WO2011102542A1 - Method for determining fastening force of stacked core and method for manufacturing stacked core - Google Patents

Method for determining fastening force of stacked core and method for manufacturing stacked core Download PDF

Info

Publication number
WO2011102542A1
WO2011102542A1 PCT/JP2011/054202 JP2011054202W WO2011102542A1 WO 2011102542 A1 WO2011102542 A1 WO 2011102542A1 JP 2011054202 W JP2011054202 W JP 2011054202W WO 2011102542 A1 WO2011102542 A1 WO 2011102542A1
Authority
WO
WIPO (PCT)
Prior art keywords
fastening force
vibration
frequency
laminated
laminated core
Prior art date
Application number
PCT/JP2011/054202
Other languages
French (fr)
Japanese (ja)
Inventor
匡平 石田
慶晃 西名
成治 榎枝
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2011102542A1 publication Critical patent/WO2011102542A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/33Arrangements for noise damping

Definitions

  • the present invention relates to a method for determining a clamping pressure of a laminated core in which electromagnetic steel sheets are laminated, and a method for manufacturing a laminated core by the method.
  • grain oriented silicon steel sheets containing Si and having a crystal orientation in the (110) [001] direction have excellent soft magnetic properties, so that they are in the commercial frequency range. Widely used as various core materials.
  • an electromagnetic steel sheet has magnetostriction accompanying excitation, and when an iron core (laminated iron core) manufactured by stacking electromagnetic steel sheets is excited, vibration (out-of-plane bending vibration: bending) occurs due to magnetostriction of the electromagnetic steel sheet. (vibration perpendicular to the plane) is generated and becomes a noise source. Therefore, when a transformer (transformer) is manufactured using a laminated core, an electromagnetic steel sheet having a small magnetostriction is generally used as the core material in order to suppress the generation of noise. However, there are cases where the noise level of the transformer cannot meet the required specifications, even though electrical steel sheets with low magnetostriction are used.
  • the rigidity (spring constant) of the laminated core is changed so that the natural frequency of the laminated core changes to avoid the resonance. ) Will be changed.
  • the fixing condition of the laminated core is adjusted or changed, or the number of laminated electromagnetic steel sheets is changed.
  • Patent Document 1 discloses a method for measuring the natural frequency of the laminated core. This is to know the natural frequency of the laminated core by changing the excitation frequency stepwise and measuring the noise generated by the laminated core.
  • a laminated iron core in which electromagnetic steel sheets are laminated is a complex structure and has an infinite number of natural frequencies in a frequency band of 50 Hz to 20 kHz that can be a target of noise.
  • the rigidity of the laminated core even if the resonance between the natural vibration of one natural frequency component and the magnetostrictive vibration is avoided, the natural vibration of another natural frequency component is newly resonated with the magnetostrictive vibration. Very likely to do.
  • FIG. 8 shows a frequency response characteristic (vertical axis: gain, horizontal axis: frequency) in the case of a single-degree-of-freedom vibration system, and a one-mass system model (single-degree-of-freedom vibration system).
  • the relationship with each parameter in degree-of-freedom system model) is schematically shown.
  • the rigidity UP increase the spring constant k
  • the rigidity DOWN increase the spring constant k
  • the inventor considered a measure of damping UP (increasing the damping coefficient c) as shown in FIG.
  • the natural frequency does not change, but the vibration amplitude can be reduced.
  • the inventor has found that the vibration amplitude can be remarkably reduced by increasing the damping coefficient by utilizing sliding friction between the laminations (between the electromagnetic steel sheets constituting the laminated core).
  • each graph on the left side of FIG. 9 shows an external force (magnetostriction) pattern (vertical axis: magnetostriction, horizontal axis: time) applied to a transformer composed of a laminated core, and each central graph shows a fastening force (described later).
  • each graph on the right side of FIG. 9 shows a pattern of transformer vibration (out-of-plane bending vibration) when the external force is applied to the transformer having the frequency response function (vertical axis: amplitude of iron core vibration, horizontal axis: time. ).
  • the present invention has been made in view of the circumstances as described above, and in a laminated core in which electromagnetic steel sheets are laminated, in order to reduce vibration by using a damping effect due to sliding friction between the laminations, It is an object of the present invention to provide a method for determining a fastening force of a laminated core that can accurately determine a fastening force that generates an appropriate sliding friction, and a method for manufacturing a laminated core using the same.
  • the present invention has the following features.
  • a laminated iron core is constructed using electromagnetic steel sheets, and is subjected to mechanical excitation force within a range of 1N to 1000N under different fastening forces, and one location of the laminated iron core.
  • the vibration level is an index representing the magnitude of vibration, and is obtained by measuring at least any one of displacement, speed, and acceleration (including calculation processing based on the measurement result).
  • the measurement method is exemplified below, but is not limited thereto, and a known vibration analysis method can be applied.
  • an amplitude RMS (root-mean-square) value or maximum amplitude value of a time-series waveform (time history) of the measurement location is calculated, respectively, and the representative value of the amplitude RMS value or maximum amplitude value ( (representative value) or an average value is used.
  • the vibration level is obtained by frequency-analyzing a time-series waveform at a measurement location, calculating a sum of frequency components N times the excitation frequency, and using a representative point value or average value.
  • the method for determining the fastening force of the laminated core according to (1) is obtained by frequency-analyzing a time-series waveform at a measurement location, calculating a sum of frequency components N times the excitation frequency, and using a representative point value or average value.
  • a fastening force is determined using the method for determining a fastening force of a laminate core according to any one of (1) to (4), and the laminate core is manufactured by fastening with the determined fastening force.
  • a method for producing a laminated core characterized by comprising:
  • a fastening force that generates appropriate sliding friction between the laminations is obtained in order to achieve low vibration by using a damping effect caused by sliding friction between the laminations. Can be determined. This makes it possible to produce a laminated core with low vibration. And, it becomes possible to manufacture a low noise transformer by using the low vibration laminated core.
  • the sliding friction phenomenon between laminates in a laminated core can be confirmed with a partial model or a small model, so it is possible to reduce the cost without producing a large-scale model on a full scale. With this, it is possible to determine an appropriate fastening force.
  • FIG. 1 is a diagram showing Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing Embodiment 2 of the present invention.
  • FIG. 3 is a diagram showing Embodiment 3 of the present invention.
  • FIG. 4 is a view showing a laminated core in Examples 1 to 3 of the present invention.
  • FIG. 5 is a diagram illustrating the evaluation / determination of the fastening force according to the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating the evaluation / determination of the fastening force according to the second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating the evaluation / determination of the fastening force according to the third embodiment of the present invention. 7A shows the result of evaluating the vibration level by acceleration, FIG.
  • FIG. 7B shows the result of evaluating the vibration level by speed
  • FIG. 7C shows the result of evaluating the vibration level by displacement.
  • FIG. 8 is a diagram showing the influence of stiffness and damping coefficient on frequency response characteristics in a one-degree-of-freedom vibration system in order to explain the basic concept of the present invention.
  • FIG. 9 is a diagram showing the basic mechanism of the present invention.
  • FIG. 10 is a diagram showing the difference in the fastening force determination procedure with the conventional method in order to explain the basic concept of the present invention.
  • an appropriate fastening force that generates appropriate sliding friction between the laminations is used in order to reduce vibration by using a damping effect caused by sliding friction between the laminations. I try to decide.
  • the laminated iron core is manufactured by fastening the laminated electrical steel sheets with the fastening force determined in this way.
  • a laminated iron core (preferably a small model or a partial model) 11 capable of adjusting a fastening force by a spring 13 through a bakelite 12 is prepared.
  • the waveform generated by the signal generator 21 is vibrated with a predetermined mechanical vibration force by the vibration exciter 22.
  • the predetermined mechanical excitation force is determined by vibration conditions or the like that may cause a problem in the actual use of the laminate core 11 to be measured, and is generally in the range of 1N to 1000N. Selected.
  • the excitation force is measured by a load cell 23.
  • the displacement, speed, or acceleration is measured by the vibration sensor 24 (when no vibration is applied, the time is zero), and a time series waveform is obtained.
  • Embodiment 2 As shown in FIG. 2, using a laminated iron core (small model or partial model) 11 whose fastening force can be adjusted by a spring 13 through a bakelite 12, a vibrator 22 with a sine wave fHz generated by a signal generator 21. To excite with a predetermined mechanical excitation force.
  • the predetermined mechanical excitation force is determined by vibration conditions or the like that may cause a problem in the actual use of the laminate core (small model or partial model) 11 to be measured. Is a mechanical excitation force selected from the range of 1N to 1000N. The excitation force is measured by the load cell 23.
  • the vibration sensor 24 measures the displacement, velocity, or acceleration to obtain a time series waveform (when no vibration is applied, the zero point is set).
  • the method according to the second embodiment can eliminate variations in amplitude levels that occur depending on the excitation force selected.
  • Embodiment 3 As shown in FIG. 3, using a laminated iron core (small model or partial model) 11 whose fastening force can be adjusted by a spring 13 via a bakelite 12, a vibrator 22 with a sine wave fHz generated by a signal generator 21. As in the second embodiment, vibration is performed with a predetermined mechanical vibration force.
  • the displacement, velocity, or acceleration is measured by the vibration sensor 24 to obtain a time series waveform (when no vibration is applied, the zero point is set).
  • the excitation force is measured by the load cell 23 to obtain a time series waveform of the excitation force.
  • Wout / Fin be the representative value of vibration (vibration level).
  • the method according to the third embodiment has the same advantages as the method according to the second embodiment, and further, compared to the method according to the second embodiment, the influence on the vibration level due to fluctuations (fluctuations and changes with time) of the excitation force of the vibrator 22. Can be offset.
  • Example 1 of the present invention will be described.
  • Example 1 an appropriate fastening force was obtained according to Embodiment 1 of the present invention described above.
  • FIG. 4 shows a small laminated core 11 used in the first embodiment.
  • this laminated core has a total of five pieces, each of which constitutes four sides and a piece which constitutes the central portion, butted and laminated in a step lap joint method.
  • L1 500 mm
  • L2 500 mm
  • L3 100 mm
  • L4 100 mm
  • 70 electromagnetic steel sheets having a thickness of 0.2 mm are laminated.
  • the electrical steel sheet a general grain-oriented electrical steel sheet is used.
  • the Si content is 2.0 to 4.5% by mass.
  • the excitation position was the midpoint of the side on the L1 side, and the measurement position of the vibration level was selected at three points at equal intervals on each side and the central piece, for a total of 15 points.
  • FIG. 5 is a graph of the vibration average value when the fastening force is changed.
  • the vibration average value was the average value of 15 RMS of the acceleration measured by the vibration sensor with an excitation force of 30N (frequency sine wave of 100 Hz).
  • the maximum value of vibration is calculated
  • Example 2 of the present invention will be described.
  • Example 2 an appropriate fastening force was obtained according to the second embodiment.
  • Example 2 the laminated iron core 11 having the same dimensions as in Example 1 is used, and the general steel sheet is also used as the electromagnetic steel sheet. Further, the measurement position of the excitation position, the excitation frequency and the vibration level were also the same as in Example 1.
  • the Si content is 2.0 to 4.5% by mass.
  • FIG. 6 is a graph of representative vibration values when the fastening force is changed.
  • the vibration representative value the total sum Wout of N-fold components of fHz out of the frequency components in the time-series waveform of acceleration obtained by measuring with a vibration sensor with an excitation force of 20 N was used. Note that Wout was calculated from 15 acceleration frequency components and then averaged.
  • Example 3 of the present invention will be described.
  • an appropriate fastening force was obtained according to Embodiment 3 described above.
  • Example 3 the laminated iron core 11 having the same dimensions as those in Examples 1 and 2 was used, but a magnetic steel sheet having a lower iron loss than that in Examples 1 and 2 was used.
  • the Si content is 2.0 to 4.5% by mass.
  • the measurement position of the vibration position, vibration frequency and vibration level was the same as in Examples 1 and 2.
  • FIG. 7A is a graph of vibration representative values when the fastening force is changed.
  • Wout / Fin ((m / s 2 ) / N) obtained by frequency analysis of 15 points of acceleration (m / s 2 ) and excitation force (N) with 20 N excitation force was used as the vibration representative value. .
  • For Wout an averaged value after calculation from 15 acceleration frequency components was adopted.
  • FIG. 7B and FIG. 7C show Wout / Fin (((m / s) / N) or (obtained by frequency analysis of velocity (m / s) and displacement (m)).
  • m / N) is a representative vibration value.
  • For Wout an averaged value after calculating from the velocity or displacement frequency components at 15 points was adopted. Even when evaluated by speed and displacement, as shown in FIGS. 7 (b) and 7 (c), when the fastening force is 8 N / cm 2 , the vibration is low, so the proper fastening force is 8 N / cm 2 . It has been determined.
  • a typical electrical steel sheet used for a laminated iron core is characterized by containing Si: 2.0 to 4.5% by mass.
  • the invention of the present application is hardly affected by the specifications of the electrical steel sheet (including the specifications of the coating), and is not limited to this composition, and the type (for example, directional electrical steel sheet, non-oriented electrical steel sheet). Is not limited.
  • a general cold-rolled steel sheet can be used as an electromagnetic steel sheet.
  • the size and shape of the electromagnetic steel sheet, the size and shape of the laminated core, and the lamination method do not particularly affect the application of the present invention.
  • the frequency of excitation is preferably fixed to a predetermined value.
  • the use frequency of the target laminated core is preferable, and when the use frequency has a width, it is preferable to select and use at least one representative frequency.
  • it is not limited to a use frequency For example, you may select the unified frequency for the comparison with another laminated body core.
  • the absolute value of the frequency is not particularly limited.
  • a sinusoidal wave is suitable for the excitation waveform, but it does not exclude application of other periodic waveforms such as a triangular wave and a rectangular wave.
  • the vibration position and vibration level measurement position on the laminated core can be arbitrarily set, and in principle, the result can be obtained at any position.
  • the vibration level is the lowest.
  • the fastening force to be obtained may be selected from the measurement points.
  • the change in the vibration level becomes concave with respect to the change in the fastening force, and within this region (for example, 5 to 5 in FIGS. 5 and 6).
  • the region of about 7 N / cm 2 and in the region of about 6 to 8 N / cm 2 in FIGS.
  • the noise reduction effect found in the present invention is sufficiently exhibited. Therefore, regardless of the minimum value of the vibration level, from the relationship between the obtained vibration level and the fastening force, specify the fastening force region where the vibration and noise reduction effect due to sliding friction is manifested, and take into account the various requirements.
  • the fastening force can be selected as appropriate.
  • Examples of the range in which the fastening force is changed include a range that is possible for the target laminated core, a normal range, and a range that is appropriately extracted from these ranges.
  • the range in which the fastening force is changed and the increment of the change can be specified from the relationship between the obtained vibration level and the fastening force to the extent that there is a fastening force region where the vibration / noise reduction effect due to sliding friction appears as described above. Just choose. In general, it is preferable to select appropriately from the range of about 5 to 20 N / cm 2 .
  • vibration level two or more of displacement, speed, and acceleration may be adopted as the vibration level. If the relationship between the vibration level and the fastening force varies depending on the selection of the vibration level, the most appropriate relationship may be determined based on the result of actually manufacturing the laminated core.
  • the present invention is not limited to the above-described embodiments and examples.
  • the mechanism for applying the fastening force is not limited to the springs shown in FIGS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

