JP4840535B1 - Method for determining fastening force of laminated iron core and method for producing laminated iron core - Google Patents

Method for determining fastening force of laminated iron core and method for producing laminated iron core Download PDF

Info

Publication number
JP4840535B1
JP4840535B1 JP2011032827A JP2011032827A JP4840535B1 JP 4840535 B1 JP4840535 B1 JP 4840535B1 JP 2011032827 A JP2011032827 A JP 2011032827A JP 2011032827 A JP2011032827 A JP 2011032827A JP 4840535 B1 JP4840535 B1 JP 4840535B1
Authority
JP
Japan
Prior art keywords
fastening force
vibration
laminated
core
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011032827A
Other languages
Japanese (ja)
Other versions
JP2012093333A (en
Inventor
匡平 石田
慶晃 西名
成治 榎枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011032827A priority Critical patent/JP4840535B1/en
Application granted granted Critical
Publication of JP4840535B1 publication Critical patent/JP4840535B1/en
Publication of JP2012093333A publication Critical patent/JP2012093333A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/33Arrangements for noise damping

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

【課題】電磁鋼板を積層した積層体鉄心において、積層間のすべり摩擦による減衰効果を利用して低振動にするために、積層間に適切な滑り摩擦を発生させるような締結力を的確に決定することができる積層体鉄心の締結力決定方法およびそれによる積層体鉄心の製造方法を提供する。
【解決手段】電磁鋼板を用いて積層体鉄心を構成し、異なる締結力の下で、1N〜1000Nの範囲内の機械的加振力で加振し、積層体鉄心の1個所以上の振動レベルを計測し、その振動レベルの計測結果を元に、振動レベルと締結力との関係を求めることにより、積層体鉄心を励磁した後に騒音を低減する締結力を決定する、積層体鉄心の締結力決定方法。
【選択図】図1
[PROBLEMS] To accurately determine a fastening force that generates appropriate sliding friction between laminations in order to reduce vibration by using a damping effect caused by sliding friction between laminations in a laminated iron core in which electromagnetic steel sheets are laminated. Provided are a method for determining a fastening force of a laminated core and a method for manufacturing a laminated core thereby.
A laminated iron core is constructed using electromagnetic steel plates, and is vibrated with a mechanical excitation force within a range of 1N to 1000N under different fastening forces, so that one or more vibration levels of the laminated iron core are obtained. The fastening force of the laminated core determines the fastening force that reduces noise after exciting the laminated core by determining the relationship between the vibration level and the fastening force based on the measurement result of the vibration level. Decision method.
[Selection] Figure 1

Description

本発明は、電磁鋼板を積層した積層体鉄心の締結力決定方法およびそれによる積層体鉄心の製造方法に関するものである。   The present invention relates to a method for determining a fastening force of a laminated iron core in which electromagnetic steel sheets are laminated, and a method for manufacturing a laminated iron core thereby.

電磁鋼板の中でも、Siを含有し、かつ結晶方位が(110)[001]方位に配向した方向性珪素鋼板は優れた軟磁気特性を有することから商用周波数域での各種鉄心材料として広く用いられている。   Among electromagnetic steel sheets, directional silicon steel sheets containing Si and having a crystal orientation in the (110) [001] direction have excellent soft magnetic properties and are widely used as various iron core materials in the commercial frequency range. ing.

しかし、そのような電磁鋼板には励磁に伴う磁歪があり、電磁鋼板を積層して製造した鉄心(積層体鉄心)を励磁すると、電磁鋼板の磁歪によって振動(面外曲げ振動)が生じ、騒音源となる。そこで、積層体鉄心を用いて変圧器(トランス)を製造する場合、騒音の発生を抑えるために、一般に磁歪の小さい電磁鋼板を鉄心材料として使用する。しかし、磁歪の小さい電磁鋼板を使用しているにもかかわらず、変圧器の騒音レベルが要求仕様を満たせない場合がある。   However, such an electromagnetic steel sheet has magnetostriction due to excitation, and when an iron core (laminated iron core) manufactured by laminating electromagnetic steel sheets is excited, vibration (out-of-plane bending vibration) is generated due to magnetostriction of the electromagnetic steel sheet, resulting in noise. The source. Therefore, when a transformer (transformer) is manufactured using a laminated core, an electromagnetic steel sheet having a small magnetostriction is generally used as the core material in order to suppress the generation of noise. However, there are cases where the noise level of the transformer cannot meet the required specifications, even though an electromagnetic steel sheet having a small magnetostriction is used.

その原因の多くは、変圧器の積層体鉄心の固有振動と電磁鋼板の磁歪振動の共振現象である。すなわち、積層体鉄心の励磁電力が外力となって強制振動が生じ、励磁周波数が積層体鉄心の固有振動数と一致した場合に共振して大きな振幅となる。このため、積層体鉄心の固有振動数に着目して変圧器を設計する方法が検討されてきた。   Many of the causes are resonance phenomena of the natural vibration of the laminated iron core of the transformer and the magnetostrictive vibration of the magnetic steel sheet. That is, when the excitation power of the laminated core becomes an external force, forced vibration occurs, and when the excitation frequency matches the natural frequency of the laminated core, resonance occurs and the amplitude becomes large. For this reason, a method of designing a transformer by paying attention to the natural frequency of the laminated core has been studied.

もし、積層体鉄心の固有振動と電磁鋼板の磁歪振動が共振する場合には、その共振を回避するために、積層体鉄心の固有振動数が変化するように、積層体鉄心の剛性(ばね定数)に関するパラメータを変更することになる。例えば、積層体鉄心の固定条件を調整あるいは変更したり、電磁鋼板の積層枚数を変更したりする。   If the natural vibration of the laminated core resonates with the magnetostrictive vibration of the electrical steel sheet, the rigidity (spring constant) of the laminated core is changed so that the natural frequency of the laminated core changes to avoid the resonance. ) Will be changed. For example, the fixing condition of the laminated iron core is adjusted or changed, or the number of laminated electromagnetic steel sheets is changed.

なお、積層体鉄心の固有振動数を測定する方法については、例えば特許文献1に記載されている。これは励磁周波数を段階的に変化させて、その際に積層体鉄心が発生する騒音を測定することで、積層体鉄心の固有振動数を知るものである。   In addition, about the method of measuring the natural frequency of a laminated body core, it describes in patent document 1, for example. This is to know the natural frequency of the laminated core by changing the excitation frequency stepwise and measuring the noise generated by the laminated core.

