JP2017106893A - Method and device for diagnosing abnormality and deterioration in transformer - Google Patents

Method and device for diagnosing abnormality and deterioration in transformer Download PDF

Info

Publication number
JP2017106893A
JP2017106893A JP2016174051A JP2016174051A JP2017106893A JP 2017106893 A JP2017106893 A JP 2017106893A JP 2016174051 A JP2016174051 A JP 2016174051A JP 2016174051 A JP2016174051 A JP 2016174051A JP 2017106893 A JP2017106893 A JP 2017106893A
Authority
JP
Japan
Prior art keywords
transformer
vibration
frequency
winding
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016174051A
Other languages
Japanese (ja)
Other versions
JP6519810B2 (en
Inventor
小西 義則
Yoshinori Konishi
義則 小西
雅道 加藤
Masamichi Kato
雅道 加藤
松本 聡
Satoshi Matsumoto
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKA IND KK
Shibaura Institute of Technology
Original Assignee
YUKA IND KK
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKA IND KK, Shibaura Institute of Technology filed Critical YUKA IND KK
Publication of JP2017106893A publication Critical patent/JP2017106893A/en
Application granted granted Critical
Publication of JP6519810B2 publication Critical patent/JP6519810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device capable of diagnosing abnormality in a transformer and a service life thereof.SOLUTION: A method for diagnosing a transformer analyzes oscillation response of the transformer in operation in a manner that obtains, using an oscillation detector with sensitivity for detecting oscillation of the transformer in operation in a range from low-frequency wave to audible sound (1 Hz to 20 kHz), either or both of character frequency of a several types of oscillation generated from the transformer during operation thereof due to electromagnetic force caused by electric current applied thereto through signal processing means using an electronic circuit or software and a mechanical oscillation phase with reference to a phase of excitation force due to the electric current applied to the transformer.SELECTED DRAWING: Figure 1

Description

本発明は変圧器内部異常および劣化を、稼働中の変圧器を停止することなく容易に診断することができる方法と装置に関する。   The present invention relates to a method and an apparatus capable of easily diagnosing a transformer internal abnormality and deterioration without stopping an operating transformer.

変圧器は電力設備の重要な機器である。その使用寿命は数10年と長いので、使用期間中に変圧器が不具合なく稼働しているか否か、異常診断を行い、故障する前に適切な修理を施し得ることが重要である。また、使用中の機器を今後どの程度使い続けることができるのか劣化診断して更新計画を立てるなどの施策をとることが、機器の信頼性確保の面で重要であり、それら診断技術の高度化が望まれている。   Transformers are important equipment for power facilities. Since its service life is as long as several tens of years, it is important to diagnose whether the transformer is operating without problems during the period of use and to perform appropriate repairs before failure. In addition, it is important to ensure the reliability of the equipment by taking measures such as deterioration diagnosis and establishing a renewal plan to determine how long the equipment can be used in the future. Is desired.

機械の発する振動の大きさを測定して機械の調子を判断することは一般的によくなされている機械の設備診断の手段であり、機械の振動を解析する手段として「実験モード解析」が知られている(非特許文献1参照)。
実験モード解析においては、被試験体をハンマーで叩いて衝撃を加えたり、加振器と呼ばれる装置を用いたりして単一振動数で定常的に加振できる台の上に載せる方法か、接触させて加振する方法が採用されている。前者の方法で被試験体は固有振動数で振動し、減衰する様子を試験することができ、後者の方法では任意に周波数を変えて振動実験(周波数掃引加振実験)を行うと、印加した加振力と応答(周波数応答関数)の関連データが得られ、そのデータの中に隠れた形で混ざり合っている固有振動数、固有モード、減衰比の大きさ等を分析することができる。
Measuring the magnitude of vibration generated by a machine and judging the condition of the machine is a common means of machine equipment diagnosis, and “experimental mode analysis” is known as a means of analyzing machine vibration. (See Non-Patent Document 1).
In the experimental mode analysis, the test object is struck with a hammer to apply an impact, or a device called a vibrator is used to place it on a table that can be constantly excited at a single frequency, or contact. The method of letting it vibrate is adopted. The former method can be used to test how the DUT vibrates at the natural frequency and attenuates. In the latter method, the vibration test (frequency sweep excitation experiment) is performed with the frequency changed arbitrarily. Data related to excitation force and response (frequency response function) is obtained, and the natural frequency, natural mode, magnitude of damping ratio, etc. mixed in the data in a hidden form can be analyzed.

また、機械の構造をモデル化し、力の釣り合いやエネルギー原理によって運動方程式を立て、それを解いて固有振動数と固有モードを求めることを「理論モード解析」と呼ぶ。しかし、理論モード解析において、自由度の大きい系では運動方程式を解析的に解くことが難しく、有限要素法を用いて解析されることがしばしばある。   Modeling the structure of a machine, creating a motion equation based on force balance and energy principle, and solving it to find the natural frequency and natural mode are called "theoretical mode analysis". However, in the theoretical mode analysis, it is difficult to solve the equation of motion analytically in a system with a large degree of freedom, and it is often analyzed using a finite element method.

機械装置のものづくりにおいては、要求される機能が備わるように装置を設計することが第一である。しかし、新しい装置を稼働させると予想外の振動や騒音を発生する可能性があり、予想外の振動や騒音は装置使用者を不快にさせる可能性がある。そこで、ビジネスにおいては振動騒音特性を良くすることが競合他社との製品の差別化を図ることになるので、変圧器においては、設計段階から振動や騒音を発生させない工夫をするか、試作品の振動騒音特性を測定し、振動や騒音を低減する努力がなされている。
変圧器についても環境保全の社会的な要請や他社との差別化のために、各変圧器メーカーや各鉄鋼メーカーは低騒音化の対策を導入している。例えば、非特許文献2〜5に示すように、鉄心、巻線、タンク等の固有振動数を実験、理論の両面から解析し、機械の固有振動数が電源周波数の2倍に近くなり共鳴することを避ける工夫や、鉄心接合部形状の工夫などにより低騒音化する研究がなされている。
In manufacturing a mechanical device, it is first to design the device so that it has the required functions. However, when a new device is operated, unexpected vibration and noise may be generated, and unexpected vibration and noise may make the device user uncomfortable. Therefore, in the business, improving the vibration and noise characteristics will differentiate the product from competitors. Therefore, in the transformer, devise measures to prevent vibration and noise from the design stage, Efforts are being made to measure vibration noise characteristics and reduce vibration and noise.
For transformers, each transformer manufacturer and each steel manufacturer have introduced measures to reduce noise in order to meet social demands for environmental protection and differentiation from other companies. For example, as shown in Non-Patent Documents 2 to 5, natural frequencies of iron cores, windings, tanks, etc. are analyzed from both experimental and theoretical viewpoints, and the natural frequency of the machine is close to twice the power supply frequency and resonates. Researches have been made to reduce noise by contriving to avoid this and by designing the shape of the core joint.

変圧器の設計や製造段階では実際に変圧器内部の構造物をハンマーで叩いたり、加振器で振動させたりすることが可能だが、稼働中の変圧器にそのような加振試験は適用できない。そこで、変圧器に流す電流が変圧器内部で鉄心や巻線に電磁力を作用し、鉄心や巻線から発生する振動や音から、変圧器内部を診断する方法が提案されている。
特許文献1では変圧器をハンマーで叩く代わりに、変圧器に励磁突入電流(定格電流の数倍)を流し、それにより発生する電磁機械力を用いて衝撃力を与え、発生音に基づいた診断を提案している。
また、加振器を用いる代わりに、所定の周波数範囲で励磁周波数を段階的に変化させて鉄心と巻線を加振して変圧器の固有振動数測定方法が特許文献2に記載されている。この場合、各加振周波数に対する変圧器騒音レベルを測定し、周波数応答関数を得ている。
It is possible to hit the structure inside the transformer with a hammer or vibrate with a vibrator at the design and manufacturing stage of the transformer, but such a vibration test cannot be applied to a transformer in operation. . In view of this, a method has been proposed in which a current flowing through a transformer applies electromagnetic force to the iron core and winding in the transformer, and the inside of the transformer is diagnosed from vibration and sound generated from the iron core and winding.
In Patent Document 1, instead of hitting the transformer with a hammer, a magnetizing inrush current (several times the rated current) is passed through the transformer, an impact force is applied using the electromagnetic mechanical force generated thereby, and diagnosis based on the generated sound Has proposed.
Further, Patent Document 2 describes a method for measuring the natural frequency of a transformer by exciting an iron core and a winding by changing an excitation frequency stepwise in a predetermined frequency range instead of using a vibrator. . In this case, the transformer noise level for each excitation frequency is measured to obtain a frequency response function.

特許第5691298号公報Japanese Patent No. 569298 特開2008−82778号公報JP 2008-82778 A 特許第2550066号公報Japanese Patent No. 2550066 特開2010−271073号公報JP 2010-271073 A 特開平4−318905号公報JP-A-4-318905

長松昭男編著「音・振動のモード解析と制御」コロナ社刊行、(1996年)Edited by Akio Nagamatsu, "Sound / Vibration Modal Analysis and Control", Corona Publishing, (1996) 前島正明、叶井実「最近の変圧器低騒音化技術」日立評論、vol.67 No.2 (1985)Masaaki Maejima, Minoru Kanai “Recent Transformer Noise Reduction Technology”, Hitachi review, vol.67 No.2 (1985) 平石清登、堀康郎、志田茂「大容量変圧器巻線の短絡強度」日立評論、vol.51 No.6 (1969)Kiyoto Hiraishi, Yashiro Hori, Shigeru Shida “Short-circuit strength of large-capacity transformer windings” Hitachi review, vol.51 No.6 (1969) 片柳厚志「変圧器タンクの振動解析」高岳レビュー、vol.56 No.1 (2011)Atsushi Katayanagi "Transformer tank vibration analysis" Takadake review, vol.56 No.1 (2011) 溝上雅人、黒崎洋介「変圧器鉄心の接合部形式による騒音と磁歪の変化」電学論、vol.134 No.5 (2014)Masato Mizogami and Yosuke Kurosaki “Changes in Noise and Magnetostriction due to Transformer Core Type” Electrical Theory, vol.134 No.5 (2014) 電気学会技術報告、第1336号「電気的・音響的手法による変圧器の異常診断技術の最新動向」(2015)IEEJ Technical Report, No. 1336 “Latest Trends in Transformer Abnormality Diagnosis Technology Using Electrical and Acoustic Techniques” (2015) 田中基八郎・堀康郎監修「電磁振動と騒音設計法」科学情報出版株式会社(2015)Supervised by Motohachiro Tanaka and Yasuo Hori “Electromagnetic Vibration and Noise Design Method” Science Information Publishing Co., Ltd. (2015) 華表宏隆、高野哲美、占部昇、渡辺賢治「モールド変圧器の光学式エポキシ樹脂劣化診断技術」電学論A,Vol.132 No.11(2012)Hirotaka Hanaomote, Tetsumi Takano, Noboru Urabe, Kenji Watanabe “Optical Epoxy Resin Degradation Diagnosis Technology for Mold Transformers”, Electronics Theory, Vol. 132 no. 11 (2012)

従来技術において、変圧器に励磁突入電流や励磁周波数を段階的に変化させた電流を流すのは、変圧器に複数の固有振動モードを発生させ、それらの固有振動数(以下、機械系の固有振動数と呼称する)を求めて変圧器を診断するために、複数の周波数成分をもつ加振力を変圧器内の鉄心や巻線に与えるためである。しかし、そのような特別な電流を流す試験は稼働中の変圧器に対しては適用できないため、稼働中の変圧器を試験のために停止しなくてはならない問題があった。   In the prior art, the flow of the excitation inrush current and the excitation frequency in stages is caused by causing the transformer to generate multiple natural vibration modes and their natural frequencies (hereinafter referred to as mechanical system natural frequencies). This is because an excitation force having a plurality of frequency components is applied to the iron core and windings in the transformer in order to diagnose the transformer by obtaining the frequency). However, since such a test for passing a special current cannot be applied to an operating transformer, there is a problem that the operating transformer must be stopped for the test.

従って、本発明の課題は、稼働状態で変圧器の振動応答を解析して変圧器を診断する方法と診断する装置の提供にある。   Accordingly, an object of the present invention is to provide a method for diagnosing a transformer by analyzing a vibration response of the transformer in an operating state.

本発明の変圧器内部異常および劣化の診断方法は、稼働状態の変圧器振動について、低周波数領域から可聴音領域(1Hz〜20kHz)に検出感度を有する振動検出器を用い、電子回路またはソフトウエアを用いた信号処理による手段を用いて前記稼働状態の変圧器に付加されている通電電流により生じる電磁力に起因して稼働中の変圧器から発生する種々の振動の固有振動数を直接測定するか、もしくは変圧器に対する通電電流による加振力の位相を基準とする変圧器振動の位相、またはその両方を求め、稼働状態の変圧器の振動応答を解析することを特徴とする。   The method for diagnosing internal abnormality and deterioration of a transformer of the present invention uses a vibration detector having a detection sensitivity from a low frequency region to an audible sound region (1 Hz to 20 kHz) for an operating transformer vibration, and an electronic circuit or software. The natural frequency of various vibrations generated from the operating transformer due to the electromagnetic force generated by the energizing current applied to the operating transformer is directly measured using signal processing means using Or the phase of the transformer vibration based on the phase of the excitation force due to the current applied to the transformer, or both, and the vibration response of the operating transformer is analyzed.

本発明は、先において求めた変圧器振動の固有振動数もしくは位相またはその両方を健全な変圧器の振動特性と比較して稼働中の変圧器の状態を解析することを特徴とする。
本発明は、先において求めた電源系の振動の位相から、変圧器構成物の固有振動数を求めて稼働中の変圧器の状態を解析することを特徴とする。
本発明は、稼働中の変圧器から検出した振動スペクトルのうち、変圧器ごとに決まる特定の周波数成分が経時的に変化することを捕捉して稼働中の変圧器の状態を解析することを特徴とする。
本発明は、前記変圧器が、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備え、稼働中の通電電流により前記巻線により生じる巻線振動と、前記鉄心により生じる鉄心振動と、前記タンクにより生じるタンク振動をそれぞれ分離して個別に検出し、変圧器の振動応答を解析することを特徴とする。
The present invention is characterized in that the state of the transformer in operation is analyzed by comparing the natural frequency and / or phase of the transformer vibration obtained previously with the vibration characteristics of the healthy transformer.
The present invention is characterized in that the state of the transformer in operation is analyzed by obtaining the natural frequency of the transformer component from the vibration phase of the power supply system obtained previously.
The present invention is characterized by analyzing the state of an operating transformer by capturing that a specific frequency component determined for each transformer changes from time to time in a vibration spectrum detected from the operating transformer. And
In the present invention, the transformer includes a winding that constitutes a coil body, an iron core, and a tank that accommodates them, and winding vibration generated by the winding due to an energization current during operation, and iron core vibration generated by the iron core, The tank vibration generated by the tank is separated and individually detected, and the vibration response of the transformer is analyzed.

本発明に係る変圧器内部異常および劣化の診断装置は、稼働中の変圧器に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する振動検出器と、該振動検出器からの検出信号を受けて稼働中の変圧器に対する通電電流による加振力の位相を基準とする機械的振動の位相を求める解析器と、前記解析器から得られたデータを演算する演算手段とを備えたことを特徴とする。   The transformer internal abnormality / deterioration diagnosis device according to the present invention has a detection sensitivity for vibrations from a low frequency region generated by the transformer to an audible sound region (1 Hz to 20 kHz) attached to the transformer in operation. A vibration detector having, an analyzer for receiving a detection signal from the vibration detector, an analyzer for obtaining a phase of mechanical vibration based on a phase of an excitation force caused by an energizing current to an operating transformer, and the analyzer And a calculation means for calculating the obtained data.

