JP2008082778A - Method and apparatus for measuring natural frequency of iron core of transformer - Google Patents

Method and apparatus for measuring natural frequency of iron core of transformer Download PDF

Info

Publication number
JP2008082778A
JP2008082778A JP2006261130A JP2006261130A JP2008082778A JP 2008082778 A JP2008082778 A JP 2008082778A JP 2006261130 A JP2006261130 A JP 2006261130A JP 2006261130 A JP2006261130 A JP 2006261130A JP 2008082778 A JP2008082778 A JP 2008082778A
Authority
JP
Japan
Prior art keywords
frequency
transformer
noise
excitation
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261130A
Other languages
Japanese (ja)
Inventor
Misao Namikawa
操 浪川
Masayoshi Ishida
昌義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006261130A priority Critical patent/JP2008082778A/en
Publication of JP2008082778A publication Critical patent/JP2008082778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the natural frequency of an iron core of a transformer to be measured simply, and to enable a relation with a transformer noise to be clarified. <P>SOLUTION: A method includes: a step S1 of exciting the transformer 10 while changing an excitation frequency step-by-step in a prescribed frequency range, and measuring the noise of the transformer at respective steps; a step S2 of applying a frequency analysis to the measured noise and obtaining noise components each having the frequency being N times the excitation frequency of each step (N is an even number); and a step S3 of determining a peak value of the noise components as the natural frequency of the iron core of the transformer, based on the relation between frequencies (analysis frequencies) being N times the excitation frequency and the noise components having the N-times frequencies. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、トランス鉄心の固有振動数の測定方法及び装置に係り、特に、励磁に伴って磁歪振動が発生する電磁鋼板を鉄心に用いたトランスに適用するのに好適な、トランス鉄心の固有振動数の測定方法及び装置に関する。   The present invention relates to a method and apparatus for measuring the natural frequency of a transformer core, and more particularly to the natural vibration of a transformer core that is suitable for application to a transformer using an electromagnetic steel sheet that generates magnetostrictive vibration upon excitation as an iron core. The present invention relates to a number measuring method and apparatus.

トランスは様々な場所に設置されるが、特に市街地に設置されるトランスに対しては騒音が小さいことが強く求められる。トランスの鉄心材料としては主に電磁鋼板が使用されている。この電磁鋼板には、励磁に伴う磁歪があり、この磁歪振動がトランス騒音の原因と言われている。   Transformers are installed in various places, but a low noise level is strongly required especially for transformers installed in urban areas. Electrical steel sheets are mainly used as transformer core materials. This electromagnetic steel sheet has magnetostriction accompanying excitation, and this magnetostrictive vibration is said to be the cause of transformer noise.

騒音の小さいトランスを製造する場合、一般に磁歪の小さい電磁鋼板を鉄心材料として使用する。しかし、磁歪の小さい電磁鋼板を使用しているにも拘わらず、トランス騒音が要求仕様を満たせない場合がある。その原因を調査すると、トランス鉄心の固有振動数と電磁鋼板の磁歪振動の共鳴現象である場合が非常に多い。このため、トランス鉄心の固有振動数を把握することは、トランスを設計・製造する上で極めて重要である。   When manufacturing a transformer with low noise, an electromagnetic steel sheet having a small magnetostriction is generally used as a core material. However, there are cases where the transformer noise cannot meet the required specifications in spite of the use of an electromagnetic steel sheet having a small magnetostriction. When the cause is investigated, it is very often the resonance phenomenon of the natural frequency of the transformer core and the magnetostrictive vibration of the electrical steel sheet. For this reason, grasping the natural frequency of the transformer core is extremely important in designing and manufacturing the transformer.

固有振動数を試験する方法としては、例えば特許文献1や2に記載されているように、振動計(加速度計)を用いる方法が一般的である。これは、加速度センサを設置した測定対象をハンマリング等の手法で加振し、測定対象の振動応答を測定することによって、測定対象の固有振動数を求める方法である。   As a method for testing the natural frequency, for example, as described in Patent Documents 1 and 2, a method using a vibrometer (accelerometer) is common. This is a method for obtaining a natural frequency of a measurement target by exciting a measurement target with an acceleration sensor by a technique such as hammering and measuring a vibration response of the measurement target.