A stacked core is formed from an electrical steel sheet. The stacked core is vibrated by means of a mechanical excitation force in the range from 1 N to 1,000 N depending on different fastening forces, the vibration level of at least one point of the stacked core is measured, and the relationship between the vibration level and the fastening force is obtained on the basis of the result of the measurement of the vibration level. It is therefore possible to accurately determine a fastening force that reduces noise by generating appropriate sliding friction between the stacked layers of the stacked core after the stacked core is excited.

Description

積層体鉄心の締結力決定方法および積層体鉄心の製造方法Method for determining fastening force of laminated iron core and method for producing laminated iron core
 本発明は、電磁鋼板(electrical steel sheet)を積層した積層体鉄心(stacked−core)の締結力(clamping pressure)決定方法およびそれによる積層体鉄心の製造方法に関するものである。 The present invention relates to a method for determining a clamping pressure of a laminated core in which electromagnetic steel sheets are laminated, and a method for manufacturing a laminated core by the method.
 電磁鋼板の中でも、Siを含有し、かつ結晶方位が(110)[001]方位に配向した方向性珪素鋼板(grain oriented silicon steel sheet)は優れた軟磁気特性を有することから商用周波数域での各種鉄心材料として広く用いられている。 Among electrical steel sheets, grain oriented silicon steel sheets containing Si and having a crystal orientation in the (110) [001] direction have excellent soft magnetic properties, so that they are in the commercial frequency range. Widely used as various core materials.
 しかし、そのような電磁鋼板には励磁に伴う磁歪(magnetostriction)があり、電磁鋼板を積層して製造した鉄心(積層体鉄心)を励磁すると、電磁鋼板の磁歪によって振動(面外曲げ振動:bending vibration perpendicular to the plane)が生じ、騒音源となる。そこで、積層体鉄心を用いて変圧器(トランス)を製造する場合、騒音の発生を抑えるために、一般に磁歪の小さい電磁鋼板を鉄心材料として使用する。 しかし、磁歪の小さい電磁鋼板を使用しているにもかかわらず、変圧器の騒音レベルが要求仕様を満たせない場合がある。 However, such an electromagnetic steel sheet has magnetostriction accompanying excitation, and when an iron core (laminated iron core) manufactured by stacking electromagnetic steel sheets is excited, vibration (out-of-plane bending vibration: bending) occurs due to magnetostriction of the electromagnetic steel sheet. (vibration perpendicular to the plane) is generated and becomes a noise source. Therefore, when a transformer (transformer) is manufactured using a laminated core, an electromagnetic steel sheet having a small magnetostriction is generally used as the core material in order to suppress the generation of noise. However, there are cases where the noise level of the transformer cannot meet the required specifications, even though electrical steel sheets with low magnetostriction are used.
 その原因の多くは、変圧器の積層体鉄心の固有振動(natural vibration)と電磁鋼板の磁歪振動の共振現象である。 すなわち、積層体鉄心の励磁電力が外力となって強制振動が生じ、励磁周波数が積層体鉄心の固有振動数と一致した場合に共振して大きな振幅となる。 このため、積層体鉄心の固有振動数に着目して変圧器を設計する方法が検討されてきた。 Many of the causes are resonance phenomena of natural vibration of the laminated core of the transformer and magnetostrictive vibration of the electrical steel sheet. That is, when the excitation power of the laminate core is an external force, forced vibration occurs, and when the excitation frequency matches the natural frequency of the laminate core, resonance occurs and a large amplitude occurs. For this reason, methods for designing transformers by focusing on the natural frequency of the laminated core have been studied.
 もし、積層体鉄心の固有振動と電磁鋼板の磁歪振動が共振する場合には、その共振を回避するために、積層体鉄心の固有振動数が変化するように、積層体鉄心の剛性(ばね定数)に関するパラメータを変更することになる。 例えば、積層体鉄心の固定条件を調整あるいは変更したり、電磁鋼板の積層枚数を変更したりする。 If the natural vibration of the laminated core resonates with the magnetostrictive vibration of the electrical steel sheet, the rigidity (spring constant) of the laminated core is changed so that the natural frequency of the laminated core changes to avoid the resonance. ) Will be changed. For example, the fixing condition of the laminated core is adjusted or changed, or the number of laminated electromagnetic steel sheets is changed.
 なお、積層体鉄心の固有振動数を測定する方法については、例えば特許文献1に記載されている。 これは励磁周波数を段階的に変化させて、その際に積層体鉄心が発生する騒音を測定することで、積層体鉄心の固有振動数を知るものである。 For example, Patent Document 1 discloses a method for measuring the natural frequency of the laminated core. This is to know the natural frequency of the laminated core by changing the excitation frequency stepwise and measuring the noise generated by the laminated core.
特開2008−82778号公報JP 2008-82778 A
 しかしながら、電磁鋼板を積層した積層体鉄心は複雑な構造物であり、騒音の対象となりうる50Hz~20kHzの周波数帯域に無数の固有振動数を有する。 一般に、複数の固有振動数を有する構造物の特定の固有振動数のみを変化させることは困難であり、剛性を変化させると固有振動数全体がシフトする。 このため、積層体鉄心の剛性を変更させる方法では、ある固有振動数成分の固有振動と磁歪振動との共振を回避させても、別の固有振動数成分の固有振動が磁歪振動とあらたに共振する可能性が極めて高い。 そして、そもそも現実の変圧器の設計では、積層体鉄心の固有振動以外の要求仕様もあるため、積層体鉄心の剛性を変更するのは容易ではない。 However, a laminated iron core in which electromagnetic steel sheets are laminated is a complex structure and has an infinite number of natural frequencies in a frequency band of 50 Hz to 20 kHz that can be a target of noise. Generally, it is difficult to change only a specific natural frequency of a structure having a plurality of natural frequencies, and when the rigidity is changed, the whole natural frequency is shifted. For this reason, in the method of changing the rigidity of the laminated core, even if the resonance between the natural vibration of one natural frequency component and the magnetostrictive vibration is avoided, the natural vibration of another natural frequency component is newly resonated with the magnetostrictive vibration. Very likely to do. In the first place, since there are required specifications other than the natural vibration of the laminated core in the actual transformer design, it is not easy to change the rigidity of the laminated core.
 単純なモデルとして、図8に1自由度振動系(single−degree−of−freedom vibration system)の場合の周波数応答特性(縦軸:ゲイン、横軸:周波数)と、1質点系モデル(single−degree−of−freedom system model)における各パラメータとの関係を模式的に示す。 一般に、共振を回避するためには、図8(a)に示すような剛性UP(ばね定数kを大きくする)や、図8(b)に示すような剛性DOWN(ばね定数kを小さくする)といった策がとられる。 しかしながら、上述したように、積層体鉄心の場合は、剛性の変更によって使用周波数における共振を回避する方法は、現実には困難さが伴う。 As a simple model, FIG. 8 shows a frequency response characteristic (vertical axis: gain, horizontal axis: frequency) in the case of a single-degree-of-freedom vibration system, and a one-mass system model (single-degree-of-freedom vibration system). The relationship with each parameter in degree-of-freedom system model) is schematically shown. In general, in order to avoid resonance, the rigidity UP (increase the spring constant k) as shown in FIG. 8A or the rigidity DOWN (increase the spring constant k) as shown in FIG. 8B. The following measures are taken. However, as described above, in the case of a laminated iron core, a method of avoiding resonance at the operating frequency by changing the rigidity is actually difficult.
 そこで、積層体鉄心における振動対策として、発明者は、図8(c)に示すような、減衰UP(減衰係数(damping coefficient)cを大きくする)という策を考えた。 この方法では固有振動数は変化しないが、振動振幅を低下させることができる。
 さらに発明者は、積層間(積層体鉄心を構成する電磁鋼板間)の滑り摩擦(sliding friction)を利用して減衰係数を増大させることで、振動振幅を顕著に低減できることを見出した。
Therefore, as a countermeasure against vibration in the laminated iron core, the inventor considered a measure of damping UP (increasing the damping coefficient c) as shown in FIG. In this method, the natural frequency does not change, but the vibration amplitude can be reduced.
Furthermore, the inventor has found that the vibration amplitude can be remarkably reduced by increasing the damping coefficient by utilizing sliding friction between the laminations (between the electromagnetic steel sheets constituting the laminated core).
 その詳細なメカニズムを図9に示す。 ここで、図9の左側の各グラフは積層体鉄心からなる変圧器に掛かる外力(磁歪)のパターン(縦軸:磁歪、横軸:時間)を、また中央の各グラフは、締結力(後述)に応じた変圧器の周波数応答関数(frequency response function)(縦軸:応答振幅(ゲイン)、横軸:周波数)を示す。 さらに図9の右側の各グラフは、前記外力が前記周波数応答関数を有する変圧器に作用した場合の、トランス振動(面外曲げ振動)のパターン(縦軸:鉄心振動の振幅、横軸:時間)を示す。 The detailed mechanism is shown in FIG. Here, each graph on the left side of FIG. 9 shows an external force (magnetostriction) pattern (vertical axis: magnetostriction, horizontal axis: time) applied to a transformer composed of a laminated core, and each central graph shows a fastening force (described later). ) Shows the frequency response function (frequency response function) of the transformer (vertical axis: response amplitude (gain), horizontal axis: frequency). Further, each graph on the right side of FIG. 9 shows a pattern of transformer vibration (out-of-plane bending vibration) when the external force is applied to the transformer having the frequency response function (vertical axis: amplitude of iron core vibration, horizontal axis: time. ).