本発明において、前記演算手段に健全な変圧器の固有振動数もしくは位相またはその両方の情報が記録され、前記振動検出器が検出した振動情報と前記健全な変圧器の振動情報を比較する能力を前記演算手段が備えた構成を採用できる。
本発明において、前記振動検出器が求めた機械的振動の位相から、前記変圧器構成物の固有振動数を求めて稼働中の前記変圧器の状態を解析する能力を前記演算手段が備えた構成を採用できる。
本発明において、前記振動検出器が稼働中の変圧器から検出した振動スペクトルのうち、変圧器ごとに決まる特定の周波数成分が経時的に変化することを捕捉して稼働中の変圧器の状態を解析する能力を前記演算手段が備えた構成を採用できる。
本発明において、前記変圧器がコイル体を構成する巻線と鉄心とこれらを収容するタンクを備え、前記振動検出器が、稼働中の通電電流により前記巻線により生じる巻線振動と、前記鉄心により生じる鉄心振動と、前記タンクにより生じるタンク振動をそれぞれ分離して個別に検出する機能を有し、前記演算手段が変圧器の振動応答を解析する機能を有したことを特徴とする。
In the present invention, information on the natural frequency and / or phase of a healthy transformer is recorded in the calculation means, and the ability to compare the vibration information detected by the vibration detector with the vibration information of the healthy transformer. The configuration provided in the calculation means can be adopted.
In the present invention, the calculation means includes the capability of analyzing the state of the transformer in operation by obtaining the natural frequency of the transformer component from the phase of mechanical vibration obtained by the vibration detector. Can be adopted.
In the present invention, the vibration spectrum detected from the operating transformer by the vibration detector captures that the specific frequency component determined for each transformer changes over time, and changes the state of the operating transformer. A configuration in which the computing means has the ability to analyze can be adopted.
In the present invention, the transformer includes a winding constituting a coil body, an iron core, and a tank for housing them, and the vibration detector is caused by winding vibration generated by the winding due to an energization current during operation, and the iron core The iron core vibration generated by the tank and the tank vibration generated by the tank are separated and individually detected, and the arithmetic means has a function of analyzing the vibration response of the transformer.

本発明の診断方法によれば、稼働中の変圧器を停止せずとも稼働状態のまま内部異常および劣化を外部診断できるようになる。
また、電気的振動における周波数応答解析では、鉄心やコイルが実際にずれを生じたあとで異常が診断されるが、本発明に係る診断方法では、コイル巻線の締付け力低下を診断することができるので、実際にずれが生じる前に異常を把握できる方法であり、変圧器の予防保全の方法としても優れた診断方法である。
According to the diagnostic method of the present invention, it is possible to externally diagnose internal abnormalities and deterioration without stopping the operating transformer.
Further, in the frequency response analysis in the electric vibration, the abnormality is diagnosed after the iron core and the coil are actually displaced, but the diagnosis method according to the present invention can diagnose the decrease in the tightening force of the coil winding. Therefore, it is a method that can grasp an abnormality before a deviation actually occurs, and is an excellent diagnostic method as a preventive maintenance method for a transformer.

本発明に係る変圧器の異常および劣化を診断する装置の第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the apparatus which diagnoses the abnormality and deterioration of the transformer which concern on this invention. 本発明で測定対象とする変圧器の一例構成を示すもので、(A)は一部を破断とした斜視略図、(B)はコイル部分の拡大断面図。BRIEF DESCRIPTION OF THE DRAWINGS The example structure of the transformer made into a measuring object by this invention is shown, (A) is the perspective schematic diagram which fractured | ruptured one part, (B) is an expanded sectional view of a coil part. 変圧器巻線の振動を近似して運動方程式を立てる際に参考とする1自由度力学モデルの構成図。The block diagram of the 1 degree-of-freedom dynamic model used as a reference when approximating the vibration of a transformer winding and establishing a motion equation. 稼働中の変圧器タンクの壁面中央付近から測定されたレーザー変位計による振動検出波形の一例を示すグラフ。The graph which shows an example of the vibration detection waveform by the laser displacement meter measured from the wall center vicinity of the transformer tank in operation. 図4に示す波形をフーリエ変換して得た波形の一例を示すグラフ。The graph which shows an example of the waveform obtained by Fourier-transforming the waveform shown in FIG. 図4に示す波形から電源周波数の2倍波(100Hzの成分)を抽出した結果の波形を示すグラフ。The graph which shows the waveform of the result of having extracted the 2nd harmonic (100 Hz component) of the power supply frequency from the waveform shown in FIG. 変圧器の電源電流波形を2乗して100Hz成分を規格化した波形と図6に示す波形との位相差を示すグラフ。The graph which shows the phase difference of the waveform which squared the power supply current waveform of the transformer, and normalized the 100Hz component, and the waveform shown in FIG. 高周波成分を用いて粘度項の係数を求める方法の一例を示す図。The figure which shows an example of the method of calculating | requiring the coefficient of a viscosity term using a high frequency component. 負荷率60%で稼働中の変圧器においてタンクの壁面中央で測定されたAEセンサの出力波形をフーリエ変換した波形の一例を示すグラフ。The graph which shows an example of the waveform which carried out the Fourier transform of the output waveform of the AE sensor measured in the center of the wall surface of a tank in the transformer which is operating with a load factor of 60%. 図9に示す波形について縦軸を対数目盛にして表示したグラフ。The graph which displayed the vertical axis | shaft on the logarithmic scale about the waveform shown in FIG. 図9に示す波形を求める際にタンク中央から65cm下方位置において測定されたAEセンサの出力波形をフーリエ変換した波形の一例を示すグラフ。The graph which shows an example of the waveform which carried out the Fourier-transform of the output waveform of the AE sensor measured in the 65-cm downward position from the tank center when calculating | requiring the waveform shown in FIG. 負荷率30%で稼働中の変圧器においてタンクの壁面中央で測定されたAEセンサの出力波形をフーリエ変換した波形の一例を示すグラフ。The graph which shows an example of the waveform which carried out the Fourier transformation of the output waveform of the AE sensor measured in the center of the wall surface of a tank in the transformer which is operating with a load factor of 30%. 補償法による測定の一例を説明する図。The figure explaining an example of the measurement by a compensation method. 実施例において試験に適用した変圧器タンクの概要を示す斜視図。The perspective view which shows the outline | summary of the transformer tank applied to the test in an Example. 図14に示す変圧器タンクに収容されている鉄心の振動モードを示すもので、(A)はねじりモードを示す斜視図、(B)は曲げモード1を示す斜視図、(C)は曲げモード2を示す斜視図。14A and 14B show vibration modes of the iron core housed in the transformer tank shown in FIG. 14, wherein FIG. 14A is a perspective view showing a torsion mode, FIG. 14B is a perspective view showing a bending mode 1, and FIG. FIG. 実施例において変圧器タンクの上部右側壁にセンサを取り付けた位置を示す説明図。Explanatory drawing which shows the position which attached the sensor to the upper right side wall of a transformer tank in an Example. 実施例において得られた変圧器タンクの実稼働時と加振時の振動測定結果をフーリエ変換した値を示すグラフ。The graph which shows the value which carried out the Fourier-transform of the vibration measurement result at the time of the actual operation of the transformer tank obtained in the Example, and at the time of vibration.

<第1実施形態>
以下、本発明に係る変圧器の異常および劣化の診断方法と診断装置の第1実施形態について油入変圧器の場合を例にとり、図面に基づき説明する。
図1は変圧器の異常および劣化を診断する装置の第1実施形態を示す構成図であり、本実施形態の診断装置Aは、一例として図2に示す構造の油入変圧器1の異常および劣化を診断する装置である。
この例の油入変圧器1は、タンク2の内部に複数の巻線型のコイル体3がそれらの中心軸を上下に向けて収容され、タンク2の内部に絶縁油が満たされてなる。各コイル体3の中心部にケイ素鋼板などの磁性体からなる鉄心5が挿通され、各鉄心5は各々の上下端部においてケイ素鋼板などの磁性体からなるロッド状のヨーク部6に一体化されている。
各鉄心5の両端部とヨーク部6の周囲を囲むように枠状の締め金部7が設けられ、上下の締め金部7に図2(B)に示すように締め付け金具8が延出形成され、上下の締め付け金具8により各コイル体3が上下から挟まれ、各コイル体3に締め付け力が付加されている。
<First Embodiment>
Hereinafter, a first embodiment of a transformer abnormality and deterioration diagnosis method and diagnosis apparatus according to the present invention will be described with reference to the drawings, taking an oil-filled transformer as an example.
FIG. 1 is a configuration diagram showing a first embodiment of a device for diagnosing abnormality and deterioration of a transformer. A diagnosis device A of this embodiment is an example of an abnormality of an oil-filled transformer 1 having a structure shown in FIG. It is a device that diagnoses deterioration.
In the oil-filled transformer 1 of this example, a plurality of winding-type coil bodies 3 are accommodated in a tank 2 with their central axes facing up and down, and the tank 2 is filled with insulating oil. An iron core 5 made of a magnetic material such as a silicon steel plate is inserted through the center of each coil body 3, and each iron core 5 is integrated with a rod-shaped yoke portion 6 made of a magnetic material such as a silicon steel plate at the upper and lower ends. ing.
A frame-shaped clamp part 7 is provided so as to surround both ends of each iron core 5 and the periphery of the yoke part 6, and a clamp 8 is extended and formed on the upper and lower clamp parts 7 as shown in FIG. Then, the coil bodies 3 are sandwiched from above and below by the upper and lower fastening fittings 8, and a tightening force is applied to each coil body 3.

本実施形態においてコイル体3は、図2(B)に示すように外側コイル9と内側コイル10からなり、外側コイル(1次コイル)9は外巻線(1次巻線)11と絶縁スペーサー(固体絶縁物)12を上下に積層した積層体を上部絶縁体13と下部絶縁体15により挟み付けて構成されている。内側コイル(2次コイル)10は内巻線(2次巻線)16と絶縁スペーサー(固体絶縁物)17を上下に積層した積層体を上部絶縁物18と下部絶縁物19で挟み付けて構成されている。
上部絶縁物13、18と下部絶縁物15、19を上下の締め付け金具8により挟み付けることで各コイル体3には上下から締め付け力が作用され、この状態でコイル体3は絶縁油に浸漬されている。
また、タンク2の天井またはタンク側面に電力を入出力するための図示略のブッシングが形成されている。
In this embodiment, the coil body 3 includes an outer coil 9 and an inner coil 10 as shown in FIG. 2B, and the outer coil (primary coil) 9 has an outer winding (primary winding) 11 and an insulating spacer. A laminated body in which (solid insulator) 12 is vertically stacked is sandwiched between an upper insulator 13 and a lower insulator 15. The inner coil (secondary coil) 10 is configured by sandwiching a laminated body in which an inner winding (secondary winding) 16 and an insulating spacer (solid insulator) 17 are vertically stacked between an upper insulator 18 and a lower insulator 19. Has been.
By sandwiching the upper insulators 13 and 18 and the lower insulators 15 and 19 with the upper and lower clamping brackets 8, a clamping force is applied to each coil body 3 from above and below, and in this state, the coil bodies 3 are immersed in insulating oil. ing.
Further, a bushing (not shown) for inputting / outputting electric power is formed on the ceiling or the side surface of the tank 2.

前記構成の変圧器1は、送電線などから送られる高電圧を電力使用者の近くで降圧する用途などに使用されるので、巻線11、16には常時電流が流されている。巻線11、16に電流を流すことで電磁力が作用するので、コイル体3や鉄心5には電磁力が作用し、これらが振動する。この振動は変圧器1の全体に伝わり、タンク2の側壁2Aや底壁2B、天井壁2Cにも伝達される。
また、送電線で短絡事故や地絡事故などが起きると変圧器1の巻線11、16には定格負荷電流の10倍から数10倍に達する大きな電流が流れることがあり、規格以上の電磁力と振動が変圧器1に作用することもある。
これら種々の要因から、変圧器1の絶縁油は経時的に徐々に劣化が進行する。また、締め付け力と振動が常時作用する絶縁スペーサー12、17はセルロース繊維からなるため、劣化するおそれがあり、短絡事故や地絡事故に起因して巻線11、16にも予想外の劣化を生じるおそれがある。
以上説明のように変圧器1は長期間使用することにより各部において劣化が進行するおそれがある。
Since the transformer 1 having the above-described configuration is used for the purpose of stepping down a high voltage sent from a transmission line or the like near a power user, a current is always passed through the windings 11 and 16. Since an electromagnetic force acts by passing a current through the windings 11 and 16, the electromagnetic force acts on the coil body 3 and the iron core 5, and these vibrate. This vibration is transmitted to the entire transformer 1, and is also transmitted to the side wall 2A, the bottom wall 2B, and the ceiling wall 2C of the tank 2.
In addition, when a short circuit accident or a ground fault occurs in the transmission line, a large current that reaches 10 to several tens of times the rated load current may flow through the windings 11 and 16 of the transformer 1. Force and vibration may act on the transformer 1.
Due to these various factors, the insulating oil of the transformer 1 gradually deteriorates with time. In addition, since the insulating spacers 12 and 17 on which the tightening force and vibration always act are made of cellulose fiber, there is a risk of deterioration, and the windings 11 and 16 are also subject to unexpected deterioration due to a short circuit accident or a ground fault. May occur.
As described above, the transformer 1 may be deteriorated in each part when used for a long period of time.

図1に示す変圧器1の異常および劣化の診断装置Aは、変圧器1に沿わせて配置される振動検出器(振動センサ)22と、この振動検出器22からの出力信号を受けて増幅する増幅器(振動センサアンプ)25とこの増幅器25からの出力を受ける信号解析器(位相差検出器)26とこの信号解析器26に接続された演算装置27を主体として構成されている。診断装置Aにおいて、変圧器1に通電するための電圧を計測する電圧計(通電電圧計)23とこの電圧計23に増幅器(通電電圧アンプ)24を介し信号解析器26が接続されている。   A diagnosis apparatus A for abnormality and deterioration of a transformer 1 shown in FIG. 1 receives and amplifies a vibration detector (vibration sensor) 22 disposed along the transformer 1 and an output signal from the vibration detector 22. An amplifier (vibration sensor amplifier) 25, a signal analyzer (phase difference detector) 26 that receives an output from the amplifier 25, and an arithmetic unit 27 connected to the signal analyzer 26 are mainly configured. In the diagnostic apparatus A, a voltmeter (energized voltmeter) 23 for measuring a voltage for energizing the transformer 1 and a signal analyzer 26 are connected to the voltmeter 23 via an amplifier (energized voltage amplifier) 24.

図1に示す診断装置Aを用いて以下に説明する手順で変圧器1の振動を解析するが、本実施形態の診断装置Aが異常および劣化の診断を行う場合に用いる実験モード解析に従う基本理論について以下に説明する。
まず、変圧器巻線の振動を1自由度系で減衰のある強制振動と近似して運動方程式を立てる。巻線の質量をm、こわさをk、粘性をc(減衰係数)で表現する。こわさkをばねで表示し、粘性cをダンパで表示すると図3に示すようになる。この自由度力学モデルは非特許文献1において解説されている。
時刻tにおける変位をx(t)と表し、大きさF、角振動数ωの調和加振力を作用させる場合の運動方程式は以下の(1)式で表すことができる。
The vibration of the transformer 1 is analyzed by the procedure described below using the diagnostic device A shown in FIG. 1, but the basic theory according to the experimental mode analysis used when the diagnostic device A of the present embodiment diagnoses abnormality and deterioration. Is described below.
First, an equation of motion is established by approximating the vibration of the transformer winding to a forced vibration with damping in a one-degree-of-freedom system. The mass of the winding is represented by m, the stiffness is represented by k, and the viscosity is represented by c (attenuation coefficient). When the stiffness k is displayed with a spring and the viscosity c is displayed with a damper, it is as shown in FIG. This degree of freedom dynamic model is described in Non-Patent Document 1.
The displacement at time t is expressed as x (t), and the equation of motion in the case of applying a harmonic excitation force of magnitude F and angular frequency ω can be expressed by the following equation (1).

Figure 2017106893
Figure 2017106893

前記(1)式において変位xを以下の(2)式と仮定して解くと以下の(3)式、(4)式が得られる。   When the displacement x in the above equation (1) is solved by assuming the following equation (2), the following equations (3) and (4) are obtained.

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

ここで、前記(3)、(4)式において、Ω=(k/m)1/2は不減衰固有角振動数を示し、β=ω/Ωは外力の角周波数と不減衰固有角振動数の比を示し、c=2(m/k)1/2は臨界減衰係数、ζ=c/cは減衰比(粘性減衰と臨界減衰係数の比)を示す。
前記(4)式は調和加振力から位相が遅れた角周波数ωの振動式として以下の(5)式〜(9)式に展開することができる。
Here, in the equations (3) and (4), Ω = (k / m) 1/2 represents the unattenuated natural angular frequency, and β = ω / Ω represents the angular frequency of the external force and the unattenuated natural angular vibration. Number ratio, c c = 2 (m / k) 1/2 represents a critical damping coefficient, and ζ = c / c c represents a damping ratio (ratio of viscous damping to critical damping coefficient).
The equation (4) can be developed into the following equations (5) to (9) as a vibration equation of an angular frequency ω whose phase is delayed from the harmonic excitation force.

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

前記(9)式において、位相差φは以下の(10)式で与えられる。   In the equation (9), the phase difference φ is given by the following equation (10).