特開昭62−288534号公報JP-A-62-288534 特開平7−294327号公報JP 7-294327 A

しかしながら、特許文献1は、エンジン本体にステイ等を介して固定された補機の固有振動数を測定し、特許文献2は、電動機の固有振動数を測定するものであり、いずれも、トランス鉄心の固有振動数を測定するものではなかった。   However, Patent Document 1 measures the natural frequency of an auxiliary machine fixed to the engine body via a stay or the like, and Patent Document 2 measures the natural frequency of an electric motor, both of which are transformer iron cores. The natural frequency of was not measured.

一般に鉄心は複数の振動モードを有するため、特許文献1や2のような加速度振動計を用いる方法では、加速度センサの設置に細心の注意を払わなければならない。例えば加速度センサを、ある振動モードの節の位置に設置してしまうと、そのモードの振動を感知することができなくなる。又、例えば加速度センサは感知方向と垂直な方向の振動は感知できないので、三次元振動を感知するためには、加速度センサをx、y、z各方向感知用に3台設置するか、3軸感知センサを設置する必要がある。   In general, since an iron core has a plurality of vibration modes, the method using an acceleration vibrometer as in Patent Documents 1 and 2 must pay close attention to the installation of the acceleration sensor. For example, if an acceleration sensor is installed at a node position in a certain vibration mode, vibration in that mode cannot be detected. In addition, for example, since the acceleration sensor cannot sense vibration in a direction perpendicular to the sensing direction, in order to sense three-dimensional vibration, three acceleration sensors are installed for sensing each of the x, y, and z directions, or three axes. It is necessary to install a sensor.

又、鉄心の加振位置に関しても、1箇所の加振で複数存在する振動モードを全て励起できるとは限らないので、鉄心の複数位置を加振して、その都度、振動応答を測定する必要がある。   Also, as for the vibration position of the iron core, it is not always possible to excite all the vibration modes that exist in one place, so it is necessary to vibrate multiple positions of the iron core and measure the vibration response each time. There is.

このように、加速度振動計を用いる方法は、複数のセンサ設置と複数の加振・応答測定が必要で、複雑・煩雑であり、実際に正確な鉄心固有振動数データを得るには、ある程度の経験とノウハウが必要である。   As described above, the method using the acceleration vibrometer requires a plurality of sensors and a plurality of vibration / response measurements, is complicated and complicated, and in order to actually obtain accurate iron core natural frequency data, Experience and know-how are required.

又、鉄心の振動モードによっては、振動量は大きくても騒音量が大きいとは限らない。即ち、振動モードによって音波の放射効率は異なるので、上記の方法では、固有振動モードを知ることはできても、複数存在する振動モードのどのモードが実際に音の発生を伴なってトランス騒音増大の原因となっているのか特定することができない等の問題点を有していた。   Further, depending on the vibration mode of the iron core, even if the amount of vibration is large, the amount of noise is not necessarily large. That is, the radiation efficiency of sound waves differs depending on the vibration mode. Therefore, in the above method, even if the natural vibration mode can be known, any of the vibration modes that exist is actually increased in the transformer noise accompanied by the generation of sound. The problem was that it was not possible to determine whether it was the cause of the problem.

本発明は、前記従来の問題点を解消するべくなされたもので、トランス鉄心の固有振動数を、簡便に測定でき、しかも、トランス騒音との関連を明瞭にできるようにすることを課題とする。   The present invention has been made to solve the above-described conventional problems, and it is an object of the present invention to be able to easily measure the natural frequency of a transformer core and to clarify the relationship with transformer noise. .

本発明者等は、上記課題を解決するべくトランス鉄心の固有振動数を測定する方法として、鉄心の振動を測定するのではなく、結果として発生する騒音を測定することによって、鉄心の固有振動数を知ることはできないか検討を重ねた。その結果、トランス騒音の原因である鉄心素材(例えば電磁鋼板)の磁歪振動が、励磁周波数のN倍周波(Nは2、4、6、8、10…の偶数)成分の重ね合わせである多周波多重振動であることを利用すれば、騒音を測定することによって鉄心の固有振動数を知ることができることを見出した。   As a method of measuring the natural frequency of the transformer core in order to solve the above-mentioned problems, the present inventors do not measure the vibration of the iron core, but measure the resulting noise to obtain the natural frequency of the iron core. Investigate whether it is possible to know. As a result, the magnetostrictive vibration of the iron core material (for example, an electromagnetic steel sheet) that causes transformer noise is a superposition of N frequency components (N is an even number of 2, 4, 6, 8, 10,...) Of the excitation frequency. It was found that the natural frequency of the iron core can be known by measuring the noise by using the frequency multiplex vibration.