 積層体鉄心の場合、電磁鋼板を積層しただけでは形状を固定できないため、締結手段(鋼材によるクランプなど)によって固定する。締結手段による固定に際し積層方向に圧縮力が働くが、これを締結力と呼んでいる。 In the case of a laminated iron core, the shape cannot be fixed simply by laminating electromagnetic steel sheets, so it is fixed by fastening means (clamping with steel, etc.). A compression force acts in the stacking direction when fixing by the fastening means, which is called a fastening force.
 図9(a)のように、締結力が弱い場合には、積層間の摩擦が小さいため、外力の作用によって各電磁鋼板が互いにズレる方向へ動き、全体として積層体としての剛性が低下する。 しかしこの場合、固有振動数がシフトするだけで、その振動振幅そのものに大きな変化はない。 しかも、複数の固有振動数がシフトするため、低剛性化によって、それまで問題でなかった別の共振が発生する場合もある。 As shown in FIG. 9 (a), when the fastening force is weak, the friction between the laminations is small, so that the magnetic steel sheets move in a direction in which they are displaced from each other by the action of external force, and the rigidity of the laminated body as a whole decreases. However, in this case, only the natural frequency shifts, and the vibration amplitude itself does not change greatly. In addition, since a plurality of natural frequencies are shifted, another resonance that has not been a problem may occur due to low rigidity.
 逆に、図9(c)のように、締結力が大きすぎる場合には、積層間の摩擦が大きくなり、積層体が一体物の剛体のように振舞うため、積層体としての剛性が高くなる。 しかしこの場合も、固有振動数がシフトするだけで、その振動振幅そのものに大きな変化はない。低剛性化の場合と同じく、それまで問題でなかった別の共振が発生する場合もある。 On the contrary, as shown in FIG. 9C, when the fastening force is too large, the friction between the layers increases, and the laminate behaves like a solid rigid body, so that the rigidity as the laminate increases. . However, in this case as well, the natural frequency only shifts, and the vibration amplitude itself does not change significantly. As in the case of low rigidity, another resonance that has not been a problem may occur.
 これに対して、図9(b)のように、適切な締結力が選択された場合、積層間に適度な滑り摩擦が発生する。 滑り摩擦は減衰作用があるため、積層構造物の減衰要素が強化されたことになり、固有振動数に変化はなくとも、その振動振幅が大幅に低下する。 On the other hand, when an appropriate fastening force is selected as shown in FIG. 9B, moderate sliding friction occurs between the layers. Since sliding friction has a damping action, the damping element of the laminated structure is reinforced, and even if the natural frequency does not change, its vibration amplitude is greatly reduced.
 以上のようなメカニズムにより、積層間に適切な滑り摩擦を発生させるような締結力を決定することで、低振動の積層体鉄心を製造することが可能となる。 そして、その低振動の積層体鉄心を用いることによって、低騒音の変圧器を製造することが可能となる。ただし、実機や従来の実験設備において適正な締結力を的確に決定することは困難である。 By determining the fastening force that generates appropriate sliding friction between the laminates by the mechanism as described above, it is possible to manufacture a laminated core with low vibration. And, it becomes possible to manufacture a low noise transformer by using the low vibration laminated core. However, it is difficult to accurately determine an appropriate fastening force in an actual machine or a conventional experimental facility.
 本発明は、上記のような事情に鑑みてなされたものであり、電磁鋼板を積層した積層体鉄心において、積層間のすべり摩擦による減衰効果を利用して低振動にするために、積層間に適切な滑り摩擦を発生させるような締結力を的確に決定することができる積層体鉄心の締結力決定方法、およびそれによる積層体鉄心の製造方法を提供することを目的とするものである。 The present invention has been made in view of the circumstances as described above, and in a laminated core in which electromagnetic steel sheets are laminated, in order to reduce vibration by using a damping effect due to sliding friction between the laminations, It is an object of the present invention to provide a method for determining a fastening force of a laminated core that can accurately determine a fastening force that generates an appropriate sliding friction, and a method for manufacturing a laminated core using the same.
 上記課題を解決するために、本発明は以下の特徴を有する。 In order to solve the above problems, the present invention has the following features.
 (1)電磁鋼板を用いて積層体鉄心を構成し、異なる締結力の元で、1N~1000Nの範囲内の機械的加振力(mechanical exciting force)で加振し、積層体鉄心の1個所以上の振動レベルを計測し、その振動レベルの計測結果を元に、振動レベルと締結力との関係を求めることにより、積層体鉄心を励磁した後に騒音を低減する締結力を決定することを特徴とする積層体鉄心の締結力決定方法。
 なお、振動レベルとは振動の大きさを表す指標で、変位、速度、加速度の少なくともいずれの計測(計測結果に基づく演算処理も含む)により得るものとする。 計測の方法は以下に例示されるが、これに限定されず、既知の振動解析手法を適用することができる。
(1) A laminated iron core is constructed using electromagnetic steel sheets, and is subjected to mechanical excitation force within a range of 1N to 1000N under different fastening forces, and one location of the laminated iron core. By measuring the above vibration level and determining the relationship between the vibration level and the fastening force based on the measurement result of the vibration level, the fastening force that reduces noise after exciting the laminated core is determined. A method for determining the fastening force of the laminated iron core.
The vibration level is an index representing the magnitude of vibration, and is obtained by measuring at least any one of displacement, speed, and acceleration (including calculation processing based on the measurement result). The measurement method is exemplified below, but is not limited thereto, and a known vibration analysis method can be applied.
 (2)前記振動レベルとして、測定箇所の時系列波形(time history)の振幅RMS(root−mean−square)値または振幅最大値を各々計算し、当該振幅RMS値または振幅最大値の代表値(representative value)あるいは平均値を用いることを特徴とする前記(1)に記載の積層体鉄心の締結力決定方法。 (2) As the vibration level, an amplitude RMS (root-mean-square) value or maximum amplitude value of a time-series waveform (time history) of the measurement location is calculated, respectively, and the representative value of the amplitude RMS value or maximum amplitude value ( (representative value) or an average value is used. The method for determining a fastening force of a laminated core according to (1) above.
 (3)前記振動レベルとして、測定箇所の時系列波形を周波数解析し、加振周波数のN倍の周波数成分の総和を各々計算し、その代表点の値あるいは平均値を用いることを特徴とする前記(1)に記載の積層体鉄心の締結力決定方法。 (3) The vibration level is obtained by frequency-analyzing a time-series waveform at a measurement location, calculating a sum of frequency components N times the excitation frequency, and using a representative point value or average value. The method for determining the fastening force of the laminated core according to (1).
 (4)前記振動レベルとして、測定箇所の時系列波形を周波数解析し、加振周波数のN倍の周波数成分の総和を各々計算して、その代表点の値あるいは平均値をWoutとし、また加振力を周波数解析し、加振周波数のN倍の周波数成分の総和を計算してFinとして、その比であるWout/Finを用いることを特徴とする前記(1)に記載の積層体鉄心の締結力決定方法。 (4) As the vibration level, frequency analysis is performed on the time-series waveform at the measurement location, the sum of the frequency components N times the excitation frequency is calculated, and the value or average value of the representative point is set as Wout. Analyzing the vibration frequency, calculating the sum of frequency components N times the excitation frequency, and using Wout / Fin, which is the ratio, as Fin, the laminated core according to (1) above Fastening force determination method.
 (5)前記(1)~(4)のいずれかに記載の積層体鉄心の締結力決定方法を用いて締結力を決定し、その決定した締結力で締結して積層体鉄心を製造することを特徴とする積層体鉄心の製造方法。 (5) A fastening force is determined using the method for determining a fastening force of a laminate core according to any one of (1) to (4), and the laminate core is manufactured by fastening with the determined fastening force. A method for producing a laminated core, characterized by comprising:
 本発明においては、電磁鋼板を積層した積層体鉄心について、積層間のすべり摩擦による減衰効果を利用して低振動とするための、積層間に適切な滑り摩擦を発生させるような締結力を的確に決定することができる。 これにより、低振動の積層体鉄心を製造することが可能となる。 そして、その低振動の積層体鉄心を用いることによって、低騒音の変圧器を製造することが可能となる。 In the present invention, for a laminated core in which electromagnetic steel sheets are laminated, a fastening force that generates appropriate sliding friction between the laminations is obtained in order to achieve low vibration by using a damping effect caused by sliding friction between the laminations. Can be determined. This makes it possible to produce a laminated core with low vibration. And, it becomes possible to manufacture a low noise transformer by using the low vibration laminated core.
 加えて、積層体鉄心における積層間のすべり摩擦現象は部分モデル(partial model)や小型モデル(small model)で確認できるため、実物規模の大型モデル(large scale model)を製作することなく、低コストで適正な締結力を決定することができる。 In addition, the sliding friction phenomenon between laminates in a laminated core can be confirmed with a partial model or a small model, so it is possible to reduce the cost without producing a large-scale model on a full scale. With this, it is possible to determine an appropriate fastening force.