特開2008−82778号公報JP 2008-82778 A

しかしながら、電磁鋼板を積層した積層体鉄心は複雑な構造物であり、騒音の対象となりうる50Hz〜20kHzの周波数帯域に無数の固有振動数を有する。一般に、複数の固有振動数を有する構造物の特定の固有振動数のみを変化させることは困難であり、剛性を変化させると固有振動数全体がシフトする。このため、積層体鉄心の剛性を変更させる方法では、ある固有振動数成分の固有振動と磁歪振動との共振を回避させても、別の固有振動数成分の固有振動が磁歪振動とあらたに共振する可能性が極めて高い。そして、そもそも現実の変圧器の設計では、積層体鉄心の固有振動以外の要求仕様もあるため、積層体鉄心の剛性を変更するのは容易ではない。   However, a laminated iron core in which electromagnetic steel plates are laminated is a complex structure and has an infinite number of natural frequencies in a frequency band of 50 Hz to 20 kHz that can be a target of noise. In general, it is difficult to change only a specific natural frequency of a structure having a plurality of natural frequencies. When the rigidity is changed, the entire natural frequency is shifted. For this reason, in the method of changing the rigidity of the laminated core, even if the resonance between the natural vibration of one natural frequency component and the magnetostrictive vibration is avoided, the natural vibration of another natural frequency component is newly resonated with the magnetostrictive vibration. Very likely to do. In the first place, in the actual transformer design, since there are required specifications other than the natural vibration of the laminated core, it is not easy to change the rigidity of the laminated core.

単純なモデルとして、図8に1自由度振動系の場合の周波数応答特性(縦軸:ゲイン、横軸:周波数)と、1質点系モデルにおける各パラメータとの関係を模式的に示す。一般に、共振を回避するためには、図8(a)に示すような剛性UP(ばね定数kを大きくする)や、図8(b)に示すような剛性DOWN(ばね定数kを小さくする)といった策がとられる。しかしながら、上述したように、積層体鉄心の場合は、剛性の変更によって使用周波数における共振を回避する方法は、現実には困難さが伴う。   As a simple model, FIG. 8 schematically shows the relationship between frequency response characteristics (vertical axis: gain, horizontal axis: frequency) in the case of a one-degree-of-freedom vibration system and each parameter in the one-mass system model. In general, in order to avoid resonance, the rigidity UP (increase the spring constant k) as shown in FIG. 8A or the rigidity DOWN (increase the spring constant k) as shown in FIG. 8B. The following measures are taken. However, as described above, in the case of a laminated iron core, the method of avoiding resonance at the operating frequency by changing the rigidity is actually difficult.

そこで、積層体鉄心における振動対策として、発明者は、図8(c)に示すような、減衰UP(減衰係数cを大きくする)という策を考えた。この方法では固有振動数は変化しないが、振動振幅を低下させることができる。さらに、発明者は、積層間(積層体鉄心を構成する電磁鋼板間)の滑り摩擦を利用して減衰係数を増大させることで、振動振幅を顕著に低減できることを見出した。   Therefore, as a countermeasure against vibration in the laminated iron core, the inventor considered a measure of attenuation UP (increase the attenuation coefficient c) as shown in FIG. In this method, the natural frequency does not change, but the vibration amplitude can be reduced. Furthermore, the inventor has found that the vibration amplitude can be significantly reduced by increasing the damping coefficient by using sliding friction between the layers (between the electromagnetic steel sheets constituting the laminated core).

その詳細なメカニズムを図9に示す。ここで、図9の左側の各グラフは積層体鉄心からなる変圧器に掛かる外力(磁歪)のパターン(縦軸:磁歪、横軸:時間)を、また中央の各グラフは、締結力(後述)に応じた変圧器の周波数応答関数(縦軸:応答振幅(ゲイン)、横軸:周波数)を示す。さらに、図9の右側の各グラフは、前記外力が前記周波数応答関数を有する変圧器に作用した場合の、トランス振動(面外曲げ振動)のパターン(縦軸:鉄心振動の振幅、横軸:時間)を示す。   The detailed mechanism is shown in FIG. Here, each graph on the left side of FIG. 9 shows an external force (magnetostriction) pattern (vertical axis: magnetostriction, horizontal axis: time) applied to a transformer composed of a laminated core, and each central graph shows a fastening force (described later). ) Shows the frequency response function of the transformer (vertical axis: response amplitude (gain), horizontal axis: frequency). Further, each graph on the right side of FIG. 9 shows a pattern of transformer vibration (out-of-plane bending vibration) when the external force is applied to a transformer having the frequency response function (vertical axis: amplitude of iron core vibration, horizontal axis: Time).

積層体鉄心の場合、電磁鋼板を積層しただけでは形状を固定できないため、締結手段(鋼材によるクランプなど)によって固定する。締結手段による固定に際し積層方向に圧縮力が働くが、これを締結力と呼んでいる。   In the case of a laminated iron core, the shape cannot be fixed only by laminating electromagnetic steel sheets, and therefore, it is fixed by fastening means (clamping with a steel material, etc.). A compression force acts in the stacking direction when fixing by the fastening means, which is called a fastening force.

図9(a)のように、締結力が弱い場合には、積層間の摩擦が小さいため、外力の作用によって各電磁鋼板が互いにズレる方向へ動き、全体として積層体としての剛性が低下する。しかし、この場合、固有振動数がシフトするだけで、その振動振幅そのものに大きな変化はない。しかも、複数の固有振動数がシフトするため、低剛性化によって、それまで問題でなかった別の共振が発生する場合もある。   As shown in FIG. 9A, when the fastening force is weak, the friction between the stacks is small, so that the magnetic steel sheets move in a direction that is shifted from each other due to the action of the external force, and the rigidity of the stack as a whole decreases. However, in this case, only the natural frequency shifts, and the vibration amplitude itself does not change greatly. In addition, since a plurality of natural frequencies shift, another resonance that has not been a problem may occur due to the low rigidity.

逆に、図9(c)のように、締結力が大きすぎる場合には、積層間の摩擦が大きくなり、積層体が一体物の剛体のように振舞うため、積層体としての剛性が高くなる。しかし、この場合も、固有振動数がシフトするだけで、その振動振幅そのものに大きな変化はない。低剛性化の場合と同じく、それまで問題でなかった別の共振が発生する場合もある。   On the contrary, as shown in FIG. 9C, when the fastening force is too large, the friction between the layers increases, and the laminate behaves like a solid rigid body, so that the rigidity as the laminate increases. . However, in this case as well, the natural frequency is merely shifted, and the vibration amplitude itself does not change significantly. As in the case of low rigidity, another resonance that has not been a problem may occur.

これに対して、図9(b)のように、適切な締結力が選択された場合、積層間に適度な滑り摩擦が発生する。滑り摩擦は減衰作用があるため、積層構造物の減衰要素が強化されたことになり、固有振動数に変化はなくとも、その振動振幅が大幅に低下する。   On the other hand, when an appropriate fastening force is selected as shown in FIG. 9B, moderate sliding friction occurs between the layers. Since the sliding friction has a damping action, the damping element of the laminated structure is reinforced, and the vibration amplitude is greatly reduced even if the natural frequency does not change.

以上のようなメカニズムにより、積層間に適切な滑り摩擦を発生させるような締結力を決定することで、低振動の積層体鉄心を製造することが可能となる。そして、その低振動の積層体鉄心を用いることによって、低騒音の変圧器を製造することが可能となる。ただし、実機や従来の実験設備において適正な締結力を的確に決定することは困難である。   With the mechanism as described above, it is possible to manufacture a laminated body core with low vibration by determining a fastening force that generates appropriate sliding friction between the laminated layers. And it becomes possible to manufacture a low noise transformer by using the low-vibration laminated iron core. However, it is difficult to accurately determine an appropriate fastening force in an actual machine or a conventional experimental facility.