本発明は、このような知見に基づいてなされたもので、トランス鉄心の固有振動数の測定に際して、所定の周波数範囲で、励磁周波数を段階的に変化させてトランスを励磁し、その各段階におけるトランスの騒音を計測する工程と、計測した騒音の周波数解析を行ない、前記各段階の励磁周波数のN倍周波(但し、Nは偶数)の騒音成分を求める工程と、励磁周波数のN倍周波の周波数(解析周波数)と各N倍周波の騒音成分との関係における騒音成分のピーク値をトランス鉄心の固有振動数とする工程とを含むことにより、前記課題を解決したものである。   The present invention has been made based on such knowledge. When measuring the natural frequency of the transformer core, the excitation frequency is changed stepwise in a predetermined frequency range, and the transformer is excited. A step of measuring the noise of the transformer, a frequency analysis of the measured noise, a step of obtaining a noise component of N times the excitation frequency (where N is an even number), and a step of N times the excitation frequency The problem is solved by including the step of setting the peak value of the noise component in the relationship between the frequency (analysis frequency) and the noise component of each N-fold frequency to the natural frequency of the transformer core.

本発明は、又、所定の周波数範囲で、励磁周波数を段階的に変化させてトランスを励磁する手段と、その各段階におけるトランスの騒音を計測する手段と、計測した騒音の周波数解析を行ない、前記各段階の励磁周波数のN倍周波(但し、Nは偶数)の騒音成分を求める手段と、励磁周波数のN倍周波の周波数(解析周波数)と各N倍周波の騒音成分との関係における、騒音成分のピーク値をトランス鉄心の固有振動数とする手段と、を備えたことを特徴とするトランス鉄心の固有振動数の測定装置を提供するものである。   The present invention also performs means for exciting the transformer by changing the excitation frequency stepwise within a predetermined frequency range, means for measuring the noise of the transformer at each stage, and frequency analysis of the measured noise. In the relationship between the means for obtaining the N-frequency (N is an even number) noise component of the excitation frequency at each stage and the N-frequency frequency (analysis frequency) of the excitation frequency and the N-frequency noise component, Means for setting the peak value of the noise component to the natural frequency of the transformer core, and a device for measuring the natural frequency of the transformer core are provided.

本発明は、鉄心の振動を測定するのではなく、騒音を測定するようにしたので、加速度振動計を用いる方法に比べて、簡便、且つ、経験が無くても容易に鉄心の固有振動数を測定することができる。   In the present invention, since the vibration of the iron core is not measured but the noise is measured, the natural frequency of the iron core can be easily and easily compared with a method using an acceleration vibrometer even without experience. Can be measured.

又、振動の結果として発生する騒音を測定することを通じて鉄心の固有振動数を知るようにしたので、鉄心の固有振動数モードとトランス騒音との関連を明瞭に把握することができ、どの振動モードを抑制すればトランスの低騒音化に最も有効かを直ちに知ることができる。   In addition, since the natural frequency of the iron core is known by measuring the noise generated as a result of vibration, the relationship between the natural frequency mode of the iron core and the transformer noise can be clearly understood, which vibration mode If it is suppressed, it can be immediately known whether the transformer is most effective for noise reduction.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、図1に示す如く、励磁周波数を段階的に変えながら、その都度トランス騒音を計測する第1の工程S1と、計測した騒音の周波数解析を行なって、励磁周波数のN倍周波(Nは偶数)の騒音成分を求める第2の工程S2と、励磁周波数のN倍周波の周波数(解析周波数)と各N倍周波の騒音成分との関係における、騒音成分のピーク値をトランス鉄心の固有振動数とする第3の工程S3とからなる。   In the present embodiment, as shown in FIG. 1, while changing the excitation frequency stepwise, the first step S1 for measuring the transformer noise each time, and the frequency analysis of the measured noise is performed to obtain N times the excitation frequency. In the second step S2 for obtaining the noise component (N is an even number) and the relationship between the N-frequency frequency (analysis frequency) of the excitation frequency and the noise component of each N-frequency frequency, the peak value of the noise component is determined as the transformer core. And a third step S3 having the natural frequency.

以下、図2に示す測定装置の実施形態を参照しながら、更に詳述する。   Hereinafter, further detailed description will be given with reference to the embodiment of the measuring apparatus shown in FIG.

