JP5953686B2 - Noise prediction method for transformer - Google Patents
Noise prediction method for transformer Download PDFInfo
- Publication number
- JP5953686B2 JP5953686B2 JP2011207303A JP2011207303A JP5953686B2 JP 5953686 B2 JP5953686 B2 JP 5953686B2 JP 2011207303 A JP2011207303 A JP 2011207303A JP 2011207303 A JP2011207303 A JP 2011207303A JP 5953686 B2 JP5953686 B2 JP 5953686B2
- Authority
- JP
- Japan
- Prior art keywords
- noise
- transformer
- iron core
- vibration
- generated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 46
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 86
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 65
- 230000004907 flux Effects 0.000 claims description 55
- 230000005284 excitation Effects 0.000 claims description 43
- 229910000831 Steel Inorganic materials 0.000 claims description 24
- 239000010959 steel Substances 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 239000000523 sample Substances 0.000 description 77
- 239000011162 core material Substances 0.000 description 21
- 229910000976 Electrical steel Inorganic materials 0.000 description 15
- 230000001133 acceleration Effects 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
本発明は、変圧器の騒音予測方法に関し、特に変圧器において発生する騒音を高精度に予測する方法に関するものである。 The present invention relates to a noise prediction method for a transformer, and more particularly to a method for predicting noise generated in a transformer with high accuracy.
近年、環境保全への関心の高まりから、変圧器において発生する騒音を低減するために、その鉄心材料である方向性電磁鋼板に対しても低騒音化への対応が強く求められている。変圧器における騒音の主な要因は、鉄心材料である方向性電磁鋼板の磁歪振動にあることが知られている。そのため、励磁の際に方向性電磁鋼板に発生する磁歪振動を測定して騒音を評価することが肝要となる。 In recent years, in order to reduce noise generated in transformers due to an increase in interest in environmental conservation, there is a strong demand for low noise in the grain-oriented electrical steel sheet, which is the iron core material. It is known that the main factor of noise in a transformer is magnetostriction vibration of a grain-oriented electrical steel sheet that is a core material. Therefore, it is important to evaluate the noise by measuring the magnetostrictive vibration generated in the grain-oriented electrical steel sheet during excitation.
磁歪振動の測定は、1枚の方向性電磁鋼板の試料に正弦波波形を有する励磁電圧を与えて所定の磁束密度まで励磁し、試料に発生する磁歪振動の変位波形を、例えばレーザドップラ振動計を用いて測定するのが一般的である。こうして得られた磁歪振動の変位波形から、変圧器において発生する騒音を予測する方法が提案されている。
例えば、特許文献1には、磁歪振動の変位波形を時間微分して変位速度を計算し、次いで該変位速度に対して音圧を表す式を適用して磁歪を音圧として表し、さらに聴感補正を施すことにより、磁歪振動波形を変圧器の騒音レベルに近い値に変換して騒音を評価する方法が提案されている。
Magnetostrictive vibration is measured by applying an excitation voltage having a sinusoidal waveform to a sample of a grain-oriented electrical steel sheet to excite it to a predetermined magnetic flux density, and using a displacement waveform of the magnetostrictive vibration generated in the sample, for example, a laser Doppler vibrometer It is common to measure using A method for predicting noise generated in a transformer from the displacement waveform of the magnetostrictive vibration thus obtained has been proposed.
For example, in Patent Document 1, a displacement speed is calculated by time-differentiating a displacement waveform of magnetostriction vibration, and then an expression representing sound pressure is applied to the displacement speed to express magnetostriction as sound pressure. Has been proposed to convert the magnetostrictive vibration waveform to a value close to the noise level of the transformer and evaluate the noise.
また、非特許文献1には、鉄心から発生する騒音が磁歪振動の加速度に良く対応するという知見から、磁歪振動の調波成分から磁歪振動加速度レベルを求めることにより、変圧器の騒音を評価する方法が提案されている。 Further, Non-Patent Document 1 evaluates the noise of a transformer by obtaining the magnetostrictive vibration acceleration level from the harmonic component of the magnetostrictive vibration from the knowledge that the noise generated from the iron core corresponds well to the acceleration of the magnetostrictive vibration. A method has been proposed.
しかし、特許文献1および非特許文献1の方法は、騒音の評価としてある程度有用ではあるものの、精度の面で不十分であった。そこで、特許文献2には、励磁により方向性電磁鋼板試料に発生する磁束密度波形が、変圧器鉄心内のものとは異なるという知見から、変圧器鉄心内の磁束密度波形を電磁鋼板試料に発生する励磁電圧を与えることにより、騒音を高精度に予測する方法が提案されている。
However, although the methods of Patent Literature 1 and Non-Patent Literature 1 are useful to some extent as noise evaluation, they are insufficient in terms of accuracy. Therefore, in
しかしながら、特許文献2に記載の方法を以てしても、騒音の予測精度が依然として低いことが問題となっていた。
そこで、本発明の目的は、変圧器において発生する騒音を高精度に予測する方法を提供することにある。
However, even with the method described in
Therefore, an object of the present invention is to provide a method for predicting noise generated in a transformer with high accuracy.
発明者らは、上記課題を解決するための方途について鋭意検討した。そのために、まず予測精度が低い原因について検討したところ、変圧器鉄心内の磁束密度波形を発生させる励磁電圧を方向性電磁鋼板試料に与えて励磁しても、変圧器鉄心に発生する磁歪振動波形と、方向性電磁鋼板試料に発生する磁歪振動波形とが相違することが判明した。発明者らは、この相違の原因についてさらに詳細に検討した結果、変圧器鉄心を構成する複数枚の方向性電磁鋼板は積層されてボルト等により締め付け固定されているが、その締め付けにより磁歪振動波形が変化することを突き止めた。そこで、予測精度を向上させる方途について検討した結果、励磁により方向性電磁鋼板試料に発生する磁歪振動に対して、鉄心構造における締め付けの影響を加味することが有効であることを見出し、本発明を完成させるに至った。 The inventors diligently studied ways to solve the above problems. To that end, we first examined the cause of low prediction accuracy. Even if the excitation voltage that generates the magnetic flux density waveform in the transformer core was applied to the directional electrical steel sheet sample and excited, the magnetostrictive vibration waveform generated in the transformer core And the magnetostrictive vibration waveform generated in the grain-oriented electrical steel sheet sample were found to be different. As a result of examining the cause of this difference in more detail, the inventors have laminated a plurality of grain-oriented electrical steel sheets constituting the transformer core and are fastened and fixed by bolts or the like. Found out that it changed. Therefore, as a result of examining ways to improve the prediction accuracy, it was found that it is effective to consider the influence of tightening in the iron core structure against magnetostrictive vibration generated in the grain-oriented electrical steel sheet sample by excitation, and the present invention. It came to complete.
即ち、本発明の要旨は以下の通りである。
(1)方向性電磁鋼板の複数枚を積層して締め付け固定してなる鉄心を備える、変圧器において発生する騒音を、方向性電磁鋼板試料を用いて予測するに当たり、前記鉄心を所定の磁束密度まで励磁した際の鉄心内の磁束密度波形を求め、次いで前記試料に、前記磁束密度波形が発生する、励磁電圧を前記試料に与えて試料に発生する磁歪振動を測定し、該測定された磁歪振動に対して高調波解析を行い、高調波の各成分に対して、測定あるいは計算により導出された、ボルトにより前記複数枚の方向性電磁鋼板を締め付け固定しなかった場合の磁歪振動の周波数成分に対する、ボルトにより前記複数枚の方向性電磁鋼板を締め付け固定した場合の磁歪振動の周波数成分の振動変化割合を掛け合わせて前記騒音を予測することを特徴とする変圧器の騒音予測方法。
That is, the gist of the present invention is as follows.
(1) In predicting the noise generated in a transformer having an iron core formed by laminating and fixing a plurality of directional electromagnetic steel sheets, the iron core is subjected to a predetermined magnetic flux density. The magnetic flux density waveform in the iron core at the time of excitation is obtained, and then the magnetic flux density waveform is generated in the sample. An excitation voltage is applied to the sample to measure the magnetostrictive vibration generated in the sample, and the measured magnetostriction is measured. for the vibration perform harmonic analysis, for each component of the harmonic, derived by measurement or calculation, the frequency components of the magnetostrictive vibration when not clamped the plurality of directional electromagnetic steel plates by bolts for, funny, characterized in that to predict the noise by multiplying the vibration rate of change of the frequency components of the magnetostrictive vibration in the case of fastening and fixing the plurality of directional electromagnetic steel plates by bolts Vessel of noise prediction method.