 従来は、図10(a)に示すように、積層体鉄心および変圧器を製造した後、振動・騒音が大きい場合には、試行錯誤で締結力を調整していた。 これに対して、本発明では、図10(b)に示すように、事前に使用状態に応じた適正な締結力を求めておき、その適正な締結力で積層体鉄心および変圧器を製造できるので、低振動・低騒音となり、締結力の調整が不要である。
 また、従来の方法では締結力と振動との相関を得ることが困難であったが、本発明においては容易に詳細かつ正確な相関を得ることができる。 このため、本発明では、現状の締結力からの、騒音の改善余地の有無や潜在的な改善幅が容易に把握でき、変圧器の設計に寄与することができる。
Conventionally, as shown in FIG. 10A, after manufacturing a laminated core and a transformer, when the vibration and noise are large, the fastening force is adjusted by trial and error. On the other hand, in this invention, as shown in FIG.10 (b), the suitable fastening force according to a use condition is calculated | required beforehand, and a laminated body core and a transformer can be manufactured with the appropriate fastening force. As a result, vibration and noise are reduced, and adjustment of the fastening force is unnecessary.
Further, although it has been difficult to obtain the correlation between the fastening force and the vibration by the conventional method, in the present invention, a detailed and accurate correlation can be easily obtained. For this reason, in this invention, the presence or absence of the noise improvement room from the present fastening force and the potential improvement range can be grasped easily, and it can contribute to the design of the transformer.
図1は、本発明の実施形態1を示す図である。FIG. 1 is a diagram showing Embodiment 1 of the present invention. 図2は、本発明の実施形態2を示す図である。FIG. 2 is a diagram showing Embodiment 2 of the present invention. 図3は、本発明の実施形態3を示す図である。FIG. 3 is a diagram showing Embodiment 3 of the present invention. 図4は、本発明の実施例1~3における積層体鉄心を示す図である。FIG. 4 is a view showing a laminated core in Examples 1 to 3 of the present invention. 図5は、本発明の実施例1における締結力の評価・決定を示す図である。FIG. 5 is a diagram illustrating the evaluation / determination of the fastening force according to the first embodiment of the present invention. 図6は、本発明の実施例2における締結力の評価・決定を示す図である。FIG. 6 is a diagram illustrating the evaluation / determination of the fastening force according to the second embodiment of the present invention. 図7は、本発明の実施例3における締結力の評価・決定を示す図である。ここで図7(a)は振動レベルを加速度で評価した結果を示し、図7(b)は振動レベルを速度で評価した結果を示し、図7(c)は振動レベルを変位で評価した結果を示す。FIG. 7 is a diagram illustrating the evaluation / determination of the fastening force according to the third embodiment of the present invention. 7A shows the result of evaluating the vibration level by acceleration, FIG. 7B shows the result of evaluating the vibration level by speed, and FIG. 7C shows the result of evaluating the vibration level by displacement. Indicates. 図8は、本発明の基本的考え方を説明するために、1自由度振動系における周波数応答特性への剛性および減衰係数の影響を示す図である。FIG. 8 is a diagram showing the influence of stiffness and damping coefficient on frequency response characteristics in a one-degree-of-freedom vibration system in order to explain the basic concept of the present invention. 図9は、本発明の基本メカニズムを示す図である。FIG. 9 is a diagram showing the basic mechanism of the present invention. 図10は、本発明の基本コンセプトを説明するために、従来法との締結力決定手順の相違を示す図である。FIG. 10 is a diagram showing the difference in the fastening force determination procedure with the conventional method in order to explain the basic concept of the present invention.
 本発明では、電磁鋼板を積層した積層体鉄心において、積層間のすべり摩擦による減衰効果を利用して低振動にするために、積層間に適切な滑り摩擦を発生させるような適正な締結力を決定するようにしている。 In the present invention, in a laminated core in which electromagnetic steel sheets are laminated, an appropriate fastening force that generates appropriate sliding friction between the laminations is used in order to reduce vibration by using a damping effect caused by sliding friction between the laminations. I try to decide.
 そして、そのようにして決定した締結力で、積層した電磁鋼板を締結して積層体鉄心を製造するようにしている。 And the laminated iron core is manufactured by fastening the laminated electrical steel sheets with the fastening force determined in this way.
 本発明の実施形態を図面に基づいて説明する。 Embodiments of the present invention will be described with reference to the drawings.
 [実施形態1]
 図1に示すように、ベークライト12を介してばね13によって締結力を調整できる積層体鉄心(小型モデルあるいは部分モデルが好ましい)11を用意する。 そして、信号発生器21によって生成された波形で加振機22によって、所定の機械的加振力で加振する。 ここで、前記所定の機械的加振力は、被測定対象の積層体鉄心11が実際の使用において問題となり得る振動条件等により決定されるものであり、一般的には1N~1000Nの範囲から選択される。 なお、加振力はロードセル(load cell)23によって測定する。
 振動センサ24によって変位あるいは速度あるいは加速度を測定し(非加振時を零点とする)、時系列波形を得る。 得られた時系列波形を解析し、RMS値(二乗平均平方根)、あるいは振幅における最大値を、振動の代表値あるいは平均値(複数の測定点または複数の測定回数の算術平均値)として得ることができる(これを振動レベルとする)。
[Embodiment 1]
As shown in FIG. 1, a laminated iron core (preferably a small model or a partial model) 11 capable of adjusting a fastening force by a spring 13 through a bakelite 12 is prepared. Then, the waveform generated by the signal generator 21 is vibrated with a predetermined mechanical vibration force by the vibration exciter 22. Here, the predetermined mechanical excitation force is determined by vibration conditions or the like that may cause a problem in the actual use of the laminate core 11 to be measured, and is generally in the range of 1N to 1000N. Selected. The excitation force is measured by a load cell 23.
The displacement, speed, or acceleration is measured by the vibration sensor 24 (when no vibration is applied, the time is zero), and a time series waveform is obtained. Analyzing the obtained time-series waveform, and obtaining the RMS value (root mean square) or the maximum value in amplitude as the representative value or average value of vibration (multiple measurement points or arithmetic average value of multiple measurements) (This is the vibration level.)
 そして、締結力を変化させ、振動の代表値(RMS値あるいは振幅の最大値)を順次計測すれば、振動レベルと締結力との関係が明らかとなる。 振動の平均値においても同様である。こうして、積層体鉄心の使用状況に応じた適正な締結力が決定される。 Then, if the fastening force is changed and the representative value of vibration (RMS value or maximum amplitude) is sequentially measured, the relationship between the vibration level and the fastening force becomes clear. The same applies to the average value of vibration. Thus, an appropriate fastening force is determined according to the use situation of the laminated core.
 [実施形態2]
 図2に示すように、ベークライト12を介してばね13によって締結力を調整できる積層体鉄心(小型モデルあるいは部分モデル)11を用い、信号発生器21によって生成された正弦波fHzで加振機22によって所定の機械的加振力で加振する。 ここで、前記所定の機械的加振力は、被測定対象の積層体鉄心(小型モデルあるいは部分モデル)11が実際の使用において問題となり得る振動条件等により決定されるものであり、一般的には1N~1000Nの範囲から選択される機械的加振力となる。 なお、加振力はロードセル23によって測定する。
[Embodiment 2]
As shown in FIG. 2, using a laminated iron core (small model or partial model) 11 whose fastening force can be adjusted by a spring 13 through a bakelite 12, a vibrator 22 with a sine wave fHz generated by a signal generator 21. To excite with a predetermined mechanical excitation force. Here, the predetermined mechanical excitation force is determined by vibration conditions or the like that may cause a problem in the actual use of the laminate core (small model or partial model) 11 to be measured. Is a mechanical excitation force selected from the range of 1N to 1000N. The excitation force is measured by the load cell 23.
 そして、振動センサ24によって変位あるいは速度あるいは加速度を測定し、時系列波形を得る(非加振時を零点とする)。 得られた時系列波形を周波数解析器25で周波数解析し、周波数成分のうちfHzのN倍成分(N=1,2,3,・・・)の総和Woutを振動の代表値として得る(これを振動レベルとする)。 なお、複数点計算する場合または複数回測定する場合は平均をとればよい。 Then, the displacement, velocity, or acceleration is measured by the vibration sensor 24 to obtain a time series waveform (when no vibration is applied, the zero point is set). The obtained time-series waveform is frequency-analyzed by the frequency analyzer 25, and the sum Wout of N-times components (N = 1, 2, 3,...) Of fHz among frequency components is obtained as a representative value of vibration (this) Is the vibration level). In addition, what is necessary is just to take an average, when calculating several points or measuring several times.
 そして、締結力を変化させ、振動の代表値(Wout)を順次計測すれば、振動レベルと締結力との関係が明らかとなる。 こうして、積層体鉄心の使用状況に応じた適正な締結力が決定される。
 実施様態2の方法は実施様態1の方法に比べ、選定される加振力に依存して生じる、振幅レベルのばらつきを解消することができる。
Then, by changing the fastening force and sequentially measuring the representative value (Wout) of the vibration, the relationship between the vibration level and the fastening force becomes clear. Thus, an appropriate fastening force is determined according to the use situation of the laminated core.
Compared with the method according to the first embodiment, the method according to the second embodiment can eliminate variations in amplitude levels that occur depending on the excitation force selected.
