JPS6217574A - Composite type heat pump device - Google Patents
Composite type heat pump deviceInfo
- Publication number
- JPS6217574A JPS6217574A JP15426585A JP15426585A JPS6217574A JP S6217574 A JPS6217574 A JP S6217574A JP 15426585 A JP15426585 A JP 15426585A JP 15426585 A JP15426585 A JP 15426585A JP S6217574 A JPS6217574 A JP S6217574A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat
- valve
- valves
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Central Heating Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野〉
本発明は、複数の熱交換器を目的に応じて凝縮器或いは
蒸発器として使い別けることにより、大気熱、太陽熱、
地熱或いは廃熱等各種の熱源を同時並行的に有効に利用
できると共に、熱利用側においても各種形態での同時並
行的、かつ、効果的な利用法が可能となるようにした複
合型ヒートポンプ装置に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention uses a plurality of heat exchangers as condensers or evaporators depending on the purpose, thereby converting atmospheric heat, solar heat,
A composite heat pump device that can effectively utilize various heat sources such as geothermal heat or waste heat in parallel, and can also be used in various forms simultaneously and effectively on the heat utilization side. Regarding.
(従来の技術〉
近年、居住性向上対策の一環として、冷暖房・給湯シス
テムが普及しつつあり、これに伴い、ヒートポンプ装置
を多機能化したトータルシステムの研究・開発が進めら
れている。(Conventional technology) In recent years, heating, cooling, and hot water systems have become popular as part of measures to improve livability, and along with this, research and development of total systems that incorporate multifunctional heat pump devices are progressing.
即ち、空調の多室同時作動、給湯機能の付加、熱源の多
用化(空気熱源の他に地下水や太陽熱集熱温水、或いは
回収された排熱等の熱源利用)及び熱源のマルチ化(同
時に複数の熱源で吸熱)を図っている。In other words, simultaneous operation of air conditioners in multiple rooms, addition of hot water supply functions, multi-use of heat sources (in addition to air heat sources, use of ground water, solar heat collected hot water, recovered waste heat, etc.), and multi-use of heat sources (simultaneous use of multiple heat sources) heat source).
(発明が解決しようとする問題点〉
しかしながら、従来のこの種のヒートポンプ装置(例え
ば特開昭59−138868号等参照)にあっては、機
能の多用化に伴って冷媒回路の構成が複雑となり、回路
切換用の開閉弁や膨張弁も相当多く必要になってくるた
め、コスト的、設備的に未だ相当不利な面がある。(Problems to be Solved by the Invention) However, in conventional heat pump devices of this type (see, for example, Japanese Unexamined Patent Publication No. 59-138868, etc.), the configuration of the refrigerant circuit becomes complicated due to the multiplication of functions. However, since a considerable number of on-off valves and expansion valves for circuit switching are required, there are still considerable disadvantages in terms of cost and equipment.
しかも、各熱交換器への冷媒流量の適正な制御も困難で
あり、効率の低下を伴う・
本発明は、このような従来の実状に鑑みなされたもので
、多機能を有する複合型ヒートポンプ装置において、特
に弁機能の改善により機能に応じた各熱交換器への冷媒
の流量を適正に制御することはもとより、冷媒回路の構
成のコンパクト化。Moreover, it is difficult to properly control the refrigerant flow rate to each heat exchanger, resulting in a decrease in efficiency. In particular, by improving the valve function, we not only can appropriately control the flow rate of refrigerant to each heat exchanger depending on the function, but also make the configuration of the refrigerant circuit more compact.
弁の取付個数減少により上記問題点を可及的に改善する
ことを目的とする。The purpose of this invention is to improve the above-mentioned problems as much as possible by reducing the number of valves installed.
く問題点を解決するための手段〉
このため、本発明は、圧縮器の吐出側冷媒通路の途中か
ら複数に分岐し、夫々凝縮器及び蒸発器として機能する
2つの熱交換器を経た後、最終的に集合して前記圧縮器
の吸入側冷媒通路に接続される複数の冷媒分岐路を備え
てなる複合型ヒートポンプ装置において、各冷媒分岐路
の前記2つの熱交換器相互を結ぶ通路の途中を一箇所で
集合させ、該集合点と各熱交換器とを結ぶ通路に夫々全
閉から全開まで開度調整可能であって、開閉、冷媒流量
制御、冷媒膨張機能を兼有する制御弁を介装した構成と
する。Means for Solving the Problems> For this reason, the present invention branches into a plurality of refrigerant passages from the middle of the discharge side refrigerant passage of a compressor, and after passing through two heat exchangers each functioning as a condenser and an evaporator, In a composite heat pump device comprising a plurality of refrigerant branch passages that are finally gathered together and connected to the suction side refrigerant passage of the compressor, in the middle of the passage connecting the two heat exchangers of each refrigerant branch passage. are assembled in one place, and each passage connecting the gathering point and each heat exchanger is provided with a control valve that can adjust the opening from fully closed to fully open, and has the functions of opening/closing, controlling the refrigerant flow rate, and expanding the refrigerant. The configuration is as follows.
