の場合、第1室外四方弁2aを暖房側に切替え、第1室外膨張弁5aを開、第2室外膨張弁5bを開、第1開閉弁7aを閉及び第2開閉弁7bを開にする。制御装置200は、第1室内機103a、第2室内機103b及び第3室内機103cの状態が運転状態Cの場合、暖房運転を行なっている第1室内機103aの第1三方弁8aの第1ポートを開、第2ポートを開及び第3ポートを開にする。暖房運転を行なっている第2室内機103bの第2三方弁8bの第1ポートを開、第2ポートを開及び第3ポートを開にする。冷房運転を行なっている第3室内機103cの第3三方弁8cの第1ポートを開、第2ポートを閉及び第3ポートを開にする。 In the case of "operating state C", the control device 200 switches the first outdoor four-way valve 2a to the heating side, opens the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and opens the second on-off valve 7b. When the state of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is the operating state C, the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a of the first indoor unit 103a that is performing the heating operation. The first port, the second port, and the third port of the second three-way valve 8b of the second indoor unit 103b that is performing the heating operation are opened. The first port, the second port and the third port of the third three-way valve 8c of the third indoor unit 103c, which is in cooling operation, are opened.
 制御装置200は、「運転状態D」の場合、第1室外四方弁2aを暖房側に切替え、第1室外膨張弁5aを開、第2室外膨張弁5bを開、第1開閉弁7aを閉及び第2開閉弁7bを閉にする。制御装置200は、第1室内機103a、第2室内機103b及び第3室内機103cの運転状態が暖房運転の場合、第1三方弁8a、第2三方弁8b及び第3三方弁8cの第1ポートを開、第2ポートを開及び第3ポートを閉にする。 In the case of "operating state D", the control device 200 switches the first outdoor four-way valve 2a to the heating side, opens the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b. When the operating state of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is heating operation, the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
 制御装置200の処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。処理回路が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部が一つのハードウェアで実現されてもよい。制御装置200の処理回路がCPUの場合、処理回路が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、記憶部に格納される。CPUは、記憶部に格納されたプログラムを読み出して実行することにより、処理回路の各機能を実現する。なお、処理回路の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 When the processing circuit of the control device 200 is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Each functional unit implemented by the processing circuit may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware. When the processing circuit of the control device 200 is a CPU, each function executed by the processing circuit is implemented by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the storage unit. The CPU implements each function of the processing circuit by reading and executing a program stored in the storage unit. A part of the functions of the processing circuit may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
<空気調和装置100の動作>
 実施形態1の空気調和装置100の動作について説明する。図2は、実施形態1に係る空気調和装置100における運転状態Aの冷媒の流れを示す冷媒回路図である。図3は、実施形態1に係る空気調和装置100における運転状態Bの冷媒の流れを示す冷媒回路図である。図4は、実施形態1に係る空気調和装置100における運転状態Cの冷媒の流れを示す冷媒回路図である。図5は、実施形態1に係る空気調和装置100における運転状態Dの冷媒の流れを示す冷媒回路図である。図2、図3、図4及び図5において、矢印は冷媒の流れの方向を示す。
<Operation of air conditioner 100>
The operation of the air conditioner 100 of Embodiment 1 will be described. FIG. 2 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner 100 according to Embodiment 1. As shown in FIG. FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner 100 according to Embodiment 1. As shown in FIG. FIG. 4 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C in the air conditioner 100 according to Embodiment 1. As shown in FIG. FIG. 5 is a refrigerant circuit diagram showing the flow of refrigerant in operating state D in the air conditioner 100 according to Embodiment 1. As shown in FIG. 2, 3, 4 and 5, the arrows indicate the direction of coolant flow.
(運転状態A:全冷房運転)
 図2は、第1室内機103a、第2室内機103b及び第3室内機103cの全てが冷房運転を行なっている状態を示す。
(Operating state A: full cooling operation)
FIG. 2 shows a state in which all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing cooling operation.
 運転状態Aでは、主回路と三つのバイパス回路が形成される。図2に示すように、主回路では、圧縮機1、第1室外四方弁2a、第1室外熱交換器3a、第5逆止弁6e、過冷却熱交換器4、第4逆止弁6d、第1開閉弁7a、第1室内膨張弁10a、第1室内熱交換器9a、第1三方弁8a、第1逆止弁6a、第1室外四方弁2a、再び圧縮機1の順に冷媒が流れる。 In operating state A, the main circuit and three bypass circuits are formed. As shown in FIG. 2, in the main circuit, the refrigerant flows through the compressor 1, the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first on-off valve 7a, the first indoor expansion valve 10a, the first indoor heat exchanger 9a, the first three-way valve 8a, the first check valve 6a, the first outdoor four-way valve 2a, and the compressor 1 again.
 一つ目のバイパス回路は、主回路の過冷却熱交換器4と第4逆止弁6dの間から分岐した冷媒が、第1室外四方弁2aと圧縮機1の吸入側との間までの配管t6である。配管t6を流れる冷媒は、第2室外膨張弁5b、過冷却熱交換器4、の順に冷媒が流れ、主回路の第1室外四方弁2aと圧縮機1の吸入側との間に合流する。二つ目のバイパス回路は、主回路の第1開閉弁7aと第1室内膨張弁10aとの間から分岐した冷媒が、第2室内膨張弁10b、第2室内熱交換器9b、第2三方弁8bの順に流れ、主回路の第1三方弁8aと第1逆止弁6aとの間に合流する。三つ目のバイパス回路は、主回路の第1開閉弁7aと第1室内膨張弁10aとの間から分岐した冷媒が、第3室内膨張弁10c、第3室内熱交換器9c、第3三方弁8cの順に流れ、主回路の第1三方弁8aと第1逆止弁6aとの間に合流する。 In the first bypass circuit, the refrigerant branched from between the subcooling heat exchanger 4 of the main circuit and the fourth check valve 6d is a pipe t6 between the first outdoor four-way valve 2a and the suction side of the compressor 1. The refrigerant flowing through the pipe t6 flows through the second outdoor expansion valve 5b and the supercooling heat exchanger 4 in that order, and joins between the first outdoor four-way valve 2a of the main circuit and the suction side of the compressor 1. In the second bypass circuit, the refrigerant branched from between the first on-off valve 7a and the first indoor expansion valve 10a of the main circuit flows in the order of the second indoor expansion valve 10b, the second indoor heat exchanger 9b, and the second three-way valve 8b, and joins between the first three-way valve 8a and the first check valve 6a of the main circuit. In the third bypass circuit, the refrigerant branched from between the first on-off valve 7a and the first indoor expansion valve 10a of the main circuit flows in the order of the third indoor expansion valve 10c, the third indoor heat exchanger 9c, and the third three-way valve 8c, and joins between the first three-way valve 8a and the first check valve 6a of the main circuit.
(運転状態B:冷暖房混在運転、冷房負荷>暖房負荷)
 図3は、第1室内機103aが暖房運転、第2室内機103b及び第3室内機103cが冷房運転を行なっている状態を示す。
(Operating state B: cooling and heating mixed operation, cooling load > heating load)
FIG. 3 shows a state in which the first indoor unit 103a is in heating operation, and the second indoor unit 103b and third indoor unit 103c are in cooling operation.
 運転状態Bでは、主回路と二つのバイパス回路が形成される。図3に示すように、主回路では、圧縮機1、第1室外四方弁2a、第1室外熱交換器3a、第5逆止弁6e、過冷却熱交換器4、第4逆止弁6d、第1三方弁8a、第1室内熱交換器9a、第1室内膨張弁10a、第2室内膨張弁10b、第2室内熱交換器9b、第2三方弁8b、第1逆止弁6a、第1室外四方弁2a、再び圧縮機1の順に冷媒が流れる。 In operating state B, a main circuit and two bypass circuits are formed. As shown in FIG. 3, in the main circuit, the compressor 1, the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the fifth check valve 6e, the supercooling heat exchanger 4, the fourth check valve 6d, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the second indoor expansion valve 10b, the second indoor heat exchanger 9b, the second three-way valve 8b, the first check valve 6a, the first outdoor Refrigerant flows through the four-way valve 2a and then through the compressor 1 again.
 一つ目のバイパス回路は、主回路の第1室外熱交換器3aと第5逆止弁6eとの間から分岐した冷媒が、第1室外膨張弁5aに流れ、主回路の過冷却熱交換器4と第4逆止弁6dとの間に合流する。二つ目のバイパス回路は、主回路の第1室内膨張弁10aと第2室内膨張弁10bとの間から分岐した冷媒が、第3室内膨張弁10c、第3室内熱交換器9c、配管t13c、第3三方弁8cの順に冷媒が流れ、主回路の第2三方弁8bからの冷媒に合流する。 In the first bypass circuit, the refrigerant branched from between the first outdoor heat exchanger 3a and the fifth check valve 6e of the main circuit flows into the first outdoor expansion valve 5a and joins between the subcooling heat exchanger 4 of the main circuit and the fourth check valve 6d. In the second bypass circuit, the refrigerant branched from between the first indoor expansion valve 10a and the second indoor expansion valve 10b of the main circuit flows through the third indoor expansion valve 10c, the third indoor heat exchanger 9c, the pipe t13c, and the third three-way valve 8c in that order, and joins the refrigerant from the second three-way valve 8b of the main circuit.
(運転状態C:冷暖房混在運転、暖房負荷>冷房負荷)
 図4は、第1室内機103a及び第2室内機103bが暖房運転、第3室内機103cが冷房運転を行なっている状態を示す。
(Operating state C: cooling and heating mixed operation, heating load > cooling load)
FIG. 4 shows a state in which the first indoor unit 103a and the second indoor unit 103b are in heating operation, and the third indoor unit 103c is in cooling operation.
 運転状態Cでは、図4に示すように、主回路と二つのバイパス回路が形成される。主回路では、圧縮機1、第1室外四方弁2a、第2逆止弁6b、第1三方弁8a、第1室内熱交換器9a、第1室内膨張弁10a、第3室内膨張弁10c、第3室内熱交換器9c、第3三方弁8c、第3逆止弁6c、過冷却熱交換器4、第1室外膨張弁5a、第1室外熱交換器3a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。 In operating state C, as shown in FIG. 4, a main circuit and two bypass circuits are formed. In the main circuit, the compressor 1, the first outdoor four-way valve 2a, the second check valve 6b, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the third indoor expansion valve 10c, the third indoor heat exchanger 9c, the third three-way valve 8c, the third check valve 6c, the subcooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, the first outdoor four-way valve 2a, The refrigerant flows in order of the compressor 1 again.
 一つ目のバイパス回路は、主回路の第2逆止弁6bと第1三方弁8aとの間から分岐した冷媒が、第2三方弁8b、第2室内熱交換器9b、第2室内膨張弁10bの順に流れ、主回路の第1室内膨張弁10aと第3室内膨張弁10cの間に合流する。二つ目のバイパス回路は、主回路の過冷却熱交換器4と第1室外膨張弁5aとの間から分岐した冷媒が、第2室外膨張弁5bに流れ、主回路の第1室外四方弁2aと圧縮機1との間に合流する。 In the first bypass circuit, the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the second three-way valve 8b, the second indoor heat exchanger 9b, and the second indoor expansion valve 10b in that order, and joins between the first indoor expansion valve 10a and the third indoor expansion valve 10c of the main circuit. In the second bypass circuit, the refrigerant branched from between the subcooling heat exchanger 4 of the main circuit and the first outdoor expansion valve 5a flows to the second outdoor expansion valve 5b, and joins between the first outdoor four-way valve 2a of the main circuit and the compressor 1.
(運転状態D:全暖房運転)
 図5は、第1室内機103a、第2室内機103b及び第3室内機103cの全てが暖房運転を行なっている状態を示す。
(Operating state D: All heating operation)
FIG. 5 shows a state in which all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing heating operation.