 [実施形態3]
 図3に示すように、ベークライト12を介してばね13によって締結力を調整できる積層体鉄心(小型モデルあるいは部分モデル)11を用い、信号発生器21によって生成された正弦波fHzで加振機22によって上記実施形態2と同様に所定の機械的加振力で加振する。
[Embodiment 3]
As shown in FIG. 3, using a laminated iron core (small model or partial model) 11 whose fastening force can be adjusted by a spring 13 via a bakelite 12, a vibrator 22 with a sine wave fHz generated by a signal generator 21. As in the second embodiment, vibration is performed with a predetermined mechanical vibration force.
 そして、振動センサ24によって変位あるいは速度あるいは加速度を測定し、時系列波形を得る(非加振時を零点とする)。 得られた時系列波形を周波数解析器25で周波数解析し、周波数成分のうちfHzのN倍成分(N=1,2,3,・・・)の総和Woutを得る。 なお、複数点計算する場合または複数回測定する場合は平均をとればよい。 Woutを計算すると同時に、加振力をロードセル23で測定し、加振力の時系列波形を得る。 得られた時系列波形を周波数解析器26で周波数解析し、周波数成分のうちfHzのN倍成分(N=1,2,3,・・・)の総和Finを得る。 そしてWout/Finを振動の代表値(振動レベル)とする。 Then, the displacement, velocity, or acceleration is measured by the vibration sensor 24 to obtain a time series waveform (when no vibration is applied, the zero point is set). The obtained time-series waveform is frequency-analyzed by the frequency analyzer 25 to obtain the total sum Wout of N-fold components (N = 1, 2, 3,...) Of fHz among the frequency components. In addition, what is necessary is just to take an average, when calculating several points or measuring several times. At the same time as calculating Wout, the excitation force is measured by the load cell 23 to obtain a time series waveform of the excitation force. The obtained time-series waveform is frequency-analyzed by the frequency analyzer 26 to obtain the sum Fin of N-fold components (N = 1, 2, 3,...) Of fHz out of the frequency components. And let Wout / Fin be the representative value of vibration (vibration level).
 そして、締結力を変化させ、振動の代表値(Wout/Fin)を順次計測すれば、振動レベルと締結力との関係が明らかとなる。 こうして、積層体鉄心の使用状況に応じた適正な締結力が決定される。
 実施様態3の方法は実施様態2の方法と同様の利点を有し、さらに実施様態2の方法に比べ、加振機22の加振力の変動(ゆらぎや経時変化)による振動レベルへの影響を相殺することができる。
Then, if the fastening force is changed and the representative value (Wout / Fin) of vibration is sequentially measured, the relationship between the vibration level and the fastening force becomes clear. Thus, an appropriate fastening force is determined according to the use situation of the laminated core.
The method according to the third embodiment has the same advantages as the method according to the second embodiment, and further, compared to the method according to the second embodiment, the influence on the vibration level due to fluctuations (fluctuations and changes with time) of the excitation force of the vibrator 22. Can be offset.
 [実施例1] [Example 1]
 本発明の実施例1を示す。 この実施例1では、上記の本発明の実施形態1によって適正な締結力を求めた。 Example 1 of the present invention will be described. In Example 1, an appropriate fastening force was obtained according to Embodiment 1 of the present invention described above.
 図4は、この実施例1で用いた小型の積層体鉄心11を示すものである。 この積層体鉄心は図示の通り、4辺を構成する各小片と、中央部を構成する小片の、合計5個の小片を突き合せ(butt)、ステップラップ積み(step lap joint)方式で積層したものである。ここで、L1=500mm、L2=500mm、L3=100mm、L4=100mmであり、厚さ0.2mmの電磁鋼板を70枚積層している。 電磁鋼板は一般的な方向性電磁鋼板を用いている。 なお、Siの含有量は2.0~4.5質量%である。
 加振位置はL1の側の辺の中点とし、振動レベルの測定位置は各辺と中央部小片上で等間隔で3点ずつ、合計15点選択した。
FIG. 4 shows a small laminated core 11 used in the first embodiment. As shown in the figure, this laminated core has a total of five pieces, each of which constitutes four sides and a piece which constitutes the central portion, butted and laminated in a step lap joint method. Is. Here, L1 = 500 mm, L2 = 500 mm, L3 = 100 mm, L4 = 100 mm, and 70 electromagnetic steel sheets having a thickness of 0.2 mm are laminated. As the electrical steel sheet, a general grain-oriented electrical steel sheet is used. The Si content is 2.0 to 4.5% by mass.
The excitation position was the midpoint of the side on the L1 side, and the measurement position of the vibration level was selected at three points at equal intervals on each side and the central piece, for a total of 15 points.
 図5は、締結力を変化させた場合の振動平均値のグラフである。 振動平均値としては、30Nの加振力(周波数f=100Hzの正弦波)により振動センサで測定した加速度のRMS値の15点平均値とした。 FIG. 5 is a graph of the vibration average value when the fastening force is changed. The vibration average value was the average value of 15 RMS of the acceleration measured by the vibration sensor with an excitation force of 30N (frequency sine wave of 100 Hz).
 図5に示すように、締結力が6N/cmの場合が低振動であるため、適正な締結力は6N/cmと決定された。 As shown in FIG. 5, since when the fastening force is 6N / cm 2 is low vibration, proper fastening force was determined to 6N / cm 2.
 なお、締結力を変化させた場合の振動平均値としてRMS値の代わりに振動の最大値を求めて平均し、その値が最も小さくなる締結力を採用することもできる。
 [実施例2]
In addition, the maximum value of vibration is calculated | required instead of RMS value as an average vibration value at the time of changing fastening force, and it can also employ | adopt the fastening force with which the value becomes the smallest.
[Example 2]
 本発明の実施例2を示す。 この実施例2では、上記の実施形態2によって適正な締結力を求めた。 Example 2 of the present invention will be described. In Example 2, an appropriate fastening force was obtained according to the second embodiment.
 この実施例2でも、実施例1と同寸法の積層体鉄心11を用い、電磁鋼板も一般的な方向性電磁鋼板を用いている。 また加振位置、加振周波数および振動レベルの測定位置も実施例1と同様とした。 なお、Siの含有量は2.0~4.5質量%である。 Also in this Example 2, the laminated iron core 11 having the same dimensions as in Example 1 is used, and the general steel sheet is also used as the electromagnetic steel sheet. Further, the measurement position of the excitation position, the excitation frequency and the vibration level were also the same as in Example 1. The Si content is 2.0 to 4.5% by mass.
 図6は、締結力を変化させた場合の振動代表値のグラフである。 振動代表値としては、20Nの加振力により振動センサで測定して得られた加速度の時系列波形における周波数成分のうちのfHzのN倍成分の総和Woutとした。 なお、Woutは15点の加速度周波数成分から計算後、平均化したものを採用した。 FIG. 6 is a graph of representative vibration values when the fastening force is changed. As the vibration representative value, the total sum Wout of N-fold components of fHz out of the frequency components in the time-series waveform of acceleration obtained by measuring with a vibration sensor with an excitation force of 20 N was used. Note that Wout was calculated from 15 acceleration frequency components and then averaged.
 図6に示すように、締結力が6N/cmの場合が低振動であるため、適正な締結力は6N/cmと決定された。 ここで、加振力を30N、40Nと変化させて同様に測定を行ったところ、グラフは上下にシフトするが、図6に示した場合と同様に締結力が6N/cmの場合が低振動であった。
 [実施例3]
As shown in FIG. 6, because if the fastening force is 6N / cm 2 is low vibration, proper fastening force was determined to 6N / cm 2. Here, when the excitation force was changed to 30N and 40N and the same measurement was performed, the graph shifted up and down, but the case where the fastening force was 6 N / cm 2 was low as in the case shown in FIG. It was a vibration.
[Example 3]
 本発明の実施例3を示す。 この実施例3では、上記の実施形態3によって適正な締結力を求めた。 Example 3 of the present invention will be described. In Example 3, an appropriate fastening force was obtained according to Embodiment 3 described above.
 この実施例3でも、実施例1、2と同寸法の積層体鉄心11を用いたが、電磁鋼板には実施例1、2よりも低鉄損のものを使用した。 なお、Siの含有量は2.0~4.5質量%である。 加振位置、加振周波数および振動レベルの測定位置については実施例1および2と同様とした。 In Example 3, the laminated iron core 11 having the same dimensions as those in Examples 1 and 2 was used, but a magnetic steel sheet having a lower iron loss than that in Examples 1 and 2 was used. The Si content is 2.0 to 4.5% by mass. The measurement position of the vibration position, vibration frequency and vibration level was the same as in Examples 1 and 2.
 図7(a)は、締結力を変化させた場合の振動代表値のグラフである。 20Nの加振力で15点の加速度(m/s)と加振力(N)を周波数解析して得られたWout/Fin((m/s)/N)を振動代表値とした。 なお、Woutは15点の加速度周波数成分から計算後、平均化したものを採用した。 FIG. 7A is a graph of vibration representative values when the fastening force is changed. Wout / Fin ((m / s 2 ) / N) obtained by frequency analysis of 15 points of acceleration (m / s 2 ) and excitation force (N) with 20 N excitation force was used as the vibration representative value. . For Wout, an averaged value after calculation from 15 acceleration frequency components was adopted.
 図7(a)に示すように、締結力が8N/cmの場合が低振動であるため、適正な締結力は8N/cmと決定された。 ここで、加振力を30N、40Nと変化させて同様に測定を行ったところ、グラフは上下にシフトするが、図7に示した場合と同様に締結力が8N/cmの場合が低振動であった。 As shown to Fig.7 (a), since the case where fastening force is 8 N / cm < 2 > is low vibration, appropriate fastening force was determined to be 8 N / cm < 2 >. Here, when the excitation force was changed to 30N and 40N and the same measurement was performed, the graph shifted up and down, but the case where the fastening force was 8 N / cm 2 was low as in the case shown in FIG. It was a vibration.
 図7(b)、図7(c)は、同様に、速度(m/s)、変位(m)を周波数解析して得られたWout/Fin(((m/s)/N)または(m/N))を振動代表値としたものである。なお、Woutは15点の速度または変位の周波数成分から計算後、平均化したものを採用した。 速度、変位で評価した場合も図7(b)、図7(c)に示すように、締結力が8N/cmの場合が低振動であるため、適正な締結力は8N/cmと決定された。 Similarly, FIG. 7B and FIG. 7C show Wout / Fin (((m / s) / N) or (obtained by frequency analysis of velocity (m / s) and displacement (m)). m / N)) is a representative vibration value. For Wout, an averaged value after calculating from the velocity or displacement frequency components at 15 points was adopted. Even when evaluated by speed and displacement, as shown in FIGS. 7 (b) and 7 (c), when the fastening force is 8 N / cm 2 , the vibration is low, so the proper fastening force is 8 N / cm 2 . It has been determined.
 以下、上記各実施様態を含む、本発明に共通の事項を補足する。
 積層体鉄心に用いられる代表的な電磁鋼板は質量%でSi:2.0~4.5%を含むことを特徴とする。 ただし本願発明は電磁鋼板の仕様(被覆の仕様も含む)に影響されることはほとんどないので、この組成に限定されることはなく、また種類(例えば方向性電磁鋼板。無方向性電磁鋼板)も限定されない。 例えば鉄心への要求特性を満足するなら、一般冷延鋼板を電磁鋼板として流用することも可能である。 電磁鋼板の寸法や形状、積層体鉄心の寸法や形状、積層方法(積層枚数や電磁鋼板の組合せ方など)も本発明の適用にとくに影響するものではない。
Hereinafter, the matters common to the present invention including the above embodiments will be supplemented.
A typical electrical steel sheet used for a laminated iron core is characterized by containing Si: 2.0 to 4.5% by mass. However, the invention of the present application is hardly affected by the specifications of the electrical steel sheet (including the specifications of the coating), and is not limited to this composition, and the type (for example, directional electrical steel sheet, non-oriented electrical steel sheet). Is not limited. For example, if a required characteristic for an iron core is satisfied, a general cold-rolled steel sheet can be used as an electromagnetic steel sheet. The size and shape of the electromagnetic steel sheet, the size and shape of the laminated core, and the lamination method (the number of laminated sheets and how to combine the electromagnetic steel sheets) do not particularly affect the application of the present invention.
 加振の周波数は所定の値に固定することが好ましい。 所定の値としては、対象となる積層体鉄心の使用周波数が好ましく、使用周波数に幅がある場合は代表周波数を少なくとも1つ選定して用いることが好ましい。 例えば商用周波数である50Hzおよび60Hzの少なくとも1方に固定することが考えられる。 ただし、使用周波数に限定されることはなく、例えば他の積層体鉄心との比較のために、統一された周波数を選定してもよい。実現できる周波数である限り(例えば前述の50Hz~20kHz)、周波数の絶対値にとくに制限は無い。 加振の波形は正弦波が好適であるが、三角波、矩形波など他の周期的波形の適用を排除するものではない。
 積層体鉄心上の加振位置および振動レベル計測位置は任意に設定でき、原則としてどの位置でも結果を得ることができる。
The frequency of excitation is preferably fixed to a predetermined value. As the predetermined value, the use frequency of the target laminated core is preferable, and when the use frequency has a width, it is preferable to select and use at least one representative frequency. For example, it is conceivable to fix at least one of commercial frequencies of 50 Hz and 60 Hz. However, it is not limited to a use frequency, For example, you may select the unified frequency for the comparison with another laminated body core. As long as the frequency is realizable (for example, 50 Hz to 20 kHz as described above), the absolute value of the frequency is not particularly limited. A sinusoidal wave is suitable for the excitation waveform, but it does not exclude application of other periodic waveforms such as a triangular wave and a rectangular wave.
The vibration position and vibration level measurement position on the laminated core can be arbitrarily set, and in principle, the result can be obtained at any position.
 得られた振動レベルと締結力との関係から積層体鉄心を励磁(磁化)した後に(すなわち当該鉄心の通電使用時に)騒音を低減する締結力を決定する際には、例えば振動レベルが最低となる締結力を測定点の中から選択すればよい。 ただし、図5~7から分かるように、滑り摩擦による振動低減効果が表れる領域では、締結力の変化に対して振動レベルの変化が凹型となり、この領域内(例えば図5や図6では5~7N/cm程度、図7(a)~(c)では6~8N/cm程度の領域内)では、本発明で見出した騒音低減効果が十分発現しているものと考えられる。 したがって振動レベルの最低値に拘らず、得られた振動レベルと締結力との関係から、滑り摩擦による振動・騒音低減効果が発現する締結力領域を特定し、諸要件を考慮して当該領域から適宜締結力を選択することもできる。 When determining the fastening force for reducing the noise after exciting (magnetizing) the laminated core from the relationship between the obtained vibration level and the fastening force (that is, when energizing the core), for example, the vibration level is the lowest. The fastening force to be obtained may be selected from the measurement points. However, as can be seen from FIGS. 5 to 7, in the region where the vibration reduction effect due to the sliding friction appears, the change in the vibration level becomes concave with respect to the change in the fastening force, and within this region (for example, 5 to 5 in FIGS. 5 and 6). In the region of about 7 N / cm 2 , and in the region of about 6 to 8 N / cm 2 in FIGS. 7A to 7C), it is considered that the noise reduction effect found in the present invention is sufficiently exhibited. Therefore, regardless of the minimum value of the vibration level, from the relationship between the obtained vibration level and the fastening force, specify the fastening force region where the vibration and noise reduction effect due to sliding friction is manifested, and take into account the various requirements. The fastening force can be selected as appropriate.
 締結力を変化させる範囲は、対象となる積層体鉄心において可能な範囲、通常の範囲、あるいはこれらから適宜抽出した範囲が例示される。 締結力を変化させる範囲および変化の刻み量は、得られた振動レベルと締結力との関係から、上記のように滑り摩擦による振動・騒音低減効果が発現する締結力領域を有る程度特定できるよう選択すればよい。一般には5~20N/cm程度の範囲から適宜選択することが好ましい。 Examples of the range in which the fastening force is changed include a range that is possible for the target laminated core, a normal range, and a range that is appropriately extracted from these ranges. The range in which the fastening force is changed and the increment of the change can be specified from the relationship between the obtained vibration level and the fastening force to the extent that there is a fastening force region where the vibration / noise reduction effect due to sliding friction appears as described above. Just choose. In general, it is preferable to select appropriately from the range of about 5 to 20 N / cm 2 .
 振動レベルとして例えば変位、速度および加速度の2つ以上を採用してもよい。 もし振動レベルと締結力との関係が振動レベルの選択により異なる場合、実際に積層体鉄心を製造した結果に基づき最も適正な関係を判定すればよい。 For example, two or more of displacement, speed, and acceleration may be adopted as the vibration level. If the relationship between the vibration level and the fastening force varies depending on the selection of the vibration level, the most appropriate relationship may be determined based on the result of actually manufacturing the laminated core.
 なお、締結力を変更したことによる共振ピークの移動の影響(例えばピーク位置が測定周波数に近接することによる振動レベルの増大)は、発明者の調査した限りでは明確には観察されなかった。 すなわち、もともと複雑に重なり合っている共振ピークの位置が移動する影響より、本発明の滑り摩擦による振動レベルの減衰効果の方が支配的に現れるものと考えられるが、このような知見も従来得られなかったものである。 Note that the influence of the movement of the resonance peak due to the change in the fastening force (for example, the increase in the vibration level due to the proximity of the peak position to the measurement frequency) was not clearly observed as far as the inventors investigated. In other words, it is considered that the vibration level damping effect by the sliding friction of the present invention is more dominant than the influence of the movement of the resonance peak position that is originally complicatedly overlapped. It was not.
 言うまでも無いが、本願発明は上記の実施様態や実施例に限定されるものではない。例えば締結力を付与する機構は図1~3のばね等に限定されず自由である。 Needless to say, the present invention is not limited to the above-described embodiments and examples. For example, the mechanism for applying the fastening force is not limited to the springs shown in FIGS.
 本発明により、積層体鉄心の振動・騒音を低減する、比較的簡便でありながら精度が高く、かつ汎用性の高い方法が提供される。 According to the present invention, there is provided a relatively simple, highly accurate and versatile method for reducing vibration and noise of a laminated core.
 11 積層体鉄心(モデル)
 12 ベークライト
 13 ばね
 21 信号発生器
 22 加振機
 23 ロードセル
 24 振動センサ
 25 周波数解析器
 26 周波数解析器
 k 1自由度振動系におけるばね係数(1質点系モデルによる)
 c 1自由度振動系における減衰係数(1質点系モデルによる)
 m 1自由度振動系における質点の質量(1質点系モデルによる)
11 Laminated iron core (model)
12 Bakelite 13 Spring 21 Signal generator 22 Exciter 23 Load cell 24 Vibration sensor 25 Frequency analyzer 26 Frequency analyzer k Spring coefficient in one-degree-of-freedom vibration system (based on one-mass system model)
c Damping coefficient in one-degree-of-freedom vibration system (by one-mass system model)
m Mass of mass point in 1-DOF vibration system (by 1-mass system model)