く作用)
圧縮器から吐出された冷媒は、吐出側冷媒通路の途中か
ら冷媒分岐路に流入し、凝縮器として機能する熱交換器
を経由した後、全開又は開度調整により流量制御を行う
制御弁と、開度を微小に絞って冷媒を絞り膨張させる制
御弁と(制御弁は逆順でもよい)を経て蒸発器として機
能する熱交換器を経由して圧縮器に戻される。The refrigerant discharged from the compressor flows into the refrigerant branch passage from the middle of the discharge side refrigerant passage, passes through the heat exchanger that functions as a condenser, and then controls the flow rate by fully opening or adjusting the opening. The refrigerant is returned to the compressor via a valve and a control valve that throttles and expands the refrigerant by narrowing its opening (the control valves may be arranged in the reverse order), and then a heat exchanger that functions as an evaporator.
そして、各制御弁の開閉切換や開度調整により、冷媒流
路の切換や冷媒流量制御による熱交換能力の可変制御を
行なえる。By switching the opening and closing of each control valve and adjusting the opening degree, it is possible to perform variable control of the heat exchange capacity by switching the refrigerant flow path and controlling the refrigerant flow rate.
〈実施例〉 以下に本発明の実施例を図に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.
第1図において、冷媒圧縮用の圧縮器1の吐出側冷媒通
路2の途中から放射状のコネクタ3を介して複数分岐し
た後、再び放射状のコネクタ4を介して1箇所に集合す
る複数の冷媒分岐路5A〜5D(以下特に区別しない時
は総称番号5を用いる)が設けられる。In FIG. 1, a plurality of refrigerant branches are branched from the middle of a discharge side refrigerant passage 2 of a compressor 1 for compressing refrigerant via radial connectors 3, and then converged at one place via a radial connector 4. Routes 5A to 5D (hereinafter, the generic number 5 will be used unless otherwise specified) are provided.
また・前記各冷媒分岐路5A〜5Dの途中から分岐し・
コネクタ6を介して前記圧縮器1への吸入側冷媒通路7
に合流する冷媒戻し用の複数本の冷媒分岐路8A〜8D
(以下特に区別しない場合は総称番号8を用いる)が設
けられる・吸入側冷媒通路7には、蓄液器(アキューム
レータ)9が介装されている。In addition, branching from the middle of each of the refrigerant branch paths 5A to 5D;
A suction side refrigerant passage 7 to the compressor 1 via the connector 6
A plurality of refrigerant branch paths 8A to 8D for refrigerant return that merge with the
(Hereinafter, the generic number 8 will be used unless there is a particular distinction). A liquid storage device (accumulator) 9 is interposed in the suction side refrigerant passage 7.
各冷媒分岐路5A〜5Dの吐出側冷媒通路2との分岐点
から冷媒分岐路8A〜8Dとの分岐点に至る部分には、
開閉弁9A〜9Dが介装され、冷媒分岐路8A〜8Dに
は開閉弁10A〜IODが介装される。In the portion of each refrigerant branch passage 5A to 5D from the branch point with the discharge side refrigerant passage 2 to the branch point with the refrigerant branch passage 8A to 8D,
On-off valves 9A to 9D are interposed, and on-off valves 10A to IOD are interposed in the refrigerant branch paths 8A to 8D.
また、前記各冷媒分岐路5A〜5Dの冷媒分岐路8A〜
8Dとの分岐点からコネクタ4(全冷媒分岐路8A〜8
Dの集合点)に至る部分には、夫々熱交換器11A〜L
ID及び後述する機能を有する制御弁12A〜12Dが
順次介装されている。Moreover, the refrigerant branch paths 8A to 5D of the refrigerant branch paths 5A to 5D are
Connector 4 (all refrigerant branches 8A to 8) from the branch point with 8D
Heat exchangers 11A to 11L are installed in the portions leading to the assembly point D, respectively.
Control valves 12A to 12D having ID and functions described below are sequentially installed.