 運転状態Dでは、主回路と三つのバイパス回路が形成される。図5に示すように、主回路では、圧縮機1、第1室外四方弁2a、第2逆止弁6b、第1三方弁8a、第1室内熱交換器9a、第1室内膨張弁10a、第2開閉弁7b、第3逆止弁6c、過冷却熱交換器4、第1室外膨張弁5a、第1室外熱交換器3a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。 In operating state D, the main circuit and three bypass circuits are formed. As shown in FIG. 5, in the main circuit, the refrigerant flows through the compressor 1, the first outdoor four-way valve 2a, the second check valve 6b, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the second on-off valve 7b, the third check valve 6c, the subcooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, the first outdoor four-way valve 2a, and the compressor 1 again.
 一つ目のバイパス回路は、主回路の第2逆止弁6bと第1三方弁8aとの間から分岐した冷媒が、第2三方弁8b、第2室内熱交換器9b、第2室内膨張弁10bの順に流れ、主回路の第1室内膨張弁10aと第2開閉弁7bとの間に合流する。二つ目のバイパス回路は、主回路の第2逆止弁6bと第1三方弁8aとの間から分岐した冷媒が、第3三方弁8c、第3室内熱交換器9c、第3室内膨張弁10cの順に流れ、主回路の第1室内膨張弁10aと第2開閉弁7bとの間に合流する。三つ目のバイパス回路は、主回路の過冷却熱交換器4と第1室外膨張弁5aとの間から分岐した冷媒が、第2室外膨張弁5b、過冷却熱交換器4に流れ、主回路の第1室外四方弁2aと圧縮機1との間に合流する。 In the first bypass circuit, the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the second three-way valve 8b, the second indoor heat exchanger 9b, and the second indoor expansion valve 10b in that order, and joins between the first indoor expansion valve 10a and the second on-off valve 7b of the main circuit. In the second bypass circuit, the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows in the order of the third three-way valve 8c, the third indoor heat exchanger 9c, and the third indoor expansion valve 10c, and joins between the first indoor expansion valve 10a and the second on-off valve 7b of the main circuit. In the third bypass circuit, the refrigerant branched from between the supercooling heat exchanger 4 and the first outdoor expansion valve 5a of the main circuit flows to the second outdoor expansion valve 5b and the supercooling heat exchanger 4, and joins between the first outdoor four-way valve 2a and the compressor 1 of the main circuit.
<変形例1>
 実施形態1の変形例1では、冷媒と水の2種の熱媒体が、混流せず独立して回路を形成し、第1冷媒-水熱交換器12a及び第2冷媒-水熱交換器12bを通じて熱交換のみを行う。第1冷媒-水熱交換器12a及び第2冷媒-水熱交換器12bは、例えばプレート熱交換器及びシェルアンドチューブ熱交換器等を用いる。
<Modification 1>
In Modification 1 of Embodiment 1, two types of heat media, refrigerant and water, form circuits independently without being mixed, and only heat is exchanged through the first refrigerant-water heat exchanger 12a and the second refrigerant-water heat exchanger 12b. For the first refrigerant-water heat exchanger 12a and the second refrigerant-water heat exchanger 12b, for example, plate heat exchangers, shell-and-tube heat exchangers, or the like are used.
 図6は、実施形態1の変形例1に係る空気調和装置100の冷媒回路図及び水回路図である。なお、図1と同一部分には同一符号を付し、その説明を省略する。変形例1では、実施形態1の空気調和装置100における中継機102、第1室内機103a、第2室内機103b及び第3室内機103cの構成が異なる。 FIG. 6 is a refrigerant circuit diagram and a water circuit diagram of the air conditioner 100 according to Modification 1 of Embodiment 1. FIG. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. In Modification 1, the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c in the air conditioner 100 of the first embodiment are different.
 中継機102は、第1開閉弁7a、第2開閉弁7b、第1冷媒-水熱交換器12a、第2冷媒-水熱交換器12b、第1中継四方弁13a、第2中継四方弁13b、第1ポンプ14a、第2ポンプ14b、第1混流三方弁15a、第2混流三方弁15b、第3混流三方弁15c、第1分流三方弁16a、第2分流三方弁16b及び第3分流三方弁16cを備える。 The repeater 102 includes a first on-off valve 7a, a second on-off valve 7b, a first refrigerant-water heat exchanger 12a, a second refrigerant-water heat exchanger 12b, a first relay four-way valve 13a, a second relay four-way valve 13b, a first pump 14a, a second pump 14b, a first mixed flow three-way valve 15a, a second mixed flow three-way valve 15b, a third mixed flow three-way valve 15c, and a first branch flow three-way valve 1. 6a, a second three-way diverter valve 16b and a third three-way diverter valve 16c.
 第1開閉弁7aは、往管t10に接続される。第1開閉弁7aは、第2開閉弁7b、第1中継膨張弁11a及び第2中継膨張弁11bに接続される。第2開閉弁7bは、復管t11に接続される。第2開閉弁7bは、第1開閉弁7a、第1中継膨張弁11a及び第2中継膨張弁11bに接続される。 The first on-off valve 7a is connected to the forward pipe t10. The first on-off valve 7a is connected to the second on-off valve 7b, the first relay expansion valve 11a and the second relay expansion valve 11b. The second on-off valve 7b is connected to the return pipe t11. The second on-off valve 7b is connected to the first on-off valve 7a, the first relay expansion valve 11a and the second relay expansion valve 11b.
 第1中継膨張弁11aは、第1開閉弁7a、第2開閉弁7b及び第2中継膨張弁11bとに接続される。第1中継膨張弁11aは、第1冷媒-水熱交換器12aを流れる冷媒の圧力を調整する。 The first relay expansion valve 11a is connected to the first on-off valve 7a, the second on-off valve 7b and the second relay expansion valve 11b. The first relay expansion valve 11a adjusts the pressure of the refrigerant flowing through the first refrigerant-water heat exchanger 12a.
 第2中継膨張弁11bは、第1開閉弁7a、第2開閉弁7b及び第1中継膨張弁11aとに接続される。第2中継膨張弁11bは、第2冷媒-水熱交換器12bを流れる冷媒の圧力を調整する。 The second relay expansion valve 11b is connected to the first on-off valve 7a, the second on-off valve 7b and the first relay expansion valve 11a. The second relay expansion valve 11b adjusts the pressure of the refrigerant flowing through the second refrigerant-water heat exchanger 12b.
 第1冷媒-水熱交換器12aは、第1中継膨張弁11aと第1中継四方弁13aとに接続され、室外機101の往管t10から流出する冷媒と、熱媒体である水との熱交換を行なう。第1冷媒-水熱交換器12bは、第2中継膨張弁11bと第2中継四方弁13bとに接続され、室外機101の往管t10から流出する冷媒と、熱媒体である水との熱交換を行なう。 The first refrigerant-water heat exchanger 12a is connected to the first relay expansion valve 11a and the first relay four-way valve 13a, and exchanges heat between the refrigerant flowing out from the forward pipe t10 of the outdoor unit 101 and water as a heat medium. The first refrigerant-water heat exchanger 12b is connected to the second relay expansion valve 11b and the second relay four-way valve 13b, and exchanges heat between the refrigerant flowing out from the forward pipe t10 of the outdoor unit 101 and water as a heat medium.
 第1中継四方弁13aは、往管t10、第1冷媒-水熱交換器12a及び復管t11に接続され、往管t10から流出する冷媒の流れを切替える。第2中継四方弁13bは、往管t10、第2冷媒-水熱交換器12b及び復管t11に接続され、往管t10から流出する冷媒の流れを切替える。 The first relay four-way valve 13a is connected to the forward pipe t10, the first refrigerant-water heat exchanger 12a and the return pipe t11, and switches the flow of refrigerant flowing out of the forward pipe t10. The second relay four-way valve 13b is connected to the forward pipe t10, the second refrigerant-water heat exchanger 12b, and the return pipe t11, and switches the flow of refrigerant flowing out of the forward pipe t10.
 第1ポンプ14aの吐出部は第1冷媒-水熱交換器12aに接続される。第1ポンプ14aは、第1冷媒-水熱交換器12aを流れる熱媒体に圧力を加える。第2ポンプ14bの吐出部は第2冷媒-水熱交換器12bに接続される。第2ポンプ14bは、第2冷媒-水熱交換器12bを流れる熱媒体に圧力を加える。 The discharge part of the first pump 14a is connected to the first refrigerant-water heat exchanger 12a. The first pump 14a applies pressure to the heat medium flowing through the first refrigerant-water heat exchanger 12a. The discharge of the second pump 14b is connected to the second refrigerant-water heat exchanger 12b. The second pump 14b applies pressure to the heat medium flowing through the second refrigerant-water heat exchanger 12b.
 第1混流三方弁15aは、第1冷媒-水熱交換器12aと、第2冷媒-水熱交換器12bと、第1室内熱交換器9aとの間に接続される。第2混流三方弁15bは、第1冷媒-水熱交換器12aと、第2冷媒-水熱交換器12bと、第2室内熱交換器9bとの間に接続される。第3混流三方弁15cは、第1冷媒-水熱交換器12aと、第2冷媒-水熱交換器12bと、第3室内熱交換器9cとの間に接続される。 The first mixed flow three-way valve 15a is connected between the first refrigerant-water heat exchanger 12a, the second refrigerant-water heat exchanger 12b, and the first indoor heat exchanger 9a. The second mixed flow three-way valve 15b is connected between the first refrigerant-water heat exchanger 12a, the second refrigerant-water heat exchanger 12b, and the second indoor heat exchanger 9b. The third mixed flow three-way valve 15c is connected between the first refrigerant-water heat exchanger 12a, the second refrigerant-water heat exchanger 12b and the third indoor heat exchanger 9c.
 第1分流三方弁16aは、第2ポンプ14bと、第1室内熱交換器9aと、第1ポンプ14aとの間に接続される。第2分流三方弁16bは、第2ポンプ14bと、第2室内熱交換器9bと、第1ポンプ14aとの間に接続される。第3分流三方弁16cは、第2ポンプ14bと、第3室内熱交換器9cと、第1ポンプ14aとの間に接続される。 The first diverting three-way valve 16a is connected between the second pump 14b, the first indoor heat exchanger 9a, and the first pump 14a. A second diverting three-way valve 16b is connected between the second pump 14b, the second indoor heat exchanger 9b and the first pump 14a. A third diverting three-way valve 16c is connected between the second pump 14b, the third indoor heat exchanger 9c and the first pump 14a.
 第1混流三方弁15a、第2混流三方弁15b及び第3混流三方弁15cは互いに接続されている。第1分流三方弁16a、第2分流三方弁16b及び第3分流三方弁16cは互いに接続されている。 The first mixed flow three-way valve 15a, the second mixed flow three-way valve 15b and the third mixed flow three-way valve 15c are connected to each other. The first flow dividing three-way valve 16a, the second flow dividing three-way valve 16b and the third flow dividing three-way valve 16c are connected to each other.
 第1混流三方弁15a、第2混流三方弁15b、第3混流三方弁15c、第1分流三方弁16a、第2分流三方弁16b及び第3分流三方弁16cは、空気調和装置100の運転状態により切替えられる。 The first mixed flow three-way valve 15a, the second mixed flow three-way valve 15b, the third mixed flow three-way valve 15c, the first divided flow three-way valve 16a, the second divided flow three-way valve 16b, and the third divided flow three-way valve 16c are switched according to the operating state of the air conditioner 100.