Claims (5)

  1.  電磁鋼板を用いて積層体鉄心を構成し、異なる締結力の下で、1N~1000Nの範囲内の機械的加振力で加振し、積層体鉄心の1個所以上の振動レベルを計測し、その振動レベルの計測結果を元に、振動レベルと締結力との関係を求めることにより、積層体鉄心を励磁した後に騒音を低減する締結力を決定する、積層体鉄心の締結力決定方法。 A laminated iron core is constructed using electromagnetic steel plates, and with different fastening forces, it is vibrated with a mechanical excitation force within the range of 1N to 1000N, and the vibration level at one or more locations of the laminated iron core is measured. A method for determining a fastening force of a laminated core, wherein a fastening force for reducing noise is determined after exciting the laminated core by obtaining a relationship between a vibration level and a fastening force based on a measurement result of the vibration level.
  2.  前記振動レベルとして、測定箇所の時系列波形の振幅RMS値または振幅最大値を各々計算し、当該振幅RMS値または振幅最大値の代表値あるいは平均値を用いる、請求項1に記載の積層体鉄心の締結力決定方法。 2. The laminated core according to claim 1, wherein as the vibration level, an amplitude RMS value or an amplitude maximum value of a time-series waveform at a measurement location is calculated, and a representative value or an average value of the amplitude RMS value or the amplitude maximum value is used. Fastening force determination method.
  3.  前記振動レベルとして、測定箇所の時系列波形を周波数解析し、加振周波数のN倍の周波数成分の総和を各々計算し、その代表点の値あるいは平均値を用いる、請求項1に記載の積層体鉄心の締結力決定方法。 The lamination according to claim 1, wherein the vibration level is obtained by frequency-analyzing a time-series waveform at a measurement location, calculating a sum total of frequency components N times the excitation frequency, and using a representative point value or average value. A method for determining the fastening force of the body core.
  4.  前記振動レベルとして、測定箇所の時系列波形を周波数解析し、加振周波数のN倍の周波数成分の総和を各々計算して、その代表点の値あるいは平均値をWoutとし、また加振力を周波数解析し、加振周波数のN倍の周波数成分の総和を計算してFinとして、その比であるWout/Finを用いる、請求項1に記載の積層体鉄心の締結力決定方法。 As the vibration level, frequency analysis is performed on the time-series waveform of the measurement location, the sum of frequency components N times the excitation frequency is calculated, the value of the representative point or the average value is set as Wout, and the excitation force is The fastening force determination method for a laminated core according to claim 1, wherein frequency analysis is performed, the sum of frequency components N times the excitation frequency is calculated, and Wout / Fin that is the ratio is used as Fin.
  5.  請求項1~4のいずれかに記載の積層体鉄心の締結力決定方法を用いて締結力を決定し、その決定した締結力で締結して積層体鉄心を製造する、積層体鉄心の製造方法。 A method for manufacturing a laminated core, wherein a fastening force is determined using the method for determining a fastening force of a laminated core according to any one of claims 1 to 4, and the laminated core is manufactured by fastening with the determined fastening force. .
PCT/JP2011/054202 2010-02-22 2011-02-18 Method for determining fastening force of stacked core and method for manufacturing stacked core WO2011102542A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010036018 2010-02-22
JP2010-036018 2010-02-22
JP2010-145897 2010-06-28
JP2010145897 2010-06-28
JP2010218210 2010-09-29
JP2010-218210 2010-09-29