さらに、熱交換器11A〜IIDと制御弁12A〜12
Dとの間の冷媒分岐路5A〜5Dは、受液器(レシーバ
) 13A−13D及び熱交換器11A〜11Dから制
御弁12A〜12D方向への流動のみ許容する逆止弁1
4A〜14Dを介装した通路部と、前記逆止弁14A〜
14Dとは逆向きに逆止弁15A〜15Dを介装した通
路部とを並列に有している。Furthermore, heat exchangers 11A to IID and control valves 12A to 12
The refrigerant branch paths 5A to 5D between the refrigerant and the liquid receivers 13A to 13D and the check valves 1 that only allow flow from the heat exchangers 11A to 11D in the direction of the control valves 12A to 12D
4A to 14D, and the check valves 14A to 14D.
14D and a passage section in which check valves 15A to 15D are interposed in the opposite direction is provided in parallel.
尚、受液器を設けない場合は逆止弁を含まない1本の通
路となる。In addition, if a liquid receiver is not provided, there will be one passage without a check valve.
そして、第2図に示すように、熱交換器11Aは室内側
熱交換ユニット21内に、熱交換器11Bは貯湯槽22
内に、熱交換器11Cは外気を熱源とする第1室外側熱
交換ユニツト23内に、熱交換器11Dは地下水を熱源
とする第2室外側熱交換ユニツト24内に夫々配設され
ており、開閉弁9A〜9D、IOA〜IODの開閉切換
及び制御弁12A〜12Dの開度調整により夫々凝縮器
又は蒸発器としての機能を切換可能に構成されている。As shown in FIG. 2, the heat exchanger 11A is installed in the indoor heat exchange unit 21, and the heat exchanger 11B is installed in the hot water storage tank
Inside, the heat exchanger 11C is disposed in a first outdoor heat exchange unit 23 that uses outside air as a heat source, and the heat exchanger 11D is disposed in a second outdoor heat exchange unit 24 that uses groundwater as a heat source. , the function as a condenser or an evaporator can be switched by switching the on-off valves 9A-9D, IOA-IOD, and adjusting the opening degrees of the control valves 12A-12D.
第3図に、前記制御弁12A〜12D(以下総称番号1
2を用いる)の構造及び各種開度位置を示す。FIG. 3 shows the control valves 12A to 12D (hereinafter generically numbered 1).
2) and shows the structure and various opening positions.
図において、制御弁12は冷媒の流入側と流出側の冷媒
分岐路5を互いに対向させて周壁に開口させた筒状のハ
ウジング12aと該ハウジング12.ノ内周壁を軸回り
摺動自由(360度を含む)に嵌挿された円柱状の弁体
12bとで構成される。弁体12bには、ハウジング1
2aの両側開口に所定の回転位置で重合するように弁体
12bの回転軸と直交する方向に貫通する弁孔12cが
形成される。In the figure, the control valve 12 includes a cylindrical housing 12a in which the refrigerant branch passages 5 on the inflow side and the outflow side of the refrigerant face each other and are opened in the peripheral wall. A cylindrical valve body 12b is fitted into the inner circumferential wall so as to freely slide (including 360 degrees) around the axis. The housing 1 is attached to the valve body 12b.
Valve holes 12c are formed in the openings on both sides of the valve body 12b so as to overlap at a predetermined rotational position and extend through the valve body 12b in a direction perpendicular to the rotation axis thereof.
前記弁孔12cの一方の開口端部は、弁体12bの周方
向の一方の側を弁体12bの径方向に削って形成したス
リット12dにより開口面積を拡げられ、また、他方の
開口端部も周方向の同一側を径方向に削って形成したス
リット126により開口面積を拡げられるが、スリット
12dの方がスリット12eに比べてより大きく形成さ
れている。One opening end of the valve hole 12c has an opening area enlarged by a slit 12d formed by cutting one circumferential side of the valve body 12b in the radial direction of the valve body 12b, and the other opening end Although the opening area can be expanded by the slit 126 formed by cutting the same side in the circumferential direction in the radial direction, the slit 12d is formed larger than the slit 12e.
そして、弁体12bを第3図囚の位置にセットした時は
、弁孔12c軸が冷媒分岐路5の軸と一致して全開とな
る。When the valve body 12b is set to the position shown in FIG. 3, the axis of the valve hole 12c coincides with the axis of the refrigerant branch passage 5, and is fully opened.
第3図■に示すように、弁体12bを中間開度にセット
した時は、開度に応じて冷媒の流量を制御できる。As shown in FIG. 3, when the valve body 12b is set to an intermediate opening degree, the flow rate of the refrigerant can be controlled according to the opening degree.
第3図0に示す弁体12b位置では、微小開度に絞られ
、これによりスリット12e部分から流出した冷媒は膨
張する。At the position of the valve body 12b shown in FIG. 30, the opening is narrowed to a very small degree, so that the refrigerant flowing out from the slit 12e expands.
第3図0の弁体12b位置では、弁孔12cは完全に遮
断され、全閉となる。At the valve body 12b position shown in FIG. 3, the valve hole 12c is completely blocked and is fully closed.