Figure 2017106893
Figure 2017106893

よって、前記(2)式で仮定した変位Xは以下の(11)式で与えられる。   Therefore, the displacement X assumed in the equation (2) is given by the following equation (11).

Figure 2017106893
Figure 2017106893

前記(1)式は右辺が0ではないので、非斉次線形微分方程式である。非斉次線形微分方程式の一般解は、線形斉次方程式の一般解と非斉次方程式を満たす1つの特解の和で書くことができる。前記(4)式は非斉次方程式の(1)式を満たす1つの特解である。ここで線形斉次方程式は以下の(12)式で与えられる。   The equation (1) is a non-homogeneous linear differential equation because the right side is not zero. The general solution of the inhomogeneous linear differential equation can be written as the sum of the general solution of the linear homogeneous equation and one special solution that satisfies the inhomogeneous equation. The equation (4) is one special solution that satisfies the equation (1) of the inhomogeneous equation. Here, the linear homogeneous equation is given by the following equation (12).

Figure 2017106893
Figure 2017106893

前記(12)式の一般解を求めると、以下の(13)式が得られる。   When the general solution of the equation (12) is obtained, the following equation (13) is obtained.

Figure 2017106893
Figure 2017106893

前記(13)式において以下の(14)式の関係がある。   In the formula (13), there is a relationship of the following formula (14).

Figure 2017106893
Figure 2017106893

前記(14)式には平方根があり、その中身の正負により異なる現象が出現する。
ζ≧1の場合、λ、λはともに負の実数になり、時間とともに大きさが減少して零に近付く無周期運動となる。よって、この場合、前記(1)式の一般解は、前記(11)式で与えられる調和加振力の角振動数ωの振動と前記(13)式で与えられる無周期運動の和で表される。
ζ<1の場合、σ=Ωζ:減衰率、ω=Ω(1−ζ1/2:減衰固有角振動数を導入すると、前記(13)式は以下の(15)式で表すことができる。
The equation (14) has a square root, and a different phenomenon appears depending on whether the contents are positive or negative.
In the case of ζ ≧ 1, both λ 1 and λ 2 are negative real numbers, and become non-periodic motion that decreases in size with time and approaches zero. Therefore, in this case, the general solution of the equation (1) is expressed as the sum of the vibration at the angular frequency ω of the harmonic excitation force given by the equation (11) and the aperiodic motion given by the equation (13). Is done.
When ζ <1, σ = Ωζ: damping rate, ω D = Ω (1-ζ 2 ) 1/2 : when the damped natural angular frequency is introduced, the above equation (13) is expressed by the following equation (15): be able to.

Figure 2017106893
Figure 2017106893

よって、この場合、(1)式の一般解は、前記(11)式で与えられる調和加振力の角振動数ωと前記(15)式で与えられる減衰固有角振動数ωの2つの成分を持つ振動となる。
一方、N自由度系に外力{f}が作用するときの運動方程式は、以下の(16)式で表される。
Therefore, in this case, the general solution of the equation (1) has two angular frequencies ω D of the harmonic excitation force given by the equation (11) and the damped natural angular frequency ω D given by the equation (15). It becomes a vibration with a component.
On the other hand, the equation of motion when the external force {f} acts on the N degrees of freedom system is expressed by the following equation (16).

Figure 2017106893
Figure 2017106893

ただし、前記(16)式において[M]は質量行列、[C]は減衰行列、[K]は剛性行列を表し、それぞれN次元の正方行列である。
一般にN次元空間において、N個の互いに独立なベクトル群{φ}〜{φ}があれば、それらを基準とする座標系を形成し、それによって任意のN次元ベクトルを表現することができ、その表現式は以下の(17)式、(18)式で示される。
However, in the above equation (16), [M] represents a mass matrix, [C] represents an attenuation matrix, and [K] represents a stiffness matrix, each of which is an N-dimensional square matrix.
In general, if there are N mutually independent vector groups {φ 1 } to {φ N } in an N-dimensional space, a coordinate system based on them can be formed, thereby expressing an arbitrary N-dimensional vector. The expression is expressed by the following equations (17) and (18).

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

N自由度系は、N次元空間を形成するとみなせば、互いに質量行列[M]、減衰行列[C]、剛性行列[K]に関して一般直交性を有するN次元ベクトル群であるから、固有モードを基準ベクトルとする座標系を形成することができる。
すると、N自由度系の運動方程式(16)式はr次固有モードに関する1自由度系の以下の運動方程式(19)式に帰着する。
If the N-degree-of-freedom system is considered to form an N-dimensional space, it is an N-dimensional vector group having general orthogonality with respect to the mass matrix [M], the damping matrix [C], and the stiffness matrix [K]. A coordinate system serving as a reference vector can be formed.
Then, the equation of motion (16) of the N-degree-of-freedom system results in the following equation of motion (19) of the one-degree-of-freedom system regarding the r-th eigenmode.

Figure 2017106893
Figure 2017106893

前記(19)式において、m={ψ[M]{ψ}:モード質量、c={ψ[C]{ψ}:モード減衰係数、k={ψ[K]{ψ}:モード剛性である。
多自由度系内の自由度iだけに角振動数ω、振幅Fiの調和加振力が作用する場合には、外力ベクトル{f}は、i行目がFijωtで他の全項が零になる。これを前記(19)式に代入すると、以下の(20)式となる。
In the equation (19), m r = {φ r } T [M] {φ r }: mode mass, c r = {φ r } T [C] {φ r }: mode damping coefficient, k r = { ψ r } T [K] {ψ r }: Mode rigidity.
When a harmonic excitation force having an angular frequency ω and an amplitude Fi acts only on the degree of freedom i in the multi-degree-of-freedom system, the external force vector {f} is F i e jωt in the i- th row and all other terms. Becomes zero. Substituting this into the equation (19) yields the following equation (20).

Figure 2017106893
Figure 2017106893

前記(20)式において、ψriはr次固有モード{ψ}のi行目の項である。
前記(20)式は1自由度系における前記(1)式と同一の形式である。
解ξを調和関数で表現すると仮定すれば、r次固有モードに関して解は以下の(21)式となる。
In the equation (20), ψ ri is a term in the i-th row of the r-th eigenmode {ψ r }.
The equation (20) has the same format as the equation (1) in the one-degree-of-freedom system.
Assuming that the solution ξ r is expressed by a harmonic function, the solution for the r-th eigenmode is expressed by the following equation (21).

Figure 2017106893
Figure 2017106893

これを前記(18)式に代入し、すべての固有モードに関して和をとると、空間座標上で解として以下の(22)式を得ることができる。   By substituting this into the equation (18) and taking the sum for all eigenmodes, the following equation (22) can be obtained as a solution on spatial coordinates.

Figure 2017106893
Figure 2017106893

前記(16)式は右辺が0ではないので、非斉次線形微分方程式である。前記(16)式の一般解もまた線形斉次方程式の一般解と非斉次方程式を満たす1つの特解の和で記載できる。前記(22)式は非斉次方程式である(16)式を満たす1つの特解である。ここで、線形斉次方程式は以下の(23)式で与えられる。   The equation (16) is an asymmetric linear differential equation because the right side is not zero. The general solution of the equation (16) can also be described as the sum of one special solution that satisfies the general solution of the linear homogeneous equation and the inhomogeneous equation. The equation (22) is one special solution that satisfies the equation (16), which is an inhomogeneous equation. Here, the linear homogeneous equation is given by the following equation (23).

Figure 2017106893
Figure 2017106893

この(23)式の一般解を求める。減衰行列[C]が以下の(24)式で表されるような比例粘性減衰である場合を例として以下のように考えることができる。   A general solution of the equation (23) is obtained. The case where the attenuation matrix [C] is proportional viscosity attenuation as expressed by the following equation (24) can be considered as follows.

Figure 2017106893
Figure 2017106893

ここで、変位を以下の(25)式と仮定する。   Here, the displacement is assumed to be the following equation (25).

Figure 2017106893
Figure 2017106893

すると、前記(23)式は以下の(26)式で示すことができる。   Then, the equation (23) can be expressed by the following equation (26).

Figure 2017106893
Figure 2017106893

ここで、前記(26)式に前記(24)式を代入し、以下の(27)式と置けば、前記(23)式は以下の(28)式となる。   Here, if the formula (24) is substituted into the formula (26) and the following formula (27) is substituted, the formula (23) becomes the following formula (28).

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

ここで、(28)式を解いて求めたpを(27)式に代入すると、r次のλrは以下の(29)式のように求まる。   Here, by substituting p obtained by solving equation (28) into equation (27), r-order λr is obtained as in the following equation (29).

Figure 2017106893
Figure 2017106893

ここで、固有角振動数は以下の(30)式で示され、モード減衰率は以下の(31)式で示され、減衰固有角振動数は以下の(32)式で示され、r次のモード減衰比は以下の(33)式で示される。   Here, the natural angular frequency is expressed by the following equation (30), the mode damping rate is expressed by the following equation (31), the damped natural angular frequency is expressed by the following equation (32), and the r th order: The mode damping ratio is expressed by the following equation (33).

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

Figure 2017106893
Figure 2017106893

以上から、前記(16)式の一般解は前記(22)式で与えられる調和加振力の角振動数ωと減衰固有角振動数を示す前記(32)式に現れる減衰角固有角振動数ωrdの成分を持つ振動である。 From the above, the general solution of the equation (16) is the damping angle natural angular frequency appearing in the equation (32) showing the angular frequency ω of the harmonic excitation force given by the equation (22) and the damping natural angular frequency. This is a vibration having a component of ω rd .

一方、稼働状態の変圧器が発生する振動・騒音の伝搬経路が、前述の非特許文献2に記載されている。
振動・騒音の一次的原因は鉄心の振動と巻線の振動であり、両者の振動がタンク、その他に伝搬する。よって、変圧器タンクの振動は鉄心振動と巻線振動とタンク自身の振動の合成となる。鉄心の状態を診断する場合は通電騒音振動のうち、鉄心振動成分を評価し、巻線の状態を診断する場合は巻線振動成分を評価する。鉄心振動と巻線振動はそれぞれ固有振動数を有する。
固有振動数が電源系の振動数に近いと共鳴現象が起きる。加振力は電源周波数の2倍成分が最も大きいが、電源周波数の奇数倍または偶数倍の加振力も存在し、鉄心振動や巻線振動やタンク振動の固有振動数が電源周波数の2倍以外の整数倍に近い場合には、電源周波数の2倍成分の振動よりも大きな振幅を生じる場合がある。電源系の加振力に対する機械系の固有振動数を測定して変圧器内部異常および劣化診断をすることができる。また、機械系の固有振動振幅が小さいなどの理由で固有振動数の直接の測定が困難である場合には強制振動の位相差を解析することにより、機械系の固有振動数を求め、請求項3に記載のように変圧器内部異常および劣化診断をすることができる。
即ち、変圧器構成物の固有振動数(鉄心振動と巻線振動とタンク自身の振動のそれぞれの固有振動数)を求めて稼働中の変圧器の状態を解析することができる。
On the other hand, the propagation path of vibration and noise generated by the transformer in the operating state is described in Non-Patent Document 2 described above.
The primary causes of vibration and noise are the vibration of the iron core and the vibration of the winding, and both vibrations propagate to the tank and others. Therefore, the vibration of the transformer tank is a combination of the iron core vibration, the winding vibration and the vibration of the tank itself. When diagnosing the state of the iron core, the iron core vibration component of the energized noise vibration is evaluated, and when diagnosing the state of the winding, the winding vibration component is evaluated. Each of the iron core vibration and the winding vibration has a natural frequency.
A resonance phenomenon occurs when the natural frequency is close to the frequency of the power supply system. The excitation force has the largest component of twice the power supply frequency, but there is also an excitation force that is an odd or even multiple of the power supply frequency, and the natural frequency of iron core vibration, winding vibration or tank vibration is other than twice the power supply frequency. May be larger than the vibration of the double component of the power supply frequency. By measuring the natural frequency of the mechanical system with respect to the excitation force of the power supply system, it is possible to diagnose abnormality inside the transformer and deterioration. Further, when it is difficult to directly measure the natural frequency because the natural vibration amplitude of the mechanical system is small, etc., the natural frequency of the mechanical system is obtained by analyzing the phase difference of the forced vibration. As described in 3, the internal abnormality and deterioration diagnosis of the transformer can be performed.
That is, it is possible to analyze the state of the transformer in operation by obtaining the natural frequencies of the transformer components (the natural frequencies of the iron core vibration, the winding vibration, and the vibration of the tank itself).

基本的に加振力は電源周波数の2倍成分である。しかし、電源電圧の歪み、発生する磁力の歪み、伝達される力の歪みなどが関与して色々な固有周波数をもつ振動が誘起されると考えられる。
変圧器1におけるタンク2の振動を鉄心振動と巻線振動とタンク振動の3成分ごとに分ける手順について説明する。3成分の振動は重ね合わせの原理が成り立つとする。
タンク壁面中央で振動測定する場合、縦方法または横方向の偶数の腹を持つタンク振動については振動の節となり、縦横両方向の奇数の腹を持つタンク振動成分のみとなる。よってタンク壁面中央で振動測定すると、振動波形は縦横両方向の奇数の腹を持つタンク振動成分と鉄心振動と巻線振動の重ね合わせとなる。次に、タンク中央よりやや下の位置で振動を測定すれば、タンク中央では消えていた縦方法または横方向の偶数の腹を持つタンク振動が測定され、縦横両方向の奇数の腹を持つタンク振動成分は振幅が小さくなる。
Basically, the excitation force is a component twice the power frequency. However, it is considered that vibrations having various natural frequencies are induced due to distortion of power supply voltage, distortion of generated magnetic force, distortion of transmitted force, and the like.
A procedure for dividing the vibration of the tank 2 in the transformer 1 into three components of iron core vibration, winding vibration and tank vibration will be described. It is assumed that the principle of superposition holds for three-component vibration.
When vibration is measured at the center of the tank wall, the tank vibration having an even number of antinodes in the vertical direction or the horizontal direction becomes a node of vibration, and only the tank vibration component having an odd number of antinodes in both the vertical and horizontal directions. Therefore, when vibration is measured at the center of the tank wall surface, the vibration waveform is a superposition of the tank vibration component having the odd antinodes in both the vertical and horizontal directions, the iron core vibration and the winding vibration. Next, if vibration is measured at a position slightly below the center of the tank, tank vibration with an even number of antinodes in the vertical direction or horizontal direction, which has disappeared in the center of the tank, is measured, and tank vibrations with odd antinodes in both the vertical and horizontal directions are measured. The component has a small amplitude.

一方、鉄心振動と巻線振動の大きさは変わらない。このようにタンク表面の位置を変えて測定することにより、すべてのタンク振動について固有振動成分を把握でき、残るは鉄心振動と巻線振動の分離である。
負荷電流の有無により、鉄心中の磁束は変わらないので、鉄心振動は変わらないが、巻線の振動は電流のほぼ2乗に比例して変化することが非特許文献6の87ページに記載されている。よって、負荷電流を変えて振動を測定し、その負荷依存性を利用すると鉄心振動と巻線振動を分離してそれぞれの振動波形を測定可能となる。
On the other hand, the magnitudes of iron core vibration and winding vibration do not change. By measuring by changing the position of the tank surface in this way, the natural vibration component can be grasped for all the tank vibrations, and the remaining is the separation of the iron core vibration and the winding vibration.
The magnetic flux in the iron core does not change depending on the presence or absence of the load current, so the iron core vibration does not change, but it is described on page 87 of Non-Patent Document 6 that the vibration of the winding changes in proportion to the square of the current. ing. Therefore, if the vibration is measured by changing the load current and the load dependency is used, it is possible to separate the iron core vibration and the winding vibration and measure each vibration waveform.

「巻線振動の解析」
次に、巻線振動の解析例について説明する。
一般的な油入変圧器の寿命は、変圧器の外部で短絡故障が発生した場合に変圧器コイル巻線に加わる電磁機械力にコイルの絶縁紙が耐えられなくなった状態と考えられる。
一方、短絡故障時に巻線の軸方向にも一次巻線(外巻線)と二次巻線(内巻線)が反発する電磁力(外部推力)が作用する。巻線部に挿入された絶縁物が経年劣化により寸法収縮して、巻線の締付け力が低下した場合、外部推力により軸方向の巻線構造が損なわれる可能性が生じる。このような状態も変圧器の寿命と考えられる。締付け力が低下して巻線に緩みが生じると巻線からの騒音は大きくなる。
特許文献4の記載によると、変圧器の各部位の締付けトルク値が規定値よりも小さくなると、正常時の各周波数成分のレベルが分布する範囲から大きく外れたレベルになると説明されている。
"Analysis of winding vibration"
Next, an analysis example of winding vibration will be described.
The life of a general oil-filled transformer is considered to be a state in which the insulating paper of the coil cannot withstand the electromagnetic mechanical force applied to the transformer coil winding when a short circuit failure occurs outside the transformer.
On the other hand, an electromagnetic force (external thrust) repelling the primary winding (outer winding) and the secondary winding (inner winding) also acts in the axial direction of the winding when a short circuit failure occurs. When the insulator inserted in the winding part shrinks in size due to aging and the tightening force of the winding decreases, the axial winding structure may be damaged by the external thrust. Such a state is also considered the life of the transformer. When the tightening force is reduced and the winding is loosened, the noise from the winding increases.
According to the description in Patent Document 4, it is explained that when the tightening torque value of each part of the transformer becomes smaller than a specified value, the level of each frequency component in the normal state is greatly deviated from the distribution range.