まず前記第1の工程S1では、励磁回路20からトランス10に与える励磁周波数を段階的に変えながら、その都度トランス10の近傍に配設した集音マイク22でトランス騒音を計測する。   First, in the first step S1, transformer noise is measured by the sound collecting microphone 22 disposed in the vicinity of the transformer 10 each time the excitation frequency applied from the excitation circuit 20 to the transformer 10 is changed stepwise.

前記励磁回路20による励磁の周波数は特に定めないが、励磁周波数範囲をfHz〜fHzとすると、f=2×fとするのが良い。例えば、励磁最低周波数が50Hzならば、周波数範囲は50Hz〜100Hz、励磁最低周波数が60Hzならば周波数範囲は60Hz〜120Hzとする。周波数ピッチは固有振動数の解析精度に応じて適宜選択すればよいが、概ね1Hz〜2Hz程度で良い。励磁磁束密度は、常に一定値となるよう励磁周波数に応じて励磁電圧を変更する励磁磁束密度一定モードで行なってもよいが、励磁電圧値を一定として励磁周波数を変える電圧一定モードで行なうのが、より簡便で良い。 The frequency of excitation by the excitation circuit 20 is not particularly defined. However, if the excitation frequency range is f 1 Hz to f 2 Hz, f 2 = 2 × f 1 is preferable. For example, if the lowest excitation frequency is 50 Hz, the frequency range is 50 Hz to 100 Hz, and if the lowest excitation frequency is 60 Hz, the frequency range is 60 Hz to 120 Hz. The frequency pitch may be appropriately selected according to the analysis accuracy of the natural frequency, but may be approximately 1 Hz to 2 Hz. The excitation magnetic flux density may be performed in the constant excitation magnetic flux density mode in which the excitation voltage is changed according to the excitation frequency so that the excitation magnetic flux density is always constant. However, the excitation magnetic flux density may be performed in the constant voltage mode in which the excitation frequency is changed and the excitation frequency is changed. Simpler and better.

前記集音マイク22による騒音測定位置及び測定箇所も特に限定していないが、基本的に位置は近接音場以遠とし、測定箇所は1箇所で良いが、測定位置が鉄心に近い場合は測定箇所を複数とするのがより好ましい。又、大型トランスの場合にも、測定箇所は複数箇所とするのが好ましい。   The noise measurement position and the measurement location by the sound collecting microphone 22 are not particularly limited, but basically the position is beyond the near sound field and the measurement location may be one, but when the measurement location is close to the iron core, the measurement location It is more preferable to use a plurality. Also in the case of a large transformer, it is preferable to have a plurality of measurement points.

騒音測定の際の採取データは、次に周波数解析を行なうことができるデータとする。従来の騒音測定でなされるオクターブバンド程度の周波数ピッチの粗いデータでは不十分である。騒音の時間波形をFFTアナライザ等で周波数解析した結果データであるのが簡便であって良いが、騒音の時間波形データを採取記憶して、後程、周波数解析を実施するのでも良い。   The collected data at the time of noise measurement is data that can be subjected to frequency analysis next. Rough data with a frequency pitch of about the octave band, which is made by conventional noise measurement, is insufficient. The result data obtained by frequency analysis of the time waveform of noise with an FFT analyzer or the like may be simple. However, the time waveform data of noise may be collected and stored, and frequency analysis may be performed later.

前記第2の工程S2は、例えばチャージアンプ24を介して電圧信号に変換された前記集音マイク22からの信号の周波数解析を例えばFFTアナライザ26で行なって、励磁周波数のN次(Nは偶数)の騒音成分を求める。騒音測定を行なった周波数範囲が50Hz〜100Hz、ピッチが1Hzの場合で例示すると、各励磁周波数毎に、表1に示すように、騒音の周波数成分の値、即ち、励磁周波数のN倍の周波数における騒音値を求める。   In the second step S2, the frequency analysis of the signal from the sound collecting microphone 22 converted into a voltage signal through, for example, the charge amplifier 24 is performed by, for example, the FFT analyzer 26, and the Nth order (N is an even number) of the excitation frequency. ) Noise component. In the case where the frequency range in which the noise measurement is performed is 50 Hz to 100 Hz and the pitch is 1 Hz, as shown in Table 1, for each excitation frequency, the value of the frequency component of the noise, that is, a frequency N times the excitation frequency. Obtain the noise value at.