(2)前記鉄心は3相変圧器鉄心である、前記(1)に記載の変圧器の騒音予測方法。 (2) The transformer noise prediction method according to (1), wherein the iron core is a three-phase transformer iron core.
(3)前記電圧の波形は、t:時間、f:周波数、A:基本波の成分に対する第3次高調波の成分の重畳割合、θ:位相角として以下の式(1)で与えられ、前記位相角θを−180°以上+180°以下の範囲において45°以下の間隔でサンプルし、該サンプルされた各位相角にて前記磁歪振動を測定し、該測定された各位相角での磁歪振動の平均値を前記試料に発生した磁歪振動とする、前記(2)に記載の変圧器の騒音予測方法。ただし、Aは0.05〜0.2である。
記
Record
(4)前記電圧の波形は、t:時間、f:周波数、A:基本波の成分に対する第3次高調波の成分の重畳割合、θ:位相角として以下の式(2)で与えられ、50°以上70°以下の範囲における1つの位相角θにて前記磁歪振動を測定する、前記(2)のいずれかに記載の変圧器の騒音予測方法。ただし、Aは0.05〜0.2である。
記
Record
本発明によれば、励磁により方向性電磁鋼板試料に発生する磁歪振動に、鉄心構造の締め付けの影響が加味されるため、変圧器における騒音を高精度に予測することができる。 According to the present invention, since the influence of tightening of the iron core structure is added to the magnetostrictive vibration generated in the grain-oriented electrical steel sheet sample by excitation, the noise in the transformer can be predicted with high accuracy.
まず、本発明を想到するに至った実験結果について説明する。
実機変圧器における騒音の評価は、実機変圧器としての小型モデル変圧器を作製し、この小型モデル変圧器を励磁した際に鉄心から発生する騒音と、方向性電磁鋼板試料を励磁した際に発生する騒音とを比較することにより行った。実機変圧器の鉄心内の磁束密度波形を測定することは現実的には困難であるため、実機変圧器を模した小型モデル変圧器を作製し、この小型モデル変圧器を励磁して発生する磁束密度波形および騒音を測定することにより評価した。
First, experimental results that led to the present invention will be described.
Noise in the actual transformer is evaluated when a small model transformer is manufactured as an actual transformer, and the noise generated from the iron core when the small model transformer is excited and the directional electrical steel sheet sample is excited. It was done by comparing with the noise to be done. Since it is actually difficult to measure the magnetic flux density waveform in the iron core of an actual transformer, a magnetic flux generated by creating a small model transformer imitating an actual transformer and exciting this small model transformer Evaluation was made by measuring density waveform and noise.
そこでまず、小型モデル変圧器を作製した。即ち、鉄心素材として、板厚0.23mmの方向性電磁鋼板を用意し、これらを70枚積層して76本のボルトにより締め付け固定して3相3脚のステップラップ型の鉄心を作製した。得られた変圧器の重量は約21kg、外径寸法は500mm×500mm×15mmである。また、ヨーク部は2分割Vノッチとし、また、2枚重ねの5段ステップラップとした。 First, a small model transformer was made. That is, a directional electrical steel sheet having a thickness of 0.23 mm was prepared as an iron core material, and 70 sheets of these were laminated and fastened and fixed with 76 bolts to produce a three-phase, three-leg step-wrap type iron core. The obtained transformer has a weight of about 21 kg and an outer diameter of 500 mm × 500 mm × 15 mm. Moreover, the yoke part was made into the 2 division | segmentation V notch, and was made into the 5-step step lap | lap | stack of 2 sheets.
これとは別に、上記鉄心素材の予備として残しておいた方向性電磁鋼板から、変圧器の騒音予測に用いる300×100mmの鋼片を切り出して方向性電磁鋼板試料とした。 Separately, a 300 × 100 mm steel piece used for predicting transformer noise was cut out from the grain-oriented electrical steel sheet left as a reserve for the iron core material, and used as a grain-oriented electrical steel sheet sample.
上記作製した小型モデル変圧器を周波数50Hzで1.7Tまで励磁し、変圧器鉄心内の磁束密度波形および鉄心から発生した騒音を測定した。
同様に、磁歪測定装置を用いて方向性電磁鋼板試料を周波数50Hzで1.7Tまで励磁し、発生した磁歪振動の板厚方向成分をレーザドップラ振動計により測定した。その際、小型モデル変圧器における複数の位置にて磁束密度波形を求め、その典型的な磁束密度波形が発生する電圧を方向性電磁鋼板試料に与えた。得られた磁歪振動の波形に対して高調波解析を施し、後述する非特許文献2の方法により変圧器の騒音の予測値を得た。
The small model transformer produced above was excited to 1.7 T at a frequency of 50 Hz, and the magnetic flux density waveform in the transformer core and the noise generated from the iron core were measured.
Similarly, the grain-oriented electrical steel sheet sample was excited to 1.7 T at a frequency of 50 Hz using a magnetostriction measuring apparatus, and the thickness direction component of the generated magnetostrictive vibration was measured with a laser Doppler vibrometer. At that time, a magnetic flux density waveform was obtained at a plurality of positions in the small model transformer, and a voltage at which the typical magnetic flux density waveform was generated was applied to the grain-oriented electrical steel sheet sample. Harmonic analysis was performed on the obtained magnetostrictive vibration waveform, and a predicted value of transformer noise was obtained by the method of Non-Patent
その結果、方向性電磁鋼板試料の磁歪振動から得られた騒音の予測値は、小型モデル鉄心から発生する騒音よりも小さい傾向にあり、予測値と実測値との誤差が大きかった。 As a result, the predicted noise value obtained from the magnetostrictive vibration of the grain-oriented electrical steel sheet sample tended to be smaller than the noise generated from the small model iron core, and the error between the predicted value and the actually measured value was large.
このように、鉄心を構成する方向性電磁鋼板の磁歪特性により、騒音の予測精度が依然として低いことが分かった。そこで、この原因について検討した結果、小型モデル変圧器を励磁した際に鉄心に発生する磁歪振動の波形が、方向性電磁鋼板試料のものとは異なることが判明したのである。 Thus, it has been found that the noise prediction accuracy is still low due to the magnetostriction characteristics of the grain-oriented electrical steel sheet constituting the iron core. As a result of examining this cause, it was found that the waveform of magnetostrictive vibration generated in the iron core when a small model transformer is excited is different from that of the grain-oriented electrical steel sheet sample.
発明者らはさらに、磁歪振動波形が小型モデル変圧器と方向性電磁鋼板試料とで異なる原因について詳細に検討した結果、鉄心構造における方向性電磁鋼板の締め付けによるものであることを突き止めた。即ち、変圧器鉄心を構成する方向性電磁鋼板の複数枚はボルト等により締め付け固定されているが、この締め付けの影響により、励磁により鉄心に発生する磁歪振動波形が変化することが明らかになったのである。 The inventors further examined in detail the cause of the difference in magnetostrictive vibration waveform between the small model transformer and the directional electromagnetic steel sheet sample. That is, a plurality of grain-oriented electrical steel sheets constituting the transformer core are fastened and fixed by bolts, etc., but it became clear that the magnetostriction vibration waveform generated in the iron core changes due to the excitation due to the effect of this tightening. It is.
図1は、励磁により小型モデル変圧器に発生する磁歪振動を測定して高調波解析し、ボルトにより方向性電磁鋼板を締め付け固定しなかった場合の磁歪振動の周波数成分に対する、方向性電磁鋼板を締め付け固定した場合の磁歪振動の周波数成分の変化割合(以下、「振動変化割合」と称する)を示す図である。この図から、第3次高調波(300Hz)については成分が倍増しているのに対して第4次高調波(400Hz)については変化していない。また、それ以外の基本波(100Hz)、第2次高調波(200Hz)、第5次高調波(500Hz)以上の成分については半減している。つまり、鉄心を構成する方向性電磁鋼板を締め付け固定するか否かにより、小型モデル変圧器の鉄心に発生する磁歪振動の周波数成分が変化しているのである。
このように、鉄心を構成する方向性電磁鋼板に対するボルトの締め付け固定により、励磁により鉄心に発生する磁歪振動波形が影響されることが判明したのである。これは、磁歪特性の異なる方向性電磁鋼板を用いて作製された様々な小型モデル変圧器についても同様の傾向を示していた。
Fig. 1 shows the directional electrical steel sheet for the frequency component of the magnetostrictive vibration when the directional electrical steel sheet is not fastened and fixed by bolts by measuring the magnetostrictive vibration generated in the small model transformer by excitation and analyzing the harmonics. It is a figure which shows the change rate (henceforth a "vibration change rate") of the frequency component of the magnetostriction vibration at the time of carrying out clamping fixation. From this figure, the component is doubled for the third harmonic (300 Hz), while the fourth harmonic (400 Hz) is not changed. In addition, components other than the fundamental wave (100 Hz), the second harmonic (200 Hz), and the fifth harmonic (500 Hz) and higher are halved. That is, the frequency component of the magnetostrictive vibration generated in the iron core of the small model transformer changes depending on whether or not the grain-oriented electrical steel sheet constituting the iron core is fastened and fixed.