次に、変圧器の巻線に印加される加振力について説明する。
変圧器巻線の内巻線16と外巻線11には反対方向に電流が流れており、たがいに漏れ磁場を形成する。巻線に印加される電磁力はローレンツ力であり、電流と磁界にそれぞれ直角方向に作用する。軸方向の電磁力は内巻線16も外巻線11もともに圧縮力となり、電磁力は電流の2乗に比例する。よって、軸方向の加振力の振動数は電流の振動数(すなわち電源周波数)の2倍となる。
巻線11、16の締付け力の低下は巻線の固有振動数の変化として現れる。よって、実験モード解析により、直接的あるいは後述の補償法を用いて巻線振動に含まれる振動成分を明らかにすれば良い。直接的とは、AEセンサや加速度センサの生の波形をフーリエ変換して振動成分を明らかにすることを意味する。
Next, the excitation force applied to the winding of the transformer will be described.
Current flows in the opposite direction in the inner winding 16 and the outer winding 11 of the transformer winding, thereby forming a leakage magnetic field. The electromagnetic force applied to the winding is a Lorentz force and acts on the current and the magnetic field in directions perpendicular to each other. The axial electromagnetic force is a compressive force in both the inner winding 16 and the outer winding 11, and the electromagnetic force is proportional to the square of the current. Therefore, the frequency of the axial excitation force is twice the frequency of the current (that is, the power supply frequency).
A decrease in the tightening force of the windings 11 and 16 appears as a change in the natural frequency of the windings. Therefore, the vibration component included in the winding vibration may be clarified by the experimental mode analysis directly or using a compensation method described later. Direct means that the vibration component is clarified by Fourier transforming the raw waveform of the AE sensor or the acceleration sensor.

次に、位相差φ(通電電流による加振力の位相を基準とする変圧器振動の位相の差)から電源の振動数に対して巻線の固有振動数を求めることができる。電源周波数の2倍もしくは共鳴の影響で大きな信号強度を有する振動モードがr番目のモードであるとする。r番目のモードに対する位相差をφrとすると、前記(10)式を用いて巻線のr番目の固有振動数Ωは以下の(34)式のように計算できる。その際、減衰係数cは別な実験より求めておく。 Next, the natural frequency of the winding can be obtained with respect to the frequency of the power source from the phase difference φ (the difference in phase of the transformer vibration based on the phase of the exciting force due to the energizing current). It is assumed that a vibration mode having a large signal intensity due to twice the power supply frequency or the influence of resonance is the r-th mode. When the phase difference with respect to the r-th mode is φr, the r-th natural frequency Ω r of the winding can be calculated by the following equation (34) using the above-described equation (10). At that time, the attenuation coefficient cr is obtained from another experiment.

Figure 2017106893
Figure 2017106893

変圧器の振動のうち振幅は小さいが自由振動を直接的に、あるいは、後述の補償法およびロックインアンプを用いる測定によって求めることができる。
減衰係数cを求める方法は加振力の振動数より数倍大きな固有振動数を持つモードiについて測定する方法である。減衰係数cの値はモードごとに異なると考えられるが、加振力の振動数においてもその値で近似することができる。
その場合、加振力が1周期経過する前に現れる数周期分の減衰運動から減衰係数cを求めることとする。図8はその波形の説明である。
一般に減衰自由振動波形の振幅は指数関数的に減衰する。そこで、隣り合う振幅の比の対数をとると常に一定の値になると考えられ、この隣り合う振幅の比の自然対数は対数減衰率δと呼ばれる。時刻tにおけるn番目の振幅をa、同様にn+1、…、n+m番目の振幅をan+l、…、an+mとすると、対数減衰率δは以下の(35)式で定義される。
Although the amplitude of the vibration of the transformer is small, free vibration can be obtained directly or by measurement using a compensation method and a lock-in amplifier described later.
The method for obtaining the damping coefficient c is a method for measuring a mode i having a natural frequency several times larger than the frequency of the excitation force. Although the value of the damping coefficient c is considered to be different for each mode, the frequency of the excitation force can be approximated by that value.
In this case, the damping coefficient c i is obtained from the damping motion of several cycles that appear before the excitation force passes one cycle. FIG. 8 is an explanation of the waveform.
In general, the amplitude of a damped free vibration waveform attenuates exponentially. Therefore, it is considered that the logarithm of the ratio of adjacent amplitudes always takes a constant value, and the natural logarithm of the ratio of adjacent amplitudes is called a logarithmic attenuation rate δ i . When the n-th amplitude at time t n is a n , and similarly n + 1,..., N + m-th amplitude is a n + l ,..., An + m , the logarithmic decay rate δ i is defined by the following equation (35).

Figure 2017106893
Figure 2017106893

δはδと等しいと近似すると、r次のモード減衰比ζは以下の(36)式で求められる。 If it is approximated that δ r is equal to δ i , the r-th order mode damping ratio ζ r is obtained by the following equation (36).

Figure 2017106893
Figure 2017106893

これにより、減衰係数cは、以下の(37)式で求められる。 Thereby, the attenuation coefficient cr is obtained by the following equation (37).

Figure 2017106893
Figure 2017106893

ところで、巻線の固有振動数と締付け力の関係は以下の(38)式で与えられる。   Incidentally, the relationship between the natural frequency of the winding and the tightening force is given by the following equation (38).

Figure 2017106893
Figure 2017106893

ここで、Lは巻線の軸方向の長さ、ρは巻線を分布定数系とみなした場合の線密度を表す。また、前記(34)式と(38)式より、締め付け力Tは以下の(39)式のように求めることができる。   Here, L represents the length of the winding in the axial direction, and ρ represents the linear density when the winding is regarded as a distributed constant system. Further, the tightening force T can be obtained by the following equation (39) from the equations (34) and (38).

Figure 2017106893
Figure 2017106893

巻線の固有振動数は自由振動における前記(32)式の減衰固有角振動数を2πで割ってモード減衰比を用いて求めることもできる。
しかし、変圧器が比較的新品に近い場合、巻線締付け力は十分に大きく、振動が発生しにくくなっている。すなわち、減衰係数cが臨界減衰係数cよりも大きく、減衰比ζは1より大きいと考えられる。その場合、固有振動数に関係する振動は発生せず、無周期の減衰運動になる。その結果、強制振動が与えられても強制振動の振動数以外の振動成分は発生しなくなる。そのような場合でも、位相遅れを測定する方法であれば、固有振動数に関する情報が得られる。
The natural frequency of the winding can also be obtained by dividing the damped natural angular frequency of the equation (32) in free vibration by 2π using the mode damping ratio.
However, when the transformer is relatively close to a new one, the winding tightening force is sufficiently large and vibration is less likely to occur. That is, it is considered that the damping coefficient c is larger than the critical damping coefficient c c and the damping ratio ζ is larger than 1. In that case, vibration related to the natural frequency does not occur, and a non-periodic damping motion occurs. As a result, even if forced vibration is applied, vibration components other than the frequency of forced vibration are not generated. Even in such a case, if the method measures the phase delay, information on the natural frequency can be obtained.

前記(39)式で求められる締付け力Tが変圧器の設計下限値以上の場合は、当該変圧器の劣化度は健全であると診断され、設計下限値を下回ると外部推力による破壊確率が高まった状態であると判断し、当該変圧器の劣化度は寿命に達したと診断できる。
一例として、図1に示す解析器26と演算装置27はパーソナルコンピューターから構成され、演算装置27がCPUであり、メモリやハードディスクなどの記憶装置が解析器26に搭載され、解析器26の記憶装置に健全な初期状態の変圧器の締め付け力Tの情報が記憶されている。前記した各式が解析器26の記憶装置に記録されており、測定結果から得られる巻線の固有振動数などの情報が解析器26の記憶装置に記録され、健全な初期状態の変圧器の締め付け力との対比がなされる。
解析器26の記憶装置に健全な初期状態の変圧器の締め付け力とその締め付け力に対し、何割程度の低下が見られるかに応じて対比テーブルが記録されている。実際に測定され、演算装置27により計算された締め付け力の低下が、初期状態に対し低下していることが判明した場合に、当該変圧器の劣化度が寿命に達したか否か診断される。診断の基準値は変圧器ごとに個別に設定する。診断の基準値を解析器26の記憶装置に記録しておき、演算装置27の測定結果とテーブルを対比判断することにより変圧器の寿命を診断できる。
When the tightening force T obtained by the equation (39) is equal to or higher than the design lower limit value of the transformer, it is diagnosed that the degree of deterioration of the transformer is healthy, and when it falls below the design lower limit value, the probability of destruction due to external thrust increases. Therefore, it can be diagnosed that the degree of deterioration of the transformer has reached the end of its life.
As an example, the analyzer 26 and the computing device 27 shown in FIG. 1 are composed of a personal computer, the computing device 27 is a CPU, and a storage device such as a memory or a hard disk is mounted on the analyzer 26. The information on the tightening force T of the transformer in a healthy initial state is stored. Each of the above equations is recorded in the storage device of the analyzer 26, and information such as the natural frequency of the winding obtained from the measurement result is recorded in the storage device of the analyzer 26. Contrast with clamping force is made.
A comparison table is recorded in the storage device of the analyzer 26 according to a healthy initial state of the transformer clamping force and how much reduction is observed with respect to the clamping force. When it is found that the decrease in the tightening force actually measured and calculated by the arithmetic device 27 is lower than the initial state, it is diagnosed whether the deterioration degree of the transformer has reached the end of its life. . The diagnostic reference value is set individually for each transformer. The diagnosis reference value is recorded in the storage device of the analyzer 26, and the life of the transformer can be diagnosed by comparing the measurement result of the arithmetic unit 27 with the table.

位相差から機械系の固有振動数を求める場合、巻線部に使用されている絶縁物の劣化が軽度の場合は電源周波数の2倍の振動(2倍振動)が主な変圧器振動であり、2倍振動の位相差に着目して解析するのが良い。
ただし、機械系の固有振動数が電源周波数の2倍の振動数とは別な整数倍の振動数に近い場合、共鳴の効果でより大きな振動振幅を与える場合があり、その場合はその大きな振幅の振動数成分について解析する方が良い場合もある。
When obtaining the natural frequency of the mechanical system from the phase difference, if the deterioration of the insulator used in the winding is minor, the main transformer vibration is twice the vibration of the power supply frequency (double vibration). It is better to analyze by focusing on the phase difference of the double vibration.
However, if the natural frequency of the mechanical system is close to a frequency that is an integer multiple different from the frequency that is twice the power supply frequency, a larger vibration amplitude may be given due to the effect of resonance. It may be better to analyze the frequency component of.

締付け力が低下すると、巻線の軸方向に作用する電磁力に加え、巻線の半径方向に作用する電磁力による振動も発生すると考えられ、変圧器の劣化が進行すると、高次の振動成分の振幅が大きくなると考えられる。そこで、劣化が進んだ変圧器については高次の振動成分の振幅に着目して解析することが有効である。   If the tightening force is reduced, it is thought that vibration due to the electromagnetic force acting in the radial direction of the winding will occur in addition to the electromagnetic force acting in the axial direction of the winding. It is thought that the amplitude of increases. Therefore, it is effective to analyze a transformer that has deteriorated by paying attention to the amplitude of higher-order vibration components.

高次の固有振動モードによる過渡振動は前記(22)式で示される定常振動に加算される振動成分と考えられ、前記(25)式で与えられる。
本実施形態では変圧器の通電により発生するローレンツ力を加振力として用いるが、加振力はただ1つの振動数成分であり、すべての振動モードに対する効率の良い加振力になり得ていない可能性がある。しかし、劣化が進んだ変圧器で巻線締付け力が弱くなってくると、巻線に緩みが生じ、単振動の加振力が歪んで、伝達され、色々なモードの振動が誘起されると考えられる。
そこで、2倍振動振幅に対しより高次の振動成分の振幅が大きくなることを捉えて巻線部に使用されている絶縁物が劣化していると診断することができる。この場合、高次の振動成分は歪んで伝達された加振力により決まった位相遅れを有するようになると考えられる。
よって、位相が一定しない背景雑音は除去することにより、歪んで伝達された加振力により決まった位相遅れを生じている高次の振動成分を把握し、巻線部に使用されている絶縁物の劣化に関係した高次の振動成分の振幅の増大を捉えることができる。
ただし、変圧器製造段階の内部応力が経年で緩和され、高次の振動振幅が小さくなる場合も考えられ、その変化の要因を解釈して変圧器を診断せねばならない。よって、変圧器ごとに決まる特定の周波数成分が経時的に変化することを捕捉して稼働中の変圧器の状態を解析して診断する。診断の基準値は変圧器ごとに個別に設定する。
一例として、図1に示す解析器26が測定結果のグラフを解析して高次の固有振動の増大を認めたならば、変圧器1の劣化度が算定される。高次の固有振動の増大割合を予め解析器26の記憶装置に劣化度に応じて記録しておき、演算装置27が算出した増大割合に応じて当該変圧器の劣化度がどの程度であるのか、また、変圧器としての寿命に達したか否か診断される。
The transient vibration due to the higher-order natural vibration mode is considered to be a vibration component added to the steady vibration shown by the equation (22), and is given by the equation (25).
In this embodiment, the Lorentz force generated by energization of the transformer is used as the excitation force. However, the excitation force is only one frequency component and cannot be an efficient excitation force for all vibration modes. there is a possibility. However, when the winding tightening force becomes weak in a transformer that has deteriorated, the winding will loosen, and the excitation force of simple vibration will be distorted and transmitted, and various modes of vibration will be induced. Conceivable.
Therefore, it can be diagnosed that the insulator used in the winding portion is deteriorated by grasping that the amplitude of the higher-order vibration component becomes larger than the double vibration amplitude. In this case, it is considered that the higher-order vibration component has a phase lag determined by the oscillating force transmitted in a distorted manner.
Therefore, by removing background noise whose phase is not constant, it is possible to grasp high-order vibration components that cause a phase lag determined by the distorted transmitted vibration force, and to use the insulator used in the winding section. It is possible to capture the increase in amplitude of higher-order vibration components related to the deterioration of.
However, the internal stress in the transformer manufacturing stage may be eased over time, and the higher-order vibration amplitude may be reduced. The cause of the change must be interpreted to diagnose the transformer. Therefore, the fact that the specific frequency component determined for each transformer changes with time is captured, and the state of the operating transformer is analyzed and diagnosed. The diagnostic reference value is set individually for each transformer.
As an example, if the analyzer 26 shown in FIG. 1 analyzes the graph of the measurement result and recognizes an increase in high-order natural vibration, the degree of deterioration of the transformer 1 is calculated. The increase rate of higher-order natural vibration is recorded in advance in the storage device of the analyzer 26 according to the degree of deterioration, and how much is the deterioration degree of the transformer according to the increase rate calculated by the arithmetic unit 27? In addition, it is diagnosed whether the life as a transformer has been reached.

低次の2倍振動成分から高次の固有振動成分まで広く解析するには、広い周波数特性を有するAE(アコースティックエミッション)センサを用いることができる。または、低周波と高周波とそれぞれに感度の高いAEセンサを組み合わせて用いることもできる。または、特定の周波数ごとに感度の高いAEセンサを組み合わせて用いることもできる。
また、振動を測定するセンサであれば、AEセンサに限らず、加速度センサや、振動を音波で測定するか、変圧器タンク壁面の振動を直接レーザー変位計で測定するなどの方法により解析することも可能である。
An AE (acoustic emission) sensor having a wide frequency characteristic can be used to widely analyze from a low-order double vibration component to a high-order natural vibration component. Alternatively, low frequency and high frequency can be used in combination with high sensitivity AE sensors. Alternatively, a highly sensitive AE sensor can be used in combination for each specific frequency.
Moreover, if it is a sensor which measures a vibration, it is not limited to an AE sensor, and it is analyzed by an acceleration sensor, a method of measuring vibration with a sound wave, or a method of directly measuring vibration of a transformer tank wall surface with a laser displacement meter. Is also possible.