Figure 2008082778
Figure 2008082778

前記第3の工程S3は、前記FFTアナライザ26の出力により、例えばパソコン28を使って、励磁周波数のN倍周波の騒音値の調波周波数依存性を求める。騒音測定を行なった周波数の範囲が50Hz〜100Hz、ピッチが1Hzの場合の2倍周波データ処理法で例示すると、表1の2倍周波の項に示されているように、50Hz励磁の場合の騒音の100Hz成分、51Hz励磁の場合の騒音の102Hz成分、・・・、100Hz励磁の場合の騒音の200Hz成分を、図3に例示するように、各周波数に対する応答としてプロットする。図3には、4倍周波のデータに対する処理例も合わせてプロットされている。以下同様にして、6倍周波、8倍周波、・・・とプロットすると、図4に示すような結果が簡便・容易に得られる。   In the third step S3, the harmonic frequency dependence of the N-frequency noise value of the excitation frequency is obtained from the output of the FFT analyzer 26 using, for example, the personal computer 28. As an example of the double frequency data processing method in the case where the frequency range of the noise measurement is 50 Hz to 100 Hz and the pitch is 1 Hz, as shown in the double frequency section of Table 1, in the case of 50 Hz excitation. The 100 Hz component of noise, the 102 Hz component of noise in the case of 51 Hz excitation,..., And the 200 Hz component of noise in the case of 100 Hz excitation are plotted as responses to each frequency as illustrated in FIG. FIG. 3 also plots a processing example for quadruple frequency data. In the same manner, when plotting as 6 times frequency, 8 times frequency,..., The result as shown in FIG.

このように、極めて狭い周波数帯域で騒音測定を行なっただけで、上記で説明したようなデータ処理することによって、広帯域にわたるトランス鉄心の固有振動数を明瞭に、しかも簡便に求めることができる。しかも、騒音を直接測定した結果であるから、図4の例で言えば、トランス騒音増大の原因となっているのは、最も高いピーク、即ち312Hzの固有振動であることも容易に把握することができる。   In this way, the natural frequency of the transformer core over a wide band can be determined clearly and simply by performing data processing as described above only by performing noise measurement in an extremely narrow frequency band. Moreover, since it is the result of direct measurement of noise, it can be easily understood that the cause of the increase in transformer noise is the highest peak, that is, the natural vibration of 312 Hz, in the example of FIG. Can do.

幅150mmの方向性電磁鋼板フープ材を用意し、斜角切断後、積層して脚幅、ヨーク幅共150mm、積み厚50mmの3層3脚の試験トランスを作製した。積層方向は交互積みとした。次に試験トランスの3脚に、それぞれ60ターンずつ励磁巻線を施した。その後、鋼板のばたつきによる騒音を低減するため、ヨーク部を平均面圧2kgf/cmの圧力で治具で固定した。   A directional electromagnetic steel sheet hoop material having a width of 150 mm was prepared, cut at an oblique angle, and laminated to prepare a three-layer three-leg test transformer having a leg width and a yoke width of 150 mm and a stacking thickness of 50 mm. The stacking direction was alternately stacked. Next, 60 turns of exciting windings were applied to the three legs of the test transformer. Thereafter, in order to reduce noise caused by flapping of the steel plate, the yoke portion was fixed with a jig at an average surface pressure of 2 kgf / cm.

騒音測定用の集音マイク22を中心脚から30cm離れた位置に設置して、励磁電圧を100V一定として、励磁周波数50Hzから100Hzまで1Hz刻みに変えながら、騒音を測定した。   The sound collecting microphone 22 for noise measurement was installed at a position 30 cm away from the center leg, and the excitation voltage was fixed at 100 V, and the noise was measured while changing the excitation frequency from 50 Hz to 100 Hz in increments of 1 Hz.

騒音測定用の集音マイク22からの信号はチャージアンプ24を介して電圧信号に変換後、FFTアナライザ26に入力して、騒音の周波数成分データを採取した。パソコン28で、励磁周波数毎に表1に示す2倍周波、4倍周波、・・・10次周波数の騒音成分を求めて、プロットすることで図4を得た。図4では、グラフを見易くするため、データ点を省いて表示している。例えば10倍周波データは500Hzから1000Hzまでデータ点があるが、750Hz以下のデータ点は省略した。   The signal from the sound collecting microphone 22 for noise measurement was converted into a voltage signal via the charge amplifier 24 and then input to the FFT analyzer 26 to collect noise frequency component data. FIG. 4 was obtained by obtaining and plotting the noise components of the double frequency, quadruple frequency,... In FIG. 4, in order to make the graph easy to see, data points are omitted. For example, 10-times frequency data has data points from 500 Hz to 1000 Hz, but data points below 750 Hz are omitted.