<室内機>
 第1室内機103aは、第1混流三方弁15a及び第1分流三方弁16aに接続された第1室内熱交換器9aを備える。第2室内機103bは、第2混流三方弁15b及び第2分流三方弁16bに接続された第2室内熱交換器9bを備える。第3室内機103cは、第3混流三方弁15c及び第3分流三方弁16cに接続された第3室内熱交換器9cを備える。
<Indoor unit>
The first indoor unit 103a includes a first indoor heat exchanger 9a connected to the first mixed three-way valve 15a and the first split three-way valve 16a. The second indoor unit 103b includes a second indoor heat exchanger 9b connected to the second mixed three-way valve 15b and the second split three-way valve 16b. The third indoor unit 103c includes a third indoor heat exchanger 9c connected to the third mixed three-way valve 15c and the third split three-way valve 16c.
<制御装置200>
 制御装置200は、「運転状態A」の場合、第1開閉弁7aを「開」にし、第2開閉弁7bを「閉」にする。制御装置200は、「運転状態B」の場合、第1開閉弁7aを「閉」にし、第2開閉弁7bを「閉」にする。制御装置200は、「運転状態C」の場合、第1開閉弁7aを「閉」にし、第2開閉弁7bを「閉」にする。制御装置200は、「運転状態D」の場合、第1開閉弁7aを「閉」にし、第2開閉弁7bを「開」にする。
<Control device 200>
In the case of "operating state A", the control device 200 "opens" the first on-off valve 7a and "closes" the second on-off valve 7b. In the case of "operating state B", the control device 200 "closes" the first on-off valve 7a and "closes" the second on-off valve 7b. In the case of "operating state C", the control device 200 "closes" the first on-off valve 7a and "closes" the second on-off valve 7b. In the case of "operating state D", the control device 200 "closes" the first on-off valve 7a and "opens" the second on-off valve 7b.
 制御装置200は、「運転状態A」の場合、第1冷媒-水熱交換器12aから流出した冷媒が第1逆止弁6aに流れ、往管t10からの冷媒が流入しないように第1中継四方弁13aを切替える。制御装置200は、「運転状態A」の場合、第2冷媒-水熱交換器12aから流出した冷媒が第1逆止弁6aに流れ、往管t10からの冷媒が流入しないように第2中継四方弁13bを切替える。 In the case of "operating state A", the control device 200 switches the first relay four-way valve 13a so that the refrigerant flowing out of the first refrigerant-water heat exchanger 12a flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow in. In the case of "operating state A", the control device 200 switches the second relay four-way valve 13b so that the refrigerant flowing out of the second refrigerant-water heat exchanger 12a flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow.
 制御装置200は、「運転状態B」及び「運転状態C」の場合、往管t10からの冷媒が第1冷媒-水熱交換器12aに流入し、第2冷媒-水熱交換器12bから流出した冷媒が流入しないように第1中継四方弁13aを切替える。制御装置200は、「運転状態B」の場合、第2室内膨張弁10bから流出した冷媒が第1逆止弁6aに流れ、往管t10からの冷媒が流入しないように第2中継四方弁13bを切替える。 In "operating state B" and "operating state C", the control device 200 switches the first relay four-way valve 13a so that the refrigerant from the forward pipe t10 flows into the first refrigerant-water heat exchanger 12a and the refrigerant flowing out of the second refrigerant-water heat exchanger 12b does not flow. In "operating state B", the control device 200 switches the second relay four-way valve 13b so that the refrigerant flowing out of the second indoor expansion valve 10b flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow.
 制御装置200は、「運転状態D」の場合、往管t10からの冷媒が第1冷媒-水熱交換器12aに流れ、復管t11からの冷媒が流入しないように第1中継四方弁13aを切替える。制御装置200は、「運転状態D」の場合、往管t10からの冷媒が第2冷媒-水熱交換器12bに流れ、復管t11からの冷媒が流入しないように第2中継四方弁13bを切替える。 In "operating state D", the control device 200 switches the first relay four-way valve 13a so that the refrigerant from the forward pipe t10 flows into the first refrigerant-water heat exchanger 12a and the refrigerant from the return pipe t11 does not flow. In "operating state D", the controller 200 switches the second relay four-way valve 13b so that the refrigerant from the forward pipe t10 flows into the second refrigerant-water heat exchanger 12b and the refrigerant from the return pipe t11 does not flow.
<変形例1に係る空気調和装置100の動作>
 実施形態1の変形例1に係る空気調和装置100の水の流れを説明する。第1冷媒-水熱交換器12a及び第2冷媒-水熱交換器12bで生成された冷水又は温水は、第1室内機103a、第2室内機103b及び第3室内機103cへそれぞれ分配され、再び第1ポンプ14a及び第2ポンプ14bに吸入される。冷水又は温水の第1室内機103a、第2室内機103b及び第3室内機103cへの分配は、第1混流三方弁15a、第2混流三方弁15b、第3混流三方弁15c、第1分流三方弁16a、第2分流三方弁16b及び第3分流三方弁16cの開閉により行われる。
<Operation of air conditioner 100 according to Modification 1>
The flow of water in the air conditioner 100 according to Modification 1 of Embodiment 1 will be described. The cold water or hot water generated by the first refrigerant-water heat exchanger 12a and the second refrigerant-water heat exchanger 12b is distributed to the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c, respectively, and is again sucked into the first pump 14a and the second pump 14b. Distribution of cold water or hot water to the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is performed by opening and closing the first mixed three-way valve 15a, the second mixed three-way valve 15b, the third mixed three-way valve 15c, the first divided three-way valve 16a, the second divided three-way valve 16b, and the third divided three-way valve 16c.
 実施形態1の変形例1に係る空気調和装置100の運転状態Aの冷媒の流れを説明する。図7は、実施形態1の変形例1に係る空気調和装置100における運転状態Aの冷媒回路図及び水回路図である。なお、室外機101における冷媒の流れについては、図2と同じである。 The refrigerant flow in the operating state A of the air conditioner 100 according to Modification 1 of Embodiment 1 will be described. 7 is a refrigerant circuit diagram and a water circuit diagram of the operating state A in the air conditioner 100 according to Modification 1 of Embodiment 1. FIG. The refrigerant flow in the outdoor unit 101 is the same as in FIG.
 運転状態Aでは、主回路と一つのバイパス回路が形成される。主回路では、圧縮機1、第1室外四方弁2a、第1室外熱交換器3a、第5逆止弁6e、過冷却熱交換器4、第4逆止弁6d、第1開閉弁7a、第1中継膨張弁11a、第1冷媒-水熱交換器12a、第1中継四方弁13a、第1逆止弁6a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。また、主回路では、第1開閉弁7aと第1中継膨張弁11aとの間から分岐した冷媒が、第2中継膨張弁11b、第2冷媒-水熱交換器12b、第2中継四方弁13bの順に流れ、第1中継四方弁13aから流出した冷媒と合流する。 In operating state A, the main circuit and one bypass circuit are formed. In the main circuit, the refrigerant flows through the compressor 1, the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first on-off valve 7a, the first relay expansion valve 11a, the first refrigerant-water heat exchanger 12a, the first relay four-way valve 13a, the first check valve 6a, the first outdoor four-way valve 2a, and the compressor 1 again. In the main circuit, the refrigerant branched from between the first on-off valve 7a and the first relay expansion valve 11a flows through the second relay expansion valve 11b, the second refrigerant-water heat exchanger 12b, and the second relay four-way valve 13b in that order, and joins the refrigerant flowing out of the first relay four-way valve 13a.
 バイパス回路は、主回路の過冷却熱交換器4と第4逆止弁6dとの間から分岐した冷媒が、第2室外膨張弁5b、過冷却熱交換器4、の順に流れ、主回路の第1室外四方弁2aと圧縮機1吸入側との間に合流する。 In the bypass circuit, the refrigerant branched from between the supercooling heat exchanger 4 of the main circuit and the fourth check valve 6d flows through the second outdoor expansion valve 5b and the supercooling heat exchanger 4 in that order, and joins between the first outdoor four-way valve 2a of the main circuit and the suction side of the compressor 1.
 実施形態1の変形例1に係る空気調和装置100の運転状態Bの冷媒の流れを説明する。図8は、実施形態1の変形例1に係る空気調和装置100における運転状態Bの冷媒回路図及び水回路図である。なお、室外機101における冷媒の流れについては、図3と同じである。 The refrigerant flow in the operating state B of the air conditioner 100 according to Modification 1 of Embodiment 1 will be described. 8 is a refrigerant circuit diagram and a water circuit diagram of the operating state B in the air conditioner 100 according to Modification 1 of Embodiment 1. FIG. The refrigerant flow in the outdoor unit 101 is the same as in FIG.
 運転状態Bでは、主回路と一つのバイパス回路が形成される。主回路では、圧縮機1、第1室外四方弁2a、第1室外熱交換器3a、第5逆止弁6e、過冷却熱交換器4、第4逆止弁6d、第1中継四方弁13a、第1冷媒-水熱交換器12a、第1中継膨張弁11a、第2中継膨張弁11b、第2冷媒-水熱交換器12b、第2中継四方弁13b、第1逆止弁6a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。 In operating state B, the main circuit and one bypass circuit are formed. In the main circuit, the compressor 1, the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first relay four-way valve 13a, the first refrigerant-water heat exchanger 12a, the first relay expansion valve 11a, the second relay expansion valve 11b, the second refrigerant-water heat exchanger 12b, the second relay four-way valve 13b, the first check valve 6a, the second Refrigerant flows in the order of the one-outdoor four-way valve 2a and the compressor 1 again.
 バイパス回路は、主回路の第1室外熱交換器3aと第5逆止弁6eとの間から分岐した冷媒が、第1室外膨張弁5aに流れ、主回路の過冷却熱交換器4と第4逆止弁6dとの間に合流する。 In the bypass circuit, the refrigerant branched from between the first outdoor heat exchanger 3a and the fifth check valve 6e of the main circuit flows to the first outdoor expansion valve 5a and joins between the subcooling heat exchanger 4 of the main circuit and the fourth check valve 6d.
 実施形態1の変形例1に係る空気調和装置100における運転状態Cの冷媒の流れを説明する。図9は、実施形態1の変形例1に係る空気調和装置100における運転状態Cの冷媒回路図及び水回路図である。なお、室外機101における冷媒の流れについては、図4と同じである。 The flow of the refrigerant in the operating state C in the air conditioner 100 according to Modification 1 of Embodiment 1 will be described. 9 is a refrigerant circuit diagram and a water circuit diagram of the operating state C in the air conditioner 100 according to Modification 1 of Embodiment 1. FIG. The refrigerant flow in the outdoor unit 101 is the same as in FIG.
 運転状態Cでは、主回路と一つのバイパス回路が形成される。主回路では、圧縮機1、第1室外四方弁2a、第2逆止弁6b、第1中継四方弁13a、第1冷媒-水熱交換器12a、第1中継膨張弁11a、第2中継膨張弁11b、第2冷媒-水熱交換器12b、第2中継四方弁13b、第3逆止弁6c、過冷却熱交換器4、第1室外膨張弁5a、第1室外熱交換器3a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。 In operating state C, the main circuit and one bypass circuit are formed. In the main circuit, the compressor 1, the first outdoor four-way valve 2a, the second check valve 6b, the first relay four-way valve 13a, the first refrigerant-water heat exchanger 12a, the first relay expansion valve 11a, the second relay expansion valve 11b, the second refrigerant-water heat exchanger 12b, the second relay four-way valve 13b, the third check valve 6c, the supercooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, The refrigerant flows in order of the first outdoor four-way valve 2a and the compressor 1 again.
 バイパス回路は、主回路の過冷却熱交換器4と第1室外膨張弁5aとの間から分岐した
冷媒が、第2室外膨張弁5b、過冷却熱交換器4に流れ、主回路の第1室外四方弁2aと圧縮機1との間に合流する。
In the bypass circuit, the refrigerant branched from between the subcooling heat exchanger 4 of the main circuit and the first outdoor expansion valve 5a flows into the second outdoor expansion valve 5b and the subcooling heat exchanger 4, and the first outdoor four-way valve 2a of the main circuit joins between the compressor 1.