本発明は、上記のような事情に鑑みてなされたものであり、電磁鋼板を積層した積層体鉄心において、積層間のすべり摩擦による減衰効果を利用して低振動にするために、積層間に適切な滑り摩擦を発生させるような締結力を的確に決定することができる積層体鉄心の締結力決定方法、およびそれによる積層体鉄心の製造方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and in a laminated core in which electromagnetic steel sheets are laminated, in order to reduce vibration by using a damping effect due to sliding friction between the laminations, It is an object of the present invention to provide a method for determining a fastening force of a laminated core that can accurately determine a fastening force that generates an appropriate sliding friction, and a method for manufacturing a laminated core using the same.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]電磁鋼板を用いて積層体鉄心を構成し、異なる締結力の下で、1N〜1000Nの範囲内の機械的加振力で加振し、積層体鉄心の1個所以上の振動レベルを計測し、その振動レベルの計測結果を元に、振動レベルと締結力との関係を求めることにより、積層体鉄心を励磁した後に騒音を低減する締結力を決定することを特徴とする積層体鉄心の締結力決定方法。   [1] A laminated iron core is constructed using electromagnetic steel plates, and is vibrated with a mechanical excitation force within a range of 1N to 1000N under different fastening forces, so that one or more vibration levels of the laminated iron core can be obtained. Laminate core characterized by determining the fastening force to reduce noise after exciting the laminate core by measuring and obtaining the relationship between vibration level and fastening force based on the measurement result of the vibration level Fastening force determination method.

なお、振動レベルとは振動の大きさを表す指標で、変位、速度、加速度の少なくともいずれの計測(計測結果に基づく演算処理も含む)により得るものとする。計測の方法は以下に例示されるが、これに限定されず、既知の振動解析手法を適用することができる。   The vibration level is an index representing the magnitude of vibration, and is obtained by measuring at least any one of displacement, velocity, and acceleration (including calculation processing based on the measurement result). The measurement method is exemplified below, but is not limited thereto, and a known vibration analysis method can be applied.

[2]前記振動レベルとして、測定箇所の時系列波形の振幅RMS値または振幅最大値を各々計算し、当該振幅RMS値または振幅最大値の代表値あるいは平均値を用いることを特徴とする前記[1]に記載の積層体鉄心の締結力決定方法。   [2] As the vibration level, an amplitude RMS value or maximum amplitude value of a time-series waveform at a measurement location is calculated, and a representative value or an average value of the amplitude RMS value or maximum amplitude value is used. 1] The fastening force determination method of the laminated body core described in 1].

[3]前記振動レベルとして、測定箇所の時系列波形を周波数解析し、加振周波数のN倍の周波数成分の総和を各々計算し、その代表点の値あるいは平均値を用いることを特徴とする前記[1]に記載の積層体鉄心の締結力決定方法。   [3] As the vibration level, frequency analysis is performed on a time-series waveform at a measurement location, a sum of frequency components N times the excitation frequency is calculated, and the value or average value of the representative point is used. The method for determining the fastening force of the laminated core according to [1].

[4]前記振動レベルとして、測定箇所の時系列波形を周波数解析し、加振周波数のN倍の周波数成分の総和を各々計算して、その代表点の値あるいは平均値をWoutとし、また加振力を周波数解析し、加振周波数のN倍の周波数成分の総和を計算してFinとして、その比であるWout/Finを用いることを特徴とする前記[1]に記載の積層体鉄心の締結力決定方法。   [4] As the vibration level, frequency analysis is performed on the time-series waveform at the measurement location, the sum of frequency components N times the excitation frequency is calculated, and the value or average value of the representative point is set as Wout. The laminated core according to [1], wherein the vibration force is subjected to frequency analysis, the sum of frequency components N times the excitation frequency is calculated, and the ratio Wout / Fin is used as Fin. Fastening force determination method.

[5]前記[1]〜[4]のいずれかに記載の積層体鉄心の締結力決定方法を用いて締結力を決定し、その決定した締結力で締結して積層体鉄心を製造することを特徴とする積層体鉄心の製造方法。   [5] Determine the fastening force using the method for determining the fastening force of the laminate core according to any one of [1] to [4], and manufacture the laminate core by fastening with the determined fastening force. A method for producing a laminated core, characterized by comprising:

本発明においては、電磁鋼板を積層した積層体鉄心について、積層間のすべり摩擦による減衰効果を利用して低振動とするための、積層間に適切な滑り摩擦を発生させるような締結力を的確に決定することができる。これにより、低振動の積層体鉄心を製造することが可能となる。そして、その低振動の積層体鉄心を用いることによって、低騒音の変圧器を製造することが可能となる。   In the present invention, for a laminated core in which electromagnetic steel sheets are laminated, a fastening force that generates appropriate sliding friction between the laminations is obtained in order to achieve low vibration by using a damping effect caused by sliding friction between the laminations. Can be determined. Thereby, it becomes possible to manufacture a laminated iron core with low vibration. And it becomes possible to manufacture a low noise transformer by using the low-vibration laminated iron core.

加えて、積層体鉄心における積層間のすべり摩擦現象は部分モデルや小型モデルで確認できるため、実物規模の大型モデルを製作することなく、低コストで適正な締結力を決定することができる。   In addition, since the sliding friction phenomenon between the laminates in the laminate core can be confirmed by a partial model or a small model, an appropriate fastening force can be determined at a low cost without manufacturing a large-scale model.

従来は、図10(a)に示すように、積層体鉄心および変圧器を製造した後、振動・騒音が大きい場合には、試行錯誤で締結力を調整していた。これに対して、本発明では、図10(b)に示すように、事前に使用状態に応じた適正な締結力を求めておき、その適正な締結力で積層体鉄心および変圧器を製造できるので、低振動・低騒音となり、締結力の調整が不要である。   Conventionally, as shown in FIG. 10A, after manufacturing a laminated core and a transformer, when the vibration and noise are large, the fastening force is adjusted by trial and error. On the other hand, in this invention, as shown in FIG.10 (b), the suitable fastening force according to a use condition is calculated | required beforehand, and a laminated body core and a transformer can be manufactured with the appropriate fastening force. As a result, vibration and noise are reduced, and adjustment of the fastening force is unnecessary.

また、従来の方法では締結力と振動との相関を得ることが困難であったが、本発明においては容易に詳細かつ正確な相関を得ることができる。このため、本発明では、現状の締結力からの、騒音の改善余地の有無や潜在的な改善幅が容易に把握でき、変圧器の設計に寄与することができる。   Further, although it has been difficult to obtain the correlation between the fastening force and the vibration by the conventional method, in the present invention, a detailed and accurate correlation can be easily obtained. For this reason, in this invention, the presence or absence of the noise improvement room from the present fastening force and the potential improvement range can be grasped easily, and it can contribute to the design of the transformer.

本発明の実施形態1を示す図である。It is a figure which shows Embodiment 1 of this invention. 本発明の実施形態2を示す図である。It is a figure which shows Embodiment 2 of this invention. 本発明の実施形態3を示す図である。It is a figure which shows Embodiment 3 of this invention. 本発明の実施例1〜3における積層体鉄心を示す図である。It is a figure which shows the laminated body core in Examples 1-3 of this invention. 本発明の実施例1における締結力の評価・決定を示す図である。It is a figure which shows evaluation and determination of the fastening force in Example 1 of this invention. 本発明の実施例2における締結力の評価・決定を示す図である。It is a figure which shows evaluation and determination of the fastening force in Example 2 of this invention. 本発明の実施例3における締結力の評価・決定を示す図である。ここで、(a)は振動レベルを加速度で評価した結果を示し、(b)は振動レベルを速度で評価した結果を示し、(c)は振動レベルを変位で評価した結果を示す。It is a figure which shows evaluation and determination of the fastening force in Example 3 of this invention. Here, (a) shows the result of evaluating the vibration level by acceleration, (b) shows the result of evaluating the vibration level by speed, and (c) shows the result of evaluating the vibration level by displacement. 本発明の基本的考え方を説明するために、1自由度振動系における周波数応答特性への剛性および減衰係数の影響を示す図である。In order to explain the basic concept of the present invention, it is a diagram showing the influence of stiffness and damping coefficient on frequency response characteristics in a one-degree-of-freedom vibration system. 本発明の基本メカニズムを示す図である。It is a figure which shows the basic mechanism of this invention. 本発明の基本コンセプトを説明するために、従来法との締結力決定手順の相違を示す図である。It is a figure which shows the difference in the fastening force determination procedure with the conventional method, in order to demonstrate the basic concept of this invention.

本発明では、電磁鋼板を積層した積層体鉄心において、積層間のすべり摩擦による減衰効果を利用して低振動にするために、積層間に適切な滑り摩擦を発生させるような適正な締結力を決定するようにしている。   In the present invention, in a laminated core in which electromagnetic steel sheets are laminated, an appropriate fastening force that generates appropriate sliding friction between the laminations is used in order to reduce vibration by using a damping effect caused by sliding friction between the laminations. I try to decide.

そして、そのようにして決定した締結力で、積層した電磁鋼板を締結して積層体鉄心を製造するようにしている。   And the laminated iron core is manufactured by fastening the laminated electrical steel sheets with the fastening force determined as described above.

本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図1に示すように、ベークライト12を介してばね13によって締結力を調整できる積層体鉄心(小型モデルあるいは部分モデルが好ましい)11を用意する。そして、信号発生器21によって生成された波形で加振機22によって、所定の機械的加振力で加振する。ここで、前記所定の機械的加振力は、被測定対象の積層体鉄心11が実際の使用において問題となり得る振動条件等により決定されるものであり、一般的には1N〜1000Nの範囲から選択される。なお、加振力はロードセル23によって測定する。振動センサ24によって変位あるいは速度あるいは加速度を測定し(非加振時を零点とする)、時系列波形を得る。得られた時系列波形を解析し、RMS値(二乗平均平方根)、あるいは振幅における最大値を、振動の代表値あるいは平均値(複数の測定点または複数の測定回数の算術平均値)として得ることができる(これを振動レベルとする)。
[Embodiment 1]
As shown in FIG. 1, a laminated iron core (preferably a small model or a partial model) 11 capable of adjusting a fastening force by a spring 13 through a bakelite 12 is prepared. Then, the waveform generated by the signal generator 21 is vibrated with a predetermined mechanical vibration force by the vibration exciter 22. Here, the predetermined mechanical excitation force is determined by vibration conditions or the like that may cause a problem in the actual use of the laminate core 11 to be measured, and is generally from a range of 1N to 1000N. Selected. The excitation force is measured by the load cell 23. The displacement, speed, or acceleration is measured by the vibration sensor 24 (when no vibration is applied, the time is zero), and a time series waveform is obtained. Analyzing the obtained time-series waveform, and obtaining the RMS value (root mean square) or the maximum value in amplitude as the representative value or average value of vibration (multiple measurement points or arithmetic average value of multiple measurements) (This is the vibration level.)

そして、締結力を変化させ、振動の代表値(RMS値あるいは振幅の最大値)を順次計測すれば、振動レベルと締結力との関係が明らかとなる。振動の平均値においても同様である。こうして、積層体鉄心の使用状況に応じた適正な締結力が決定される。   Then, if the fastening force is changed and the vibration representative value (RMS value or maximum amplitude value) is sequentially measured, the relationship between the vibration level and the fastening force becomes clear. The same applies to the average value of vibration. Thus, an appropriate fastening force is determined according to the use situation of the laminated core.

[実施形態2]
図2に示すように、ベークライト12を介してばね13によって締結力を調整できる積層体鉄心(小型モデルあるいは部分モデル)11を用い、信号発生器21によって生成された正弦波fHzで加振機22によって所定の機械的加振力で加振する。ここで、前記所定の機械的加振力は、被測定対象の積層体鉄心(小型モデルあるいは部分モデル)11が実際の使用において問題となり得る振動条件等により決定されるものであり、一般的には1N〜1000Nの範囲から選択される機械的加振力となる。なお、加振力はロードセル23によって測定する。
[Embodiment 2]
As shown in FIG. 2, using a laminated iron core (small model or partial model) 11 whose fastening force can be adjusted by a spring 13 through a bakelite 12, a vibrator 22 with a sine wave fHz generated by a signal generator 21. To excite with a predetermined mechanical excitation force. Here, the predetermined mechanical excitation force is determined by vibration conditions or the like that may cause problems in the actual use of the laminate core (small model or partial model) 11 to be measured. Is a mechanical excitation force selected from the range of 1N to 1000N. The excitation force is measured by the load cell 23.

そして、振動センサ24によって変位あるいは速度あるいは加速度を測定し、時系列波形を得る(非加振時を零点とする)。得られた時系列波形を周波数解析器25で周波数解析し、周波数成分のうちfHzのN倍成分(N=1,2,3,・・・)の総和Woutを振動の代表値として得る(これを振動レベルとする)。なお、複数点計算する場合または複数回測定する場合は平均をとればよい。   Then, the displacement, velocity, or acceleration is measured by the vibration sensor 24 to obtain a time series waveform (when no vibration is applied, the zero point is set). The obtained time-series waveform is frequency-analyzed by the frequency analyzer 25, and the sum Wout of N-times components (N = 1, 2, 3,...) Of fHz out of the frequency components is obtained as a representative value of vibration (this) Is the vibration level). In addition, what is necessary is just to take an average, when calculating several points or measuring several times.

そして、締結力を変化させ、振動の代表値(Wout)を順次計測すれば、振動レベルと締結力との関係が明らかとなる。こうして、積層体鉄心の使用状況に応じた適正な締結力が決定される。   Then, by changing the fastening force and sequentially measuring the representative value (Wout) of the vibration, the relationship between the vibration level and the fastening force becomes clear. Thus, an appropriate fastening force is determined according to the use situation of the laminated core.

実施形態2の方法は実施形態1の方法に比べ、選定される加振力に依存して生じる、振幅レベルのばらつきを解消することができる。   Compared with the method of the first embodiment, the method of the second embodiment can eliminate the amplitude level variation that occurs depending on the selected excitation force.

[実施形態3]
図3に示すように、ベークライト12を介してばね13によって締結力を調整できる積層体鉄心(小型モデルあるいは部分モデル)11を用い、信号発生器21によって生成された正弦波fHzで加振機22によって上記実施形態2と同様に所定の機械的加振力で加振する。
[Embodiment 3]
As shown in FIG. 3, using a laminated iron core (small model or partial model) 11 whose fastening force can be adjusted by a spring 13 via a bakelite 12, a vibrator 22 with a sine wave fHz generated by a signal generator 21. As in the second embodiment, vibration is performed with a predetermined mechanical vibration force.

そして、振動センサ24によって変位あるいは速度あるいは加速度を測定し、時系列波形を得る(非加振時を零点とする)。得られた時系列波形を周波数解析器25で周波数解析し、周波数成分のうちfHzのN倍成分(N=1,2,3,・・・)の総和Woutを得る。なお、複数点計算する場合または複数回測定する場合は平均をとればよい。Woutを計算すると同時に、加振力をロードセル23で測定し、加振力の時系列波形を得る。得られた時系列波形を周波数解析器26で周波数解析し、周波数成分のうちfHzのN倍成分(N=1,2,3,・・・)の総和Finを得る。そして、Wout/Finを振動の代表値(振動レベル)とする。   Then, the displacement, velocity, or acceleration is measured by the vibration sensor 24 to obtain a time series waveform (when no vibration is applied, the zero point is set). The obtained time series waveform is frequency-analyzed by the frequency analyzer 25 to obtain a total sum Wout of N-fold components (N = 1, 2, 3,...) Of fHz among the frequency components. In addition, what is necessary is just to take an average, when calculating several points or measuring several times. Simultaneously with calculating Wout, the excitation force is measured by the load cell 23 to obtain a time-series waveform of the excitation force. The obtained time-series waveform is frequency-analyzed by the frequency analyzer 26 to obtain the sum Fin of N frequency components (N = 1, 2, 3,...) Of fHz out of the frequency components. Then, Wout / Fin is set as a representative value (vibration level) of vibration.

そして、締結力を変化させ、振動の代表値(Wout/Fin)を順次計測すれば、振動レベルと締結力との関係が明らかとなる。こうして、積層体鉄心の使用状況に応じた適正な締結力が決定される。   Then, if the fastening force is changed and the representative value (Wout / Fin) of vibration is sequentially measured, the relationship between the vibration level and the fastening force becomes clear. Thus, an appropriate fastening force is determined according to the use situation of the laminated core.

実施形態3の方法は実施形態2の方法と同様の利点を有し、さらに実施形態2の方法に比べ、加振機22の加振力の変動(ゆらぎや経時変化)による振動レベルへの影響を相殺することができる。   The method according to the third embodiment has the same advantages as the method according to the second embodiment, and further, compared to the method according to the second embodiment, the influence on the vibration level due to fluctuations (fluctuations and changes with time) of the vibration force of the vibrator 22. Can be offset.

本発明の実施例1を示す。この実施例1では、上記の本発明の実施形態1によって適正な締結力を求めた。   Example 1 of the present invention will be described. In Example 1, an appropriate fastening force was obtained according to Embodiment 1 of the present invention described above.

図4は、この実施例1で用いた小型の積層体鉄心11を示すものである。この積層体鉄心は図示の通り、4辺を構成する各小片と、中央部を構成する小片の、合計5個の小片を突き合せ、ステップラップ積み方式で積層したものである。ここで、L1=500mm、L2=500mm、L3=100mm、L4=100mmであり、厚さ0.2mmの電磁鋼板を70枚積層している。電磁鋼板は一般的な方向性電磁鋼板を用いている。なお、Siの含有量は2.0〜4.5質量%である。   FIG. 4 shows a small laminated core 11 used in the first embodiment. As shown in the figure, this laminated core has a total of 5 pieces, each of which constitutes four sides, and a piece which constitutes the central portion, and is laminated in a step lap stacking manner. Here, L1 = 500 mm, L2 = 500 mm, L3 = 100 mm, L4 = 100 mm, and 70 electromagnetic steel sheets having a thickness of 0.2 mm are laminated. As the electrical steel sheet, a general grain-oriented electrical steel sheet is used. In addition, content of Si is 2.0-4.5 mass%.

加振位置はL1の側の辺の中点とし、振動レベルの測定位置は各辺と中央部小片上で等間隔で3点ずつ、合計15点選択した。   The excitation position was the midpoint of the side on the L1 side, and the measurement position of the vibration level was selected at three points at equal intervals on each side and the central piece, for a total of 15 points.

図5は、締結力を変化させた場合の振動平均値のグラフである。振動平均値としては、30Nの加振力(周波数f=100Hzの正弦波)により振動センサで測定した加速度のRMS値の15点平均値とした。   FIG. 5 is a graph of the vibration average value when the fastening force is changed. As the vibration average value, the RMS value of the acceleration measured by the vibration sensor with an excitation force of 30 N (frequency sine wave of 100 Hz) was the 15-point average value.

図5に示すように、締結力が6N/cmの場合が低振動であるため、適正な締結力は6N/cmと決定された。 As shown in FIG. 5, since when the fastening force is 6N / cm 2 is low vibration, proper fastening force was determined to 6N / cm 2.

なお、締結力を変化させた場合の振動平均値としてRMS値の代わりに振動の最大値を求めて平均し、その値が最も小さくなる締結力を採用することもできる。   In addition, the maximum value of vibration is calculated | required instead of RMS value as an average vibration value at the time of changing fastening force, and it can also employ | adopt the fastening force with which the value becomes the smallest.

本発明の実施例2を示す。この実施例2では、上記の実施形態2によって適正な締結力を求めた。   Example 2 of the present invention will be described. In Example 2, an appropriate fastening force was obtained according to the second embodiment.

この実施例2でも、実施例1と同寸法の積層体鉄心11を用い、電磁鋼板も一般的な方向性電磁鋼板を用いている。また加振位置、加振周波数および振動レベルの測定位置も実施例1と同様とした。なお、Siの含有量は2.0〜4.5質量%である。   Also in Example 2, the laminated iron core 11 having the same dimensions as in Example 1 is used, and the general steel sheet is also used as the electromagnetic steel sheet. The measurement position of the vibration position, vibration frequency and vibration level was also the same as in Example 1. In addition, content of Si is 2.0-4.5 mass%.