本発明の手法を用いると、図4に示されるように、50Hzから100Hzという極めて狭い周波数帯域で騒音測定を行なっただけで、広帯域にわたる鉄心の固有振動数は極めて簡便且つ容易に求めることができた。又、トランス騒音増大の原因となっているのは、最も高いピーク、即ち312Hzの固有振動であることも容易に把握することができた。   When the method of the present invention is used, as shown in FIG. 4, the natural frequency of the iron core over a wide band can be obtained very simply and easily only by performing noise measurement in a very narrow frequency band of 50 Hz to 100 Hz. It was. It was also easy to grasp that the cause of the increase in transformer noise was the highest peak, that is, the natural vibration of 312 Hz.

比較のため、試験トランスの固有振動数を加速度センサを用いて測定したところ、310Hz付近に共振ピークを有することが確認できた。   For comparison, when the natural frequency of the test transformer was measured using an acceleration sensor, it was confirmed that it had a resonance peak in the vicinity of 310 Hz.

なお、前記説明においては、本発明が、電磁鋼板を鉄心としたトランスについて説明されていたが、本発明の適用対象はこれに限定されない。   In the above description, the present invention has been described with respect to a transformer having an electromagnetic steel sheet as an iron core, but the application target of the present invention is not limited to this.

本発明に係る測定方法の実施形態の手順を示す流れ図The flowchart which shows the procedure of embodiment of the measuring method which concerns on this invention 本発明に係る測定装置の実施形態の構成を示すブロック図The block diagram which shows the structure of embodiment of the measuring apparatus which concerns on this invention 本発明の実施形態における周波数範囲が50Hz〜100Hz、ピッチが1Hzの場合の2倍周波、4倍周波データの処理例を示す図The figure which shows the example of a process of 2nd frequency and 4th frequency data in case the frequency range in embodiment of this invention is 50Hz-100Hz and a pitch is 1Hz. 本発明の実施例における試験トランスの固有振動解析例を示す図The figure which shows the example of a natural vibration analysis of the test transformer in the Example of this invention

符号の説明Explanation of symbols

10…トランス
20…励磁回路
22…集音マイク
26…FFTアナライザ
28…パソコン
10 ... Transformer 20 ... Excitation circuit 22 ... Sound collecting microphone 26 ... FFT analyzer 28 ... PC

Claims (2)

所定の周波数範囲で、励磁周波数を段階的に変化させてトランスを励磁し、その各段階におけるトランスの騒音を計測する工程と、
計測した騒音の周波数解析を行ない、前記各段階の励磁周波数のN倍周波(但し、Nは偶数)の騒音成分を求める工程と、
励磁周波数のN倍周波の周波数と各N倍周波の騒音成分との関係における騒音成分のピーク値をトランス鉄心の固有振動数とする工程と、
を含むことを特徴とするトランス鉄心の固有振動数の測定方法。
In a predetermined frequency range, exciting the transformer by changing the excitation frequency step by step, and measuring the noise of the transformer at each step;
Performing a frequency analysis of the measured noise and obtaining a noise component of N times the excitation frequency of each stage (where N is an even number);
A step of setting the peak value of the noise component in the relationship between the N-frequency frequency of the excitation frequency and the noise component of each N-frequency to the natural frequency of the transformer core;
A method for measuring the natural frequency of a transformer core, comprising:
所定の周波数範囲で、励磁周波数を段階的に変化させてトランスを励磁する手段と、
その各段階におけるトランスの騒音を計測する手段と、
計測した騒音の周波数解析を行ない、前記各段階の励磁周波数のN倍周波(但し、Nは偶数)の騒音成分を求める手段と、
励磁周波数のN倍周波の周波数と各N倍周波の騒音成分との関係における騒音成分のピーク値をトランス鉄心の固有振動数とする手段と、
を備えたことを特徴とするトランス鉄心の固有振動数の測定装置。
Means for exciting the transformer by changing the excitation frequency stepwise within a predetermined frequency range;
Means for measuring the noise of the transformer at each stage;
Means for performing a frequency analysis of the measured noise and obtaining a noise component of N times the excitation frequency of each stage (where N is an even number);
Means for setting the peak value of the noise component in the relationship between the N-frequency frequency of the excitation frequency and the noise component of each N-frequency to the natural frequency of the transformer core;
An apparatus for measuring the natural frequency of a transformer core, comprising:
JP2006261130A 2006-09-26 2006-09-26 Method and apparatus for measuring natural frequency of iron core of transformer Pending JP2008082778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261130A JP2008082778A (en) 2006-09-26 2006-09-26 Method and apparatus for measuring natural frequency of iron core of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261130A JP2008082778A (en) 2006-09-26 2006-09-26 Method and apparatus for measuring natural frequency of iron core of transformer