Publications (1)

Publication Number Publication Date
WO2011102542A1 true WO2011102542A1 (en) 2011-08-25

Family

ID=44483122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054202 WO2011102542A1 (en) 2010-02-22 2011-02-18 Method for determining fastening force of stacked core and method for manufacturing stacked core

Country Status (2)

Country Link
JP (1) JP4840535B1 (en)
WO (1) WO2011102542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764648A (en) * 2017-11-02 2018-03-06 新界泵业集团股份有限公司 Motor self-clinching iron core folds riveting power mechanism for testing and method of testing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716330B2 (en) * 2010-09-22 2015-05-13 Jfeスチール株式会社 Evaluation method of electrical steel sheet for laminated iron core
CA3117909C (en) * 2018-11-06 2023-11-07 Jfe Steel Corporation Laminated iron core elastic matrix determination method and vibration analysis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939024A (en) * 1972-08-23 1974-04-11
JPS60257117A (en) * 1984-06-01 1985-12-18 Matsushita Electric Works Ltd Ballast for electric discharge lamp
JPH07211565A (en) * 1994-01-12 1995-08-11 Nippon Steel Corp Apparatus and method for measurement of vibration of transformer iron core
JPH11186062A (en) * 1997-12-24 1999-07-09 Nkk Corp Low-noise laminated core
JP2006100313A (en) * 2004-09-28 2006-04-13 Fuji Electric Holdings Co Ltd Gapped iron core type reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939024A (en) * 1972-08-23 1974-04-11
JPS60257117A (en) * 1984-06-01 1985-12-18 Matsushita Electric Works Ltd Ballast for electric discharge lamp
JPH07211565A (en) * 1994-01-12 1995-08-11 Nippon Steel Corp Apparatus and method for measurement of vibration of transformer iron core
JPH11186062A (en) * 1997-12-24 1999-07-09 Nkk Corp Low-noise laminated core
JP2006100313A (en) * 2004-09-28 2006-04-13 Fuji Electric Holdings Co Ltd Gapped iron core type reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764648A (en) * 2017-11-02 2018-03-06 新界泵业集团股份有限公司 Motor self-clinching iron core folds riveting power mechanism for testing and method of testing

Also Published As

Publication number Publication date
JP2012093333A (en) 2012-05-17
JP4840535B1 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5953686B2 (en) Noise prediction method for transformer
Kitagawa et al. Analysis of structural deformation and vibration of a transformer core by using magnetic property of magnetostriction
Besbes et al. Influence of stator geometry upon vibratory behaviour and electromagnetic performances of switched reluctance motors
Ashigwuike et al. A study of the transduction mechanisms of electromagnetic acoustic transducers (EMATs) on pipe steel materials
Moses et al. Contribution of magnetostriction to transformer noise
Shilyashki et al. Magnetostriction of transformer core steel considering rotational magnetization
JP4840535B1 (en) Method for determining fastening force of laminated iron core and method for producing laminated iron core
JP5716330B2 (en) Evaluation method of electrical steel sheet for laminated iron core
Phway et al. Magnetostriction trend of non-oriented 6.5% Si–Fe
Javorski et al. Frequency characteristics of magnetostriction in electrical steel related to the structural vibrations
Sun et al. Coating methods to increase material damping of compressor blades: Measurements and modeling
KR20110016666A (en) Non-contact type transducer for rod member having multi-loop coil
JP2012068072A (en) Oscillation model determination method for laminate iron core
Penin et al. Grain-oriented steel rings for an experimental comparison of relative magnetostriction and Maxwell's forces effects
Phway et al. Magnetisation-induced mechanical resonance in electrical steels
JP5736634B2 (en) Evaluation method of magnetostriction or noise of magnetic steel sheet for three-phase transformer core excited by sine wave
Ghorbanpour Arani et al. Vibration analysis of rectangular magnetostrictive plate considering thickness variation in two directions
Ahn et al. Dependence between the vibration characteristics of the proton exchange membrane fuel cell and the stack structural feature
WO2023276495A1 (en) Transformer noise performance diagnosis method and noise reduction method
JP2008082778A (en) Method and apparatus for measuring natural frequency of iron core of transformer
JP6090503B2 (en) Noise prediction method for transformer
JP6911631B2 (en) Transformer noise prediction method
Miihlethaler et al. Acoustic noise in inductive power components
JP6690463B2 (en) Iron core structure, transformer, and magnetostriction control method
JPH07111217A (en) Method of estimating noise level of transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744825

Country of ref document: EP

Kind code of ref document: A1