Thus, it has been found that the magnetostriction vibration waveform generated in the iron core due to the excitation is affected by tightening and fixing the bolt to the grain-oriented electrical steel sheet constituting the iron core. This showed the same tendency also about various small model transformers produced using grain oriented electrical steel sheets having different magnetostrictive characteristics.
一方、励磁により鉄心に発生する磁束密度波形は、方向性電磁鋼板の締め付け固定によりほとんど変化しなかった。つまり、変圧器の騒音の評価をする際に、小型モデル変圧器の鉄心内の磁束密度波形を発生する電圧を方向性電磁鋼板試料に与えただけでは方向性電磁鋼板の締め付けの影響が加味されておらず不十分であり、その結果、予測精度が低かったのである。 On the other hand, the magnetic flux density waveform generated in the iron core by excitation hardly changed due to tightening and fixing of the grain-oriented electrical steel sheet. In other words, when evaluating the noise of a transformer, the effect of tightening the directional electrical steel sheet is taken into account only by applying a voltage that generates a magnetic flux density waveform in the iron core of a small model transformer to the directional electrical steel sheet sample. As a result, the prediction accuracy was low.
そこで、発明者らは、励磁により方向性電磁鋼板試料に発生した磁歪振動に、鉄心構造における締め付けの影響を加味することにより、変圧器において発生する騒音を高精度に予測できることを見出したのである。以下、本発明の変圧器の騒音予測方法について説明する。 Therefore, the inventors have found that the noise generated in the transformer can be predicted with high accuracy by adding the influence of tightening in the iron core structure to the magnetostrictive vibration generated in the grain-oriented electrical steel sheet sample by excitation. . The transformer noise prediction method of the present invention will be described below.
本発明の変圧器の騒音予測方法は、方向性電磁鋼板の複数枚を積層して締め付け固定してなる鉄心を備える、変圧器において発生する騒音を、方向性電磁鋼板試料を用いて行う。その際、鉄心を所定の磁束密度まで励磁した際の鉄心内の磁束密度波形を求め、次いで試料に、変圧器の鉄心の磁束密度波形が発生する、励磁電圧を試料に与えて試料に発生する磁歪振動を測定し、該測定された磁歪振動に鉄心構造における締め付けの影響を加味して騒音を予測することが肝要である。以下、各工程について説明する。 The noise prediction method for a transformer according to the present invention performs noise generated in a transformer including an iron core formed by laminating and fixing a plurality of directional electromagnetic steel sheets using a directional electromagnetic steel sheet sample. At that time, the magnetic flux density waveform in the iron core when the iron core is excited to a predetermined magnetic flux density is obtained, and then the magnetic flux density waveform of the iron core of the transformer is generated in the sample. It is important to measure the magnetostrictive vibration and predict the noise by adding the influence of tightening in the iron core structure to the measured magnetostrictive vibration. Hereinafter, each step will be described.
まず、鉄心を所定の磁束密度まで励磁した際の鉄心内の磁束密度波形を求める。そのために、実機変圧器を模した小型モデル変圧器を用意する。上述のように、実機変圧器の鉄心に発生する磁束密度波形を測定することは現実的に困難であるため、実機変圧器を模した小型モデル変圧器を作製し、励磁により小型モデル変圧器に発生する磁束密度波形を、実機変圧器に発生する磁束密度波形と見なす。 First, a magnetic flux density waveform in the iron core when the iron core is excited to a predetermined magnetic flux density is obtained. For this purpose, a small model transformer simulating an actual transformer will be prepared. As mentioned above, it is practically difficult to measure the magnetic flux density waveform generated in the iron core of the actual transformer. Therefore, a small model transformer that imitates the actual transformer is manufactured and converted into a small model transformer by excitation. The generated magnetic flux density waveform is regarded as the magnetic flux density waveform generated in the actual transformer.
用意した小型モデル変圧器を励磁した際に発生する鉄心内の各点における局所的な磁束密度波形は、探りコイル法や探針法等により測定して求めることができる。このうち、非破壊に測定できる点から、探針法を用いることが好ましい。 A local magnetic flux density waveform at each point in the iron core generated when the prepared small model transformer is excited can be obtained by measurement by a probe coil method, a probe method, or the like. Of these, the probe method is preferably used because it can be measured nondestructively.
また、磁束密度波形を実測する代わりに、有限要素法による磁界シミュレーションにより、変圧器鉄心内の各所における磁束密度波形を計算して求めることもできるが、方向性電磁鋼板は材料異方性が強く、シミュレーション計算の結果は、未だ十分に満足できるものではないため、要求される精度により適宜利用する。 Also, instead of actually measuring the magnetic flux density waveform, the magnetic flux density waveform at each location in the transformer core can be calculated by magnetic field simulation using the finite element method. The simulation calculation results are not yet satisfactory, and are used as appropriate depending on the required accuracy.
次いで、方向性電磁鋼板試料に、上記変圧器の鉄心内の磁束密度波形が発生する、励磁電圧を方向性電磁鋼板試料に与えて、該方向性電磁鋼板試料に発生する磁歪振動を測定する。ここで、試料への励磁電圧の付与は、磁歪測定装置により行う。この磁歪測定装置は、電力計と、電力増幅器と、励磁コイルとを備え、任意波形発生器により励磁電圧の波形を制御することにより、方向性電磁鋼板試料に所望の波形の励磁電圧を与えることができる。 Next, an excitation voltage at which a magnetic flux density waveform in the iron core of the transformer is generated is applied to the directional electromagnetic steel sheet sample, and magnetostrictive vibration generated in the directional electromagnetic steel sheet sample is measured. Here, the excitation voltage is applied to the sample by a magnetostriction measuring apparatus. This magnetostriction measuring device includes a power meter, a power amplifier, and an excitation coil, and controls the waveform of the excitation voltage with an arbitrary waveform generator to give an excitation voltage having a desired waveform to the grain-oriented electrical steel sheet sample. Can do.
一般に、励磁により変圧器鉄心内に発生する磁束密度波形は歪んでおり、この歪みにより磁歪特性は変化する。そこで、変圧器の騒音予測を高精度で行うためには、励磁により方向性電磁鋼板試料に発生する磁束密度波形が、励磁した際に変圧器に発生する磁束密度波形となるように、磁歪測定装置の励磁電圧波形を制御することが重要となる。理想的には、小型モデル変圧器内のできるだけ多くの箇所にて磁束密度波形を測定し、得られた磁束密度波形を再現するように励磁電圧波形を制御しながら方向性電磁鋼板試料を所望の磁束密度まで励磁して磁歪振動を測定し、その平均値(平均波形)を用いて騒音を評価することが好ましい。 In general, the magnetic flux density waveform generated in the transformer core due to excitation is distorted, and the magnetostriction characteristics change due to this distortion. Therefore, in order to accurately predict transformer noise, magnetostriction measurement is performed so that the magnetic flux density waveform generated in the grain-oriented electrical steel sheet sample by excitation becomes the magnetic flux density waveform generated in the transformer when excited. It is important to control the excitation voltage waveform of the device. Ideally, measure the magnetic flux density waveform at as many locations as possible in the small model transformer, and control the excitation voltage waveform so that the obtained magnetic flux density waveform is reproduced. It is preferable to measure the magnetostrictive vibration by exciting to the magnetic flux density and evaluate the noise using the average value (average waveform).