Publications (1)

Publication Number Publication Date
JP2008082778A true JP2008082778A (en) 2008-04-10

Family

ID=39353810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261130A Pending JP2008082778A (en) 2006-09-26 2006-09-26 Method and apparatus for measuring natural frequency of iron core of transformer

Country Status (1)

Country Link
JP (1) JP2008082778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069620A (en) * 2010-09-22 2012-04-05 Jfe Steel Corp Magnetic steel sheet for laminate core
CN104156554A (en) * 2014-05-23 2014-11-19 国家电网公司 Method for recording and evaluating noise of transformer
JP2017106893A (en) * 2015-11-30 2017-06-15 ユカインダストリーズ株式会社 Method and device for diagnosing abnormality and deterioration in transformer
JP7495852B2 (en) 2020-09-11 2024-06-05 東芝産業機器システム株式会社 Diagnostic device and diagnostic program for stationary induction equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069620A (en) * 2010-09-22 2012-04-05 Jfe Steel Corp Magnetic steel sheet for laminate core
CN104156554A (en) * 2014-05-23 2014-11-19 国家电网公司 Method for recording and evaluating noise of transformer
JP2017106893A (en) * 2015-11-30 2017-06-15 ユカインダストリーズ株式会社 Method and device for diagnosing abnormality and deterioration in transformer
JP7495852B2 (en) 2020-09-11 2024-06-05 東芝産業機器システム株式会社 Diagnostic device and diagnostic program for stationary induction equipment

Similar Documents

Publication Publication Date Title
JP5953686B2 (en) Noise prediction method for transformer
Tang et al. Young's modulus for laminated machine structures with particular reference to switched reluctance motor vibrations
JP6519810B2 (en) Method and apparatus for diagnosing internal abnormality and deterioration of transformer
CN100370238C (en) Apparatus for measuring internal stress of ferromagnetic material
US20110036172A1 (en) Non-contact type transducer for rod member having multi-loop coil
JP2008082778A (en) Method and apparatus for measuring natural frequency of iron core of transformer
Javorski et al. Frequency characteristics of magnetostriction in electrical steel related to the structural vibrations
US20030210059A1 (en) Method and system for evaluating core stack pressure
Shuai et al. Investigation of acoustic noise sources in medium frequency, medium voltage transformers
Shahaj et al. A possible method for magnetostrictive reduction of vibration in large electrical machines
JP5716330B2 (en) Evaluation method of electrical steel sheet for laminated iron core
US20110031966A1 (en) Non-contact type transducer having multi-loop coil for plate member
JP5527134B2 (en) Method for determining vibration model of laminated iron core
JP5736634B2 (en) Evaluation method of magnetostriction or noise of magnetic steel sheet for three-phase transformer core excited by sine wave
JP2007139717A (en) Instrument and method for measuring magnetic characteristic of annular sample
Phophongviwat Investigation of the influence of magnetostriction and magnetic forces on transformer core noise and vibration
JP7207623B1 (en) Method for diagnosing noise performance of transformer and method for reducing noise
JP4840535B1 (en) Method for determining fastening force of laminated iron core and method for producing laminated iron core
JP3456742B2 (en) Noise level prediction method of transformer
Miihlethaler et al. Acoustic noise in inductive power components
JP2011169736A (en) Device and method for measuring alternating current magnetostriction
CN1662795A (en) Sensor
JP6090503B2 (en) Noise prediction method for transformer
Vandevelde et al. Magnetostriction and magnetic forces in electrical steel: Finite element computations and measurements
EP1629273B1 (en) Method and system for evaluating core stack pressure