 実施形態1の変形例1に係る空気調和装置100における運転状態Dの冷媒の流れを説明する。図10は、実施形態1の変形例1に係る空気調和装置100における運転状態Dの冷媒回路図及び水回路図である。なお、室外機101における冷媒の流れについては、図5と同じである。 The flow of the refrigerant in the operating state D in the air conditioner 100 according to Modification 1 of Embodiment 1 will be described. 10 is a refrigerant circuit diagram and a water circuit diagram of the operating state D in the air conditioner 100 according to Modification 1 of Embodiment 1. FIG. The refrigerant flow in the outdoor unit 101 is the same as in FIG.
 運転状態Dでは、主回路と一つのバイパス回路が形成される。主回路では、圧縮機1、第1室外四方弁2a、第2逆止弁6b、第1中継四方弁13a、第1冷媒-水熱交換器12a、第1中継膨張弁11a、第2開閉弁7b、第3逆止弁6c、過冷却熱交換器4、第1室外膨張弁5a、第1室外熱交換器3a、第1室外四方弁2a、再び圧縮機1の順に冷媒が流れる。また、主回路では、第2逆止弁6bと第1中継四方弁13aとの間から分岐した冷媒が、第2中継四方弁13b、第2冷媒-水熱交換器12b、第2中継膨張弁11bの順に流れ、第1中継四方弁13aから流出した冷媒と合流する。 In operating state D, the main circuit and one bypass circuit are formed. In the main circuit, the refrigerant flows through the compressor 1, the first outdoor four-way valve 2a, the second check valve 6b, the first relay four-way valve 13a, the first refrigerant-water heat exchanger 12a, the first relay expansion valve 11a, the second on-off valve 7b, the third check valve 6c, the subcooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, the first outdoor four-way valve 2a, and the compressor 1 again. In the main circuit, the refrigerant branched from between the second check valve 6b and the first relay four-way valve 13a flows through the second relay four-way valve 13b, the second refrigerant-water heat exchanger 12b, and the second relay expansion valve 11b in that order, and joins the refrigerant flowing out of the first relay four-way valve 13a.
 バイパス回路は、主回路の過冷却熱交換器4と第1室外膨張弁5aとの間から分岐した冷媒が、第2室外膨張弁5bに冷媒が流れ、主回路の第1室外四方弁2aと圧縮機1との間に合流する。 In the bypass circuit, the refrigerant branched from between the subcooling heat exchanger 4 of the main circuit and the first outdoor expansion valve 5a flows into the second outdoor expansion valve 5b, and joins between the first outdoor four-way valve 2a of the main circuit and the compressor 1.
 実施形態1の空気調和装置100の過冷却熱交換器4は、第6点p6と第5点p5との間から分岐して第1室外四方弁2aと圧縮機1の吸入側との間に接続する配管内を流れる冷媒と、第5配管t5を流れる冷媒との間で熱交換する。なお、冷媒が分岐する箇所は、第3逆止弁6cと第5逆止弁6eとの間、及び第4逆止弁6dと第1室外膨張弁5aとの間であっても良い。実施形態1の空気調和装置100は、室外機101に第1逆止弁6a、第2逆止弁6b、第3逆止弁6c、第4逆止弁6d及び第5逆止弁6eを5個搭載する。実施形態1の空気調和装置100によれば、5個の弁で過冷却熱交換器4において冷媒の対向流化を図ることができるので、室外機101の筐体の大型化を抑制することができる。 The subcooling heat exchanger 4 of the air conditioner 100 of Embodiment 1 exchanges heat between the refrigerant flowing in the pipe branching between the sixth point p6 and the fifth point p5 and connecting between the first outdoor four-way valve 2a and the suction side of the compressor 1, and the refrigerant flowing through the fifth pipe t5. Note that the locations where the refrigerant branches may be between the third check valve 6c and the fifth check valve 6e and between the fourth check valve 6d and the first outdoor expansion valve 5a. In the air conditioner 100 of Embodiment 1, an outdoor unit 101 is equipped with five first check valves 6a, second check valves 6b, third check valves 6c, fourth check valves 6d, and fifth check valves 6e. According to the air conditioner 100 of Embodiment 1, counterflow of the refrigerant can be achieved in the subcooling heat exchanger 4 with five valves, so that the size of the housing of the outdoor unit 101 can be suppressed.
 また、実施形態1の空気調和装置100によれば、5個の弁で「冷房と暖房の両運転で過冷却熱交換器4の対向流化」及び「2管式の冷暖同時運転が可能なシステム」を実現できる。 In addition, according to the air conditioner 100 of Embodiment 1, with five valves, it is possible to realize "counterflow of the supercooling heat exchanger 4 in both cooling and heating operations" and "a two-pipe system capable of simultaneous cooling and heating operation".
実施形態2.
 次に、実施形態2に係る空気調和装置100について説明する。図11は、実施形態2に係る空気調和装置100の冷媒回路図である。実施形態2に係る空気調和装置100の室外機101は、実施形態1に示した空気調和装置100に加えて、第2室外四方弁2b、第2室外熱交換器3b、第3室外膨張弁5c及び第6逆止弁6fを有する。第6逆止弁6fは、図1において、第1室外膨張弁5aの役割を果たすものである。中継機102、第1室内機103a、第2室内機103b及び第3室内機103cの構成は、図1に示した構成と同様である。図11において、図1と同一部分には同一符号を付し、異なる部分について説明する。
Embodiment 2.
Next, the air conditioner 100 according to Embodiment 2 will be described. FIG. 11 is a refrigerant circuit diagram of the air conditioner 100 according to Embodiment 2. As shown in FIG. The outdoor unit 101 of the air conditioner 100 according to Embodiment 2 includes, in addition to the air conditioner 100 shown in Embodiment 1, a second outdoor four-way valve 2b, a second outdoor heat exchanger 3b, a third outdoor expansion valve 5c, and a sixth check valve 6f. The sixth check valve 6f plays the role of the first outdoor expansion valve 5a in FIG. The configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are the same as those shown in FIG. In FIG. 11, the same parts as in FIG. 1 are given the same reference numerals, and different parts will be explained.
<室外機101>
 図11に示すように、第6逆止弁6fは、第1点p1と第5点p5との間の第1配管t1に設けられる。第6逆止弁6fは、暖房運転時に第5点p5から第1点p1に流れる冷媒の圧力を減圧し、冷房運転時に冷媒が流れないように閉じられる。
<Outdoor unit 101>
As shown in FIG. 11, the sixth check valve 6f is provided in the first pipe t1 between the first point p1 and the fifth point p5. The sixth check valve 6f reduces the pressure of the refrigerant flowing from the fifth point p5 to the first point p1 during the heating operation, and is closed so that the refrigerant does not flow during the cooling operation.
 第1室外膨張弁5aは、第1室外熱交換器3aと第1点p1との間の第1配管t1に設けられる。 The first outdoor expansion valve 5a is provided in the first pipe t1 between the first outdoor heat exchanger 3a and the first point p1.
 第2室外四方弁2bは、第1室外四方弁2aと並列に圧縮機1に接続される。第2室外四方弁2bは、圧縮機1から吐出された冷媒の流れ方向を切り替えて出力し、冷房と暖房とを切り替える。 The second outdoor four-way valve 2b is connected to the compressor 1 in parallel with the first outdoor four-way valve 2a. The second outdoor four-way valve 2b switches the flow direction of the refrigerant discharged from the compressor 1 and outputs the refrigerant, thereby switching between cooling and heating.
 第2室外熱交換器3bは、第2室外四方弁2bから出力された冷媒と外気との熱交換を行なう。第3室外膨張弁5cは、第2室外熱交換器3bと第1点p1との間の第1配管t1に設けられる。 The second outdoor heat exchanger 3b exchanges heat between the refrigerant output from the second outdoor four-way valve 2b and the outside air. The third outdoor expansion valve 5c is provided in the first pipe t1 between the second outdoor heat exchanger 3b and the first point p1.
<制御装置200>
 制御装置200は、「運転状態A」の場合、第1室外四方弁2a及び第2室外四方弁2bを冷房側に切替え、第1室外膨張弁5a及び第3室外膨張弁5cを開、第2室外膨張弁5bを開、第1開閉弁7aを開及び第2開閉弁7bを閉にする。制御装置200は、第1室内機103a、第2室内機103b及び第3室内機103cの運転状態が冷房運転の場合、第1三方弁8a、第2三方弁8b及び第3三方弁8cの第1ポートを開、第2ポートを閉及び第3ポートを開にする。
<Control device 200>
In "operating state A", the control device 200 switches the first outdoor four-way valve 2a and the second outdoor four-way valve 2b to the cooling side, opens the first outdoor expansion valve 5a and the third outdoor expansion valve 5c, opens the second outdoor expansion valve 5b, opens the first on-off valve 7a, and closes the second on-off valve 7b. When the operating state of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is cooling operation, the control device 200 opens the first port, closes the second port, and opens the third port of the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
 制御装置200は、「運転状態B」の場合、第1室外四方弁2aを冷房側に切替え、第1室外膨張弁5aを開、第2室外膨張弁5bを閉、第1開閉弁7aを閉及び第2開閉弁7bを閉にする。制御装置200は、第2室外四方弁2bを暖房側に切替え、第3室外膨張弁5cを閉にする。制御装置200は、第1室内機103a、第2室内機103b及び第3室内機103cの状態が運転状態Bの場合、暖房運転を行なっている第1室内機103aの第1三方弁8aの第1ポートを開、第2ポートを開及び第3ポートを開にする。冷房運転を行なっている第2室内機103bの第2三方弁8bの第1ポートを開、第2ポートを閉及び第3ポートを開にする。冷房運転を行なっている第3室内機103cの第3三方弁8cの第1ポートを開、第2ポートを閉及び第3ポートを開にする。 In the case of "operating state B", the control device 200 switches the first outdoor four-way valve 2a to the cooling side, opens the first outdoor expansion valve 5a, closes the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b. The control device 200 switches the second outdoor four-way valve 2b to the heating side and closes the third outdoor expansion valve 5c. When the state of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is the operating state B, the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a of the first indoor unit 103a that is performing the heating operation. The first port of the second three-way valve 8b of the second indoor unit 103b that is performing cooling operation is opened, the second port is closed, and the third port is opened. The first port, the second port and the third port of the third three-way valve 8c of the third indoor unit 103c, which is in cooling operation, are opened.
 制御装置200は、「運転状態C」の場合、第1室外四方弁2aを暖房側に切替え、第1室外膨張弁5aを開、第2室外膨張弁5bを開、第1開閉弁7aを閉及び第2開閉弁7bを開にする。制御装置200は、第2室外四方弁2bを暖房側に切替え、第3室外膨張弁5cを開にする。制御装置200は、第1室内機103a、第2室内機103b及び第3室内機103cの状態が運転状態Cの場合、暖房運転を行なっている第1室内機103aの第1三方弁8aの第1ポートを開、第2ポートを開及び第3ポートを開にする。暖房運転を行なっている第2室内機103bの第2三方弁8bの第1ポートを開、第2ポートを開及び第3ポートを開にする。冷房運転を行なっている第3室内機103cの第3三方弁8cの第1ポートを開、第2ポートを閉及び第3ポートを開にする。 In the case of "operating state C", the control device 200 switches the first outdoor four-way valve 2a to the heating side, opens the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and opens the second on-off valve 7b. The control device 200 switches the second outdoor four-way valve 2b to the heating side and opens the third outdoor expansion valve 5c. When the state of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is the operating state C, the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a of the first indoor unit 103a that is performing the heating operation. The first port, the second port, and the third port of the second three-way valve 8b of the second indoor unit 103b that is performing the heating operation are opened. The first port, the second port and the third port of the third three-way valve 8c of the third indoor unit 103c, which is in cooling operation, are opened.