次に、本実施例の作用を各種使用例を挙げ、第4図〜第
6図(冷媒流通部分のみ符号を付しである)を参照して
説明する。Next, the operation of this embodiment will be explained using various usage examples and with reference to FIGS. 4 to 6 (only the refrigerant flowing portions are numbered).
i)冬期に室内暖房及び貯湯槽22の加温を行う場合(
第4図参照)
開閉弁9A、9Bは開、開閉弁9C〜9Dは閉とし、開
閉弁10A、 IOBは閉、開閉弁10C,IODは開
とする。また、制御弁12A、 12Bは第3図0で示
した膨張位置にセットし、制御弁12C,120は同図
0で示したように暖房及び加温の能力に応じた中間開度
にセットされる。i) When heating the room and heating the hot water tank 22 in winter (
(See FIG. 4) The on-off valves 9A and 9B are open, the on-off valves 9C to 9D are closed, the on-off valves 10A and IOB are closed, and the on-off valves 10C and IOD are open. In addition, the control valves 12A and 12B are set to the expansion positions shown in FIG. Ru.
この場合、圧縮器1により吐出された冷媒は、吐出側冷
媒通路2から開閉弁9A、9Bが開かれた冷媒分岐路5
A、5Bに分岐して流入する。そして、これら冷媒分岐
路5A、5Bに介装された熱交換器11A、IIB、受
液器13A、13B、逆止弁14A、 14B、制御弁
12A、12Bを経由した後、一旦コネクタ4にて合流
し、今度は、冷媒分岐路5C,5Dに分岐して流入する
。In this case, the refrigerant discharged by the compressor 1 is transferred from the discharge side refrigerant passage 2 to the refrigerant branch passage 5 where the on-off valves 9A and 9B are opened.
It branches into A and 5B and flows into it. After passing through the heat exchangers 11A, IIB, liquid receivers 13A, 13B, check valves 14A, 14B, and control valves 12A, 12B installed in these refrigerant branch paths 5A, 5B, the refrigerant is once connected to the connector 4. After merging, the refrigerant branches and flows into refrigerant branch paths 5C and 5D.
冷媒分岐路5C,5Dに流入した冷媒は、制御弁12C
,12D、逆止弁15C,15D、熱交換器11C91
1Dを経た後、開閉弁10C,IODが開かれた冷媒分
岐路8C,8Dに流入し、コネクタ6を介して吸入側冷
媒通路7に合流し、蓄液器9を介して圧縮器1に戻され
る。The refrigerant that has flowed into the refrigerant branch paths 5C and 5D passes through the control valve 12C.
, 12D, check valve 15C, 15D, heat exchanger 11C91
1D, the refrigerant flows into the refrigerant branch paths 8C and 8D with the on-off valves 10C and IOD opened, joins the suction side refrigerant path 7 via the connector 6, and returns to the compressor 1 via the liquid storage container 9. It will be done.
この際、室内側熱交換ユニット21内と貯湯槽22内の
各熱交換器11A、IIBは、凝縮器として機能し、第
1及び第2室外側熱交換ユニツ)23.24内の各熱交
換器11C,IIDは蒸発器として機能する。At this time, each heat exchanger 11A, IIB in the indoor heat exchange unit 21 and the hot water storage tank 22 functions as a condenser, and each heat exchanger in the first and second outdoor heat exchange units 23 and 24 functions as a condenser. The vessels 11C and IID function as evaporators.
したがって、室外側の熱交換器11C,IIDにより外
気及び地下水から吸熱が行われ、室内側では熱交換器1
1Aからの放熱で室内暖房が行われると共に、熱交換器
11Bからの放熱で貯湯槽22の加温が行われる。Therefore, heat is absorbed from the outside air and groundwater by the heat exchangers 11C and IID on the outdoor side, and the heat exchanger 1 on the indoor side
The room is heated by the heat radiated from the heat exchanger 11A, and the hot water tank 22 is heated by the heat radiated from the heat exchanger 11B.
ii )室内暖房と、外気温を熱源として第1室外側熱
交換ユニツトへの着霜を融解するデフロスト運転とを行
う場合(第5図参照)
これには、貯湯槽22.第2室外側熱交換ユニツト24
の少なくとも一つから吸熱を行う場合があるが、以下貯
湯槽22のみから吸熱を行う場合について説明する。ii) When performing indoor heating and defrost operation to melt frost on the first outdoor heat exchange unit using the outside temperature as a heat source (see Fig. 5), the hot water storage tank 22. Second outdoor heat exchange unit 24
In some cases, heat is absorbed from at least one of the hot water storage tanks 22, but a case where heat is absorbed only from the hot water storage tank 22 will be described below.