励磁により変圧器鉄心に発生した磁歪振動は、歪みゲージ法やレーザ変位計、レーザドップラ振動計により測定することができる。このうち、簡便である点から、レーザドップラ振動計を用いることが好ましい。また、励磁振動の測定は、鉄心を構成する方向性電磁鋼板の板厚方向の成分について行う。 Magnetostrictive vibration generated in the transformer core by excitation can be measured by a strain gauge method, a laser displacement meter, or a laser Doppler vibrometer. Among these, it is preferable to use a laser Doppler vibrometer because it is simple. In addition, the excitation vibration is measured for the component in the thickness direction of the grain-oriented electrical steel sheet constituting the iron core.
続いて、測定された磁歪振動に鉄心構造における締め付けの影響を加味して騒音を予測する。上述のように、発明者らは、方向性電磁鋼板試料を用いた騒音予測において精度が低かった原因は、励磁により発生する磁歪振動が小型モデル変圧器に発生するものとは異なることを明らかにし、さらに磁歪振動が相違する原因が、鉄心構造における締め付けの影響にあることを突き止めた。そこで、本発明においては、励磁により方向性電磁鋼板試料に発生する磁歪振動に、鉄心構造における締め付けの影響を加味することにより、変圧器における騒音を予測する。 Subsequently, noise is predicted by adding the influence of tightening in the iron core structure to the measured magnetostrictive vibration. As described above, the inventors have clarified that the reason for the low accuracy in noise prediction using grain-oriented electrical steel sheet samples is different from the magnetostrictive vibration generated by excitation in a small model transformer. Furthermore, it was found that the cause of the difference in magnetostrictive vibration is the effect of tightening in the iron core structure. Therefore, in the present invention, the noise in the transformer is predicted by adding the influence of tightening in the iron core structure to the magnetostrictive vibration generated in the grain-oriented electrical steel sheet sample by excitation.
ここで、「締め付けの影響を加味する」とは、励磁により小型モデル変圧器に発生した磁歪振動を測定し、該磁歪振動に対して高調波解析を行って振動変化割合を求め、得られた高調波の各成分(次数)に対して振動変化割合を掛け合わせて磁歪振動を補正することを意味している。 Here, “considering the effect of tightening” was obtained by measuring magnetostriction vibration generated in a small model transformer by excitation and performing harmonic analysis on the magnetostriction vibration to obtain a vibration change rate. This means that the magnetostrictive vibration is corrected by multiplying each harmonic component (order) by the vibration change rate.
この振動変化割合は、図1に示した場合のように、小型モデル変圧器に発生する磁歪振動に対して高調波解析を行い、振動数と振動変化割合との関係を測定して求めることができる。
また、有限要素法によるシミュレーションから、振動変化割合を計算して求めることもできる。
As shown in FIG. 1, the vibration change rate can be obtained by performing harmonic analysis on the magnetostrictive vibration generated in the small model transformer and measuring the relationship between the frequency and the vibration change rate. it can.
Further, the vibration change rate can be calculated and obtained from simulation by a finite element method.
ここで、鉄心構造が3相鉄心構造の場合について、様々な磁歪特性を有する方向性電磁鋼板を用いて小型モデル変圧器を用いて振動変化割合を求めた結果、基本波、第2次高調波および第5次以上の高調波については0.2〜0.7、第3次高調波については1.4〜2.2、および第4次高調波については0.8〜1.2と、周波数によって変化していることが判明した。従って、鉄心構造が3相鉄心構造の変圧器については、励磁により方向性電磁鋼板試料に発生する磁歪振動の所定の次数までの高調波の各周波数成分に、上記の振動変化割合を掛け合わせることにより、変圧器における騒音を高精度に予測することができる。なお、振動変化割合を掛け合わせる周波数成分は、第4次高調波まで行うことが好ましく、第10次高調波まで行うことがより好ましい。 Here, for the case where the iron core structure is a three-phase iron core structure, as a result of obtaining the vibration change ratio using a small model transformer using directional electromagnetic steel sheets having various magnetostrictive characteristics, the fundamental wave and the second harmonic wave are obtained. And the fifth and higher harmonics are 0.2 to 0.7, the third harmonic is 1.4 to 2.2, and the fourth harmonic is 0.8 to 1.2. It turned out that it changed with frequency. Therefore, for a transformer having a three-phase core structure, multiply the frequency components of harmonics up to a predetermined order of magnetostrictive vibration generated in the grain-oriented electrical steel sheet sample by excitation by the vibration change rate. Thus, the noise in the transformer can be predicted with high accuracy. The frequency component multiplied by the vibration change rate is preferably performed up to the fourth harmonic, and more preferably up to the tenth harmonic.
こうして、鉄心構造における締め付けの影響が加味された磁歪振動から、変圧器における騒音を予測することができる。具体的には、特許文献1や非特許文献1に記載された方法を用いることができる。
例えば、非特許文献2の方法を用いる場合には、まず、得られた磁歪振動の波形に対して高調波解析を行って磁歪調波成分を求め、得られた磁歪調波成分から以下の式(3)に示す振動加速度調波成分pnを求める。
pn=λnfn 2γn (3)
ここで、λnは磁歪調波成分、fnは周波数、γnはAスケール聴感補正係数である。
Thus, the noise in the transformer can be predicted from the magnetostrictive vibration in which the influence of tightening in the iron core structure is taken into account. Specifically, the methods described in Patent Document 1 and Non-Patent Document 1 can be used.
For example, when the method of
p n = λ n f n 2 γ n (3)
Here, λ n is a magnetostrictive harmonic component, f n is a frequency, and γ n is an A scale auditory correction coefficient.
次いで、得られた振動加速度調波成分pnから、以下の式(4)に示す磁歪振動加速度レベルPを求め、この磁歪振動加速度レベルPを変圧器における騒音の予測値とし、得られた予測値と小型モデル変圧器から発生する騒音の実測値とを比較することにより、変圧器の騒音を評価することができる。 Then, from the obtained vibration acceleration harmonic component p n, obtains a magnetostrictive vibration acceleration level P as shown in formula (4), and the magnetostrictive vibration acceleration level P and the predicted value of the noise in the transformer, the prediction obtained The noise of the transformer can be evaluated by comparing the value with the actually measured value of the noise generated from the small model transformer.
なお、鉄心構造が3相鉄心構造の場合には、方向性電磁鋼板試料に励磁電圧を与える際に、上述のように小型モデル変圧器内の磁束密度波形が発生する、励磁電圧を方向性電磁鋼板試料に与える代わりに、所定の波形を有する励磁電圧を与えることができる。 When the iron core structure is a three-phase iron core structure, the magnetic flux density waveform in the small model transformer is generated as described above when applying the excitation voltage to the directional electromagnetic steel sheet sample. Instead of being applied to the steel sheet sample, an excitation voltage having a predetermined waveform can be applied.
即ち、変圧器鉄心を100分割し、周波数50Hz、1.9Tまで励磁して各領域の磁束励磁波形を探針法で測定したところ、全ての領域において第3次高調波成分が大きく重畳されていることが分かった。ここで、各領域における基本波に対する第3次高調波の重畳割合は0.05〜0.2倍であった。そこで、下記の式(5)の波形を有する励磁電圧を方向性電磁鋼板試料に与えることにより、小型モデル変圧器の鉄心における磁束密度波形を、精度良く方向性電磁鋼板試験片に再現できることが判明した。ここで、t:時間、f:周波数、A:基本波の成分に対する第3次高調波の成分の重畳割合、θ:位相角であり、Aは0.05〜0.2である。 That is, when the transformer core is divided into 100, and the magnetic flux excitation waveform in each region is measured by the probe method by exciting up to a frequency of 50 Hz and 1.9 T, the third harmonic component is greatly superimposed in all regions. I found out. Here, the superposition ratio of the third harmonic to the fundamental wave in each region was 0.05 to 0.2 times. Therefore, it was found that the magnetic flux density waveform in the iron core of the small model transformer can be accurately reproduced on the directional electrical steel sheet specimen by applying an excitation voltage having the waveform of the following formula (5) to the directional electrical steel sheet sample. did. Here, t: time, f: frequency, A: superposition ratio of the third harmonic component to the fundamental component, θ: phase angle, and A is 0.05 to 0.2.