「鉄心振動の解析」
次に、鉄心振動の解析例について説明する。
鉄心は電磁鋼板の磁歪により振動が生じる。磁歪は磁場の向きが変わるたび、すなわち通電電流1周期に対し2回振動を発生する。変圧器の鉄心はねじ止めされるか、バンドにて締付けられている。長年変圧器を使用していると繰返しの振動や温度変化により、ねじに緩みが生じて締付け力が低下する可能性がある。
電磁鋼板の磁歪により鉄心の継鉄(ヨーク)と脚鉄(コア)が揺さぶられ、振動するようになる(非特許文献6参照)。鉄心の締付け力が低下すると振動が発生し騒音は大きくなる。
鉄心の接合部ではわずかな空気の層が存在し、磁束が空気の部分を避けて鋼板を通るため、鋼板間に吸引力が働く。積層された鋼板は完全に平坦でなく、部分的な接触になっており、積層方向には全体として、ばねとして作用する。ばね定数は締付け力によって変化する。また締付け力が弱くなると、鋼板間のすべりが生じ、減衰係数が小さくなる。
よって、締付け力が変化するとばね定数や減衰係数の変化として固有振動数が変化する。固有振動数や減衰係数の変化を捉えて、鉄心の締付け力低下といった異常や劣化を診断することができる。
一例として、図1に示す解析器26が測定結果のグラフを解析して締め付け力の低下の程度を認めたならば、変圧器1の劣化度が算定される。締め付け力の低下割合を予め解析器26の記憶装置に低下割合に応じて記録しておき、低下した割合に応じて当該変圧器の劣化度がどの程度であるのか、また、変圧器としての寿命に達したか否か診断される。
診断の基準値は変圧器ごとに個別に設定する。
"Analysis of iron core vibration"
Next, an analysis example of iron core vibration will be described.
The iron core is vibrated by the magnetostriction of the electrical steel sheet. Magnetostriction generates vibration twice each time the direction of the magnetic field changes, that is, for one cycle of the energizing current. The iron core of the transformer is screwed or tightened with a band. If a transformer is used for many years, the screw may loosen due to repeated vibrations and temperature changes, and the tightening force may be reduced.
Due to the magnetostriction of the electromagnetic steel sheet, the yoke (yoke) and the leg (core) of the iron core are shaken and vibrated (see Non-Patent Document 6). When the tightening force of the iron core is reduced, vibration occurs and noise increases.
A slight air layer is present at the joint of the iron core, and the magnetic flux passes through the steel plates avoiding the air portion, so that an attractive force acts between the steel plates. The laminated steel plates are not completely flat but are in partial contact, and act as a spring as a whole in the lamination direction. The spring constant varies depending on the tightening force. Further, when the tightening force becomes weak, slip occurs between the steel plates, and the damping coefficient becomes small.
Therefore, when the tightening force changes, the natural frequency changes as a change in the spring constant or damping coefficient. By detecting changes in the natural frequency and damping coefficient, it is possible to diagnose abnormalities and deterioration such as a decrease in the tightening force of the iron core.
As an example, if the analyzer 26 shown in FIG. 1 analyzes the graph of the measurement result and recognizes the degree of decrease in the clamping force, the degree of deterioration of the transformer 1 is calculated. The decreasing rate of the clamping force is recorded in advance in the storage device of the analyzer 26 according to the decreasing rate, the degree of deterioration of the transformer according to the decreasing rate, and the life as the transformer Diagnosed whether or not
The diagnostic reference value is set individually for each transformer.

「乾式変圧器の場合の解析」
次に、乾式変圧器の振動解析による診断について説明する。
乾式変圧器はモールド変圧器とも呼ばれ、絶縁油の代わりに絶縁物のエポキシ樹脂で変圧器内を浸し、硬化させたものである。よって、乾式変圧器の主な劣化要因はエポキシ樹脂の熱劣化である(非特許文献8参照)。
エポキシ樹脂は熱劣化すると、機械的強度が低下して、短絡電流や地震などの外力によりクラックが発生すると、絶縁破壊を起こす可能性が生じる。エポキシ樹脂が熱劣化すると、エポキシ樹脂が蒸発し質量が減少することより、変圧器の固有振動数が変化する。
そこで、乾式変圧器に対しても振動解析により、異常や劣化の診断ができる。鉄心と巻線を合わせて樹脂硬化させたモールド変圧器の場合はその容器表面の振動を測定する。
鉄心と巻線を別々に樹脂硬化させたモールド変圧器や、巻線のみを樹脂硬化させたモールド変圧器の場合は、鉄心と巻線が個別に振動することから、鉄心と巻線の表面を個別に振動測定することが可能であり、油入変圧器と同様に鉄心と巻線の異常や劣化の診断をそれぞれ実施できる。
一例として、図1に示す解析器26の記憶装置に健全な初期状態の変圧器の鉄心や巻線の個別振動状態を記録しておき、実際の測定結果と対比することで変化した割合に応じて当該変圧器の劣化度がどの程度であるのか、また、変圧器としての寿命に達したか否か診断できる。
"Analysis in case of dry transformer"
Next, diagnosis by vibration analysis of a dry transformer will be described.
The dry type transformer is also called a molded transformer, and is obtained by immersing the inside of the transformer with an epoxy resin of insulation instead of insulating oil and curing it. Therefore, the main deterioration factor of the dry transformer is thermal deterioration of the epoxy resin (see Non-Patent Document 8).
When the epoxy resin is thermally deteriorated, the mechanical strength is lowered, and when a crack is generated by an external force such as a short circuit current or an earthquake, there is a possibility of causing a dielectric breakdown. When the epoxy resin is thermally deteriorated, the natural frequency of the transformer changes due to the evaporation of the epoxy resin and a decrease in mass.
Therefore, it is possible to diagnose abnormalities and deterioration of dry transformers by vibration analysis. In the case of a mold transformer in which the core and winding are combined and cured with resin, the vibration of the container surface is measured.
In the case of a mold transformer in which the core and winding are separately resin-cured, or a mold transformer in which only the winding is resin-cured, the iron core and the winding vibrate separately, so the surface of the iron core and the winding It is possible to measure vibration individually and to diagnose abnormality and deterioration of iron core and winding as well as oil-filled transformer.
As an example, record the initial vibration state of the transformer core and winding individually in the storage device of the analyzer 26 shown in FIG. 1 and compare it with the actual measurement results in accordance with the changed ratio. Thus, it is possible to diagnose the degree of deterioration of the transformer and whether or not the lifetime of the transformer has been reached.

上記した従来の課題を解決するために、本実施形態では稼働状態の変圧器において、その振動の振幅および位相を測定し電源電圧の振幅や位相と比較することにより変圧器内部の異常および劣化を診断する方法である。診断のために特別な電流を流す必要はない。
本実施形態では、変圧器の鉄心や巻線を振動させる加振力の源として、稼働状態の変圧器の通電により生じる電磁力だけを用いる。そのため、先の特許文献2において励磁周波数を商用周波数だけに限ることと等しく、本実施形態の診断方法は特許文献2記載の方法と一部類似はしているが、特許文献2においては、励磁周波数を段階的に変化させた周波数毎の測定結果が一組となり、固有周波数を解析する方法である。
一方、本実施形態の診断方法では、加振の原因となる通電の周波数は基本的には電源周波数の2倍のただ1つだけであり、大きな相違点である。この加振力に着目して鉄心や巻線の締め付け状態や、エポキシ樹脂の熱劣化の状態に応じて発生する種々の振動を捉えて通電の周波数と比較することが重要である。
In order to solve the above-mentioned conventional problems, in this embodiment, in the transformer in the operating state, the amplitude and phase of the vibration are measured and compared with the amplitude and phase of the power supply voltage. It is a method of diagnosis. There is no need to pass a special current for diagnosis.
In the present embodiment, only the electromagnetic force generated by energization of the transformer in the operating state is used as the source of the excitation force that vibrates the iron core or winding of the transformer. Therefore, in Patent Document 2, the excitation frequency is equal to the commercial frequency only, and the diagnosis method of this embodiment is partially similar to the method described in Patent Document 2, but in Patent Document 2, This is a method of analyzing the natural frequency by combining the measurement results for each frequency obtained by changing the frequency step by step.
On the other hand, in the diagnosis method of the present embodiment, the energization frequency causing vibration is basically only one that is twice the power supply frequency, which is a major difference. Paying attention to this excitation force, it is important to capture various vibrations generated according to the tightening state of the iron core and windings and the state of thermal deterioration of the epoxy resin and compare it with the energization frequency.

また、本実施形態において加振の原因となる電源電流はただ1つの振動数成分であるが、電源電圧の歪み、発生する磁力の歪み、伝達される力の歪みなどが関与して色々なモードの振動が誘起されてくると考えられる。
電源電圧は理想的には正弦波であるが、電力供給段階や、負荷側接続機器の内容によって正弦波が歪んで加振力自身が高調波を含むことが考えられる。
鉄心振動については励磁電流により発生する磁界が鉄心振動の源となるが、鉄心の磁気飽和曲線の非線形性により磁束密度は高調波を含む。また、鉄心の磁化と磁歪の非線形性もあり、電源電圧とは異なる周波数成分の加振力も誘起されることになる。
巻線振動の場合は、巻線の漏れ磁束と巻線に流れる電流からローレンツ力が発生するが、巻線の巻き方の配線や偏りなどのために漏れ磁束は正弦波的な変化から歪み、電源電圧とは異なる周波数成分の加振力も誘起される。
In this embodiment, the power supply current that causes vibration is only one frequency component, but various modes are involved due to distortion of power supply voltage, distortion of generated magnetic force, distortion of transmitted force, etc. It is thought that the vibration of is induced.
The power supply voltage is ideally a sine wave, but it is conceivable that the sine wave is distorted and the excitation force itself includes harmonics depending on the power supply stage and the content of the load side connected device.
For iron core vibration, the magnetic field generated by the excitation current is the source of the iron core vibration, but the magnetic flux density includes harmonics due to the nonlinearity of the magnetic saturation curve of the iron core. In addition, there is nonlinearity between the magnetization and magnetostriction of the iron core, and an excitation force having a frequency component different from the power supply voltage is also induced.
In the case of winding vibration, Lorentz force is generated from the leakage flux of the winding and the current flowing in the winding, but the leakage flux is distorted from sinusoidal changes due to the wiring and bias of the winding method, An excitation force having a frequency component different from the power supply voltage is also induced.

一般の変圧器において鉄心は薄い電磁鋼板を積層して、ねじ止めされるかバンドにて締付けられている。また、巻線は締付けねじを通じて締付けられている。締付け力を受ける鉄心や巻線は一種のばねに相当し、そのばね定数は締付け力により変化することや、締付け力の不均一性により、締付け力は歪んで伝達され、加振力とは異なる周波数成分の振動を誘起する。よって、診断のために特別な電流を流さずとも、電源周波数の2倍とは異なる周波数成分の固有振動モードに関する情報も得ることが可能である。
その場合、加振力の主な周波数成分は電源周波数の整数倍(電源系の固有振動数と呼ぶ)であり、奇数倍成分より偶数倍成分の方が大きく、健全な変圧器において多くの場合は2倍成分が最も大きい。また、成分は小さいが電源周波数の整数倍以外のあらゆる周波数成分も含まれ、鉄心や巻線の自由振動を励起する。
In a general transformer, the iron core is laminated with thin electromagnetic steel plates and screwed or fastened with a band. Further, the winding is tightened through a tightening screw. The iron core or winding that receives the tightening force is equivalent to a kind of spring, and its spring constant varies depending on the tightening force, and due to non-uniformity of the tightening force, the tightening force is distorted and transmitted, which is different from the excitation force. Induces frequency component vibration. Therefore, it is possible to obtain information on the natural vibration mode of a frequency component different from twice the power supply frequency without passing a special current for diagnosis.
In that case, the main frequency component of the excitation force is an integer multiple of the power supply frequency (referred to as the natural frequency of the power supply system), and the even multiple component is larger than the odd multiple component, and in many cases in a healthy transformer Has the largest double component. In addition, the frequency component is small but includes any frequency component other than an integral multiple of the power supply frequency, and excites free vibration of the iron core and windings.

また、変圧器の劣化が進むと締付け力は弱まり、加振周波数とは異なる周波数の振動成分が大きくなる。そこで、2倍振動振幅(電源周波数50Hzの場合、100Hzのこと)に対しより他の振動成分の振動振幅が大きくなることを捉えて巻線部に使用されている絶縁物が劣化していると診断することができる。
この場合、他の固有振動は歪んで伝達された加振力により決まった位相遅れを有するようになると考えられる。よって、位相情報と対になって解析することにより、位相が一定しない背景雑音は除去して、通電電流により発生する振動に限った他の振動成分の振幅の増大を捉えることができる。
稼働中の変圧器から検出した振動スペクトルのうち可聴音領域内の他の振動成分の振幅が、通電電流による加振力の周波数成分の大きさに対して大きくなることを捕捉して稼働中の変圧器の状態を解析することは、先のような変圧器内部の異常および劣化を診断する方法である。
Further, as the transformer deteriorates, the tightening force is weakened, and the vibration component having a frequency different from the excitation frequency is increased. Therefore, if the insulator used in the winding part is deteriorated by grasping that the vibration amplitude of other vibration components becomes larger than the double vibration amplitude (100 Hz when the power supply frequency is 50 Hz). Can be diagnosed.
In this case, it is considered that other natural vibrations have a phase lag determined by the oscillating force transmitted in a distorted manner. Therefore, by analyzing in pairs with the phase information, it is possible to remove the background noise whose phase is not constant and capture the increase in the amplitude of other vibration components limited to the vibration generated by the energized current.
Captures the fact that the amplitude of other vibration components in the audible sound region of the vibration spectrum detected from the operating transformer increases with respect to the magnitude of the frequency component of the excitation force due to the energized current. Analyzing the state of the transformer is a method of diagnosing abnormalities and deterioration inside the transformer as described above.

診断のために特別な電流を流さず、変圧器稼働時の騒音を測定するだけで変圧器内部の異常および劣化を診断する方法は従来既に提案されている。特許文献3は、機械の音圧を検出し、あらかじめ設定した基準スペクトルと比較して機械の異常を診断する方法を開示している。また、特許文献4には変圧器に例えば鉄心や巻線を締め付けているボルトが緩むなどして異常が生じると機器の発する音が変化し、各周波数成分の音圧レベルが正常時の範囲から大きく外れると記載されている。これらの診断方法は正常時の音響パターンと異常時の音響パターンを比較して差が大きい場合に異常や劣化が生じていると診断する方法であり、モード解析とは全く異なる解析方法である。   A method for diagnosing abnormalities and deterioration inside a transformer by simply measuring noise during operation of the transformer without supplying a special current for diagnosis has been proposed. Patent Document 3 discloses a method of diagnosing a machine abnormality by detecting the sound pressure of the machine and comparing it with a preset reference spectrum. Further, in Patent Document 4, when an abnormality occurs due to, for example, an iron core or a bolt tightening a winding being loosened in a transformer, the sound produced by the device changes, and the sound pressure level of each frequency component is within the normal range. It is described that it will deviate significantly. These diagnosis methods are methods for diagnosing abnormality or deterioration when the difference between the acoustic pattern at normal time and the acoustic pattern at abnormal time is large, and is completely different from the mode analysis.

正常時と異常時の音響パターンを比較する方法は、特許文献4に記載のように音圧レベルの上限閾値と下限閾値を設定して、その範囲を超えるデータの割合により診断することになるが、この場合、背景雑音が重畳して誤判定する可能性が生じ、上限閾値と下限閾値の幅を大きくとる必要が生じるため診断の精度が低下してしまう問題がある。   The method for comparing the normal and abnormal acoustic patterns is to set the upper and lower thresholds of the sound pressure level as described in Patent Document 4, and to diagnose by the ratio of data exceeding the range. In this case, there is a possibility that background noise is superimposed and erroneous determination occurs, and there is a problem that the accuracy of diagnosis is lowered because it is necessary to increase the width of the upper and lower thresholds.