開閉弁9A、9C,IOBを開、開閉弁9B、9D、
IODを閉とし、制御弁12A、 12Cを膨張位置、
制御弁12Bを全開、制御弁12Dは全開にセフ)する
。Open the on-off valves 9A, 9C, IOB, on-off valves 9B, 9D,
IOD is closed, control valves 12A and 12C are in expanded position,
Control valve 12B is fully opened, and control valve 12D is fully opened.
圧縮器1から吐出された冷媒は、第5図に矢印で示すよ
うに、コネクタ3から分岐して冷媒分岐路5A、5Cに
流入した後、コネクタ4から冷媒分岐路5Bに流入し、
冷媒分岐路8Bを経て圧縮器1へ戻される。The refrigerant discharged from the compressor 1 branches from the connector 3 and flows into the refrigerant branch paths 5A and 5C, as shown by the arrow in FIG. 5, and then flows from the connector 4 into the refrigerant branch path 5B.
The refrigerant is returned to the compressor 1 via the refrigerant branch 8B.
しながって、熱交換器11Bにより貯湯槽22から吸熱
を行い、熱交換器11Aにより室内暖房を行う一方、凝
縮器として機能する熱交換器11Cにより、第1室外側
熱交換ユニツト23壁に付着する霜が融解される。Therefore, the heat exchanger 11B absorbs heat from the hot water tank 22, and the heat exchanger 11A performs indoor heating, while the heat exchanger 11C functioning as a condenser absorbs heat from the first outdoor heat exchange unit 23. The frost that adheres to the surface is melted.
iii )室内冷房と給湯を行う場合(第6図参照;但
し、第2室外側熱交換ユニツトは熱源として使用しない
)
開閉弁9 B、 IOA、 IOCを開、開閉弁9A、
9C,9D、IOB、IODを閉とし、制御弁12Bを
膨張位置、制御弁12A、12Cを中間開度にセットす
る。iii) When performing indoor cooling and hot water supply (see Figure 6; however, the second outdoor heat exchange unit is not used as a heat source) Open the on-off valves 9B, IOA, and IOC, and open the on-off valves 9A,
9C, 9D, IOB, and IOD are closed, the control valve 12B is set to the expanded position, and the control valves 12A and 12C are set to the intermediate opening degree.
圧縮器1から吐出された冷媒は、第6図に矢印で示すよ
うに、コネクタ3から冷媒分岐路5Bに流入した後、コ
ネクタ4から冷媒分岐路5A、5Bに流入し、冷媒分岐
路8A、8C1吸入側冷媒通路7を経て圧縮器1に戻さ
れる。The refrigerant discharged from the compressor 1 flows from the connector 3 into the refrigerant branch path 5B as shown by the arrow in FIG. The refrigerant is returned to the compressor 1 through the 8C1 suction side refrigerant passage 7.
したがって、熱交換器11A、IICにより室内・外か
ら吸熱して室内冷房を行うと同時に、熱交換器11Bに
より貯湯槽22を加温しつつ給湯が行われる(但し、給
湯は貯湯槽22内の湯温がある程度、例えば40〜50
℃に達している状態で行われる)。Therefore, the heat exchangers 11A and IIC absorb heat from inside and outside the room to cool the room, and at the same time, the heat exchanger 11B heats the hot water tank 22 and supplies hot water (however, hot water is supplied to the hot water tank 22). The water temperature is at a certain level, for example 40-50
).
このように、各開閉弁9A〜9D及び開閉弁10A〜I
ODの開閉の組合せと制御弁12A〜12Dの開度調整
とにより、4個の熱交換器で多種多様のモードに切り換
えることができると同時に、冷媒流量調整により、暖房
、冷房、給湯(貯湯槽加温)能力も制御できる。In this way, each on-off valve 9A to 9D and on-off valve 10A to I
By combining the opening and closing of the OD and adjusting the opening of the control valves 12A to 12D, the four heat exchangers can be switched to a wide variety of modes.At the same time, by adjusting the refrigerant flow rate, heating, cooling, hot water supply (hot water tank heating) capacity can also be controlled.
特に、本発明に係る構成として、制御弁12A〜12D
に開閉弁及び流量制御弁としての機能と膨張弁としての
機能を兼有させたため、弁の取付個数及び配管本数が大
幅に減少し、冷媒の流路抵抗による圧力損失が減少して
ヒートポンプ効率を向上できると共に、スペース、コス
ト面で有利であり、信鎖性も向上する。In particular, as a configuration according to the present invention, the control valves 12A to 12D
Because it has the functions of an on-off valve, a flow rate control valve, and an expansion valve, the number of installed valves and the number of pipes are significantly reduced, reducing pressure loss due to refrigerant flow resistance and improving heat pump efficiency. It is advantageous in terms of space and cost, and improves reliability.
また、制御弁12A−12Dは開閉機能を有するため、
冷媒分岐路5A〜5Dと冷媒分岐路8A〜8Dとを選択
的に開閉させる構成であればよく、したがって、第7図
に示すように冷媒分岐路5と冷媒分岐路80分岐点に三
方切換弁25を設ける構成としてもよい。In addition, since the control valves 12A-12D have an opening/closing function,
Any configuration is sufficient as long as the refrigerant branch paths 5A to 5D and the refrigerant branch paths 8A to 8D are selectively opened and closed. Therefore, as shown in FIG. 25 may be provided.
例えば、冷媒分岐路5Aと冷媒分岐路8Aとの分岐点に
三方弁25を取付け、熱交換器11Aを凝縮器として機
能させる場合は、三方切換弁25を第7図(2)位置に
セットして制御弁12Aを膨張位置にセットすればよく
、蒸発器として機能させる場合は、三方切換弁25を第
7図■位置にセットして制御弁12Aを全開又は中間開
度にセットすればよい。また、熱交換器11Aを作動さ
せない場合は、制御弁12Aを全閉とし、三方切換弁2
5を第7図囚位置又は0位置にセットすればよい。For example, if the three-way valve 25 is installed at the branch point between the refrigerant branch path 5A and the refrigerant branch path 8A and the heat exchanger 11A is to function as a condenser, the three-way switching valve 25 should be set to the position (2) in FIG. In order to function as an evaporator, the three-way switching valve 25 may be set to the position (3) in FIG. 7, and the control valve 12A may be set to the fully open or intermediate opening position. In addition, when the heat exchanger 11A is not operated, the control valve 12A is fully closed, and the three-way switching valve 2
5 may be set to the prisoner position in Figure 7 or the 0 position.
このようにすれば、弁取付個数はさらに減少し、弁操作
、コスト面で有利となる。In this way, the number of valves installed can be further reduced, which is advantageous in terms of valve operation and cost.
尚、開閉弁や制御弁の操作は手動で行ってもよいが、モ
ードに応じて自動操作されるように制御装置を設けても
よく、この場合、弁開閉コントロール系のハードウアア
、ソフトウェアが共に簡略化される。The opening/closing valves and control valves may be operated manually, but a control device may be provided so that they are automatically operated depending on the mode. In this case, both the hardware and software of the valve opening/closing control system are simplified. be converted into
また、熱交換器等を除いてユニット化した複合型ヒート
ポンプ装置に別体の熱交換器を単体又は別途に設けたマ
ルチ配管等を介して複数個組み合わせて取り付ける構成
とすれば、用途に応じて無駄のないシステムを選択する
ことができる。In addition, if a separate heat exchanger is attached to a combined heat pump device that is unitized except for the heat exchanger, etc., or in combination with multiple units via separately provided multi-piping, etc., depending on the application. You can choose a lean system.
さらに、本実施例では、各熱交換器11A〜110が凝
縮器と蒸発器との機能を切り換え可能な構成としたが、
いずれか一方の機能のみを持たせるようにしてもよい。Furthermore, in this embodiment, each of the heat exchangers 11A to 110 is configured to be able to switch between the functions of a condenser and an evaporator.
It is also possible to have only one of the functions.
この場合、凝縮器としてのみ機能させる場合は、吸入側
冷媒通路に接続される冷媒分岐路及びこれに介装される
開閉弁と、受液器をバイパスする通路部及び2つの逆止
弁は不要となる。また、制御弁のみで冷媒分岐路を開閉
できるので、吐出側冷媒通路と熱交換器との間の冷媒分
岐路に介装される開閉弁も省略可能である(但し、冷媒
容量が大の場合は、開閉弁を設けた方がよい)。In this case, if it functions only as a condenser, the refrigerant branch connected to the suction side refrigerant passage and the on-off valve installed therein, the passage that bypasses the liquid receiver, and the two check valves are unnecessary. becomes. In addition, since the refrigerant branch path can be opened and closed only by the control valve, the on-off valve installed in the refrigerant branch path between the discharge side refrigerant passage and the heat exchanger can also be omitted (however, if the refrigerant capacity is large) (It is better to install an on-off valve.)
また、蒸発器としてのみ機能させる場合は、受液器及び
2つの逆止弁を省略できると共に、吐出側冷媒通路と熱
交換器とを結ぶ冷媒分岐路及びこれに介装される開閉弁
と、吸入側冷媒通路に接続される冷媒分岐路に介装され
る開閉弁とを省略できる。In addition, when functioning only as an evaporator, the receiver and two check valves can be omitted, and a refrigerant branch path connecting the discharge side refrigerant path and the heat exchanger and an on-off valve interposed therein, The on-off valve installed in the refrigerant branch path connected to the suction side refrigerant passage can be omitted.
第8図は、制御弁の別の実施例を示す、即ち、該制御弁
31は、冷媒分岐路5に介装されたハウジング31aと
、該ハウジング31a内を冷媒分岐路5の軸方向と直交
してスライドする弁体31bとで構成され、弁体31b
の一端縁中央部分に切込み31cを形成しである・同図
囚は全開、■は中間開度、Oは膨張位置、■は全閉状態
を示し、これら位置において、前記第1実施例の制御弁
12と同様の機能を有する。FIG. 8 shows another embodiment of the control valve, that is, the control valve 31 has a housing 31a interposed in the refrigerant branch passage 5, and the inside of the housing 31a is perpendicular to the axial direction of the refrigerant branch passage 5. and a valve body 31b that slides.
A notch 31c is formed in the center of one end edge. The figure shows the fully open state, ■ indicates the intermediate opening, O indicates the expanded position, and ■ indicates the fully closed state. In these positions, the control of the first embodiment is performed. It has the same function as valve 12.
〈発明の効果〉
以上説明したように、本発明によれば、複合型ヒートポ
ンプ装置における各冷媒分岐路に介装された2つの熱交
換器相互を結ぶ通路の途中を一箇所で集合させ、この集
合点と各熱交換器との間に開閉、冷媒流量制御及び冷媒
膨張機能を兼有した制御弁を介装した構成としたため、
機能に応じた各熱交換器への冷媒流量を適正に制御する
ことはもとより、全体として弁取付個数が大幅に減少す
ると共に、配管構成が大幅にコンパクト化され、取付ス
ペースの縮小、低コスト化を著しく促進できる。<Effects of the Invention> As explained above, according to the present invention, the passages connecting the two heat exchangers interposed in each refrigerant branch in a combined heat pump device are gathered at one place, and A control valve is installed between the assembly point and each heat exchanger, which has the functions of opening/closing, controlling refrigerant flow rate, and expanding refrigerant.
In addition to appropriately controlling the refrigerant flow rate to each heat exchanger according to its function, the overall number of valves installed is significantly reduced, and the piping configuration is significantly more compact, reducing installation space and lowering costs. can be significantly promoted.
さらに、弁開閉操作を自動制御する場合に、ハードウェ
ア、ソフトウェアも大幅に簡易化され、住宅用のみなら
ず、産業用システムにも利用でき、マルチ化が進む程上
記利点は顕著なものとなる。Furthermore, when automatically controlling valve opening/closing operations, the hardware and software are greatly simplified and can be used not only for residential use but also for industrial systems, and the above advantages become more pronounced as multiplication progresses. .
第1図は本発明の一実施例の冷媒流路構成を示す斜視図
、第2図は同上実施例の全体構成を示す断面図、第3図
囚〜■は同上実施例に使用する制御弁の各切換位置を示
す断面図、第4図〜第6図は同上実施例の各種使用状況
における冷媒の流路を示す図、第7図(2)、eは同上
実施例を一部変形したものに使用する三方切換弁の切換
位置を示す断面図、第8図は別実施例に係る制御弁の各
切換位置を示す断面図である。
1・・・圧縮器 2・・・吐出側冷媒通路 3.4
・・・コネクタ 5A〜5D・・・冷媒分岐路 8
A〜8D・・・冷媒分岐路 9A〜9D・・・開閉弁
10A〜IOD・・・開閉弁 11A〜IID・・・
熱交換器12A〜12D・・・制御弁 31・・・制
御弁特許出願人 ミサワホーム株式会社
代理人 弁理士 笹 島 冨二雄
第1図
A
第5図
9A
第6図
第7図
$8F
=亡
1a
シFig. 1 is a perspective view showing the refrigerant flow path configuration of one embodiment of the present invention, Fig. 2 is a sectional view showing the overall structure of the same embodiment, and Figs. 4 to 6 are diagrams showing the flow paths of the refrigerant in various usage conditions of the above embodiment, and Fig. 7 (2) and e are partially modified versions of the above embodiment. FIG. 8 is a sectional view showing each switching position of a control valve according to another embodiment. 1...Compressor 2...Discharge side refrigerant passage 3.4
... Connector 5A to 5D ... Refrigerant branch path 8
A to 8D... Refrigerant branch path 9A to 9D... On-off valve 10A to IOD... On-off valve 11A to IID...
Heat exchangers 12A to 12D... Control valve 31... Control valve Patent applicant Misawa Homes Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 1A Figure 5 9A Figure 6 Figure 7 $8F = deceased 1a C
Claims (1)
凝縮器及び蒸発器として機能する2つの熱交換器を経た
後、最終的に集合して前記圧縮器の吸入側冷媒通路に接
続される複数の冷媒分岐路を備えてなる複合型ヒートポ
ンプ装置において、各冷媒分岐路の前記2つの熱交換器
相互を結ぶ通路の途中を一箇所で集合させ、該集合点と
各熱交換器とを結ぶ通路に夫々全閉から全開まで開度調
整可能であって、開閉、冷媒流量制御、冷媒膨張機能を
兼有する制御弁を介装したことを特徴とする複合型ヒー
トポンプ装置。The refrigerant branches into a plurality of parts from the middle of the refrigerant passage on the discharge side of the compressor, passes through two heat exchangers each functioning as a condenser and an evaporator, and finally gathers and is connected to the refrigerant passage on the suction side of the compressor. In a composite heat pump device comprising a plurality of refrigerant branch passages, the passages connecting the two heat exchangers of each refrigerant branch passage are brought together at one place, and the assembly point and each heat exchanger are connected to each other. A composite heat pump device characterized in that a control valve is installed in each of the connecting passages, the opening degree of which can be adjusted from fully closed to fully open, and which has the functions of opening/closing, controlling refrigerant flow rate, and expanding refrigerant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15426585A JPS6217574A (en) | 1985-07-15 | 1985-07-15 | Composite type heat pump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15426585A JPS6217574A (en) | 1985-07-15 | 1985-07-15 | Composite type heat pump device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6217574A true JPS6217574A (en) | 1987-01-26 |
JPH0541908B2 JPH0541908B2 (en) | 1993-06-24 |
Family
ID=15580396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15426585A Granted JPS6217574A (en) | 1985-07-15 | 1985-07-15 | Composite type heat pump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6217574A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007315706A (en) * | 2006-05-26 | 2007-12-06 | Hitachi Appliances Inc | Air conditioner |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57157861U (en) * | 1981-03-31 | 1982-10-04 | ||
JPS58200964A (en) * | 1982-05-20 | 1983-11-22 | 株式会社東芝 | Heat pump type air conditioner |
JPS59110872U (en) * | 1983-01-14 | 1984-07-26 | 三洋電機株式会社 | Heat pump hot water heating and cooling equipment |
JPS59129065U (en) * | 1983-02-18 | 1984-08-30 | 三菱電機株式会社 | Parallel refrigeration equipment |
-
1985
- 1985-07-15 JP JP15426585A patent/JPS6217574A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57157861U (en) * | 1981-03-31 | 1982-10-04 | ||
JPS58200964A (en) * | 1982-05-20 | 1983-11-22 | 株式会社東芝 | Heat pump type air conditioner |
JPS59110872U (en) * | 1983-01-14 | 1984-07-26 | 三洋電機株式会社 | Heat pump hot water heating and cooling equipment |
JPS59129065U (en) * | 1983-02-18 | 1984-08-30 | 三菱電機株式会社 | Parallel refrigeration equipment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007315706A (en) * | 2006-05-26 | 2007-12-06 | Hitachi Appliances Inc | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPH0541908B2 (en) | 1993-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4311020A (en) | Combination reversing valve and expansion device for a reversible refrigeration circuit | |
CN102753914B (en) | Air conditioner and air-conditioning hot-water-supplying system | |
JP2004340492A (en) | Cooling system | |
CN111023372A (en) | Heat pump system of air conditioner, air conditioner and defrosting control method of air conditioner | |
KR101264429B1 (en) | Water Cooling Type Air Conditioner | |
CN211476193U (en) | Heat pump system of air conditioner and air conditioner | |
JP2001263848A (en) | Air conditioner | |
JPS6217574A (en) | Composite type heat pump device | |
CN110207417B (en) | Air conditioning system | |
JPH09287847A (en) | Heat recovery type air conditioner | |
CN112797516A (en) | Air conditioning system | |
JPH05340643A (en) | Air conditioner | |
CN210832380U (en) | Air conditioning system | |
JPH06213531A (en) | Heat pump air conditioner for car | |
JP4157027B2 (en) | Heat pump refrigeration system | |
JP2000055482A (en) | Air conditioner | |
KR100325308B1 (en) | Cooling and heating heat pump system using heat regeneration cycle | |
JPH04203776A (en) | Heat pump type air conditioner | |
JP2001033126A (en) | Air conditioner | |
JP3268967B2 (en) | Air conditioner | |
JPH06221620A (en) | Air conditioning device | |
JP2000337720A (en) | Air conditioner | |
JPH0737102Y2 (en) | Air conditioner | |
JPH0123089Y2 (en) | ||
JPH0198860A (en) | Heat pump type air conditioner |