ここで、測定された各領域の励磁磁束波形の位相角は、−180〜+180°の全範囲に及んでいたため、上記の式(5)を用いて方向性電磁鋼板試料を励磁する際、位相角θを−180°以上+180°以下の範囲において所定の位相角の間隔でサンプルし、該サンプルされた各位相角にて磁歪振動を測定し、該測定された各位相角での磁歪振動の平均値を方向性電磁鋼板試料に発生した磁歪振動とする。これにより、鉄心が3相変圧鉄心の場合の騒音を高精度に予測することができる。また、サンプルする位相角の間隔は、45°以下とする。これは、45°を超える場合にはサンプル数が少なく、サンプルする位相角の値によっては予測精度が落ちる場合があるためである。 Here, since the phase angle of the excitation magnetic flux waveform of each region measured was in the entire range of −180 to + 180 °, when exciting the grain-oriented electrical steel sheet sample using the above equation (5), The phase angle θ is sampled at a predetermined phase angle interval in the range of −180 ° or more and + 180 ° or less, magnetostriction vibration is measured at each sampled phase angle, and magnetostriction vibration at each measured phase angle is measured. Is the magnetostrictive vibration generated in the grain-oriented electrical steel sheet sample. Thereby, the noise when the iron core is a three-phase transformer core can be predicted with high accuracy. Further, the interval between the sampled phase angles is set to 45 ° or less. This is because when the angle exceeds 45 °, the number of samples is small, and the prediction accuracy may be lowered depending on the phase angle value to be sampled.
さらに、上記の式(5)を用いる方法において、−180°以上+180°以下の範囲の所定の位相角の間隔でサンプルする代わりに、測定された頻度が高い50〜70°の範囲の値の1つを設定し、測定された磁歪振動に基づいて騒音を予測してもよい。これにより、非常に簡便に騒音を予測することができる。 Further, in the method using the above formula (5), instead of sampling at a predetermined phase angle interval in the range of −180 ° to + 180 °, the measured frequency is frequently in the range of 50 to 70 °. One may be set and noise may be predicted based on the measured magnetostrictive vibration. Thereby, noise can be predicted very simply.
このように、方向性電磁鋼板試料に発生する磁歪振動に、変圧器の鉄心構造における締め付けの影響が加味されるため、変圧器における騒音を高精度に予測することができる。 Thus, since the influence of the tightening in the iron core structure of the transformer is added to the magnetostrictive vibration generated in the grain-oriented electrical steel sheet sample, the noise in the transformer can be predicted with high accuracy.
(発明例1)
以下、本発明の実施例について説明する。
まず、板厚0.23mmの方向性電磁鋼板350枚70層からなる、3相3脚のステップラップ型の鉄心を作製し、重量約21kg、外径寸法:500mm×500mm×15mmの小型モデル変圧器を用意した。
次いで、この小型モデル変圧器を50Hzの周波数にて1.5Tまで励磁し、鉄心内の磁束密度波形を測定した。ここで、磁束密度波形の測定は、小型モデル変圧器の鉄心を100分割し、探針法により各領域にて磁束密度波形を測定した。また、励磁により鉄心に発生した騒音を測定して実測値を得た。
続いて、上記の鉄心を構成する方向性電磁鋼板から切り出してなる方向性電磁鋼板試料を用意し、小型モデル変圧器における磁束密度波形が発生する、励磁電圧を方向性電磁鋼板試料に与え、該試料に発生した磁歪振動の板厚方向成分をレーザドップラ振動計により測定した。
その後、得られた磁歪振動波形に対して高調波解析を行い、各成分に対して振動変化割合を掛け合わせることにより磁歪振動を補正し、鉄心構造における締め付けの影響を加味した。ここで、各成分に掛け合わせた振動変化割合の値は、基本波、第2次高調波、および第5〜10次高調波については0.4、第3次高調波については1.8、第4次高調波については1.0である。この補正後の磁歪振動データを用いて、非特許文献1の方法により騒音の予測値を得た。即ち、磁歪振動から式(4)で与えられる磁歪振動加速度レベルPを求めて騒音を予測した。また、Aスケール聴感補正を行った。こうして小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。
上記の処理を、磁束密度 B8の異なる磁気特性を有する方向性電磁鋼板を用いて作製した小型モデル変圧器および方向性電磁鋼板試料に対して同様に行い、小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。得られた騒音の予測値および実測値との対応関係を図2(a)に示す。
(Invention Example 1)
Examples of the present invention will be described below.
First, a three-phase, three-legged, step-wrap type iron core consisting of 70 layers of 350 directional electromagnetic steel sheets with a thickness of 0.23 mm was produced, and a small model transformer with a weight of about 21 kg and an outer diameter of 500 mm × 500 mm × 15 mm. A vessel was prepared.
Next, this small model transformer was excited to 1.5 T at a frequency of 50 Hz, and the magnetic flux density waveform in the iron core was measured. Here, the magnetic flux density waveform was measured by dividing the iron core of the small model transformer into 100 and measuring the magnetic flux density waveform in each region by the probe method. In addition, the actual value was obtained by measuring the noise generated in the iron core by excitation.
Subsequently, a directional electrical steel sheet sample cut out from the directional electrical steel sheet constituting the iron core is prepared, a magnetic flux density waveform is generated in a small model transformer, an excitation voltage is applied to the directional electrical steel sheet sample, The thickness direction component of magnetostrictive vibration generated in the sample was measured with a laser Doppler vibrometer.
After that, harmonic analysis was performed on the obtained magnetostrictive vibration waveform, and the magnetostrictive vibration was corrected by multiplying each component by the vibration change rate, and the influence of tightening in the iron core structure was taken into account. Here, the value of the vibration change ratio multiplied by each component is 0.4 for the fundamental wave, the second harmonic, and the fifth to tenth harmonics, 1.8 for the third harmonic, The fourth harmonic is 1.0. Using the corrected magnetostriction vibration data, a predicted value of noise was obtained by the method of Non-Patent Document 1. That is, the noise was predicted by obtaining the magnetostrictive vibration acceleration level P given by the equation (4) from the magnetostrictive vibration. In addition, A scale audibility correction was performed. In this way, the correspondence between the measured value of noise generated when exciting a small model transformer and the predicted value of noise obtained from magnetostrictive vibration generated by exciting a grain-oriented electrical steel sheet sample was obtained.
The above process is similarly performed on a small model transformer and a directional electromagnetic steel sheet sample that are manufactured using grain oriented electrical steel sheets having different magnetic characteristics of magnetic flux density B8, and is generated when the small model transformer is excited. The correlation between the measured noise value and the predicted noise value obtained from the magnetostrictive vibration generated by exciting the grain-oriented electrical steel sheet sample was obtained. FIG. 2 (a) shows the correspondence between the obtained predicted noise value and the actually measured value.
(比較例1)
発明例1と同様の処理を行い、小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。ただし、励磁した方向性電磁鋼板試料の磁歪振動の測定結果に対して、鉄心構造における締め付けの影響を加味せずに、騒音の予測を行った。それ以外の条件は全て発明例1と同様である。得られた騒音の予測値および実測値との対応関係を図2(b)に示す。
(Comparative Example 1)
Correspondence between the measured value of noise generated when the small model transformer is excited and the predicted value of noise obtained from the magnetostriction vibration generated by exciting the grain-oriented electrical steel sheet sample by performing the same process as in Invention Example 1. Got a relationship. However, noise was predicted without considering the influence of tightening in the iron core structure on the measurement result of the magnetostrictive vibration of the excited grain-oriented electrical steel sheet sample. All other conditions are the same as in Invention Example 1. FIG. 2 (b) shows the correspondence between the obtained predicted noise value and the actually measured value.
図2(b)から、予測値と実測値との誤差が大きく、鉄心内の磁束密度波形を方向性電磁鋼板試料に再現しただけでは高精度の騒音予測を行う上で不十分であることが分かる。これに対して、図2(a)から明らかなように、本発明の騒音予測方法により、小型モデル変圧器の騒音の実測値を高精度に予測できていることが分かる。 From FIG. 2 (b), the error between the predicted value and the actually measured value is large, and it is not sufficient to perform highly accurate noise prediction simply by reproducing the magnetic flux density waveform in the iron core on the grain-oriented electrical steel sheet sample. I understand. On the other hand, as is clear from FIG. 2A, it can be seen that the measured noise value of the small model transformer can be predicted with high accuracy by the noise prediction method of the present invention.