本実施形態の場合は、通電電流による加振力の位相を基準とするので、通電電流に無関係な背景雑音を排除して診断精度の低下を防ぐことができる。また、強制振動の位相差φは、測定系の増幅の具合により変化する振幅情報に比較し、通電電源の位相と比較することにより値を見積もることが容易に可能である。
さらに、先のように求めた機械的振動の位相を健全な変圧器の振動位相と比較して稼働中の変圧器の状態を解析するならば、位相差について変圧器の初期データと比較して変化があれば、何らかの内部異常または経年変化を生じたと診断できる。ただし、初期データは負荷電流依存性を測定し、鉄心振動と巻線振動のバランスを調べておく必要がある。また、同型の変圧器を用いて後日初期データを採取することもできる。
In the case of this embodiment, since the phase of the excitation force due to the energizing current is used as a reference, it is possible to eliminate background noise unrelated to the energizing current and prevent a decrease in diagnostic accuracy. Moreover, the phase difference φ of the forced vibration can be easily estimated by comparing the amplitude information that changes depending on the amplification of the measurement system and the phase of the energized power source.
Furthermore, if the state of the operating transformer is analyzed by comparing the mechanical vibration phase obtained above with the healthy transformer vibration phase, the phase difference is compared with the initial transformer data. If there is a change, it can be diagnosed that some internal abnormality or aging has occurred. However, the initial data needs to measure the load current dependency and to check the balance between the iron core vibration and the winding vibration. It is also possible to collect initial data at a later date using the same type of transformer.

非特許文献6には、音響的手法により変圧器を異常診断する技術が記載されている。それは変圧器内部で部分放電が起きた際に、同時に発生する超音波をAEセンサで検知するものであり、前項で述べた機械的振動における実験モード解析で機械の調子を判断する方法とは異なる。
また、非特許文献6には、周波数応答解析(FRA)による変圧器の診断手法が記載されている。非特許文献6でいう周波数応答は正弦波電圧を印加し、その周波数を掃引して伝達関数を測定する方法である。変圧器の鉄心やコイルが締付け力の低下や外力により、ずれを生じたり、接地のはずれが生じたりした場合に、電気的インピーダンスが変化するので、短絡インピーダンスや巻線漏れインダクタンスが変化することに着目した診断手法であり、やはり前述の機械的振動における実験モード解析で機械の調子を判断する方法とは異なる。
Non-Patent Document 6 describes a technique for diagnosing abnormality of a transformer by an acoustic method. When partial discharge occurs inside the transformer, it detects ultrasonic waves that are generated at the same time by the AE sensor, which is different from the method described in the previous section for determining the state of the machine by the experimental mode analysis in mechanical vibration. .
Non-Patent Document 6 describes a transformer diagnostic technique based on frequency response analysis (FRA). The frequency response referred to in Non-Patent Document 6 is a method of measuring a transfer function by applying a sinusoidal voltage and sweeping the frequency. When the transformer core or coil is displaced due to a decrease in the tightening force or due to external force, or when the ground is disconnected, the electrical impedance changes, so the short-circuit impedance or winding leakage inductance changes. This is a focused diagnostic method, which is also different from the method of determining the state of the machine by the experimental mode analysis in the mechanical vibration described above.

(実施例1)
50Hzで稼働中(負荷率10%)の油入変圧器(3相、定格容量200kVA、定格電流550A、稼働9年、三菱電機社製RA−TN形)のタンク壁面中央付近におけるレーザー変位計(キーエンス株式会社製LK−G5000)の出力波形を測定した。この変圧器タンクの壁面は高さ約80cmであり、振動が最も小さい領域はタンク壁面中央部であり、タンク振動の節と考えられる。
図4にレーザー変位計の出力波形の一例を示す。図4に示す波形は約10Hzの基本波形に電源周波数の2倍である100Hzの周波数の波形が重畳された波形を示している。
図4に示す波形をフーリエ変換して得た波形の一例を図5に示す。図5において、約10Hzの部分に現れている大きなピーク波形は変圧器に当たる風の影響によるノイズと判断して以下の解析では削除した。
変圧器の電源周波数は50Hzであり、その整数倍の周波数にピークを持つ。電源周波数の2倍の100Hz成分が加振力の基本であり、100Hzの整数倍の成分は電源系による強制振動である。図5には約10Hzの大きな振動もみられるが、それは電源系以外の測定時の風などによる強制振動であるので、今後の解析にはこの振動は除外した。
Example 1
Laser displacement meter near the center of tank wall of oil-filled transformer (3-phase, rated capacity 200kVA, rated current 550A, operation 9 years, Mitsubishi Electric RA-TN type) operating at 50Hz (load factor 10%) The output waveform of Keyence Corporation LK-G5000) was measured. The wall surface of this transformer tank is about 80 cm in height, and the region where the vibration is the smallest is the central portion of the tank wall surface, which is considered as a tank vibration node.
FIG. 4 shows an example of the output waveform of the laser displacement meter. The waveform shown in FIG. 4 shows a waveform in which a waveform having a frequency of 100 Hz, which is twice the power supply frequency, is superimposed on a basic waveform of about 10 Hz.
An example of a waveform obtained by Fourier transforming the waveform shown in FIG. 4 is shown in FIG. In FIG. 5, the large peak waveform appearing in the portion of about 10 Hz was judged as noise due to the influence of the wind hitting the transformer, and was deleted in the following analysis.
The power supply frequency of the transformer is 50 Hz, and has a peak at an integral multiple of the frequency. The 100 Hz component that is twice the power supply frequency is the basis of the excitation force, and the component that is an integral multiple of 100 Hz is forced vibration by the power supply system. Although a large vibration of about 10 Hz is also seen in FIG. 5, this vibration is a forced vibration due to a wind at the time of measurement other than the power supply system, so this vibration was excluded from the future analysis.

次に、ロックインアンプを用いて図4のレーザー変位計出力波形から電源周波数の2倍波(100Hzの成分)を抽出した波形が図6の波形である。振幅は1に規格化してある。この変圧器振動は、巻線振動のほかに鉄心振動を含む。測定時の負荷率は約10%であった。   Next, a waveform obtained by extracting a double wave (100 Hz component) of the power frequency from the laser displacement meter output waveform of FIG. 4 using a lock-in amplifier is the waveform of FIG. The amplitude is normalized to 1. This transformer vibration includes iron core vibration in addition to winding vibration. The load factor at the time of measurement was about 10%.

次に、電源電流波形を2乗して100Hz成分の振幅を±1に規格化した波形(点線)と変圧器振動(実線)の位相差を図7に示す。位相差の数値は2位相ロックインアンプを使用して求めることもできる。位相差に関して負荷率を10%とした初期データと比較して変化があれば、何らかの内部異常または経年変化を生じたと診断できる。   Next, FIG. 7 shows the phase difference between the waveform (dotted line) obtained by squaring the power supply current waveform and standardizing the amplitude of the 100 Hz component to ± 1, and the transformer vibration (solid line). The numerical value of the phase difference can also be obtained using a two-phase lock-in amplifier. If there is a change with respect to the phase difference compared to the initial data with a load factor of 10%, it can be diagnosed that some internal abnormality or aging has occurred.

(実施例2)
50Hzで稼働中(負荷率60%)の油入変圧器(3相、定格容量12MVA、1次側11kV、2次電圧3.45kV、稼働33年)のタンク壁面中央付近におけるAEセンサの出力波形をフーリエ変換して横軸を周波数、縦軸に振幅を線形スケールでプロットした結果を図9に示す。電源周波数の整数倍のピークが現れている。
変圧器の劣化が進むと、高周波成分の割合が高くなることから、変圧器のタンクの振動スペクトルのうち、可聴帯域内で高次の振動成分の振幅が、通電電流による加振力の周波数(電源周波数の2倍)成分の大きさに対して大きくなることを捉えたならば、変圧器の内部異常診断および劣化診断を行うことができる。
(Example 2)
Output waveform of AE sensor near the center of tank wall of oil-filled transformer (3-phase, rated capacity 12MVA, primary side 11kV, secondary voltage 3.45kV, operation 33 years) operating at 50Hz (load factor 60%) FIG. 9 shows a result obtained by plotting the frequency with a frequency scale on the horizontal axis and the amplitude on the vertical axis with a linear scale. A peak that is an integral multiple of the power supply frequency appears.
As the transformer deteriorates, the proportion of high-frequency components increases, so the amplitude of higher-order vibration components within the audible band of the vibration spectrum of the transformer tank is the frequency of the excitation force due to the energized current ( If it is understood that it becomes larger with respect to the magnitude of the component (twice the power supply frequency), the internal abnormality diagnosis and deterioration diagnosis of the transformer can be performed.

図10は図9のグラフに示す測定波形について、縦軸を対数目盛として表示し直した結果を示す。また、AEセンサによるタンク側壁の測定位置をタンク側壁(高さ260cm)の中央位置から約65cm下げて測定した結果を図11に示し、変圧器に対する負荷を30%に設定して測定した結果を図12に示す。
図10に示すように一点鎖線のピークは鉄心の振動によるピークを示し、鎖線のピークはタンクの振動によるピークを示し、二点鎖線のピークは巻線の振動によるピークを示すが、この段階の測定結果では、それぞれどの部位の振動モードであるかは不明である。
電源周波数が50Hzの場合、図10に示すように50Hzの整数倍の周波数にピークが現れる。電源周波数の2倍の100Hz成分が加振力の基本であり、100Hzの整数倍の成分は電源系による強制振動である。振幅を線形スケールでプロットした図9には電源系による強制振動しか目立ったピークは見られない。しかし、振幅を対数表示した図10には50Hzの整数倍の周波数以外にもピークが見えており、機械系の振動と考えられる。
図10に示される機械系の振動は主に鉄心振動と巻線振動とタンク振動の3成分よりなるが、この段階の測定結果では、それぞれどの部位の振動モードであるかは不明である。
FIG. 10 shows the result of redisplaying the measured waveform shown in the graph of FIG. 9 with the vertical axis as a logarithmic scale. In addition, FIG. 11 shows the result of measuring the tank sidewall measurement position by the AE sensor by about 65 cm lower than the center position of the tank sidewall (height 260 cm), and the measurement result with the load on the transformer set to 30%. As shown in FIG.
As shown in FIG. 10, the one-dot chain line peak indicates the peak due to the iron core vibration, the chain line peak indicates the tank vibration peak, and the two-dot chain line peak indicates the winding vibration peak. In the measurement results, it is unclear which part is in the vibration mode.
When the power supply frequency is 50 Hz, a peak appears at a frequency that is an integral multiple of 50 Hz, as shown in FIG. The 100 Hz component that is twice the power supply frequency is the basis of the excitation force, and the component that is an integral multiple of 100 Hz is forced vibration by the power supply system. In FIG. 9 in which the amplitude is plotted on a linear scale, a conspicuous peak can be seen only by forced vibration by the power supply system. However, in FIG. 10 showing the logarithm of the amplitude, a peak is seen in addition to the frequency that is an integral multiple of 50 Hz, which is considered to be mechanical vibration.
The vibration of the mechanical system shown in FIG. 10 mainly consists of three components of iron core vibration, winding vibration, and tank vibration, but the measurement result at this stage is unclear on which part the vibration mode is.

負荷率60%において測定位置を変えた2つの測定結果(図10と図11のグラフ)について、測定された機械系の固有振動とその振動強度を以下の表1にまとめて示す。以下の表1、表2において、−は振幅を観察できなかったことを意味し、以下振幅の大きさに応じて+の数を増加させて示した。   Table 2 below summarizes the measured natural vibrations of the mechanical system and their vibration strengths for two measurement results (graphs of FIGS. 10 and 11) with different measurement positions at a load factor of 60%. In Tables 1 and 2 below,-means that the amplitude could not be observed, and the number of + was increased according to the amplitude.

Figure 2017106893
Figure 2017106893

測定位置を変えることにより振動強度が変化した振動モードはタンク振動と考えられ、残りは鉄心振動と巻線振動と考えられる。図11に示す結果と図10に示す結果の対比から、37Hz,62Hz,99Hz,137Hz,174Hz,268Hz,329Hz,398Hz,478Hz,566Hzの各振動はタンク振動であることと、残りの振動成分は鉄心と巻線に関する振動であることがわかる。   The vibration mode in which the vibration intensity is changed by changing the measurement position is considered to be tank vibration, and the rest is considered to be iron core vibration and winding vibration. From the comparison between the result shown in FIG. 11 and the result shown in FIG. 10, each vibration of 37 Hz, 62 Hz, 99 Hz, 137 Hz, 174 Hz, 268 Hz, 329 Hz, 398 Hz, 478 Hz, and 566 Hz is a tank vibration, and the remaining vibration components are It can be seen that the vibration is related to the iron core and windings.

測定位置をタンク壁面中央として負荷率を変えた2つの測定結果(図10と図12のグラフ)について、測定された鉄心振動と巻線振動に関する振動強度を以下の表2に示す。   Table 2 below shows the vibration strengths related to the measured iron core vibration and winding vibration for two measurement results (graphs of FIGS. 10 and 12) with the load position varied with the measurement position at the center of the tank wall surface.

Figure 2017106893
Figure 2017106893

負荷率を変えることにより振動強度が変化した振動モードは巻線振動と考えられ、残りは鉄心振動と考えられる。図12に示す結果から、23Hz、78Hz、97Hzは鉄心、141Hz,582Hzは巻線の振動であることがわかる。
この実施例は1方向の振動を測定するセンサ(1次元センサ)を用いた測定であるが、3次元センサを用いた場合も同様な測定および解析を行うことができる。
The vibration mode in which the vibration intensity is changed by changing the load factor is considered to be winding vibration, and the rest is considered to be iron core vibration. From the results shown in FIG. 12, it can be seen that 23 Hz, 78 Hz, and 97 Hz are iron cores, and 141 Hz and 582 Hz are winding vibrations.
This embodiment is a measurement using a sensor (one-dimensional sensor) that measures vibration in one direction, but the same measurement and analysis can be performed when a three-dimensional sensor is used.

高次の振動モードについての振動数は、振動波形をフーリエ変換して見積もることができる。しかし、高次の振動モードは特に劣化のあまり進行していない変圧器においては振幅が小さいので捉えにくい。そこで、補償法と呼ばれる電源位相に同期した信号処理を行うことが好ましい。
対象となる物理量以外に複数の要因のノイズ成分が含まれるとき、差動法で取り除けないノイズ成分に主たる感度を持つ測定系を用いてこれを取り除く。測定量から測定量を超えない範囲で一定の量を差し引き、残りの部分を偏位法や零位法などにより測定することにより、測定精度を高めることができる。
The frequency for higher order vibration modes can be estimated by Fourier transforming the vibration waveform. However, high-order vibration modes are difficult to detect because the amplitude is small, especially in transformers that have not progressed much. Therefore, it is preferable to perform signal processing in synchronization with the power supply phase, called a compensation method.
When a noise component of a plurality of factors is included in addition to the target physical quantity, it is removed using a measurement system having a main sensitivity to the noise component that cannot be removed by the differential method. Measurement accuracy can be improved by subtracting a certain amount from the measurement amount within a range not exceeding the measurement amount and measuring the remaining portion by the displacement method or the zero method.

周波数の測定では、図13に示すように混合器30を用いて周波数の混合(ビート法)により、標準周波数fから測定周波数fを引き、その差の周波数fを測定する。この周波数fは中間周波数fIFと呼ばれ、増幅する周波数が下がるので、増幅が容易となり測定精度が高くなるとともに、高い周波数の測定を容易にしている。ここで用いる標準周波数を、局部発信周波数fLOという。
信号に含まれる周波数fと局部発信周波数fLOを一致させると、その差はゼロとなる。すなわち、初めからfとfLOが一致するようにfLOを選び、元の信号をベースバンドである周波数ゼロに直接落とす方法をホモダインという。
また、信号に含まれる周波数fと局部発信周波数fLOの和または差の中間周波数fIFが一定になるよう、局部発信周波数fLOを選ぶこともできる。また、信号を中間周波数に変換する信号処理をヘテロダインという。
In the frequency measurement, as shown in FIG. 13, the measurement frequency f is subtracted from the standard frequency f s by frequency mixing (beat method) using a mixer 30, and the difference frequency f B is measured. The frequency f B is called the intermediate frequency f IF, the frequency to be amplified decreases, together with the measurement accuracy becomes easy amplification increases to facilitate the measurement of high frequency. The standard frequency used here is referred to as a local oscillation frequency f LO .
When the frequency f s included in the signal and the local oscillation frequency f LO are matched, the difference becomes zero. That is, a method of selecting f LO so that f s and f LO coincide from the beginning and dropping the original signal directly to the baseband frequency of zero is called homodyne.
Further, the local transmission frequency f LO can be selected so that the intermediate frequency f IF of the sum or difference of the frequency f s and the local transmission frequency f LO included in the signal is constant. Signal processing for converting a signal to an intermediate frequency is called heterodyne.

以上の方法で信号に含まれる周波数fを見いだせれば、ロックインアンプを用いて大きな雑音に埋もれた微小な目的信号の生波形を計測することができる。
また、標準周波数はmHz〜百kHzまで可変であるので、周波数を掃引して共振点を見つけるというPLL(フェーズロックドループ:位相同期回路)という手法を用いて解析することもできる。
さらに、標準周波数の位相をフェーズシフタ(Phase Shifter)で調節すると測定周波数の位相情報も解析することも可能である。
If Miidasere frequency f s that is included in the signal in the above manner, it is possible to measure the raw waveform of the small target signal buried in large noise using a lock-in amplifier.
In addition, since the standard frequency is variable from mHz to 100 kHz, it can be analyzed using a technique called PLL (phase locked loop) in which the resonance point is found by sweeping the frequency.
Furthermore, the phase information of the measurement frequency can be analyzed by adjusting the phase of the standard frequency with a phase shifter.

(実施例3)
定格周波数60Hzで稼働中(負荷率約10%)の油入変圧器(3相、定格容量10MVA、一次側定格電圧11kV、二次側定格電圧3.45kV、絶縁油量5300リットル、稼働開始1975年)を測定対象として変圧器タンクの壁面の種々の位置に振動センサを設置し、変圧器タンクの振動を測定した。振動センサにはPCB社((株)東陽テクニカ)製三軸加速度計(356A17)、電流測定にはクランプ電流計を用い、データロガーにはFFTアナライザ(オロス社製OR38V3−32)を用いた。
(Example 3)
Oil-filled transformer (3-phase, rated capacity 10 MVA, primary rated voltage 11 kV, secondary rated voltage 3.45 kV, insulation oil volume 5300 liters, operating oil 1975, operating at a rated frequency of 60 Hz (load factor about 10%) The vibration sensor was installed at various positions on the wall of the transformer tank, and the vibration of the transformer tank was measured. A three-axis accelerometer (356A17) manufactured by PCB (Toyo Technica Co., Ltd.) was used for the vibration sensor, a clamp ammeter was used for current measurement, and an FFT analyzer (OR38V3-32 manufactured by Oros Co., Ltd.) was used for the data logger.

変圧器タンクの概要を図14に示す。ただし、図14には変圧器に電力を入出力するためのブッシングおよび配線は省略している。
この変圧器タンク31は横幅2200mm、高さ2000mm、奥行き800mmの鋼板製の直方体状の中空容器であって、その高さを約3等分する上下2箇所の位置にそれぞれ金属製の腰巻き状の補強ステー32、33が設けられている。
変圧器タンク31の周壁において補強ステー32より上の部分が上部周壁31aから構成され、変圧器タンク31の周壁において補強ステー32より下の部分が中部周壁31bから構成され、変圧器タンク31の周壁において補強ステー33より下の部分が下部周壁31cから構成されている。
この変圧器31において補強ステー32、33の部分は振動が制限される位置となるため、振動センサを取り付けて振動を計測する位置として以下の18箇所を候補とした。
An outline of the transformer tank is shown in FIG. However, the bushing and wiring for inputting / outputting electric power to / from the transformer are omitted in FIG.
The transformer tank 31 is a rectangular parallelepiped hollow container made of a steel plate having a width of 2200 mm, a height of 2000 mm, and a depth of 800 mm, and is made of metal waist-wrapped at two upper and lower positions that divide the height into three equal parts. Reinforcing stays 32 and 33 are provided.
A portion of the peripheral wall of the transformer tank 31 above the reinforcing stay 32 is constituted by the upper peripheral wall 31a, and a portion of the peripheral wall of the transformer tank 31 below the reinforcing stay 32 is constituted by the middle peripheral wall 31b. The lower part of the reinforcing stay 33 is composed of a lower peripheral wall 31c.
Since the portions of the reinforcing stays 32 and 33 in the transformer 31 are positions where vibrations are restricted, the following 18 positions are candidates as positions where vibrations are attached and vibrations are measured.

この変圧器タンク31において図14に数字の1〜16を○印で囲む位置のそれぞれに振動センサを取り付けて振動を計測することができる。○印で囲む数字の1の位置は上部周壁31aの左側壁面を示し、○印で囲む数字の2の位置は上部周壁31aの正面壁の左端側に相当する位置(正面壁の左端から約40cm離れた位置付近)を示し、○印で囲む数字の3の位置は上部周壁31aの正面壁の右端側に相当する位置(正面壁の右端から約40cm離れた位置付近)を示す。○印で囲む数字の4の位置は上部周壁31aの右側壁面を示し、○印で囲む数字の5の位置は上部周壁31aの背面壁の右端側に相当する位置(背面壁の右端から約40cm離れた位置付近)を示し、○印で囲む数字の6の位置は上部周壁31aの背面壁の左端側に相当する位置(背面壁の左端から約40cm離れた位置付近)を示す。   In this transformer tank 31, vibrations can be measured by attaching a vibration sensor to each of the positions surrounded by the circles 1 to 16 in FIG. 14. The position of the numeral 1 surrounded by a circle indicates the left wall surface of the upper peripheral wall 31a, and the position of the numeral 2 surrounded by a circle is a position corresponding to the left end side of the front wall of the upper peripheral wall 31a (about 40 cm from the left end of the front wall). The position of the numeral 3 surrounded by circles indicates a position corresponding to the right end side of the front wall of the upper peripheral wall 31a (near the position about 40 cm away from the right end of the front wall). The position of the numeral 4 surrounded by a circle indicates the right wall surface of the upper peripheral wall 31a, and the position of the numeral 5 surrounded by a circle is a position corresponding to the right end side of the back wall of the upper peripheral wall 31a (about 40 cm from the right end of the back wall). The position of the numeral 6 surrounded by a circle indicates the position corresponding to the left end side of the back wall of the upper peripheral wall 31a (the vicinity of the position about 40 cm away from the left end of the back wall).

ここで例示したように、振動センサを取り付ける位置は、補強ステー32より下方の中部周壁31bにおいて○印で囲む数字の7、8、9、10の位置と補強ステー33より下方の下部周壁31cにおいて○印で囲む数字の13、14、15、16のいずれの位置であっても良い。なお、中部周壁31bの背面壁側の取り付け位置と下部周壁31cの背面壁側の取り付け位置は図14では図示できないため略しているが、数字の5、6を○印で囲む取り付け位置に対応する中部周壁31bの背面壁側と下部周壁31cの背面壁側にそれぞれ設定される。
これらの振動センサ取付候補位置において、以下の試験では数字の4を○印で囲む位置に相当する上部右側壁に振動センサを設置して振動を計測した。
As illustrated here, the vibration sensor is attached at the positions of numerals 7, 8, 9, 10 surrounded by circles on the middle peripheral wall 31 b below the reinforcing stay 32 and on the lower peripheral wall 31 c below the reinforcing stay 33. The position may be any of the numbers 13, 14, 15, and 16 surrounded by a circle. Note that the attachment position on the back wall side of the middle peripheral wall 31b and the attachment position on the back wall side of the lower peripheral wall 31c are omitted because they are not shown in FIG. 14, but correspond to the attachment positions surrounding the numerals 5 and 6 with circles. They are set on the back wall side of the middle peripheral wall 31b and on the back wall side of the lower peripheral wall 31c, respectively.
In these vibration sensor attachment candidate positions, vibrations were measured by installing a vibration sensor on the upper right wall corresponding to the position surrounding the numeral 4 with a circle in the following tests.

なお、この例で試験した変圧器の内部には、図15に示すように3本の脚部35を上下のヨーク部36、37で連結した井桁構造の鉄心38が収容されている。図15において脚部35に巻回されている一次側巻線と二次側巻線については記載を略している。
この鉄心38においては、図15(A)に示すねじりモードと図15(B)に示す曲げモード1と図15(C)に示す曲げモード2の3種の振動モードをとることを想定することができる。図15に示すモード解析は、水野末良他による「変圧器鉄心の固有振動特性」(平成25年、電気学会全国大会5−195)による。
図15(A)に示すねじりモードの変圧器の場合、図14に示す数字の2、3、5、6を○印で囲む位置に振動センサを設置することにより鉄心振動をタンク壁面で捉えることができると考えられる。その場合、数字の2と3の位置は逆方向に、数字の5と6の位置は逆方向に、数字の2と6の位置は同方向に、数字の3と5の位置は同方向に変位していることを確認できれば、鉄心はねじりモードで振動していることが分かる。同様に、図15(B)に示すように数字の8、9、11、12の位置に振動センサを設置して変位を確認すれば、モード1で振動していることがわかる。同様に、図15(C)に示すように数字の7、10の位置に振動センサを設置して変位を確認すれば、モード2で振動していることがわかる。
鉄心の固有振動数に振動モードを同定することができると、その固有振動数から鉄心の締付け力が算出できる。ただし、鉄心の締付け力にばらつきがある場合、固有振動のピークは広がる。逆に、固有振動数の広がり、例えば半値幅から締付け力のばらつきを評価することも可能である。巻線の固有振動ピークが広がりを持っている場合も同様な評価が可能である。ピーク幅が広がることは鉄心または巻線の劣化と関係するが、どれほどのピーク幅が劣化診断の閾値になるかは、変圧器ごとの設計によるので、変圧器ごとに決める必要がある。
The transformer tested in this example accommodates an iron core 38 having a cross-girder structure in which three leg portions 35 are connected by upper and lower yoke portions 36 and 37 as shown in FIG. In FIG. 15, the description of the primary side winding and the secondary side winding wound around the leg portion 35 is omitted.
It is assumed that the iron core 38 takes three types of vibration modes: a torsion mode shown in FIG. 15 (A), a bending mode 1 shown in FIG. 15 (B), and a bending mode 2 shown in FIG. 15 (C). Can do. The mode analysis shown in FIG. 15 is based on “Natural vibration characteristics of transformer core” (2013, IEEJ National Conference 5-195) by Sueyoshi Mizuno et al.
In the case of the torsional mode transformer shown in FIG. 15 (A), the vibration of the iron core is captured on the tank wall surface by installing a vibration sensor at a position surrounding the numbers 2, 3, 5, and 6 shown in FIG. It is thought that you can. In this case, the numbers 2 and 3 are in the opposite direction, the numbers 5 and 6 are in the opposite direction, the numbers 2 and 6 are in the same direction, and the numbers 3 and 5 are in the same direction. If it can confirm that it has displaced, it will be understood that the iron core vibrates in the torsion mode. Similarly, as shown in FIG. 15B, if a vibration sensor is installed at the positions of numbers 8, 9, 11, and 12 to confirm the displacement, it can be seen that the vibration is generated in mode 1. Similarly, as shown in FIG. 15C, if a vibration sensor is installed at positions 7 and 10 and the displacement is confirmed, it can be seen that the vibration is in mode 2.
If the vibration mode can be identified by the natural frequency of the iron core, the tightening force of the iron core can be calculated from the natural frequency. However, if the tightening force of the iron core varies, the peak of natural vibration spreads. Conversely, it is also possible to evaluate the variation in the tightening force from the spread of the natural frequency, for example, the half width. The same evaluation can be performed when the natural vibration peak of the winding has a broadening. The widening of the peak width is related to the deterioration of the iron core or winding, but how much the peak width becomes the threshold value for deterioration diagnosis depends on the design of each transformer, so it is necessary to decide for each transformer.

この例では変圧器タンクの上部周壁の右側壁において、図16に示すように右側壁左右方向を1A、2A、…15Aのように分割区分し、右側壁上下方向を1A、1B、…1Gのように分割区分し、1つの振動センサを例えば3Cの位置に設置してその右側の4Cの位置をハンマーで打ち付けて振動を付与するインパクト試験を行った。
また、振動センサを13Fの位置に設置して13Eの位置をハンマーで打ち付ける試験としても良い。なお、振動センサを取り付ける位置とハンマーを打ち付ける位置は変圧器タンクの振動を良好に拾うことができる位置であれば、任意の位置で良く、図16に示す位置には限らない。
In this example, in the right side wall of the upper peripheral wall of the transformer tank, the right and left direction of the right side wall is divided and divided as 1A, 2A,... 15A, and the right side wall has a vertical direction of 1A, 1B,. Thus, an impact test was performed in which one vibration sensor was installed at a position of 3C, for example, and the position of 4C on the right side was struck with a hammer to apply vibration.
Moreover, it is good also as a test which installs a vibration sensor in the position of 13F, and strikes the position of 13E with a hammer. Note that the position where the vibration sensor is attached and the position where the hammer is hit can be any position as long as the vibration of the transformer tank can be satisfactorily picked up, and is not limited to the position shown in FIG.

振動センサを3Cの位置に設置したまま稼働中の変圧器タンクの振動を計測し、その測定結果をフーリエ変換した結果の波形を図17の下側に波形(実稼働時の波形)で示す。
前記振動センサを3Cの位置に設置したまま変圧器稼働中に4Cの位置をハンマーで打ち付けるインパクト試験を行った場合に得られた振動測定結果をフーリエ変換した結果の波形を図17の上側に波形(加振時の波形)で示す。
FIG. 17 shows a waveform (waveform during actual operation) on the lower side of FIG. 17 by measuring the vibration of the operating transformer tank with the vibration sensor installed at the position of 3C and Fourier transforming the measurement result.
The waveform of the result of Fourier transform of the vibration measurement result obtained when an impact test is performed in which the position of 4C is hit with a hammer while the transformer is operating while the vibration sensor is installed at the position of 3C is shown on the upper side of FIG. (Waveform during excitation).

実稼働時の振動測定結果を示す波形には、60Hzの整数倍(120、180、240、300、360、420Hz)に大きなピークが見られる他に、強度の弱いピークも複数見られる。加振時の振動測定結果には60Hzの整数倍以外にも垂直な点線(黒の鎖線)で示す周波数位置(142、217、334Hz等)にいくつかのピークが見られる。実稼働時のピークのうち、加振時のピークが重なるものは、タンク壁面の固有振動成分であると考えられる。ただし、加振時のピークがタンク壁面の固有振動成分であるかは、同時に測定する位相成分の変化を確認し、更にセンサの設置位置や打点を変更して測定を繰り返し、検討の上、判断することが好ましい。   In the waveform indicating the vibration measurement result during actual operation, a large peak is seen at an integer multiple of 60 Hz (120, 180, 240, 300, 360, 420 Hz), and a plurality of weak peaks are also seen. In the vibration measurement result at the time of excitation, there are some peaks at frequency positions (142, 217, 334 Hz, etc.) indicated by vertical dotted lines (black chain lines) other than an integral multiple of 60 Hz. Of the peaks during actual operation, the ones that overlap with the peaks during vibration are considered to be natural vibration components of the tank wall surface. However, whether the peak during vibration is the natural vibration component of the tank wall is confirmed by confirming the change in the phase component to be measured at the same time, and further repeating the measurement by changing the sensor installation position and the point of hitting. It is preferable to do.

巻線振動によるピークは先に段落0079で記載したように、負荷率を変えて強度が変化するピークを同定することが好ましい。変圧器振動のうち、タンクの振動と巻線振動を上述の如く分離すると、残りは鉄心振動と考えられる。
ただし、稼働中の変圧器周辺は、電磁ノイズが大きい環境である。振動センサ、増幅器、解析器、およびそれらを接続するケーブルや測定機器駆動電源に電磁ノイズが影響することが考えられる。また、変圧器設置箇所の建物や地面が揺れている可能性もある。それらのノイズの影響を除去または軽減する工夫を行うことも、診断の精度を向上させる上で重要である。
As described above in paragraph 0079, the peak due to winding vibration is preferably identified by changing the load factor and changing the intensity. Of the transformer vibrations, when the tank vibration and the winding vibration are separated as described above, the remainder is considered to be iron core vibration.
However, the area around the transformer in operation is an environment with large electromagnetic noise. It is conceivable that electromagnetic noise affects the vibration sensor, the amplifier, the analyzer, the cable connecting them, and the measurement device drive power supply. There is also the possibility that the building or ground where the transformer is installed is shaking. It is also important to improve the accuracy of diagnosis by devising to reduce or reduce the influence of such noise.

電磁ノイズに影響を受けやすい機器を金属箔で覆い、機器缶体を充分に接地し、機器をバッテリー駆動方式とするなどの工夫を併用して上述の試験を行うことが望ましい。
また、試験を行う場所の建物や地面の振動を同時に測定したり、変圧器を定期修理することが可能な場合は、その機会に予め背景ノイズを測定して確認しておき、変圧器の振動から差し引くなどの処理を行うことが望ましい。
It is desirable to perform the above-mentioned test using a device such as a device that is susceptible to electromagnetic noise covered with a metal foil, a device can sufficiently grounded, and a device that uses a battery drive system.
If it is possible to simultaneously measure the vibration of the building or ground at the place where the test is performed, or if it is possible to periodically repair the transformer, measure the background noise in advance to check it, and check the transformer vibration. It is desirable to perform a process such as subtracting from.

A…診断装置、1…変圧器、2…タンク、3…コイル体、5…鉄心、8…締め付け金具、9…外側コイル(1次コイル)、10…内側コイル(2次コイル)、11…外巻線(1次巻線)、12…絶縁スペーサー、16…内巻線(2次巻線)、22…振動検出器(振動センサ)、23…電圧計、24、25…増幅器、26…解析器、27…演算装置。   A ... diagnostic device, 1 ... transformer, 2 ... tank, 3 ... coil body, 5 ... iron core, 8 ... fastening fitting, 9 ... outer coil (primary coil), 10 ... inner coil (secondary coil), 11 ... Outer winding (primary winding), 12 ... Insulating spacer, 16 ... Inner winding (secondary winding), 22 ... Vibration detector (vibration sensor), 23 ... Voltmeter, 24, 25 ... Amplifier, 26 ... Analyzer, 27 ... arithmetic device.

Claims (10)

稼働状態の変圧器振動について、低周波数領域から可聴音領域(1Hz〜20kHz)に検出感度を有する振動検出器を用い、電子回路またはソフトウエアを用いた信号処理による手段を用いて前記稼働状態の変圧器に付加されている通電電流により生じる電磁力に起因して稼働中の変圧器から発生する種々の振動の固有振動数を直接測定するか、もしくは変圧器に対する通電電流による加振力の位相を基準とする変圧器振動の位相、またはその両方を求め、稼働状態の変圧器の振動応答を解析することを特徴とする変圧器内部異常および劣化の診断方法。   With respect to the transformer vibration in the operating state, a vibration detector having a detection sensitivity from a low frequency region to an audible sound region (1 Hz to 20 kHz) is used, and the operating state is measured by means of signal processing using an electronic circuit or software. Directly measure the natural frequency of various vibrations generated from the operating transformer due to the electromagnetic force generated by the current applied to the transformer, or the phase of the excitation force due to the current applied to the transformer A method for diagnosing a transformer internal abnormality and deterioration, wherein a phase of a transformer vibration or both of them is obtained as a reference, and a vibration response of an operating transformer is analyzed. 請求項1において求めた機械的振動の固有振動数もしくは位相またはその両方を健全な変圧器の振動特性と比較して稼働中の変圧器の状態を解析することを特徴とする請求項1に記載の変圧器内部異常および劣化の診断方法。   2. The state of the operating transformer is analyzed by comparing the natural frequency and / or phase of the mechanical vibration obtained in claim 1 with the vibration characteristics of a healthy transformer. Diagnosis method for internal abnormalities and deterioration of transformers. 請求項1において求めた電源系の振動の位相より、変圧器構成物の固有振動数を求めて稼働中の変圧器の状態を解析することを特徴とする請求項1に記載の変圧器内部異常および劣化の診断方法。   2. The transformer internal abnormality according to claim 1, wherein the state of the operating transformer is analyzed by obtaining the natural frequency of the transformer component from the vibration phase of the power supply system obtained in claim 1. And diagnostic methods for degradation. 稼働中の変圧器から検出した振動スペクトルのうち、変圧器ごとに決まる特定の周波数成分が経時的に変化することを捕捉して稼働中の変圧器の状態を解析することを特徴とする請求項1に記載の変圧器内部異常および劣化の診断方法。   The vibration spectrum detected from the operating transformer is characterized in that a specific frequency component determined for each transformer is changed over time and the state of the operating transformer is analyzed. 2. A method for diagnosing transformer internal abnormality and deterioration according to 1. 前記変圧器が、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備え、稼働中の通電電流により前記巻線により生じる巻線振動と、前記鉄心により生じる鉄心振動と、前記タンクにより生じるタンク振動をそれぞれ分離して個別に検出し、これら個々の振動に基づき稼働状態の変圧器の振動応答を解析することを特徴とする請求項1〜請求項4のいずれか一項に記載の変圧器内部異常および劣化の診断方法。   The transformer includes a winding and an iron core that constitute a coil body, and a tank that accommodates the coil body. Winding vibration generated by the winding due to an energization current during operation, iron core vibration generated by the iron core, and the tank The generated tank vibration is separately detected and individually detected, and the vibration response of the operating transformer is analyzed based on each of the vibrations. Diagnosis method of transformer internal abnormality and deterioration. 稼働中の変圧器に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する振動検出器と、該振動検出器からの検出信号を受けて稼働中の変圧器に対する通電電流による加振力の位相を基準とする機械的振動の位相を求める解析器と、前記解析器から得られたデータを演算する演算手段とを備えたことを特徴とする変圧器の内部異常および劣化の診断装置。   A vibration detector that is attached to an operating transformer and has detection sensitivity for vibrations from a low frequency region generated by the transformer to an audible sound region (1 Hz to 20 kHz), and a detection signal from the vibration detector Receiving an analyzer for obtaining a phase of mechanical vibration based on a phase of an exciting force caused by an energizing current to a transformer in operation, and a calculation means for calculating data obtained from the analyzer. A diagnostic device for internal abnormalities and deterioration of transformers. 前記演算手段に健全な変圧器の固有振動数もしくは位相またはその両方の情報が記録され、前記振動検出器が検出した振動情報と前記健全な変圧器の振動情報を比較する能力を前記演算手段が備えたことを特徴とする請求項6に記載の変圧器の内部異常および劣化の診断装置。   Information on the natural frequency and / or phase of the healthy transformer is recorded in the calculation means, and the calculation means has the ability to compare the vibration information detected by the vibration detector with the vibration information of the healthy transformer. The diagnostic device for internal abnormality and deterioration of a transformer according to claim 6, comprising: 前記振動検出器が求めた機械的振動の位相から、前記変圧器構成物の固有振動数を求めて稼働中の前記変圧器の状態を解析する能力を前記演算手段が備えたことを特徴とする請求項6または請求項7に記載の変圧器の内部異常および劣化の診断装置。   The arithmetic means has the ability to analyze the state of the transformer in operation by obtaining the natural frequency of the transformer component from the phase of mechanical vibration obtained by the vibration detector. The diagnostic device for internal abnormality and deterioration of the transformer according to claim 6 or 7. 前記振動検出器が稼働中の変圧器から検出した振動スペクトルのうち、変圧器ごとに決まる特定の周波数成分が経時的に変化することを捕捉して稼働中の変圧器の状態を解析する能力を前記演算手段が備えたことを特徴とする請求項6〜請求項8のいずれか一項に記載の変圧器の内部異常および劣化の診断装置。   Ability to analyze the state of the operating transformer by capturing that the specific frequency component determined for each transformer changes from time to time in the vibration spectrum detected from the operating transformer by the vibration detector. The diagnostic device for internal abnormality and deterioration of a transformer according to any one of claims 6 to 8, wherein the arithmetic means is provided. 前記変圧器がコイル体を構成する巻線と鉄心とこれらを収容するタンクを備え、前記振動検出器が、稼働中の通電電流により前記巻線により生じる巻線振動と、前記鉄心により生じる鉄心振動と、前記タンクにより生じるタンク振動をそれぞれ分離して個別に検出する機能を有し、前記演算手段が変圧器の振動応答を解析する機能を有したことを特徴とする請求項6〜請求項9のいずれか一項に記載の変圧器の内部異常および劣化の診断装置。   The transformer includes a winding that constitutes a coil body, an iron core, and a tank that accommodates them, and the vibration detector generates winding vibration caused by the winding due to an energization current during operation, and iron core vibration caused by the iron core. 10. The tank vibration generated by the tank is separated and individually detected, and the arithmetic means has a function of analyzing the vibration response of the transformer. The diagnostic apparatus for internal abnormality and deterioration of the transformer according to any one of the above.
JP2016174051A 2015-11-30 2016-09-06 Method and apparatus for diagnosing internal abnormality and deterioration of transformer Active JP6519810B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015233420 2015-11-30
JP2015233420 2015-11-30

Publications (2)

Publication Number Publication Date
JP2017106893A true JP2017106893A (en) 2017-06-15
JP6519810B2 JP6519810B2 (en) 2019-05-29

Family

ID=59060657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174051A Active JP6519810B2 (en) 2015-11-30 2016-09-06 Method and apparatus for diagnosing internal abnormality and deterioration of transformer

Country Status (1)

Country Link
JP (1) JP6519810B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107202634A (en) * 2017-07-20 2017-09-26 广东电网有限责任公司电力科学研究院 A kind of oil-immersed power transformer dynamic response amplification method and device
CN109506761A (en) * 2018-06-12 2019-03-22 国网四川省电力公司乐山供电公司 A kind of transformer surface vibration feature extracting method
CN110221137A (en) * 2019-03-07 2019-09-10 国网上海市电力公司 A kind of distribution transformer abnormal state detection method based on vibration acoustic correlation
JP2020094938A (en) * 2018-12-13 2020-06-18 ユカインダストリーズ株式会社 Method and device for diagnosing internal transformer abnormality and degradation, and transformer manufacturing and selling method
KR20210068509A (en) * 2018-11-06 2021-06-09 제이에프이 스틸 가부시키가이샤 Method for determining elastic matrix of laminated iron core and method for vibration analysis
CN113985156A (en) * 2021-09-07 2022-01-28 绍兴电力局柯桥供电分局 Intelligent fault identification method based on transformer voiceprint big data
CN114089224A (en) * 2021-11-16 2022-02-25 国网湖南省电力有限公司 Method and system for judging looseness of transformer iron core by sound detection
CN114113939A (en) * 2021-11-24 2022-03-01 国网宁夏电力有限公司宁东供电公司 Transient vibration signal-based transformer fault detection method
WO2023276495A1 (en) * 2021-07-01 2023-01-05 Jfeスチール株式会社 Transformer noise performance diagnosis method and noise reduction method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300667A (en) * 1993-04-19 1994-10-28 Toshiba Corp Method and equipment for detecting abnormality of valve rod
JPH07125699A (en) * 1993-10-29 1995-05-16 Tech Res & Dev Inst Of Japan Def Agency Failure diagnosing method for helicopter
JPH10174373A (en) * 1996-12-09 1998-06-26 Meidensha Corp Deterioration diagnostic device for electric apparatus
JP2002022596A (en) * 2000-07-11 2002-01-23 Nkk Corp Diagnostic method and apparatus for degradation of structure
JP2008082778A (en) * 2006-09-26 2008-04-10 Jfe Steel Kk Method and apparatus for measuring natural frequency of iron core of transformer
JP2010271073A (en) * 2009-05-19 2010-12-02 Nissin Electric Co Ltd Diagnosis device of abnormality in equipment
JP2011253885A (en) * 2010-06-01 2011-12-15 Central Res Inst Of Electric Power Ind Transformer health diagnosis method, health diagnosis device and health diagnosis program
US20150260778A1 (en) * 2014-03-17 2015-09-17 Lsis Co., Ltd. Diagnosis system for monitoring state of switchboard

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300667A (en) * 1993-04-19 1994-10-28 Toshiba Corp Method and equipment for detecting abnormality of valve rod
JPH07125699A (en) * 1993-10-29 1995-05-16 Tech Res & Dev Inst Of Japan Def Agency Failure diagnosing method for helicopter
JPH10174373A (en) * 1996-12-09 1998-06-26 Meidensha Corp Deterioration diagnostic device for electric apparatus
JP2002022596A (en) * 2000-07-11 2002-01-23 Nkk Corp Diagnostic method and apparatus for degradation of structure
JP2008082778A (en) * 2006-09-26 2008-04-10 Jfe Steel Kk Method and apparatus for measuring natural frequency of iron core of transformer
JP2010271073A (en) * 2009-05-19 2010-12-02 Nissin Electric Co Ltd Diagnosis device of abnormality in equipment
JP2011253885A (en) * 2010-06-01 2011-12-15 Central Res Inst Of Electric Power Ind Transformer health diagnosis method, health diagnosis device and health diagnosis program
US20150260778A1 (en) * 2014-03-17 2015-09-17 Lsis Co., Ltd. Diagnosis system for monitoring state of switchboard

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107202634B (en) * 2017-07-20 2023-05-16 南方电网电力科技股份有限公司 Power response amplifying method and device for oil immersed power transformer
CN107202634A (en) * 2017-07-20 2017-09-26 广东电网有限责任公司电力科学研究院 A kind of oil-immersed power transformer dynamic response amplification method and device
CN109506761A (en) * 2018-06-12 2019-03-22 国网四川省电力公司乐山供电公司 A kind of transformer surface vibration feature extracting method
CN109506761B (en) * 2018-06-12 2021-08-27 国网四川省电力公司乐山供电公司 Transformer surface vibration feature extraction method
KR102482508B1 (en) * 2018-11-06 2022-12-28 제이에프이 스틸 가부시키가이샤 Method for determining elastic matrix of laminated iron core and method for analyzing vibration
KR20210068509A (en) * 2018-11-06 2021-06-09 제이에프이 스틸 가부시키가이샤 Method for determining elastic matrix of laminated iron core and method for vibration analysis
EP3862904A4 (en) * 2018-11-06 2021-11-03 JFE Steel Corporation Laminated iron core elastic matrix determination method and vibration analysis method
JP2020094938A (en) * 2018-12-13 2020-06-18 ユカインダストリーズ株式会社 Method and device for diagnosing internal transformer abnormality and degradation, and transformer manufacturing and selling method
JP7211587B2 (en) 2018-12-13 2023-01-24 ユカインダストリーズ株式会社 Diagnosis method and device for internal abnormality and deterioration of transformer
CN110221137A (en) * 2019-03-07 2019-09-10 国网上海市电力公司 A kind of distribution transformer abnormal state detection method based on vibration acoustic correlation
WO2023276495A1 (en) * 2021-07-01 2023-01-05 Jfeスチール株式会社 Transformer noise performance diagnosis method and noise reduction method
JP7207623B1 (en) * 2021-07-01 2023-01-18 Jfeスチール株式会社 Method for diagnosing noise performance of transformer and method for reducing noise
CN113985156A (en) * 2021-09-07 2022-01-28 绍兴电力局柯桥供电分局 Intelligent fault identification method based on transformer voiceprint big data
CN114089224A (en) * 2021-11-16 2022-02-25 国网湖南省电力有限公司 Method and system for judging looseness of transformer iron core by sound detection
CN114089224B (en) * 2021-11-16 2023-09-12 国网湖南省电力有限公司 Method and system for judging looseness of transformer iron core by utilizing sound detection
CN114113939B (en) * 2021-11-24 2022-11-18 国网宁夏电力有限公司宁东供电公司 Transient vibration signal-based transformer fault detection method
CN114113939A (en) * 2021-11-24 2022-03-01 国网宁夏电力有限公司宁东供电公司 Transient vibration signal-based transformer fault detection method

Also Published As

Publication number Publication date
JP6519810B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP2017106893A (en) Method and device for diagnosing abnormality and deterioration in transformer
Zhou et al. Transformer winding fault detection by vibration analysis methods
Wang et al. Comparison of mechanically and electrically excited vibration frequency responses of a small distribution transformer
Rausch et al. Combination of finite and boundary element methods in investigation and prediction of load-controlled noise of power transformers
Zhang et al. Investigation on vibration source and transmission characteristics in power transformers
Zhang et al. Comprehensive vibration generation model of transformer winding under load current
JP6869499B2 (en) Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration
Zhu et al. Research on dynamic vibration of transformer with wireless power transfer system load
CN106815437B (en) Method and device for determining vibration sensitive area of oil tank under steady-state working condition of transformer
Wang et al. Transformer vibration and its application to condition monitoring
JP7211587B2 (en) Diagnosis method and device for internal abnormality and deterioration of transformer
CN111024343A (en) Earthquake simulation vibration test method and device for transformer equipment
Jin et al. Vibration characteristics of a disk-type winding simulated by coupled concentric rings
CN106324104A (en) Ceramic post insulator detection method based on vibrational acoustics
Kornatowski Mechanical-condition assessment of power transformer using vibroacoustic analysis
Zagrai et al. Magneto-mechanical impedance identification and diagnosis of metallic structures
Zhu et al. A noise level prediction method based on electro-mechanical frequency response function for capacitors
Ahn et al. Dependence between the vibration characteristics of the proton exchange membrane fuel cell and the stack structural feature
CN114547924A (en) Multi-physical-field-coupling-based transformer winding vibration voiceprint analysis method and system
Suarez et al. Wavelet energy ratio index for health monitoring of hysteretic dampers
WO2015183297A1 (en) Systems for monitoring power transformers and method of operating the same
Esmaeili Nezhad et al. Investigation of transformer vibration characteristics using the finite element method
Aidi et al. Study of vibration sensitive areas on 500kV power transformer tank
Nezhad et al. Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
JP2008082778A (en) Method and apparatus for measuring natural frequency of iron core of transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6519810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250