 制御装置200は、「運転状態D」の場合、第1室外四方弁2a及び第2室外四方弁2bを暖房側に切替え、第1室外膨張弁5a及び第3室外膨張弁5cを開、第2室外膨張弁5bを開、第1開閉弁7aを閉及び第2開閉弁7bを閉にする。制御装置200は、第1室内機103a、第2室内機103b及び第3室内機103cの運転状態が暖房運転の場合、第1三方弁8a、第2三方弁8b及び第3三方弁8cの第1ポートを開、第2ポートを開及び第3ポートを閉にする。 In the case of "operating state D", the control device 200 switches the first outdoor four-way valve 2a and the second outdoor four-way valve 2b to the heating side, opens the first outdoor expansion valve 5a and the third outdoor expansion valve 5c, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b. When the operating state of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c is heating operation, the control device 200 opens the first port, the second port, and the third port of the first three-way valve 8a, the second three-way valve 8b, and the third three-way valve 8c.
<空気調和装置100の動作>
 実施形態2の空気調和装置100の動作について説明する。図12は、実施形態2に係る空気調和装置100における運転状態Aの冷媒の流れを示す冷媒回路図である。図13は、実施形態2に係る空気調和装置100における運転状態Bの冷媒の流れを示す冷媒回路図である。図14は、実施形態2に係る空気調和装置100における運転状態Cの冷媒の流れを示す冷媒回路図である。図15は、実施形態2に係る空気調和装置100における運転状態Dの冷媒の流れを示す冷媒回路図である。図12、図13、図14及び図15において、矢印は冷媒の流れの方向を示す。中継機102、第1室内機103a、第2室内機103b及び第3室内機103cの構成は、図1に示した構成と同様である。図12、図13、図14及び図15において、図1と同一部分には同一符号を付し、異なる部分について説明する。
<Operation of air conditioner 100>
The operation of the air conditioner 100 of Embodiment 2 will be described. FIG. 12 is a refrigerant circuit diagram showing the flow of refrigerant in operating state A in the air conditioner 100 according to Embodiment 2. As shown in FIG. FIG. 13 is a refrigerant circuit diagram showing the flow of refrigerant in operating state B in the air conditioner 100 according to Embodiment 2. As shown in FIG. FIG. 14 is a refrigerant circuit diagram showing the flow of refrigerant in operating state C in the air conditioner 100 according to Embodiment 2. As shown in FIG. FIG. 15 is a refrigerant circuit diagram showing the flow of refrigerant in operating state D in the air conditioner 100 according to Embodiment 2. As shown in FIG. 12, 13, 14 and 15, the arrows indicate the direction of coolant flow. The configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are the same as those shown in FIG. 12, 13, 14 and 15, the same parts as in FIG. 1 are given the same reference numerals, and different parts will be explained.
(運転状態A:全冷房運転)
 図12は、第1室内機103a、第2室内機103b及び第3室内機103c全てが冷房運転を行なっている状態を示す。
(Operating state A: full cooling operation)
FIG. 12 shows a state in which all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing cooling operation.
 運転状態Aでは、主回路と四つのバイパス回路が形成される。図12に示すように、主回路では、圧縮機1、第1室外四方弁2a、第1室外熱交換器3a、第1室外膨張弁5a、第5逆止弁6e、過冷却熱交換器4、第4逆止弁6d、第1開閉弁7a、第1室内膨張弁10a、第1室内熱交換器9a、第1三方弁8a、第1逆止弁6a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。 In operating state A, the main circuit and four bypass circuits are formed. As shown in FIG. 12, in the main circuit, the compressor 1, the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the first outdoor expansion valve 5a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first on-off valve 7a, the first indoor expansion valve 10a, the first indoor heat exchanger 9a, the first three-way valve 8a, the first check valve 6a, the first outdoor four-way valve 2a, the compressor again. The refrigerant flows in the order of 1.
 一つ目のバイパス回路は、主回路の圧縮機1と第1室外四方弁2aとの間から分岐した冷媒が、第2室外四方弁2b、第2室外熱交換器3b、第3室外膨張弁5c、の順に流れ、主回路の第1室外膨張弁5aと第5逆止弁6eとの間に合流する。二つ目のバイパス回路は、主回路の過冷却熱交換器4と第4逆止弁6dとの間から分岐した冷媒が、第2室外膨張弁5b、過冷却熱交換器4、の順に流れ、主回路の第1室外四方弁2aと圧縮機1の吸入側との間に合流する。三つ目のバイパス回路は、主回路の第1開閉弁7aと第1室内膨張弁10aとの間から分岐した冷媒が、第2室内膨張弁10b、第2室内熱交換器9b、第2三方弁8bの順に冷媒が流れ、主回路の第1三方弁8aと第1逆止弁6aとの間に合流する。四つ目のバイパス回路は、主回路の第1開閉弁7aと第1室内膨張弁10aとの間から分岐した冷媒が、第3室内膨張弁10c、第3室内熱交換器9c、第3三方弁8cの順に流れ、主回路の第1三方弁8aと第1逆止弁6aとの間に合流する。 In the first bypass circuit, the refrigerant branched from between the compressor 1 of the main circuit and the first outdoor four-way valve 2a flows through the second outdoor four-way valve 2b, the second outdoor heat exchanger 3b, and the third outdoor expansion valve 5c in that order, and joins between the first outdoor expansion valve 5a and the fifth check valve 6e of the main circuit. In the second bypass circuit, the refrigerant branched from between the supercooling heat exchanger 4 of the main circuit and the fourth check valve 6d flows in the order of the second outdoor expansion valve 5b and the supercooling heat exchanger 4, and joins between the first outdoor four-way valve 2a of the main circuit and the suction side of the compressor 1. In the third bypass circuit, the refrigerant branched from between the first on-off valve 7a and the first indoor expansion valve 10a of the main circuit flows through the second indoor expansion valve 10b, the second indoor heat exchanger 9b, and the second three-way valve 8b in that order, and joins between the first three-way valve 8a and the first check valve 6a of the main circuit. In the fourth bypass circuit, the refrigerant branched from between the first on-off valve 7a and the first indoor expansion valve 10a of the main circuit flows in the order of the third indoor expansion valve 10c, the third indoor heat exchanger 9c, and the third three-way valve 8c, and joins between the first three-way valve 8a and the first check valve 6a of the main circuit.
(運転状態B:冷暖房混在運転、冷房負荷>暖房負荷)
 図13は、第1室内機103aが暖房運転を行なっており、第2室内機103b及び第3室内機103cが冷房運転を行なっている状態を示す。
(Operating state B: cooling and heating mixed operation, cooling load > heating load)
FIG. 13 shows a state in which the first indoor unit 103a is in heating operation, and the second indoor unit 103b and third indoor unit 103c are in cooling operation.
 運転状態Bでは、主回路と一つのバイパス回路が形成される。主回路では、図13に示すように、圧縮機1、第1室外四方弁2a、第1室外熱交換器3a、第1室外膨張弁5a、第5逆止弁6e、過冷却熱交換器4、第4逆止弁6d、第1三方弁8a、第1室内熱交換器9a、第1室内膨張弁10a、第2室内膨張弁10b、第2室内熱交換器9b、第2三方弁8b、第1逆止弁6a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。 In operating state B, the main circuit and one bypass circuit are formed. In the main circuit, as shown in FIG. 13, the compressor 1, the first outdoor four-way valve 2a, the first outdoor heat exchanger 3a, the first outdoor expansion valve 5a, the fifth check valve 6e, the subcooling heat exchanger 4, the fourth check valve 6d, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the second indoor expansion valve 10b, the second indoor heat exchanger 9b, the second three-way valve 8b, the first Refrigerant flows through the check valve 6a, the first outdoor four-way valve 2a, and the compressor 1 again.
 バイパス回路は、主回路の第1室内膨張弁10aと第2室内膨張弁10bとの間から分岐した冷媒が、第3室内膨張弁10c、第3室内熱交換器9c、第3三方弁8cの順に冷媒が流れ、主回路の第2三方弁8bと第1逆止弁6aの間に合流する。 In the bypass circuit, the refrigerant branched from between the first indoor expansion valve 10a and the second indoor expansion valve 10b of the main circuit flows through the third indoor expansion valve 10c, the third indoor heat exchanger 9c, and the third three-way valve 8c in that order, and joins between the second three-way valve 8b and the first check valve 6a of the main circuit.
(運転状態C:冷暖房混在運転、暖房負荷>冷房負荷)
 図14は、第1室内機103a及び第2室内機103bが暖房運転、第3室内機103cが冷房運転を行なっている状態を示す。
(Operating state C: cooling and heating mixed operation, heating load > cooling load)
FIG. 14 shows a state in which the first indoor unit 103a and the second indoor unit 103b are in heating operation, and the third indoor unit 103c is in cooling operation.
 運転状態Cでは、主回路と三つのバイパス回路が形成される。主回路では、図14に示すように、圧縮機1、第1室外四方弁2a、第2逆止弁6b、第1三方弁8a、第1室内熱交換器9a、第1室内膨張弁10a、第3室内膨張弁10c、第3室内熱交換器9c、第3三方弁8c、第3逆止弁6c、過冷却熱交換器4、第1室外膨張弁5a、第1室外熱交換器3a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。 In operating state C, the main circuit and three bypass circuits are formed. In the main circuit, as shown in FIG. 14, the compressor 1, the first outdoor four-way valve 2a, the second check valve 6b, the first three-way valve 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the third indoor expansion valve 10c, the third indoor heat exchanger 9c, the third three-way valve 8c, the third check valve 6c, the subcooling heat exchanger 4, the first outdoor expansion valve 5a, the first outdoor heat exchanger 3a, the first The refrigerant flows in the order of the outdoor four-way valve 2a and the compressor 1 again.
 一つ目のバイパス回路は、主回路の第2逆止弁6bと第1三方弁8aとの間から分岐した冷媒が、第2三方弁8b、第2室内熱交換器9b、第2室内膨張弁10b、の順に流れ、主回路の第1室内膨張弁10aと第3室内膨張弁10cとの間に合流する。二つ目のバイパス回路は、主回路の過冷却熱交換器4と第1室外膨張弁5aとの間から分岐した冷媒が、第2室外膨張弁5b、過冷却熱交換器4に流れ、主回路の第1室外四方弁2aと圧縮機1との間に合流する。三つ目のバイパス回路は、主回路の第6逆止弁6fと第1室外膨張弁5aとの間から分岐した冷媒が、第3室外膨張弁5c、第2室外膨張弁5b、第2室外四方弁2bに流れ、主回路の第1室外四方弁2aと圧縮機1との間に合流する。 In the first bypass circuit, the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the second three-way valve 8b, the second indoor heat exchanger 9b, and the second indoor expansion valve 10b in that order, and joins between the first indoor expansion valve 10a and the third indoor expansion valve 10c of the main circuit. In the second bypass circuit, the refrigerant branched from between the supercooling heat exchanger 4 of the main circuit and the first outdoor expansion valve 5a flows into the second outdoor expansion valve 5b and the supercooling heat exchanger 4, and joins between the first outdoor four-way valve 2a and the compressor 1 of the main circuit. In the third bypass circuit, the refrigerant branched from between the sixth check valve 6f and the first outdoor expansion valve 5a of the main circuit flows into the third outdoor expansion valve 5c, the second outdoor expansion valve 5b, and the second outdoor four-way valve 2b, and joins between the first outdoor four-way valve 2a of the main circuit and the compressor 1.
(運転状態D:全暖房運転)
 図15は、第1室内機103a、第2室内機103b及び第3室内機103cの全てが暖房運転を行なっている状態を示す。
(Operating state D: All heating operation)
FIG. 15 shows a state in which all of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are performing heating operation.
 運転状態Dでは、主回路と四つのバイパス回路が形成される。主回路では、図15に示すように、圧縮機1、第1室外四方弁2a、第2逆止弁6b、第1三方弁8a、第1室内熱交換器9a、第1室内膨張弁10a、第2開閉弁7b、第3逆止弁6c、過冷却熱交換器4、第1室外膨張弁5a、第1室外熱交換器3a、第1室外四方弁2a、再び圧縮機1、の順に冷媒が流れる。 In operating state D, the main circuit and four bypass circuits are formed. In the main circuit, as shown in the main circuit, as shown in FIG. 15, the compression machine 1, the first outdoor four -sided valve, the second reverse valve 6B, the first three -sided dialect 8a, the first indoor heat exchanger 9a, the first indoor expansion valve 10a, the second opening and closing valve 6c, the third reverse valve 6c, the supercooled heat exchanger 4, the first outdoor expansion valve 5a, the first outrage. The refrigerant flows in the order of outdoor heat exchangers, 2A, 1st outdoor four -sided valve, and compressor 1 again.
 一つ目のバイパス回路は、主回路の第2逆止弁6bと第1三方弁8aとの間から分岐した冷媒が、第2三方弁8b、第2室内熱交換器9b、第2室内膨張弁10b、の順に冷媒が流れ、主回路の第1室内膨張弁10aと第2開閉弁7bとの間に合流する。二つ目のバイパス回路は、主回路の第2逆止弁6bと第1三方弁8aとの間から分岐した冷媒が、第3三方弁8c、第3室内熱交換器9c、第3室内膨張弁10c、の順に流れ、主回路の第1室内膨張弁10aと第2開閉弁7bとの間に合流する。三つ目のバイパス回路は、主回路の過冷却熱交換器4と第1室外膨張弁5aとの間から分岐した冷媒が、第2室外膨張弁5b、過冷却熱交換器4に流れ、主回路の第1室外四方弁2aと圧縮機1との間に合流する。四つ目のバイパス回路は、主回路の第6逆止弁6fと第1室外膨張弁5aとの間から分岐した冷媒が、第3室外膨張弁5c、第2室外熱交換器3b、第2室外四方弁2bに流れ、主回路の第1室外四方弁2aと圧縮機1との間に合流する。 In the first bypass circuit, the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the second three-way valve 8b, the second indoor heat exchanger 9b, and the second indoor expansion valve 10b in that order, and joins between the first indoor expansion valve 10a and the second on-off valve 7b of the main circuit. In the second bypass circuit, the refrigerant branched from between the second check valve 6b and the first three-way valve 8a of the main circuit flows through the third three-way valve 8c, the third indoor heat exchanger 9c, and the third indoor expansion valve 10c in that order, and joins between the first indoor expansion valve 10a and the second on-off valve 7b of the main circuit. In the third bypass circuit, the refrigerant branched from between the supercooling heat exchanger 4 and the first outdoor expansion valve 5a of the main circuit flows to the second outdoor expansion valve 5b and the supercooling heat exchanger 4, and joins between the first outdoor four-way valve 2a and the compressor 1 of the main circuit. In the fourth bypass circuit, the refrigerant branched from between the sixth check valve 6f and the first outdoor expansion valve 5a of the main circuit flows into the third outdoor expansion valve 5c, the second outdoor heat exchanger 3b, and the second outdoor four-way valve 2b, and joins between the first outdoor four-way valve 2a of the main circuit and the compressor 1.
<変形例1>
 実施形態2の変形例1では、冷媒と水の2種の熱媒体が、混流せず独立して回路を形成し、第1冷媒-水熱交換器12a及び第2冷媒-水熱交換器12bを通じて熱交換のみを行う。冷媒-水熱交換器は、例えばプレート熱交換器及びシェルアンドチューブ熱交換器等を用いる。
<Modification 1>
In Modification 1 of Embodiment 2, two types of heat media, refrigerant and water, form circuits independently without being mixed, and heat is only exchanged through the first refrigerant-water heat exchanger 12a and the second refrigerant-water heat exchanger 12b. Refrigerant-water heat exchangers include, for example, plate heat exchangers and shell-and-tube heat exchangers.
 図16は、実施形態2の変形例1に係る空気調和装置100の冷媒回路図及び水回路図である。なお、図11と同一部分には同一符号を付し、その説明を省略する。実施形態2の変形例1では、実施形態2の空気調和装置100における中継機102、第1室内機103a、第2室内機103b及び第3室内機103cの構成が異なる。 FIG. 16 is a refrigerant circuit diagram and a water circuit diagram of an air conditioner 100 according to Modification 1 of Embodiment 2. FIG. The same parts as those in FIG. 11 are denoted by the same reference numerals, and the description thereof is omitted. In Modification 1 of Embodiment 2, the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c in the air conditioner 100 of Embodiment 2 are different.
 中継機102、第1室内機103a、第2室内機103b及び第3室内機103cの構成は、図6に示した実施形態1の変形例1の中継機102、第1室内機103a、第2室内機103b及び第3室内機103cの構成と同じである。 The configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c are the same as the configurations of the repeater 102, the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c of Modification 1 of Embodiment 1 shown in FIG.
<制御装置200>
 制御装置200は、「運転状態A」の場合、第1室外四方弁2a及び第2室外四方弁2bを冷房側に切替え、第1室外膨張弁5a及び第3室外膨張弁5cを開、第2室外膨張弁5bを開、第1開閉弁7aを開及び第2開閉弁7bを閉にする。制御装置200は、「運転状態A」の場合、第1冷媒-水熱交換器12aから流出した冷媒が第1逆止弁6aに流れ、往管t10からの冷媒が流入しないように第1中継四方弁13aを切替える。制御装置200は、「運転状態A」の場合、第2冷媒-水熱交換器12aから流出した冷媒が第1逆止弁6aに流れ、往管t10からの冷媒が流入しないように第2中継四方弁13bを切替える。
<Control device 200>
In "operating state A", the control device 200 switches the first outdoor four-way valve 2a and the second outdoor four-way valve 2b to the cooling side, opens the first outdoor expansion valve 5a and the third outdoor expansion valve 5c, opens the second outdoor expansion valve 5b, opens the first on-off valve 7a, and closes the second on-off valve 7b. The control device 200 switches the first relay four-way valve 13a so that the refrigerant flowing out of the first refrigerant-water heat exchanger 12a flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow in in the case of "operating state A". In the case of "operating state A", the control device 200 switches the second relay four-way valve 13b so that the refrigerant flowing out of the second refrigerant-water heat exchanger 12a flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow.
 制御装置200は、「運転状態B」の場合、第1室外四方弁2aを冷房側に切替え、第1室外膨張弁5aを開、第2室外膨張弁5bを閉、第1開閉弁7aを閉及び第2開閉弁7bを閉にする。制御装置200は、第2室外四方弁2bを暖房側に切替え、第3室外膨張弁5cを閉にする。 In the case of "operating state B", the control device 200 switches the first outdoor four-way valve 2a to the cooling side, opens the first outdoor expansion valve 5a, closes the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b. The control device 200 switches the second outdoor four-way valve 2b to the heating side and closes the third outdoor expansion valve 5c.
 制御装置200は、「運転状態C」の場合、第1室外四方弁2aを暖房側に切替え、第1室外膨張弁5aを開、第2室外膨張弁5bを開、第1開閉弁7aを閉及び第2開閉弁7bを開にする。制御装置200は、第2室外四方弁2bを暖房側に切替え、第3室外膨張弁5cを開にする。 In the case of "operating state C", the control device 200 switches the first outdoor four-way valve 2a to the heating side, opens the first outdoor expansion valve 5a, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and opens the second on-off valve 7b. The control device 200 switches the second outdoor four-way valve 2b to the heating side and opens the third outdoor expansion valve 5c.
 制御装置200は、「運転状態B」及び「運転状態C」の場合、往管t10からの冷媒が第1冷媒-水熱交換器12aに流入し、第2冷媒-水熱交換器12bから流出した冷媒が流入しないように第1中継四方弁13aを切替える。制御装置200は、「運転状態B」の場合、第2室内膨張弁10bから流出した冷媒が第1逆止弁6aに流れ、往管t10からの冷媒が流入しないように第2中継四方弁13bを切替える。 In "operating state B" and "operating state C", the control device 200 switches the first relay four-way valve 13a so that the refrigerant from the forward pipe t10 flows into the first refrigerant-water heat exchanger 12a and the refrigerant flowing out of the second refrigerant-water heat exchanger 12b does not flow. In "operating state B", the control device 200 switches the second relay four-way valve 13b so that the refrigerant flowing out of the second indoor expansion valve 10b flows into the first check valve 6a and the refrigerant from the forward pipe t10 does not flow.
 制御装置200は、「運転状態D」の場合、第1室外四方弁2a及び第2室外四方弁2bを暖房側に切替え、第1室外膨張弁5a及び第3室外膨張弁5cを開、第2室外膨張弁5bを開、第1開閉弁7aを閉及び第2開閉弁7bを閉にする。制御装置200は、「運転状態D」の場合、往管t10からの冷媒が第1冷媒-水熱交換器12aに流れ、復管t11からの冷媒が流入しないように第1中継四方弁13aを切替える。制御装置200は、「運転状態D」の場合、往管t10からの冷媒が第2冷媒-水熱交換器12bに流れ、復管t11からの冷媒が流入しないように第2中継四方弁13bを切替える。 In the case of "operating state D", the control device 200 switches the first outdoor four-way valve 2a and the second outdoor four-way valve 2b to the heating side, opens the first outdoor expansion valve 5a and the third outdoor expansion valve 5c, opens the second outdoor expansion valve 5b, closes the first on-off valve 7a, and closes the second on-off valve 7b. In "operating state D", the controller 200 switches the first relay four-way valve 13a so that the refrigerant from the forward pipe t10 flows into the first refrigerant-water heat exchanger 12a and the refrigerant from the return pipe t11 does not flow. In "operating state D", the controller 200 switches the second relay four-way valve 13b so that the refrigerant from the forward pipe t10 flows into the second refrigerant-water heat exchanger 12b and the refrigerant from the return pipe t11 does not flow.
<変形例1に係る空気調和装置100の動作>
 図17は、実施形態2の変形例1に係る空気調和装置100における運転状態Aの冷媒回路図及び水回路図である。図18は、実施形態2の変形例1に係る空気調和装置100における運転状態Bの冷媒回路図及び水回路図である。図19は、実施形態2の変形例1に係る空気調和装置100における運転状態Cの冷媒回路図及び水回路図である。図20は、実施形態2の変形例1に係る空気調和装置100における運転状態Dの冷媒回路図及び水回路図である。
<Operation of air conditioner 100 according to Modification 1>
17 is a refrigerant circuit diagram and a water circuit diagram of the operating state A in the air conditioner 100 according to Modification 1 of Embodiment 2. FIG. 18 is a refrigerant circuit diagram and a water circuit diagram of the operating state B in the air conditioner 100 according to Modification 1 of Embodiment 2. FIG. 19 is a refrigerant circuit diagram and a water circuit diagram of the operating state C in the air conditioner 100 according to Modification 1 of Embodiment 2. FIG. 20 is a refrigerant circuit diagram and a water circuit diagram of the operating state D in the air conditioner 100 according to Modification 1 of Embodiment 2. FIG.
 実施形態2の変形例1に係る空気調和装置100における室外機101の運転状態A、運転状態B、運転状態C及び運転状態Dの室外機101の動作は、実施形態2において説明した空気調和装置100における室外機101の運転状態A、運転状態B、運転状態C及び運転状態Dの動作と同様である。 The operation of the outdoor unit 101 in the operating state A, the operating state B, the operating state C, and the operating state D of the outdoor unit 101 in the air conditioner 100 according to the modified example 1 of the second embodiment is the same as the operation in the operating state A, the operating state B, the operating state C, and the operating state D of the outdoor unit 101 in the air conditioner 100 described in the second embodiment.
 実施形態2の変形例1に係る空気調和装置100における中継機102の運転状態A、運転状態B、運転状態C及び運転状態Dの動作は、実施形態1の変形例1において説明した空気調和装置100における中継機102の動作と同じである。 The operations of the repeater 102 in the operating state A, the operating state B, the operating state C, and the operating state D of the air conditioner 100 according to Modification 1 of Embodiment 2 are the same as those of the repeater 102 in the air conditioner 100 described in Modification 1 of Embodiment 1.
 実施形態2の変形例1に係る空気調和装置100における第1室内機103a、第2室内機103b及び第3室内機103cの運転状態A、運転状態B、運転状態C及び運転状態Dの動作は、実施形態1の変形例1において説明した空気調和装置100における第1室内機103a、第2室内機103b及び第3室内機103cの動作と同じである。 The operations of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c in the air conditioner 100 according to Modification 1 of Embodiment 2 in the operation state A, the operation state B, the operation state C, and the operation state D are the same as the operations of the first indoor unit 103a, the second indoor unit 103b, and the third indoor unit 103c in the air conditioner 100 described in Modification 1 of Embodiment 1.
 実施形態2の空気調和装置100の過冷却熱交換器4は、第6点p6と第5点p5との間から分岐して第1室外四方弁2aと圧縮機1の吸入側との間に接続する配管内を流れる冷媒と、第5配管t5を流れる冷媒との間で熱交換する。なお、冷媒が分岐する箇所は、第3逆止弁6cと第5逆止弁6eとの間、及び第4逆止弁6dと第1室外膨張弁5aとの間であっても良い。実施形態2の空気調和装置100は、室外機101に第1逆止弁6a、第2逆止弁6b、第3逆止弁6c、第4逆止弁6d、第5逆止弁6e及び第6逆止弁6fを6個搭載する。実施形態2の空気調和装置100によれば、6個の弁で過冷却熱交換器4において冷媒の対向流化を図ることができるので、室外機101の筐体の大型化を抑制することができる。 The subcooling heat exchanger 4 of the air conditioner 100 of Embodiment 2 exchanges heat between the refrigerant flowing in the pipe branching between the sixth point p6 and the fifth point p5 and connecting between the first outdoor four-way valve 2a and the suction side of the compressor 1, and the refrigerant flowing through the fifth pipe t5. Note that the locations where the refrigerant branches may be between the third check valve 6c and the fifth check valve 6e and between the fourth check valve 6d and the first outdoor expansion valve 5a. In the air conditioner 100 of Embodiment 2, the outdoor unit 101 is equipped with six first check valves 6a, second check valves 6b, third check valves 6c, fourth check valves 6d, fifth check valves 6e and sixth check valves 6f. According to the air-conditioning apparatus 100 of Embodiment 2, the counterflow of the refrigerant can be achieved in the subcooling heat exchanger 4 with six valves, so that the size of the housing of the outdoor unit 101 can be suppressed.
 また、実施形態2の空気調和装置100によれば、6個の弁で「冷房と暖房の両運転で過冷却熱交換器4の対向流化」及び「2管式の冷暖同時運転が可能なシステム」を実現できる。 In addition, according to the air conditioner 100 of Embodiment 2, with six valves, it is possible to realize "counterflow of the supercooling heat exchanger 4 in both cooling and heating operations" and "a two-pipe system capable of simultaneous cooling and heating operation".
 実施形態1及び実施形態2の往管t10は第1管、復管t11は第2管、第1室外四方弁2aは第1切替弁、第2室外四方弁2bは第2切替弁とも称する。実施形態1及び実施形態2の過冷却熱交換器4は、冷媒間熱交換器とも称する。第1逆止弁6a、第2逆止弁6b、第3逆止弁6c、第4逆止弁6d、第5逆止弁6e及び第6逆止弁6fは、それぞれ第1弁、第2弁、第3弁、第4弁、第5弁及び第6弁とも称する。また、第1室外膨張弁5aは第6弁とも称する。 In Embodiments 1 and 2, the forward pipe t10 is also called the first pipe, the return pipe t11 is also called the second pipe, the first outdoor four-way valve 2a is also called the first switching valve, and the second outdoor four-way valve 2b is also called the second switching valve. The subcooling heat exchangers 4 of Embodiments 1 and 2 are also referred to as refrigerant heat exchangers. The first check valve 6a, the second check valve 6b, the third check valve 6c, the fourth check valve 6d, the fifth check valve 6e, and the sixth check valve 6f are also referred to as the first valve, the second valve, the third valve, the fourth valve, the fifth valve, and the sixth valve, respectively. The first outdoor expansion valve 5a is also called a sixth valve.
 実施形態1及び実施形態2は、例として提示したものであり、請求の範囲を限定することは意図していない。実施形態1及び実施形態2は、その他の様々な形態で実施されることが可能であり、実施形態1及び実施形態2の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。 Embodiments 1 and 2 are presented as examples and are not intended to limit the scope of claims. Embodiments 1 and 2 can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of Embodiments 1 and 2.
 1 圧縮機、2a 第1室外四方弁、2b 第2室外四方弁、3a 第1室外熱交換器、3b 第2室外熱交換器、4 過冷却熱交換器、5a 第1室外膨張弁、5b 第2室外膨張弁、5c 第3室外膨張弁、6a 第1逆止弁、6b 第2逆止弁、6c 第3逆止弁、6d 第4逆止弁、6e 第5逆止弁、6f 第6逆止弁、7a 第1開閉弁、7b 第2開閉弁、8a 第1三方弁、8b 第2三方弁、8c 第3三方弁、9a 第1室内熱交換器、9b 第2室内熱交換器、9c 第3室内熱交換器、10a 第1室内膨張弁、10b 第2室内膨張弁、10c 第3室内膨張弁、11a 第1中継膨張弁、11b 第2中継膨張弁、12a 第1冷媒-水熱交換器、12b 第2冷媒-水熱交換器、13a 第1中継四方弁、13b 第2中継四方弁、14a 第1ポンプ、14b 第2ポンプ、15a 第1混流三方弁、15b 第2混流三方弁、15c 第3混流三方弁、16a 第1分流三方弁、16b 第2分流三方弁、16c 第3分流三方弁、100 空気調和装置、101 室外機、102 中継機、103 室内機、103a 第1室内機、103b 第2室内機、103c 第3室内機、200 制御装置、p1 第1点、p2 第2点、p3 第3点、p4 第4点、p5 第5点、p6 第6点、p7 第7点、t1 第1配管、t2 第2配管、t3 第3配管、t4 第4配管、t5 第5配管、t6 第6配管、t10 往管、t11 復管、t12a、t12b、t12c、t13a、t13b、t13c 配管、r 整流回路、A、B、C、D 運転状態。 1 compressor, 2a first outdoor four-way valve, 2b second outdoor four-way valve, 3a first outdoor heat exchanger, 3b second outdoor heat exchanger, 4 subcooling heat exchanger, 5a first outdoor expansion valve, 5b second outdoor expansion valve, 5c third outdoor expansion valve, 6a first check valve, 6b second check valve, 6c third check valve, 6d fourth check valve Stop valve 6e Fifth check valve 6f Sixth check valve 7a First on-off valve 7b Second on-off valve 8a First three-way valve 8b Second three-way valve 8c Third three-way valve 9a First indoor heat exchanger 9b Second indoor heat exchanger 9c Third indoor heat exchanger 10a First indoor expansion valve 10b Second indoor expansion valve 10c Third indoor expansion valve 11a first relay expansion valve, 11b second relay expansion valve, 12a first refrigerant-water heat exchanger, 12b second refrigerant-water heat exchanger, 13a first relay four-way valve, 13b second relay four-way valve, 14a first pump, 14b second pump, 15a first mixed three-way valve, 15b second mixed three-way valve, 15c third mixed three-way valve, 16 a 1st branch three-way valve, 16b 2nd branch 3-way valve, 16c 3rd branch 3-way valve, 100 air conditioner, 101 outdoor unit, 102 repeater, 103 indoor unit, 103a first indoor unit, 103b second indoor unit, 103c third indoor unit, 200 control device, p1 first point, p2 second point, p3 third point, p 4 4th point, p5 5th point, p6 6th point, p7 7th point, t1 1st pipe, t2 2nd pipe, t3 3rd pipe, t4 4th pipe, t5 5th pipe, t6 6th pipe, t10 forward pipe, t11 return pipe, t12a, t12b, t12c, t13a, t13b, t13c pipe, r rectifier circuit, A, B , C, D Operation status.

Claims (6)

  1.  圧縮機、第1切替弁、第1室外熱交換器及び第1室外膨張弁を備えた室外機と、
     室内を冷房又は暖房する室内機と、
     前記室外機から流出して前記室内機に流入する冷媒が流れる第1管と、
     前記室内機から流出して前記室外機に流入する前記冷媒が流れる第2管と
    を具備し、
     前記室外機は、
     前記室外機から前記第1管へ流出する前記冷媒の流れ方向及び前記第2管を経て前記室外機に流入した前記冷媒の流れ方向を定める整流回路と、
     前記整流回路へ流れる前記冷媒から分流した前記冷媒で、前記圧縮機の吸入側へ流入する冷媒を冷却する冷媒間熱交換器と、
     前記第1室外熱交換器と前記第1管とを接続する第1配管と、
     前記第2管と前記第1切替弁とを接続する第2配管と、
     前記第1配管の途中の2つの点のうち前記第1室外熱交換器に近い側から第1点と第2点、前記第2配管の途中の2つの点のうち前記第2管に近い側から第3点と第4点としたとき、
     前記第1点と前記第3点とを接続する第3配管と、
     前記第2点と前記第4点とを接続する第4配管と
    を具備し、
     前記整流回路は、
     前記第2配管に設けられ、前記第2配管内の前記冷媒が前記第3点から前記第4点へ流れることを許容し、逆に流れることを防止する第1弁と、
     前記第4配管に設けられ、前記第4配管内の前記冷媒が前記第4点から前記第2点へ流れることを許容し、逆に流れることを防止する第2弁と、
     前記第3配管に設けられ、前記第3配管内の前記冷媒が前記第3点から前記第1点へ流れることを許容し、逆に流れることを防止する第3弁と、
     前記第1配管に設けられ、前記第1配管内の前記冷媒が前記第1点から前記第2点へ流れることを許容し、逆に流れることを防止する第4弁と
    を具備し、
     前記室外機は、
     前記第3配管に設けられ、前記第3配管内の前記冷媒が、前記第1点から前記第1点と前記第3弁との間の第6点へ流れることを許容し、逆に流れることを防止する第5弁と、
     前記第1配管に設けられ、前記第1配管内の前記冷媒が、前記第1点と前記第4弁との間の第5点から前記第1点へ流れることを許容し、逆に流れることを防止することができる第6弁と、
     前記第5点と前記第6点とを接続し、前記第6点から前記第5点へ前記冷媒が流れる第5配管と
    を具備し、
     前記冷媒間熱交換器は、
     前記第3弁と前記第5弁との間、前記第4弁と前記第6弁との間、及び前記第6点と前記第5点との間のいずれかの箇所から分岐して前記第1切替弁と前記圧縮機の吸入側との間に接続する配管内を流れる前記冷媒と、前記第5配管内を流れる前記冷媒との間で熱交換する
    空気調和装置。
    an outdoor unit comprising a compressor, a first switching valve, a first outdoor heat exchanger and a first outdoor expansion valve;
    an indoor unit for cooling or heating the room;
    a first pipe through which a refrigerant flowing out of the outdoor unit and flowing into the indoor unit flows;
    a second pipe through which the refrigerant flows out from the indoor unit and flows into the outdoor unit;
    The outdoor unit is
    a rectifying circuit that determines a flow direction of the refrigerant flowing out of the outdoor unit to the first pipe and a flow direction of the refrigerant flowing into the outdoor unit through the second pipe;
    a refrigerant heat exchanger that cools the refrigerant flowing into the suction side of the compressor with the refrigerant diverted from the refrigerant flowing to the rectifier circuit;
    a first pipe connecting the first outdoor heat exchanger and the first pipe;
    a second pipe connecting the second pipe and the first switching valve;
    Of the two points in the middle of the first pipe, the first point and the second point from the side closer to the first outdoor heat exchanger, and the third point and the fourth point from the side closer to the second pipe out of the two points in the middle of the second pipe,
    a third pipe connecting the first point and the third point;
    A fourth pipe connecting the second point and the fourth point,
    The rectifier circuit is
    a first valve provided in the second pipe for allowing the refrigerant in the second pipe to flow from the third point to the fourth point and preventing reverse flow;
    a second valve provided in the fourth pipe for allowing the refrigerant in the fourth pipe to flow from the fourth point to the second point and preventing reverse flow;
    a third valve provided in the third pipe for allowing the refrigerant in the third pipe to flow from the third point to the first point and preventing reverse flow;
    a fourth valve provided in the first pipe to allow the refrigerant in the first pipe to flow from the first point to the second point and prevent it from flowing in the opposite direction;
    The outdoor unit is
    a fifth valve provided in the third pipe that allows the refrigerant in the third pipe to flow from the first point to a sixth point between the first point and the third valve and prevents reverse flow;
    a sixth valve provided in the first pipe, capable of allowing the refrigerant in the first pipe to flow from a fifth point between the first point and the fourth valve to the first point and preventing reverse flow;
    a fifth pipe connecting the fifth point and the sixth point, through which the refrigerant flows from the sixth point to the fifth point;
    The heat exchanger between refrigerants,
    The first switching valve branching from any point between the third valve and the fifth valve, between the fourth valve and the sixth valve, and between the sixth point and the fifth point An air conditioner that exchanges heat between the refrigerant flowing in a pipe connected between the first switching valve and the suction side of the compressor and the refrigerant flowing in the fifth pipe.