(発明例2)
まず、板厚0.30mmの方向性電磁鋼板350枚50層からなる、3相5脚のステップラップ型の鉄心を作製し、重量約31kg、外径寸法:800mm×500mm×15mmの小型モデル変圧器を用意した。
次いで、この小型モデル変圧器を50Hzの周波数にて1.7Tまで励磁し、鉄心に発生した騒音を測定して実測値を得た。
続いて、上記の鉄心を構成する方向性電磁鋼板から切り出してなる方向性電磁鋼板試料を用意し、式(1)で与えられる励磁電圧を方向性電磁鋼板試料に与えて50Hzの周波数にて1.7Tまで励磁し、該試料に発生した磁歪振動の板厚方向成分をレーザドップラ振動計により測定した。ここで、係数Aは0.15とし、位相角θは−180°から+180°の範囲を20°間隔でサンプルし、該サンプルされた各位相角にて磁歪振動を測定し、得られた磁歪振動の平均値を方向性電磁鋼板試料に発生した磁歪振動とした。
その後、得られた磁歪振動波形に対して高調波解析を行い、各成分に対して振動変化割合を掛け合わせることにより磁歪振動を補正し、鉄心構造における締め付けの影響を加味した。ここで、発明例1と同様に、基本波以下第10次高調波まで、3層5脚鉄心の磁歪振動の測定結果に基づき、振動変化割合を用いた補正を行った。この補正後の磁歪振動データを用いて、非特許文献1の方法により騒音の予測値を得た。即ち、磁歪振動から式(4)で与えられる磁歪振動加速度レベルPを求めて騒音を予測した。また、Aスケール聴感補正を行った。こうして小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。
上記の処理を、磁束密度 B8の異なる磁気特性を有する方向性電磁鋼板を用いて作製した小型モデル変圧器および方向性電磁鋼板試料に対して同様に行い、小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。得られた騒音の予測値および実測値との対応関係を図3(a)に示す。
(Invention Example 2)
First, a three-phase five-legged step-wrap type iron core consisting of 50 layers of 350 directional magnetic steel sheets with a thickness of 0.30 mm was produced, and a small model transformer with a weight of about 31 kg and an outer diameter of 800 mm × 500 mm × 15 mm. A vessel was prepared.
Next, this small model transformer was excited to 1.7 T at a frequency of 50 Hz, and noise generated in the iron core was measured to obtain an actual measurement value.
Subsequently, a grain-oriented electrical steel sheet sample cut out from the grain-oriented electrical steel sheet constituting the iron core is prepared, and the excitation voltage given by the equation (1) is applied to the grain-oriented electrical steel sheet sample to 1 at a frequency of 50 Hz. Excitation was performed up to 7T, and the thickness direction component of magnetostrictive vibration generated in the sample was measured with a laser Doppler vibrometer. Here, the coefficient A is 0.15, the phase angle θ is sampled in the range of −180 ° to + 180 ° at intervals of 20 °, magnetostriction vibration is measured at each sampled phase angle, and the obtained magnetostriction is obtained. The average value of the vibration was the magnetostrictive vibration generated in the grain-oriented electrical steel sheet sample.
After that, harmonic analysis was performed on the obtained magnetostrictive vibration waveform, and the magnetostrictive vibration was corrected by multiplying each component by the vibration change rate, and the influence of tightening in the iron core structure was taken into account. Here, similarly to Invention Example 1, correction using the vibration change rate was performed based on the measurement result of the magnetostrictive vibration of the three-layer five-legged iron core from the fundamental wave to the tenth harmonic. Using the corrected magnetostriction vibration data, a predicted value of noise was obtained by the method of Non-Patent Document 1. That is, the noise was predicted by obtaining the magnetostrictive vibration acceleration level P given by the equation (4) from the magnetostrictive vibration. In addition, A scale audibility correction was performed. In this way, the correspondence between the measured value of noise generated when exciting a small model transformer and the predicted value of noise obtained from magnetostrictive vibration generated by exciting a grain-oriented electrical steel sheet sample was obtained.
The above process is similarly performed on a small model transformer and a directional electromagnetic steel sheet sample that are manufactured using grain oriented electrical steel sheets having different magnetic characteristics of magnetic flux density B8, and is generated when the small model transformer is excited. The correlation between the measured noise value and the predicted noise value obtained from the magnetostrictive vibration generated by exciting the grain-oriented electrical steel sheet sample was obtained. FIG. 3A shows a correspondence relationship between the predicted value and the actual measurement value of the obtained noise.
(比較例2)
発明例2と同様の処理を行い、小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。ただし、励磁した方向性電磁鋼板試料の磁歪振動の測定結果に対して、鉄心構造における締め付けの影響を加味せずに、騒音の予測を行った。それ以外の条件は全て発明例2と同様である。得られた騒音の予測値および実測値との対応関係を図3(b)に示す。
(Comparative Example 2)
Correspondence between the measured value of noise generated when exciting a small model transformer and the predicted value of noise obtained from magnetostrictive vibration generated by exciting a grain-oriented electrical steel sheet Got a relationship. However, noise was predicted without considering the influence of tightening in the iron core structure on the measurement result of the magnetostrictive vibration of the excited grain-oriented electrical steel sheet sample. All other conditions are the same as in Invention Example 2. FIG. 3B shows the correspondence relationship between the predicted noise value and the actual measurement value.
図3(b)から、予測値と実測値との誤差が大きく、鉄心内の磁束密度波形を方向性電磁鋼板試料に再現しただけでは高精度の騒音予測を行う上で不十分であることが分かる。これに対して、図3(a)から明らかなように、本発明の騒音予測方法により、小型モデル変圧器の騒音の実測値を高精度に予測できていることが分かる。 From FIG. 3 (b), the error between the predicted value and the actual measurement value is large, and it is not sufficient to perform highly accurate noise prediction simply by reproducing the magnetic flux density waveform in the iron core on the grain-oriented electrical steel sheet sample. I understand. On the other hand, as is clear from FIG. 3A, it can be seen that the measured noise value of the small model transformer can be predicted with high accuracy by the noise prediction method of the present invention.
(発明例3)
まず、板厚0.27mmの方向性電磁鋼板420枚60層からなる、3相5脚のステップラップ型の鉄心を作製し、重量約31kg、外径寸法:800mm×500mm×15mmの小型モデル変圧器を用意した。
次いで、この小型モデル変圧器を50Hzの周波数にて1.7Tまで励磁し、鉄心に発生した騒音を測定して実測値を得た。
続いて、上記の鉄心を構成する方向性電磁鋼板から切り出してなる方向性電磁鋼板試料を用意し、式(1)で与えられる励磁電圧を方向性電磁鋼板試料に与えて50Hzの周波数にて1.7Tまで励磁し、該試料に発生した磁歪振動の板厚方向成分をレーザドップラ振動計により測定した。ここで、係数Aを0.10、位相角θを60°とした。
その後、得られた磁歪振動波形に対して高調波解析を行い、各成分に対して振動変化割合を掛け合わせることにより磁歪振動を補正し、鉄心構造における締め付けの影響を加味した。ここで、発明例1と同様に、基本波以下第10次高調波まで、3層5脚鉄心の磁歪振動の測定結果に基づき、振動変化割合を用いた補正を行った。この補正後の磁歪振動データを用いて、非特許文献1の方法により騒音の予測値を得た。即ち、磁歪振動から式(4)で与えられる磁歪振動加速度レベルPを求めて騒音を予測した。また、Aスケール聴感補正を行った。こうして小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。
上記の処理を、磁束密度 B8の異なる磁気特性を有する方向性電磁鋼板を用いて作製した小型モデル変圧器および方向性電磁鋼板試料に対して同様に行い、小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。得られた騒音の予測値および実測値との対応関係を図4(a)に示す。
(Invention Example 3)
First, a three-phase five-legged step-wrap type iron core consisting of 420 directional electromagnetic steel sheets with a thickness of 0.27 mm and 60 layers was fabricated. A small model transformer with a weight of about 31 kg and an outer diameter of 800 mm × 500 mm × 15 mm. A vessel was prepared.
Next, this small model transformer was excited to 1.7 T at a frequency of 50 Hz, and noise generated in the iron core was measured to obtain an actual measurement value.
Subsequently, a grain-oriented electrical steel sheet sample cut out from the grain-oriented electrical steel sheet constituting the iron core is prepared, and the excitation voltage given by the equation (1) is applied to the grain-oriented electrical steel sheet sample to 1 at a frequency of 50 Hz. Excitation was performed up to 7T, and the thickness direction component of magnetostrictive vibration generated in the sample was measured with a laser Doppler vibrometer. Here, the coefficient A was 0.10, and the phase angle θ was 60 °.