図6は、締結力を変化させた場合の振動代表値のグラフである。振動代表値としては、20Nの加振力により振動センサで測定して得られた加速度の時系列波形における周波数成分のうちのfHzのN倍成分の総和Woutとした。なお、Woutは15点の加速度周波数成分から計算後、平均化したものを採用した。   FIG. 6 is a graph of representative vibration values when the fastening force is changed. As the vibration representative value, the sum Wout of N-fold components of fHz out of the frequency components in the time-series waveform of acceleration obtained by measuring with a vibration sensor with an excitation force of 20N was used. For Wout, an averaged value after calculation from 15 acceleration frequency components was adopted.

図6に示すように、締結力が6N/cmの場合が低振動であるため、適正な締結力は6N/cmと決定された。ここで、加振力を30N、40Nと変化させて同様に測定を行ったところ、グラフは上下にシフトするが、図6に示した場合と同様に締結力が6N/cmの場合が低振動であった。 As shown in FIG. 6, because if the fastening force is 6N / cm 2 is low vibration, proper fastening force was determined to 6N / cm 2. Here, when the excitation force was changed to 30N and 40N and the same measurement was performed, the graph shifted up and down, but the case where the fastening force was 6 N / cm 2 was low as in the case shown in FIG. It was a vibration.

本発明の実施例3を示す。この実施例3では、上記の実施形態3によって適正な締結力を求めた。   Example 3 of the present invention will be described. In Example 3, an appropriate fastening force was obtained by the above-described Embodiment 3.

この実施例3でも、実施例1、2と同寸法の積層体鉄心11を用いたが、電磁鋼板には実施例1、2よりも低鉄損のものを使用した。なお、Siの含有量は2.0〜4.5質量%である。加振位置、加振周波数および振動レベルの測定位置については実施例1および2と同様とした。   In Example 3, the laminated iron core 11 having the same dimensions as those in Examples 1 and 2 was used. However, an electromagnetic steel sheet having a lower iron loss than that in Examples 1 and 2 was used. In addition, content of Si is 2.0-4.5 mass%. The measurement position of the vibration position, vibration frequency and vibration level was the same as in Examples 1 and 2.

図7(a)は、締結力を変化させた場合の振動代表値のグラフである。20Nの加振力で15点の加速度(m/s)と加振力(N)を周波数解析して得られたWout/Fin((m/s)/N)を振動代表値とした。なお、Woutは15点の加速度周波数成分から計算後、平均化したものを採用した。 FIG. 7A is a graph of vibration representative values when the fastening force is changed. Wout / Fin ((m / s 2 ) / N) obtained by frequency analysis of 15 points of acceleration (m / s 2 ) and excitation force (N) with 20 N excitation force was used as the vibration representative value. . For Wout, an averaged value after calculation from 15 acceleration frequency components was adopted.

図7(a)に示すように、締結力が8N/cmの場合が低振動であるため、適正な締結力は8N/cmと決定された。ここで、加振力を30N、40Nと変化させて同様に測定を行ったところ、グラフは上下にシフトするが、図7(a)に示した場合と同様に締結力が8N/cmの場合が低振動であった。 As shown to Fig.7 (a), since the case where fastening force is 8 N / cm < 2 > is low vibration, appropriate fastening force was determined to be 8 N / cm < 2 >. Here, when the excitation force was changed to 30 N and 40 N and the same measurement was performed, the graph shifted up and down, but the fastening force was 8 N / cm 2 as in the case shown in FIG. The case was low vibration.

図7(b)、図7(c)は、同様に、速度(m/s)、変位(m)を周波数解析して得られたWout/Fin(((m/s)/N)または(m/N))を振動代表値としたものである。なお、Woutは15点の速度または変位の周波数成分から計算後、平均化したものを採用した。速度、変位で評価した場合も図7(b)、図7(c)に示すように、締結力が8N/cmの場合が低振動であるため、適正な締結力は8N/cmと決定された。 Similarly, FIG. 7B and FIG. 7C show Wout / Fin (((m / s) / N) or (obtained by frequency analysis of velocity (m / s) and displacement (m)). m / N)) is a representative vibration value. For Wout, an averaged value after calculating from the velocity or displacement frequency components at 15 points was adopted. Even when evaluated by speed and displacement, as shown in FIGS. 7 (b) and 7 (c), when the fastening force is 8 N / cm 2 , the vibration is low, so the proper fastening force is 8 N / cm 2 . It has been determined.

以下、上記各実施形態を含む、本発明に共通の事項を補足する。   Hereinafter, matters common to the present invention including the above embodiments will be supplemented.

積層体鉄心に用いられる代表的な電磁鋼板は質量%でSi:2.0〜4.5%を含むことを特徴とする。ただし、本発明は電磁鋼板の仕様(被覆の仕様も含む)に影響されることはほとんどないので、この組成に限定されることはなく、また種類(例えば方向性電磁鋼板、無方向性電磁鋼板)も限定されない。例えば、鉄心への要求特性を満足するなら、一般冷延鋼板を電磁鋼板として流用することも可能である。電磁鋼板の寸法や形状、積層体鉄心の寸法や形状、積層方法(積層枚数や電磁鋼板の組合せ方など)も本発明の適用にとくに影響するものではない。   A typical electrical steel sheet used for the laminated iron core is characterized by containing Si: 2.0 to 4.5% by mass. However, since the present invention is hardly affected by the specifications of the electrical steel sheet (including the coating specifications), it is not limited to this composition, and the type (for example, directional electrical steel sheet, non-oriented electrical steel sheet). ) Is not limited. For example, if a required characteristic for an iron core is satisfied, a general cold-rolled steel sheet can be used as an electromagnetic steel sheet. The size and shape of the electromagnetic steel sheet, the size and shape of the laminated core, and the lamination method (the number of laminated sheets and how to combine the electromagnetic steel sheets) do not particularly affect the application of the present invention.

加振の周波数は所定の値に固定することが好ましい。所定の値としては、対象となる積層体鉄心の使用周波数が好ましく、使用周波数に幅がある場合は代表周波数を少なくとも1つ選定して用いることが好ましい。例えば、商用周波数である50Hzおよび60Hzの少なくとも1方に固定することが考えられる。ただし、使用周波数に限定されることはなく、例えば他の積層体鉄心との比較のために、統一された周波数を選定してもよい。実現できる周波数である限り(例えば前述の50Hz〜20kHz)、周波数の絶対値にとくに制限は無い。加振の波形は正弦波が好適であるが、三角波、矩形波など他の周期的波形の適用を排除するものではない。   The excitation frequency is preferably fixed to a predetermined value. As the predetermined value, the use frequency of the target laminated core is preferable, and when the use frequency has a width, it is preferable to select and use at least one representative frequency. For example, it is conceivable to fix at least one of commercial frequencies of 50 Hz and 60 Hz. However, it is not limited to a use frequency, For example, you may select the unified frequency for the comparison with another laminated body core. As long as the frequency is realizable (for example, 50 Hz to 20 kHz as described above), the absolute value of the frequency is not particularly limited. A sinusoidal wave is suitable for the excitation waveform, but it does not exclude application of other periodic waveforms such as a triangular wave and a rectangular wave.

積層体鉄心上の加振位置および振動レベル計測位置は任意に設定でき、原則としてどの位置でも結果を得ることができる。   The vibration position and vibration level measurement position on the laminated core can be arbitrarily set, and in principle, the result can be obtained at any position.

得られた振動レベルと締結力との関係から積層体鉄心を励磁(磁化)した後に(すなわち当該鉄心の通電使用時に)騒音を低減する締結力を決定する際には、例えば振動レベルが最低となる締結力を測定点の中から選択すればよい。ただし、図5〜7から分かるように、滑り摩擦による振動低減効果が表れる領域では、締結力の変化に対して振動レベルの変化が凹型となり、この領域内(例えば図5や図6では5〜7N/cm程度、図7(a)〜(c)では6〜8N/cm程度の領域内)では、本発明で見出した騒音低減効果が十分発現しているものと考えられる。したがって、振動レベルの最低値に拘らず、得られた振動レベルと締結力との関係から、滑り摩擦による振動・騒音低減効果が発現する締結力領域を特定し、諸要件を考慮して当該領域から適宜締結力を選択することもできる。 When determining the fastening force to reduce noise after exciting (magnetizing) the laminated core from the relationship between the obtained vibration level and the fastening force (that is, when energizing the iron core), for example, the vibration level is the lowest. The fastening force to be obtained may be selected from the measurement points. However, as can be seen from FIGS. 5 to 7, in the region where the vibration reduction effect due to sliding friction appears, the change in the vibration level becomes concave with respect to the change in the fastening force, and within this region (for example, 5 to 5 in FIGS. 7N / cm 2 or so, in FIG. 7 (a) ~ (c) the 6~8N / cm 2 approximately in the region), it is considered that the noise reduction effect was found in the present invention is sufficiently expressed. Therefore, from the relationship between the obtained vibration level and the fastening force, regardless of the minimum value of the vibration level, the fastening force region where the vibration / noise reduction effect due to sliding friction is expressed is identified, and the relevant region is considered in consideration of various requirements. From the above, the fastening force can be selected as appropriate.

締結力を変化させる範囲は、対象となる積層体鉄心において可能な範囲、通常の範囲、あるいはこれらから適宜抽出した範囲が例示される。締結力を変化させる範囲および変化の刻み量は、得られた振動レベルと締結力との関係から、上記のように滑り摩擦による振動・騒音低減効果が発現する締結力領域を有る程度特定できるよう選択すればよい。一般には5〜20N/cm程度の範囲から適宜選択することが好ましい。 Examples of the range in which the fastening force is changed include a range that is possible for the target laminated core, a normal range, and a range that is appropriately extracted from these ranges. The range in which the fastening force is changed and the increment of the change can be specified to the extent that there is a fastening force region where the vibration / noise reduction effect due to sliding friction appears as described above from the relationship between the obtained vibration level and the fastening force. Just choose. Generally, it is preferable to select appropriately from the range of about 5 to 20 N / cm 2 .

振動レベルとして例えば変位、速度および加速度の2つ以上を採用してもよい。もし振動レベルと締結力との関係が振動レベルの選択により異なる場合、実際に積層体鉄心を製造した結果に基づき最も適正な関係を判定すればよい。   For example, two or more of displacement, velocity, and acceleration may be employed as the vibration level. If the relationship between the vibration level and the fastening force varies depending on the selection of the vibration level, the most appropriate relationship may be determined based on the result of actually manufacturing the laminated core.

なお、締結力を変更したことによる共振ピークの移動の影響(例えばピーク位置が測定周波数に近接することによる振動レベルの増大)は、発明者の調査した限りでは明確には観察されなかった。すなわち、もともと複雑に重なり合っている共振ピークの位置が移動する影響より、本発明の滑り摩擦による振動レベルの減衰効果の方が支配的に現れるものと考えられるが、このような知見も従来得られなかったものである。   Note that the influence of the movement of the resonance peak due to the change of the fastening force (for example, the increase in the vibration level due to the peak position approaching the measurement frequency) was not clearly observed as far as the inventors investigated. In other words, it is considered that the vibration level damping effect by the sliding friction of the present invention is more dominant than the influence of the movement of the resonance peak position that is originally complicatedly overlapped. It was not.

言うまでも無いが、本発明は上記の実施形態や実施例に限定されるものではない。例えば、締結力を付与する機構は図1〜3のばね等に限定されず自由である。   Needless to say, the present invention is not limited to the above-described embodiments and examples. For example, the mechanism for applying the fastening force is not limited to the springs shown in FIGS.

本発明により、積層体鉄心の振動・騒音を低減する、比較的簡便でありながら精度が高く、かつ汎用性の高い方法が提供される。   According to the present invention, there is provided a relatively simple method with high accuracy and high versatility that reduces vibration and noise of a laminated core.

11 積層体鉄心(モデル)
12 ベークライト
13 ばね
21 信号発生器
22 加振機
23 ロードセル
24 振動センサ
25 周波数解析器
26 周波数解析器
k 1自由度振動系におけるばね係数(1質点系モデルによる)
c 1自由度振動系における減衰係数(1質点系モデルによる)
m 1自由度振動系における質点の質量(1質点系モデルによる)
11 Laminated iron core (model)
12 Bakelite 13 Spring 21 Signal generator 22 Exciter 23 Load cell 24 Vibration sensor 25 Frequency analyzer 26 Frequency analyzer k Spring coefficient in one-degree-of-freedom vibration system (based on one-mass system model)
c Damping coefficient in one-degree-of-freedom vibration system (by one-mass system model)
m Mass of mass point in 1-DOF vibration system (by 1-mass system model)

Claims (5)

電磁鋼板を用いて積層体鉄心を構成し、異なる締結力の下で、1N〜1000Nの範囲内の機械的加振力で加振し、積層体鉄心の1個所以上の振動レベルを計測し、その振動レベルの計測結果を元に、振動レベルと締結力との関係を求めることにより、積層体鉄心を励磁した後に騒音を低減する締結力を決定することを特徴とする積層体鉄心の締結力決定方法。   A laminated iron core is constructed using electromagnetic steel sheets, and under different fastening forces, it is vibrated with a mechanical excitation force within the range of 1N to 1000N, and the vibration level at one or more locations of the laminated iron core is measured. Based on the measurement result of the vibration level, the fastening force of the laminated core is determined by determining the fastening force that reduces noise after exciting the laminated core by obtaining the relationship between the vibration level and the fastening force. Decision method. 前記振動レベルとして、測定箇所の時系列波形の振幅RMS値または振幅最大値を各々計算し、当該振幅RMS値または振幅最大値の代表値あるいは平均値を用いることを特徴とする請求項1に記載の積層体鉄心の締結力決定方法。   2. The amplitude RMS value or maximum amplitude value of a time-series waveform at a measurement location is calculated as the vibration level, and a representative value or average value of the amplitude RMS value or maximum amplitude value is used. Method for determining the fastening force of laminated iron cores. 前記振動レベルとして、測定箇所の時系列波形を周波数解析し、加振周波数のN倍の周波数成分の総和を各々計算し、その代表点の値あるいは平均値を用いることを特徴とする請求項1に記載の積層体鉄心の締結力決定方法。   2. The frequency level of a time-series waveform at a measurement location is calculated as the vibration level, the sum of frequency components N times the excitation frequency is calculated, and the value or average value of the representative point is used. The fastening force determination method of the laminated body core described in 1. 前記振動レベルとして、測定箇所の時系列波形を周波数解析し、加振周波数のN倍の周波数成分の総和を各々計算して、その代表点の値あるいは平均値をWoutとし、また加振力を周波数解析し、加振周波数のN倍の周波数成分の総和を計算してFinとして、その比であるWout/Finを用いることを特徴とする請求項1に記載の積層体鉄心の締結力決定方法。   As the vibration level, frequency analysis is performed on the time-series waveform of the measurement location, the sum of frequency components N times the excitation frequency is calculated, the value of the representative point or the average value is set as Wout, and the excitation force is 2. A method of determining a fastening force of a laminated core according to claim 1, wherein frequency analysis is performed, a sum of frequency components N times the excitation frequency is calculated, and the ratio Wout / Fin is used as Fin. . 請求項1〜4のいずれかに記載の積層体鉄心の締結力決定方法を用いて締結力を決定し、その決定した締結力で締結して積層体鉄心を製造することを特徴とする積層体鉄心の製造方法。   A laminated body characterized in that a fastening force is determined using the fastening force determination method for a laminated core according to any one of claims 1 to 4 and is fastened with the determined fastening force to produce a laminated core. Manufacturing method of iron core.
JP2011032827A 2010-02-22 2011-02-18 Method for determining fastening force of laminated iron core and method for producing laminated iron core Active JP4840535B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032827A JP4840535B1 (en) 2010-02-22 2011-02-18 Method for determining fastening force of laminated iron core and method for producing laminated iron core

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2010036018 2010-02-22
JP2010036018 2010-02-22
JP2010145897 2010-06-28
JP2010145897 2010-06-28
JP2010218210 2010-09-29
JP2010218210 2010-09-29
JP2011032827A JP4840535B1 (en) 2010-02-22 2011-02-18 Method for determining fastening force of laminated iron core and method for producing laminated iron core

Publications (2)

Publication Number Publication Date
JP4840535B1 true JP4840535B1 (en) 2011-12-21
JP2012093333A JP2012093333A (en) 2012-05-17

Family

ID=44483122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032827A Active JP4840535B1 (en) 2010-02-22 2011-02-18 Method for determining fastening force of laminated iron core and method for producing laminated iron core

Country Status (2)

Country Link
JP (1) JP4840535B1 (en)
WO (1) WO2011102542A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069620A (en) * 2010-09-22 2012-04-05 Jfe Steel Corp Magnetic steel sheet for laminate core
KR20210068509A (en) * 2018-11-06 2021-06-09 제이에프이 스틸 가부시키가이샤 Method for determining elastic matrix of laminated iron core and method for vibration analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764648A (en) * 2017-11-02 2018-03-06 新界泵业集团股份有限公司 Motor self-clinching iron core folds riveting power mechanism for testing and method of testing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939024A (en) * 1972-08-23 1974-04-11
JPS60257117A (en) * 1984-06-01 1985-12-18 Matsushita Electric Works Ltd Ballast for electric discharge lamp
JPH07211565A (en) * 1994-01-12 1995-08-11 Nippon Steel Corp Apparatus and method for measurement of vibration of transformer iron core
JPH11186062A (en) * 1997-12-24 1999-07-09 Nkk Corp Low-noise laminated core
JP2006100313A (en) * 2004-09-28 2006-04-13 Fuji Electric Holdings Co Ltd Gapped iron core type reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939024A (en) * 1972-08-23 1974-04-11
JPS60257117A (en) * 1984-06-01 1985-12-18 Matsushita Electric Works Ltd Ballast for electric discharge lamp
JPH07211565A (en) * 1994-01-12 1995-08-11 Nippon Steel Corp Apparatus and method for measurement of vibration of transformer iron core
JPH11186062A (en) * 1997-12-24 1999-07-09 Nkk Corp Low-noise laminated core
JP2006100313A (en) * 2004-09-28 2006-04-13 Fuji Electric Holdings Co Ltd Gapped iron core type reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069620A (en) * 2010-09-22 2012-04-05 Jfe Steel Corp Magnetic steel sheet for laminate core
KR20210068509A (en) * 2018-11-06 2021-06-09 제이에프이 스틸 가부시키가이샤 Method for determining elastic matrix of laminated iron core and method for vibration analysis
KR102482508B1 (en) 2018-11-06 2022-12-28 제이에프이 스틸 가부시키가이샤 Method for determining elastic matrix of laminated iron core and method for analyzing vibration

Also Published As

Publication number Publication date
WO2011102542A1 (en) 2011-08-25
JP2012093333A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5953686B2 (en) Noise prediction method for transformer
JP4840535B1 (en) Method for determining fastening force of laminated iron core and method for producing laminated iron core
JP4620674B2 (en) Deflection plate wave sensor
Shilyashki et al. Spatial distributions of magnetostriction, displacements and noise generation of model transformer cores
JP5716330B2 (en) Evaluation method of electrical steel sheet for laminated iron core
KR101066248B1 (en) Non-contact type transducer for rod member having multi-loop coil
Phway et al. Magnetostriction trend of non-oriented 6.5% Si–Fe
Shuai et al. Investigation of acoustic noise sources in medium frequency, medium voltage transformers
Javorski et al. Frequency characteristics of magnetostriction in electrical steel related to the structural vibrations
Sun et al. Coating methods to increase material damping of compressor blades: Measurements and modeling
JP2008082778A (en) Method and apparatus for measuring natural frequency of iron core of transformer
JP2012068072A (en) Oscillation model determination method for laminate iron core
JP5736634B2 (en) Evaluation method of magnetostriction or noise of magnetic steel sheet for three-phase transformer core excited by sine wave
JP6090503B2 (en) Noise prediction method for transformer
WO2023276495A1 (en) Transformer noise performance diagnosis method and noise reduction method
CN114894415A (en) Method for determining optimal measuring point of sensor based on vibration signal of surface of transformer box body
Yilmaz et al. Theoretical study on the sensitivity of dynamic acoustic force measurement through monomodal and bimodal excitations of rectangular micro-cantilever
Miihlethaler et al. Acoustic noise in inductive power components
Georgiev et al. Vibration reduction of beams and plates using acoustic black hole effect
JP6911631B2 (en) Transformer noise prediction method
Niu et al. Hybrid vibration control of a circular cylindrical shell using electromagnetic constrained layer damping treatment
US10732151B2 (en) Resonator device for enhancing output and sensitivity of guided wave transducers and the method of enhancement controlling
JP5557049B2 (en) Vibration isolator
Nowak et al. Determining the optimal locations of piezoelectric transducers for vibroacoustic control of structures with general boundary conditions
Du et al. Vibration characteristics of transformer core components

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4840535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250