  2.  前記第6点と前記第5点との間から分岐された前記冷媒の圧力を減圧する第2室外膨張弁を具備する
    請求項1に記載の空気調和装置。
    2. The air conditioner according to claim 1, further comprising a second outdoor expansion valve that reduces pressure of the refrigerant branched from between the sixth point and the fifth point.
  3.  前記第6弁は、暖房時に前記第5点から前記第1点に流れる前記冷媒の圧力を減圧し、冷房時に前記冷媒が流れないように閉じられる
    請求項2に記載の空気調和装置。
    3. The air conditioner according to claim 2, wherein the sixth valve reduces the pressure of the refrigerant flowing from the fifth point to the first point during heating and is closed so that the refrigerant does not flow during cooling.
  4.  前記第6弁は、逆止弁であり、
     前記第1室外膨張弁は、前記第1室外熱交換器と前記第1点との間の前記第1配管に設けられる
    請求項2又は3に記載の空気調和装置。
    The sixth valve is a check valve,
    The air conditioner according to claim 2 or 3, wherein the first outdoor expansion valve is provided in the first pipe between the first outdoor heat exchanger and the first point.
  5.  前記第1切替弁と並列に前記圧縮機に接続され、前記圧縮機から吐出された前記冷媒の流れて方向を切り替え、前記冷房と前記暖房とを切り替える第2切替弁と、
     前記第2切替弁から出力された前記冷媒の熱交換が行われる第2室外熱交換器と、
     前記第2室外熱交換器と前記第1点との間の前記第1配管に設けられた第3室外膨張弁と
    を具備する
    請求項4に記載の空気調和装置。
    a second switching valve connected to the compressor in parallel with the first switching valve, switching a flow direction of the refrigerant discharged from the compressor, and switching between the cooling and the heating;
    a second outdoor heat exchanger in which heat exchange of the refrigerant output from the second switching valve is performed;
    5. The air conditioner according to claim 4, further comprising a third outdoor expansion valve provided in said first pipe between said second outdoor heat exchanger and said first point.
  6.  複数の前記室内機を有し、
     前記複数の前記室内機の前記冷房及び前記暖房を混在して同時に行なう制御装置と
    を具備し、
     前記制御装置は、
     前記複数の前記室内機の全てが冷房を行う場合、
     前記第1弁、前記第1切替弁、前記圧縮機、前記第1切替弁、前記第1室外熱交換器、前記第1室外膨張弁、前記第5弁、前記冷媒間熱交換器及び前記第4弁の順に、前記冷媒が流れる、第1主回路と、
     前記第1主回路の前記冷媒間熱交換器と前記第4弁との間から分岐し、前記第2室外膨張弁及び前記冷媒間熱交換器の順に前記冷媒が流れ、前記第1主回路の前記第1切替弁と前記圧縮機の吸入側との間に合流する、第1バイパス流路と、
     前記第1主回路の前記圧縮機と前記第1切替弁の間から分岐し、前記第2切替弁、前記第2室外熱交換器、前記第3室外膨張弁、の順に、前記冷媒が流れ、前記第1主回路の前記第1室外膨張弁と前記第5弁との間に合流する、第2バイパス流路と
    が室外機内に形成され、
     前記冷房を行う前記室内機と前記暖房を行う前記室内機とが混在し、かつ、前記複数の前記室内機の冷房負荷の方が前記複数の前記室内機の暖房負荷よりも大きい場合、
     前記第1主回路が、前記室外機内に形成され、
     前記冷房を行う前記室内機と前記暖房を行う前記室内機が混在し、かつ、前記複数の前記室内機の前記暖房の負荷の方が前記複数の前記室内機の前記冷房負荷よりも大きい場合、又は、前記複数の前記室内機の全てが前記暖房を行う場合、
     前記第3弁、前記冷媒間熱交換器、前記第6弁、前記第1室外膨張弁、前記第1室外熱交換器、前記第1切替弁、前記圧縮機、前記第1切替弁、前記第2弁、の順に、前記冷媒が流れる、第2主回路と、
     前記第2主回路の前記冷媒間熱交換器と前記第1室外膨張弁の間から分岐し、前記第2室外膨張弁、前記冷媒間熱交換器の順に、前記冷媒が流れ、前記第2主回路の前記第1切替弁と前記圧縮機の吸入側との間に合流する、第3バイパス流路と、
     前記第2主回路の前記第6弁と前記冷媒間熱交換器との間から分岐し、前記第2室外膨張弁、前記冷媒間熱交換器の順に、前記冷媒が流れ、前記第2主回路の前記第1切替弁と前記圧縮機の吸入側との間に合流する、第4バイパス流路と
    が前記室外機内に形成されるように運転を制御する
    請求項5に記載の空気調和装置。
    Having a plurality of indoor units,
    a control device that simultaneously performs the cooling and the heating of the plurality of indoor units,
    The control device is
    When all of the plurality of indoor units perform cooling,
    a first main circuit in which the refrigerant flows in the order of the first valve, the first switching valve, the compressor, the first switching valve, the first outdoor heat exchanger, the first outdoor expansion valve, the fifth valve, the heat exchanger between refrigerants, and the fourth valve;
    a first bypass flow path branched from between the refrigerant heat exchanger and the fourth valve of the first main circuit, the refrigerant flows through the second outdoor expansion valve and the refrigerant heat exchanger in this order, and joins between the first switching valve of the first main circuit and the suction side of the compressor;
    A second bypass flow path branched from between the compressor of the first main circuit and the first switching valve, the refrigerant flows in the order of the second switching valve, the second outdoor heat exchanger, and the third outdoor expansion valve, and joins between the first outdoor expansion valve and the fifth valve of the first main circuit, is formed in the outdoor unit;
    When the indoor unit that performs the cooling and the indoor unit that performs the heating are mixed, and the cooling load of the plurality of indoor units is larger than the heating load of the plurality of indoor units,
    The first main circuit is formed in the outdoor unit,
    When the indoor unit performing the cooling and the indoor unit performing the heating are mixed, and the heating load of the plurality of indoor units is larger than the cooling load of the plurality of indoor units, or when all of the plurality of indoor units perform the heating,
    a second main circuit in which the refrigerant flows in the order of the third valve, the heat exchanger between refrigerants, the sixth valve, the first outdoor expansion valve, the first outdoor heat exchanger, the first switching valve, the compressor, the first switching valve, and the second valve;
    a third bypass flow path branched from between the refrigerant heat exchanger and the first outdoor expansion valve of the second main circuit, the refrigerant flows in the order of the second outdoor expansion valve and the refrigerant heat exchanger, and joins between the first switching valve of the second main circuit and the suction side of the compressor;
    The air conditioner according to claim 5, wherein operation is controlled such that a fourth bypass flow path is formed in the outdoor unit, in which the refrigerant branches from between the sixth valve of the second main circuit and the heat exchanger between refrigerants, flows through the second outdoor expansion valve and the heat exchanger between refrigerants in that order, and merges between the first switching valve of the second main circuit and the suction side of the compressor.
PCT/JP2022/001911 2022-01-20 2022-01-20 Air conditioner WO2023139713A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/001911 WO2023139713A1 (en) 2022-01-20 2022-01-20 Air conditioner
JP2023574966A JPWO2023139713A1 (en) 2022-01-20 2022-01-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001911 WO2023139713A1 (en) 2022-01-20 2022-01-20 Air conditioner

Publications (1)

Publication Number Publication Date
WO2023139713A1 true WO2023139713A1 (en) 2023-07-27

Family

ID=87348277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001911 WO2023139713A1 (en) 2022-01-20 2022-01-20 Air conditioner

Country Status (2)

Country Link
JP (1) JPWO2023139713A1 (en)
WO (1) WO2023139713A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075026A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigeration unit
JP2009198099A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Air conditioner
WO2012104893A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
WO2014054120A1 (en) * 2012-10-02 2014-04-10 三菱電機株式会社 Air conditioner
WO2015125219A1 (en) * 2014-02-18 2015-08-27 三菱電機株式会社 Air conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075026A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigeration unit
JP2009198099A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Air conditioner
WO2012104893A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
WO2014054120A1 (en) * 2012-10-02 2014-04-10 三菱電機株式会社 Air conditioner
WO2015125219A1 (en) * 2014-02-18 2015-08-27 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JPWO2023139713A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US20090145151A1 (en) Air conditioner
KR100589913B1 (en) Air conditioning apparatus
US7000423B2 (en) Dual economizer heat exchangers for heat pump
US11226112B2 (en) Air-conditioning system
JP4303032B2 (en) Air conditioner
JP2011242048A (en) Refrigerating cycle device
JP2008170063A (en) Multiple type air conditioner
JPH02118372A (en) Air-conditioning device
JP2010048506A (en) Multi-air conditioner
JP6373469B1 (en) heat pump
WO2023139713A1 (en) Air conditioner
JP4629083B2 (en) Air conditioner
WO2021065678A1 (en) Air conditioner
JP3655523B2 (en) Multi-type air conditioner
JP6537603B2 (en) Air conditioner
WO2021005737A1 (en) Outdoor unit and air-conditioning apparatus
JP7097762B2 (en) Heat pump, heat pump control method
JP2010127504A (en) Air conditioning device
JP2001227799A (en) Multi-chamber type air conditioner
WO2021065677A1 (en) Air conditioner
EP4212794A1 (en) Heat pump system and control method thereof
WO2023139701A1 (en) Air conditioner
JP2005291555A (en) Air conditioner
JP2018128167A (en) Air conditioner
JPH04217759A (en) Multiroom type air-conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574966

Country of ref document: JP