After that, harmonic analysis was performed on the obtained magnetostrictive vibration waveform, and the magnetostrictive vibration was corrected by multiplying each component by the vibration change rate, and the influence of tightening in the iron core structure was taken into account. Here, similarly to Invention Example 1, correction using the vibration change rate was performed based on the measurement result of the magnetostrictive vibration of the three-layer five-legged iron core from the fundamental wave to the tenth harmonic. Using the corrected magnetostriction vibration data, a predicted value of noise was obtained by the method of Non-Patent Document 1. That is, the noise was predicted by obtaining the magnetostrictive vibration acceleration level P given by the equation (4) from the magnetostrictive vibration. In addition, A scale audibility correction was performed. In this way, the correspondence between the measured value of noise generated when exciting a small model transformer and the predicted value of noise obtained from magnetostrictive vibration generated by exciting a grain-oriented electrical steel sheet sample was obtained.
The above process is similarly performed on a small model transformer and a directional electromagnetic steel sheet sample that are manufactured using grain oriented electrical steel sheets having different magnetic characteristics of magnetic flux density B8, and is generated when the small model transformer is excited. The correlation between the measured noise value and the predicted noise value obtained from the magnetostrictive vibration generated by exciting the grain-oriented electrical steel sheet sample was obtained. FIG. 4 (a) shows the correspondence between the obtained predicted noise value and the actually measured value.
(比較例3)
発明例3と同様の処理を行い、小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。ただし、励磁した方向性電磁鋼板試料の磁歪振動の測定結果に対して、鉄心構造における締め付けの影響を加味せずに、騒音の予測を行った。それ以外の条件は全て発明例3と同様である。得られた騒音の予測値および実測値との対応関係を図4(b)に示す。
(Comparative Example 3)
Correspondence between the measured value of noise generated when exciting a small model transformer and the predicted value of noise obtained from magnetostrictive vibration generated by exciting a grain-oriented electrical steel sheet Got a relationship. However, noise was predicted without considering the influence of tightening in the iron core structure on the measurement result of the magnetostrictive vibration of the excited grain-oriented electrical steel sheet sample. All other conditions are the same as in Invention Example 3. FIG. 4B shows the correspondence relationship between the predicted noise value and the actual measurement value.
図4(b)から、予測値と実測値との誤差が大きく、鉄心内の磁束密度波形を方向性電磁鋼板試料に再現しただけでは高精度の騒音予測を行う上で不十分であることが分かる。これに対して、図4(a)から明らかなように、本発明の騒音予測方法により、小型モデル変圧器の騒音の実測値を高精度に予測できていることが分かる。 From FIG. 4 (b), the error between the predicted value and the actual measurement value is large, and it is not sufficient to perform highly accurate noise prediction simply by reproducing the magnetic flux density waveform in the iron core on the grain-oriented electrical steel sheet sample. I understand. On the other hand, as is clear from FIG. 4A, it can be seen that the measured noise value of the small model transformer can be predicted with high accuracy by the noise prediction method of the present invention.
(発明例4)
以下、本発明の実施例について説明する。
まず、板厚0.35mmの方向性電磁鋼板200枚40層からなる、3相3脚のステップラップ型の鉄心を作製し、重量約20kg、外径寸法:500mm×500mm×14mmの小型モデル変圧器を用意した。
次いで、この小型モデル変圧器を50Hzの周波数にて1.8Tまで励磁し、鉄心内の磁束密度波形を測定した。ここで、磁束密度波形の測定は、小型モデル変圧器の鉄心を100分割し、探針法により各領域にて磁束密度波形を測定した。また、励磁により鉄心に発生した騒音を測定して実測値を得た。
続いて、上記の鉄心を構成する方向性電磁鋼板から切り出してなる方向性電磁鋼板試料を用意し、小型モデル変圧器における磁束密度波形が発生する、励磁電圧を方向性電磁鋼板試料に与えて50Hzの周波数にて1.8Tまで励磁し、該試料に発生した磁歪振動の板厚方向成分をレーザドップラ振動計により測定した。
その後、得られた磁歪振動波形に対して高調波解析を行い、各成分に対して振動変化割合を掛け合わせることにより磁歪振動を補正し、鉄心構造における締め付けの影響を加味した。ここで、各成分に掛け合わせた振動変化割合の値は、基本波、第2次高調波、および第5〜10次高調波については0.4、第3次高調波については1.9、第4次高調波については1.0である。この補正後の磁歪振動データを用いて、非特許文献1の方法により騒音の予測値を得た。即ち、磁歪振動から式(4)で与えられる磁歪振動加速度レベルPを求めて騒音を予測した。また、Aスケール聴感補正を行った。こうして小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。
上記の処理を、磁束密度 B8の異なる磁気特性を有する方向性電磁鋼板を用いて作製した小型モデル変圧器および方向性電磁鋼板試料に対して同様に行い、小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。得られた騒音の予測値および実測値との対応関係を図5(a)に示す。
(Invention Example 4)
Examples of the present invention will be described below.
First, a three-phase, three-legged step-wrap type iron core consisting of 40 layers of directional electromagnetic steel sheets with a thickness of 0.35 mm was fabricated, and a small model transformer with a weight of approximately 20 kg and an outer diameter of 500 mm × 500 mm × 14 mm. A vessel was prepared.
Next, this small model transformer was excited to 1.8 T at a frequency of 50 Hz, and the magnetic flux density waveform in the iron core was measured. Here, the magnetic flux density waveform was measured by dividing the iron core of the small model transformer into 100 and measuring the magnetic flux density waveform in each region by the probe method. In addition, the actual value was obtained by measuring the noise generated in the iron core by excitation.
Subsequently, a directional electrical steel sheet sample cut out from the directional electrical steel sheet constituting the iron core is prepared, and a magnetic flux density waveform is generated in a small model transformer. An excitation voltage is applied to the directional electrical steel sheet sample to 50 Hz. Was excited to 1.8 T, and the thickness direction component of magnetostrictive vibration generated in the sample was measured with a laser Doppler vibrometer.
After that, harmonic analysis was performed on the obtained magnetostrictive vibration waveform, and the magnetostrictive vibration was corrected by multiplying each component by the vibration change rate, and the influence of tightening in the iron core structure was taken into account. Here, the value of the vibration change ratio multiplied by each component is 0.4 for the fundamental wave, the second harmonic, and the fifth to tenth harmonics, 1.9 for the third harmonic, The fourth harmonic is 1.0. Using the corrected magnetostriction vibration data, a predicted value of noise was obtained by the method of Non-Patent Document 1. That is, the noise was predicted by obtaining the magnetostrictive vibration acceleration level P given by the equation (4) from the magnetostrictive vibration. In addition, A scale audibility correction was performed. In this way, the correspondence between the measured value of noise generated when exciting a small model transformer and the predicted value of noise obtained from magnetostrictive vibration generated by exciting a grain-oriented electrical steel sheet sample was obtained.
The above process is similarly performed on a small model transformer and a directional electromagnetic steel sheet sample that are manufactured using grain oriented electrical steel sheets having different magnetic characteristics of magnetic flux density B8, and is generated when the small model transformer is excited. The correlation between the measured noise value and the predicted noise value obtained from the magnetostrictive vibration generated by exciting the grain-oriented electrical steel sheet sample was obtained. FIG. 5 (a) shows the correspondence between the obtained predicted noise value and the actually measured value.
(比較例4)
発明例4と同様の処理を行い、小型モデル変圧器を励磁した際に発生する騒音の実測値と、方向性電磁鋼板試料を励磁して発生した磁歪振動から求めた騒音の予測値との対応関係を得た。ただし、励磁した方向性電磁鋼板試料の磁歪振動の測定結果に対して、鉄心構造における締め付けの影響を加味せずに、騒音の予測を行った。それ以外の条件は全て発明例4と同様である。得られた騒音の予測値および実測値との対応関係を図5(b)に示す。
(Comparative Example 4)
Correspondence between the measured value of noise generated when the small model transformer is excited and the predicted value of noise obtained from the magnetostrictive vibration generated by exciting the grain-oriented electrical steel sheet sample by performing the same process as in Invention Example 4. Got a relationship. However, noise was predicted without considering the influence of tightening in the iron core structure on the measurement result of the magnetostrictive vibration of the excited grain-oriented electrical steel sheet sample. All other conditions are the same as in Invention Example 4. FIG. 5B shows the correspondence relationship between the predicted noise value and the actual measurement value.
図5(b)から、予測値と実測値との誤差が大きく、鉄心内の磁束密度波形を方向性電磁鋼板試料に再現しただけでは高精度の騒音予測を行う上で不十分であることが分かる。これに対して、図5(a)から明らかなように、本発明の騒音予測方法により、小型モデル変圧器の騒音の実測値を高精度に予測できていることが分かる。 From FIG. 5B, the error between the predicted value and the actually measured value is large, and it is not sufficient to reproduce the noise with high accuracy simply by reproducing the magnetic flux density waveform in the iron core on the grain-oriented electrical steel sheet sample. I understand. On the other hand, as apparent from FIG. 5A, it can be seen that the measured noise value of the small model transformer can be predicted with high accuracy by the noise prediction method of the present invention.
Claims (4)
前記鉄心を所定の磁束密度まで励磁した際の鉄心内の磁束密度波形を求め、次いで前記試料に、前記磁束密度波形が発生する、励磁電圧を前記試料に与えて試料に発生する磁歪振動を測定し、該測定された磁歪振動に対して高調波解析を行い、得られた高調波の成分毎に、測定あるいは計算により導出された、ボルトにより前記複数枚の方向性電磁鋼板を締め付け固定しなかった場合の磁歪振動の周波数成分に対する、ボルトにより前記複数枚の方向性電磁鋼板を締め付け固定した場合の磁歪振動の周波数成分の振動変化割合を掛け合わせて前記騒音を予測することを特徴とする変圧器の騒音予測方法。 In predicting the noise generated in a transformer with an iron core formed by laminating and fixing multiple sheets of grain-oriented electrical steel sheets using a grain-oriented electrical steel sheet sample,
A magnetic flux density waveform in the iron core is obtained when the iron core is excited to a predetermined magnetic flux density, and then the magnetic flux density waveform is generated in the sample, and an excitation voltage is applied to the sample to measure magnetostrictive vibration generated in the sample. and performs harmonic analysis for the magnetostrictive vibration is the measurement, for each component of the resulting harmonic, derived by measurement or calculation, not fastened to the plurality of directional electromagnetic steel plates by bolts The noise is predicted by multiplying the frequency change component of the magnetostriction vibration when the plurality of grain-oriented electrical steel sheets are fastened with bolts to the frequency component of the magnetostriction vibration when Noise prediction method.
記
Record
記
Record
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011207303A JP5953686B2 (en) | 2011-09-22 | 2011-09-22 | Noise prediction method for transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011207303A JP5953686B2 (en) | 2011-09-22 | 2011-09-22 | Noise prediction method for transformer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016075929A Division JP6090503B2 (en) | 2016-04-05 | 2016-04-05 | Noise prediction method for transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013068517A JP2013068517A (en) | 2013-04-18 |
JP5953686B2 true JP5953686B2 (en) | 2016-07-20 |
Family
ID=48474375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011207303A Active JP5953686B2 (en) | 2011-09-22 | 2011-09-22 | Noise prediction method for transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5953686B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111426376A (en) * | 2019-11-20 | 2020-07-17 | 国网天津市电力公司电力科学研究院 | Audible noise sound power prediction calculation method for alternating-current transmission line |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6365333B2 (en) * | 2015-02-05 | 2018-08-01 | Jfeスチール株式会社 | Excitation method for iron cores with excellent noise characteristics |
RU2676372C1 (en) * | 2015-02-05 | 2018-12-28 | ДжФЕ СТИЛ КОРПОРЕЙШН | Electrotechnical steel sheet with oriented structure, its manufacturing method and the transformer noise characteristics prediction method |
CN106153176B (en) * | 2016-06-22 | 2020-04-24 | 中国电力科学研究院 | System and method for predicting noise of single-phase oil-immersed transformer |
US11513101B2 (en) * | 2018-01-24 | 2022-11-29 | Jfe Steel Corporation | Elastic matrix determination method and vibration analysis method for laminated iron core |
WO2020095527A1 (en) * | 2018-11-06 | 2020-05-14 | Jfeスチール株式会社 | Laminated iron core elastic matrix determination method and vibration analysis method |
JP7147831B2 (en) * | 2020-02-21 | 2022-10-05 | Jfeスチール株式会社 | Elastic matrix determination method and vibration analysis method for laminated core of transformer |
JP7495852B2 (en) | 2020-09-11 | 2024-06-05 | 東芝産業機器システム株式会社 | Diagnostic device and diagnostic program for stationary induction equipment |
CN112285796B (en) * | 2020-10-10 | 2022-04-15 | 国网湖南省电力有限公司 | Oil-immersed reactor noise prediction method based on reciprocity principle |
CN114330039A (en) * | 2021-07-20 | 2022-04-12 | 国网江苏省电力有限公司南京供电分公司 | Finite element simulation method for distribution of vibration noise external field of transformer core |
CN114091533A (en) * | 2021-11-15 | 2022-02-25 | 国网上海市电力公司 | Transformer noise identification and reverse reduction method and medium based on laser vibration measurement |
CN116798119B (en) * | 2023-05-25 | 2024-01-30 | 福莱克斯电子(深圳)有限公司 | Transformer noise prediction method and device, electronic equipment and storage medium |
CN118583278A (en) * | 2024-08-06 | 2024-09-03 | 西安西电变压器有限责任公司 | Method for obtaining influence of silicon steel sheet on no-load noise of transformer and related device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09186023A (en) * | 1995-12-28 | 1997-07-15 | Nippon Steel Corp | Low noise transformer iron core |
JP5736634B2 (en) * | 2008-03-04 | 2015-06-17 | 新日鐵住金株式会社 | Evaluation method of magnetostriction or noise of magnetic steel sheet for three-phase transformer core excited by sine wave |
JP2010271073A (en) * | 2009-05-19 | 2010-12-02 | Nissin Electric Co Ltd | Diagnosis device of abnormality in equipment |
-
2011
- 2011-09-22 JP JP2011207303A patent/JP5953686B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111426376A (en) * | 2019-11-20 | 2020-07-17 | 国网天津市电力公司电力科学研究院 | Audible noise sound power prediction calculation method for alternating-current transmission line |
Also Published As
Publication number | Publication date |
---|---|
JP2013068517A (en) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5953686B2 (en) | Noise prediction method for transformer | |
Pei et al. | Higher order acoustoelastic Lamb wave propagation in stressed plates | |
Dhayalan et al. | A hybrid finite element model for simulation of electromagnetic acoustic transducer (EMAT) based plate waves | |
JP6620566B2 (en) | Directional electrical steel sheet, method for manufacturing directionally oriented electrical steel sheet, iron core for transformer or reactor, and noise evaluation method | |
Baggens et al. | Systematic errors in Impact-Echo thickness estimation due to near field effects | |
Javorski et al. | Frequency characteristics of magnetostriction in electrical steel related to the structural vibrations | |
JP6090503B2 (en) | Noise prediction method for transformer | |
Zhai et al. | Analysis of multiple wavelengths of Lamb waves generated by meander-line coil EMATs | |
Zhu et al. | Research on dynamic vibration of transformer with wireless power transfer system load | |
Koruk et al. | Identification and removal of adverse effects of non-contact electromagnetic excitation in Oberst Beam Test Method | |
Hu et al. | Center frequency shift in pipe inspection using magnetostrictive guided waves | |
CN109540053B (en) | Single-coil-based method for quickly measuring thickness of metal base material and surface non-metal coating | |
Mizokami et al. | Variation of noise and magnetostriction associated with joint types of transformer core | |
Liu et al. | Location of micro-cracks in plates using time reversed nonlinear Lamb waves | |
Drewry et al. | One-dimensional time-domain finite-element modelling of nonlinear wave propagation for non-destructive evaluation | |
Kypris et al. | Mapping stress as a function of depth at the surface of steel structures using a frequency dependent magnetic Barkhausen noise technique | |
JP5736634B2 (en) | Evaluation method of magnetostriction or noise of magnetic steel sheet for three-phase transformer core excited by sine wave | |
JP2008082778A (en) | Method and apparatus for measuring natural frequency of iron core of transformer | |
Zhang et al. | Vibration and noise reduction of HVDC anode saturable reactor by polyurethane damping elastomer | |
CA3117909C (en) | Laminated iron core elastic matrix determination method and vibration analysis method | |
JP5527134B2 (en) | Method for determining vibration model of laminated iron core | |
JP2012069620A (en) | Magnetic steel sheet for laminate core | |
Murav’ev et al. | Influence of the mechanical anisotropy of thin steel sheets on the parameters of Lamb waves | |
Phophongviwat | Investigation of the influence of magnetostriction and magnetic forces on transformer core noise and vibration | |
Choi et al. | Influence of localized microstructure evolution on second harmonic generation of guided waves |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150609 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160405 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5953686 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |