JP4839687B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4839687B2
JP4839687B2 JP2005175599A JP2005175599A JP4839687B2 JP 4839687 B2 JP4839687 B2 JP 4839687B2 JP 2005175599 A JP2005175599 A JP 2005175599A JP 2005175599 A JP2005175599 A JP 2005175599A JP 4839687 B2 JP4839687 B2 JP 4839687B2
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
chip
increasing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005175599A
Other languages
Japanese (ja)
Other versions
JP2006351809A (en
Inventor
良二 横谷
拓磨 橋本
正喜 小林
哲 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005175599A priority Critical patent/JP4839687B2/en
Publication of JP2006351809A publication Critical patent/JP2006351809A/en
Application granted granted Critical
Publication of JP4839687B2 publication Critical patent/JP4839687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、発光素子チップの出射面に光取出増大部材を光結合し、光取出増大部材を通して発光素子チップからの光を取り出すようにした発光装置に関するものである。   The present invention relates to a light emitting device in which a light extraction increasing member is optically coupled to an emission surface of a light emitting element chip, and light from the light emitting element chip is extracted through the light extraction increasing member.

近年、発光ダイオードや有機ELのような発光素子チップにおいて白色系の発光色を得ることが可能になり、また取り出せる光束が大きくなってきたことから、この種の発光素子チップを照明や表示のための光源に用いることが考えられている。また、この種の発光素子チップは、小型かつ低電圧で駆動することができ、しかも長寿命であるという利点も有している。   In recent years, it has become possible to obtain a white emission color in a light-emitting element chip such as a light-emitting diode or an organic EL, and since the luminous flux that can be extracted has increased, this type of light-emitting element chip is used for illumination and display. It is considered to be used as a light source. In addition, this type of light-emitting element chip has an advantage that it can be driven with a small size and a low voltage and has a long life.

この種の発光素子チップを照明や表示に用いるために、発光素子チップの出射面に光取出増大部材を光結合することが考えられている。たとえば、発光素子チップがサファイア基板を有しサファイア基板を通して出射側の媒質である空気中に光を取り出す構成である場合には、全反射を生じる臨界角が小さくなるから、サファイア基板と空気との中間の屈折率を有する光取出増大部材を設けることにより、空気中に直接光を取り出す場合よりも臨界角を大きくし、光の出射効率を高めている(たとえば、特許文献1参照)。
国際公開第03/100873号パンフレット
In order to use this type of light-emitting element chip for illumination or display, it is considered to optically couple a light extraction increasing member to the emission surface of the light-emitting element chip. For example, when the light emitting element chip has a sapphire substrate and the light is extracted through the sapphire substrate into the air, which is the medium on the emission side, the critical angle that causes total reflection is reduced. By providing a light extraction increasing member having an intermediate refractive index, the critical angle is made larger than when light is extracted directly into the air, and the light emission efficiency is increased (for example, see Patent Document 1).
International Publication No. 03/100873 Pamphlet

しかしながら、光取出増大部材を設けたとしても、発光素子チップから出射された光の一部は光取出増大部材の内部で全反射するから、光取出増大部材に入射した光の一部は利用できる光として出射されず、結果的に光エネルギに損失が生じる。すなわち、光取出増大部材を設けて発光素子チップからの出射光を増加させても、光取出増大部材の内部で光に損失が生じるから、高い効率を得られないという問題を有している。   However, even if the light extraction increasing member is provided, a part of the light emitted from the light emitting element chip is totally reflected inside the light extraction increasing member, so that a part of the light incident on the light extraction increasing member can be used. It is not emitted as light, resulting in a loss of light energy. That is, even if the light extraction increasing member is provided to increase the emitted light from the light emitting element chip, there is a problem that high efficiency cannot be obtained because light is lost inside the light extraction increasing member.

本発明は上記事由に鑑みて為されたものであり、その目的は、発光素子チップから出射された光を光取出増大部材で減衰させずに取り出し、光の利用効率を高めた発光装置を提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to provide a light emitting device in which light emitted from a light emitting element chip is extracted without being attenuated by a light extraction increasing member and light utilization efficiency is improved. There is to do.

請求項1の発明は、発光素子チップを収納するチップ収納凹所を有した実装基板と、発光素子チップの出射面と光結合され発光素子チップからの出射光が入射する入射面と入射面から入射した光を出射させる出射面とを有した光取出増大部材と、発光素子チップと光取出増大部材の一部とを封止する封止樹脂とを備え、光取出増大部材の材料は出射側の媒質よりも高屈折率であって、光取出増大部材の出射面上のすべての位置において、当該位置の法線を中心線とし臨界角を中心線と母線とのなす角度とする円錐内に発光素子チップの出射面およびチップ収納凹所の開口面が含まれるように、光取出増大部材の出射面の形状が設定され、さらに封止樹脂は光取出増大部材の屈折率以上の材料が選択され、チップ収納凹所の開口面は前記光取出増大部材の入射面に対向して光取出増大部材により閉塞され、チップ収納凹所の内側面は発光素子チップからの出射光を反射させて光取出増大部材の入射面に入射させるように底面から開口に向かって昇り傾斜する反射面を形成していることを特徴とする。 According to the first aspect of the present invention, there is provided a mounting substrate having a chip housing recess for housing the light emitting element chip, an incident surface on which the light emitted from the light emitting element chip is incident and the incident surface. A light extraction increasing member having an emission surface for emitting incident light, and a sealing resin for sealing the light emitting element chip and a part of the light extraction increasing member, the material of the light extraction increasing member being the emission side In all the positions on the light exit surface of the light extraction increasing member, the refractive index is higher than that of the medium, and the normal of the position is the center line and the critical angle is the angle between the center line and the generatrix. The shape of the exit surface of the light extraction increasing member is set so that the exit surface of the light emitting element chip and the opening surface of the chip housing recess are included, and the sealing resin is selected from a material with a refractive index higher than that of the light extraction increasing member. is, opening of the chip storage recess the light extraction Opposite the entrance surface of the large member, it is blocked by the light extraction increasing member, and the inner surface of the chip housing recess is reflected from the bottom surface so as to reflect the emitted light from the light emitting element chip and enter the incident surface of the light extraction increasing member. A reflecting surface that rises and inclines toward the opening is formed .

この構成によれば、光取出増大部材の出射面のどの位置においても、入射面から入射した光の進行方向が出射面の法線に対してなす角度が臨界角以下になるから、光取出増大部材の出射面において実質的に全反射を生じることがなく、多重反射による光の減衰や消滅を生じることがないから、光取出増大部材から光を取り出すことができ、結果的に光の利用効率が高くなる。また、光の利用効率が高いから、取り出す光束に対して発光素子チップのサイズを小型にすることができる。   According to this configuration, at any position on the light exit surface of the light extraction increasing member, the angle formed by the traveling direction of light incident from the incident surface with respect to the normal of the light output surface is less than the critical angle. There is virtually no total reflection on the exit surface of the member, and no attenuation or extinction of light due to multiple reflections, so light can be extracted from the light extraction increasing member, resulting in light utilization efficiency. Becomes higher. Further, since the light utilization efficiency is high, the size of the light emitting element chip can be reduced with respect to the extracted light flux.

さらに、この構成によれば、チップ収納凹所を設けたことにより発光素子チップから側方に出射した光を反射面で反射させて光取出増大部材に入射させることができ、結果的に効率の向上につながる。また、光取出増大部材をチップ収納凹所の開口の周囲に載せることができ、結果的に光取出増大部材をがたつかないように取り付けることができる。 Furthermore, according to this configuration, by providing the chip housing recess, the light emitted from the light emitting element chip to the side can be reflected by the reflecting surface and incident on the light extraction increasing member. It leads to improvement. Further, the light extraction increasing member can be placed around the opening of the chip housing recess, and as a result, the light extraction increasing member can be attached so as not to rattle.

請求項2の発明では、請求項1の発明において、前記チップ収納凹所に形成した反射面は二次曲面であって、発光素子チップの側面付近に焦点が位置するように設定されていることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the invention, the reflecting surface formed in the chip housing recess is a quadratic curved surface, and is set so that the focal point is located near the side surface of the light emitting element chip. It is characterized by.

この構成によれば、チップ収納凹所の反射面で反射された光を光取出増大部材の入射面に対して略直交する方向から入射させることができ、光取出増大部材の入射面での全反射を抑制し、このことによっても光の取出効率が高くなる。   According to this configuration, the light reflected by the reflecting surface of the chip housing recess can be incident from a direction substantially orthogonal to the incident surface of the light extraction increasing member, and all the light incident on the incident surface of the light extraction increasing member can be made incident. Reflection is suppressed, and this also increases the light extraction efficiency.

請求項3の発明では、請求項1または請求項2の発明において、前記チップ収納凹所は、底面が前記発光素子チップと相似形であることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the chip housing recess has a bottom surface similar to the light emitting element chip.

この構成によれば、発光素子チップとチップ収納凹所の底面とが相似形であることにより、発光素子チップと反射面との距離を小さくすることができ、発光素子チップの側面からの出射光をチップ収納凹所の底面で反射させることなく反射面で反射させ、大部分の光を1回の反射でチップ収納凹所から取り出すことが可能になる。その結果、発光素子チップから出射した光の利用効率が高くなる。 According to this configuration, since the light emitting element chip and the bottom surface of the chip housing recess are similar, the distance between the light emitting element chip and the reflecting surface can be reduced, and the emitted light from the side surface of the light emitting element chip can be reduced. Can be reflected by the reflecting surface without being reflected by the bottom surface of the chip housing recess, and most of the light can be extracted from the chip housing recess by a single reflection. As a result, the utilization efficiency of light emitted from the light emitting device chip may turn high.

本発明の構成によれば、光取出増大部材の出射面において実質的に全反射を生じないから、多重反射による光の減衰や消滅を生じさせずに光取出増大部材から光を取り出すことができ、結果的に光の利用効率が高くなるという利点を有する。その上、チップ収納凹所を設けたことにより発光素子チップから側方に出射した光を反射面で反射させて光取出増大部材に入射させることができ、結果的に効率の向上につながる。また、光取出増大部材をチップ収納凹所の開口の周囲に載せることができ、結果的に光取出増大部材をがたつかないように取り付けることができる。 According to the configuration of the present invention, since there is substantially no total reflection on the exit surface of the light extraction increasing member, light can be extracted from the light extraction increasing member without causing attenuation or extinction of light due to multiple reflection. As a result, there is an advantage that the light utilization efficiency is increased. In addition, by providing the chip housing recess, the light emitted laterally from the light emitting element chip can be reflected by the reflecting surface and incident on the light extraction increasing member, resulting in improved efficiency. Further, the light extraction increasing member can be placed around the opening of the chip housing recess, and as a result, the light extraction increasing member can be attached so as not to rattle.

(実施形態1)
本実施形態は、図1に示すように、実装基板を兼ねたパッケージ1に、発光ダイオードからなる発光素子チップ2と、発光素子チップ2の出射面に光結合され発光素子チップ2からの光の取出量を増加させるとともに屈折を利用して配光を制御する光取出増大部材3とを収納した構成を有する。パッケージ1の一面には、発光素子チップ2を収納する収納凹所11が開口し、収納凹所11の開口面は波長変換部材4で覆われる。
(Embodiment 1)
In the present embodiment, as shown in FIG. 1, a light-emitting element chip 2 made of a light-emitting diode is optically coupled to a package 1 that also serves as a mounting substrate, and an emission surface of the light-emitting element chip 2. The light extraction increasing member 3 that increases the extraction amount and controls the light distribution using refraction is housed. An accommodation recess 11 for accommodating the light emitting element chip 2 is opened on one surface of the package 1, and the opening surface of the accommodation recess 11 is covered with the wavelength conversion member 4.

収納凹所11の底面には薄膜形成技術または厚膜形成技術による配線パターンが形成されており、発光素子チップ2が配線パターンに対してフリップチップ実装される。収納凹所11の内側面は、収納凹所11の底面から開口面に向かって昇り傾斜するテーパ状であって、発光素子チップ2から出射した光は、光取出増大部材3で屈折するだけではなく収納凹所11の内側面で反射されることによっても配光が制御される。   A wiring pattern by a thin film forming technique or a thick film forming technique is formed on the bottom surface of the storage recess 11, and the light emitting element chip 2 is flip-chip mounted on the wiring pattern. The inner surface of the storage recess 11 has a tapered shape that rises and inclines from the bottom surface of the storage recess 11 toward the opening surface, and the light emitted from the light emitting element chip 2 is not simply refracted by the light extraction increasing member 3. The light distribution is also controlled by being reflected on the inner surface of the storage recess 11.

発光素子チップ2は、絶縁基板であるサファイア基板にGaNからなる半導体層を積層した発光ダイオードチップであって、サファイア基板を通して光を取り出す。ここに、サファイア基板の一面である出射面は正方形状に形成されている。   The light emitting element chip 2 is a light emitting diode chip in which a semiconductor layer made of GaN is stacked on a sapphire substrate, which is an insulating substrate, and takes out light through the sapphire substrate. Here, the emission surface, which is one surface of the sapphire substrate, is formed in a square shape.

光取出増大部材3は、発光素子チップ2の出射面に密着する入射面3aを平面とし、光を取り出す出射面3bを凸曲面とした平凸レンズの形状を有している。発光素子チップ2に用いるサファイア基板は屈折率が比較的大きく臨界角が小さいものであるから、発光素子チップ2から空気中に光を直接取り出すと、サファイア基板内での全反射により出射効率が低下する。そこで、光取出増大部材3を配置しているのであって、光取出増大部材3としてサファイア基板と空気との中間の屈折率を持つ材料を選択することにより、サファイア基板における臨界角を大きくし出射効率を高めている。本実施形態では、光取出増大部材3には屈折率が1.41である透明なシリコン樹脂を用いている。また、光取出増大部材3の入射面3aは円形であって、発光素子チップ2の出射面の対角線の寸法2Lに対して、光取出増大部材3の入射面3aの直径φは1.5倍(φ=3L)に設計されている。ここに、発光素子チップ2の出射面の中心C1と光取出増大部材3の入射面3aの中心C2とは一致させてある。   The light extraction increasing member 3 has the shape of a plano-convex lens in which the incident surface 3a that is in close contact with the emission surface of the light emitting element chip 2 is a flat surface, and the emission surface 3b that extracts light is a convex curved surface. Since the sapphire substrate used for the light-emitting element chip 2 has a relatively large refractive index and a small critical angle, when light is directly extracted from the light-emitting element chip 2 into the air, the emission efficiency decreases due to total reflection in the sapphire substrate. To do. Therefore, the light extraction increasing member 3 is arranged, and by selecting a material having an intermediate refractive index between the sapphire substrate and air as the light extraction increasing member 3, the critical angle in the sapphire substrate is increased and emitted. Increases efficiency. In the present embodiment, the light extraction increasing member 3 is made of a transparent silicon resin having a refractive index of 1.41. The incident surface 3a of the light extraction increasing member 3 is circular, and the diameter φ of the incident surface 3a of the light extraction increasing member 3 is 1.5 times the diagonal dimension 2L of the emission surface of the light emitting element chip 2. (Φ = 3L). Here, the center C1 of the emission surface of the light emitting element chip 2 and the center C2 of the incident surface 3a of the light extraction increasing member 3 are matched.

波長変換部材4は、シリコン樹脂シートに蛍光物質を分散させたものであって、発光素子チップ2から出射された光の波長を蛍光物質により変換し、発光素子チップ2の発光色と波長変換部材4で変換された波長の光との混色光を取り出すために設けられている。たとえば、発光素子チップ2として青色系の発光色を有する発光ダイオードを用い、波長変換部材4に黄色系の蛍光物質を用いることにより白色光を取り出すことができる。ここに、光取出増大部材3と波長変換部材4との間には間隙を形成してあり、光取出部材3の出射面3bが略全面に亘って空気に接するようにしてある。   The wavelength conversion member 4 is obtained by dispersing a fluorescent material in a silicon resin sheet, converts the wavelength of light emitted from the light emitting element chip 2 with the fluorescent material, and the emission color of the light emitting element chip 2 and the wavelength conversion member. 4 is provided for extracting mixed-color light with the light having the wavelength converted in step 4. For example, white light can be extracted by using a light emitting diode having a blue emission color as the light emitting element chip 2 and using a yellow fluorescent material for the wavelength conversion member 4. Here, a gap is formed between the light extraction increasing member 3 and the wavelength conversion member 4 so that the emission surface 3b of the light extraction member 3 is in contact with air over substantially the entire surface.

収納凹所11の底部には封止樹脂5が充填されており、発光素子チップ2と光取出増大部材3の一部とが封止される。封止樹脂5には、屈折率が光取出増大部材3の屈折率以上の材料が選択される。   The bottom of the storage recess 11 is filled with a sealing resin 5 so that the light emitting element chip 2 and a part of the light extraction increasing member 3 are sealed. A material having a refractive index equal to or higher than the refractive index of the light extraction increasing member 3 is selected for the sealing resin 5.

次に、本実施形態における光取出増大部材3の出射面3bの形状について説明する。光取出増大部材3の出射面3bは、発光素子チップ2から出射された光が光取出増大部材3の内面で全反射を生じないように設計される。ここに、光取出増大部材3には屈折率が1.41のシリコン樹脂を用いているから、空気の屈折率を1とすれば、臨界角は略45°(≒sin−1(1/1.41))になる。そこで、本実施形態では、出射面3bのすべての部位において、発光素子チップ2を見込む角が当該位置の法線に対して臨界角(つまり45°)の範囲内になるように出射面3bの形状を設定している。 Next, the shape of the emission surface 3b of the light extraction increasing member 3 in this embodiment will be described. The emission surface 3 b of the light extraction increasing member 3 is designed so that the light emitted from the light emitting element chip 2 does not cause total reflection on the inner surface of the light extraction increasing member 3. Here, since the light extraction increasing member 3 is made of silicon resin having a refractive index of 1.41, if the refractive index of air is 1, the critical angle is about 45 ° (≈sin −1 (1/1). .41)). Therefore, in the present embodiment, the angle of the light emitting element chip 2 in all the parts of the light emitting surface 3b is within the critical angle (that is, 45 °) range with respect to the normal to the position. The shape is set.

すなわち、図2に示すように、光取出増大部材3の出射面3bにおける任意の点Pに対して発光素子チップ2から入射する光の入射角(点Pに立てた法線に対して光が入射する角度)が臨界角θよりも小さければ、当該光は光取出増大部材3の外部に取り出すことができる。したがって、点Pに立てた法線Nを中心線として中心線と母線とのなす角度がθである円錐を設定し、この円錐内に発光素子チップ2が位置するように出射面3bを設計している。つまり、出射面3bの必要条件は、発光素子チップ2の対角線の両端から点Pを見込む角度αと臨界角θとの関係がα<2θとなることである。   That is, as shown in FIG. 2, the incident angle of light incident from the light emitting element chip 2 with respect to an arbitrary point P on the emission surface 3b of the light extraction increasing member 3 (the light is incident on the normal line set at the point P). If the incident angle is smaller than the critical angle θ, the light can be extracted outside the light extraction increasing member 3. Therefore, a cone having an angle θ formed by the center line and the generatrix is set with the normal line N standing at the point P as the center line, and the emission surface 3b is designed so that the light emitting element chip 2 is located in the cone. ing. That is, the necessary condition for the emission surface 3b is that the relationship between the angle α at which the point P is viewed from both ends of the diagonal line of the light emitting element chip 2 and the critical angle θ is α <2θ.

光取出増大部材3の出射面3bを球面とする場合について図3を用いて説明する。発光素子チップ2の中心C1と光取出増大部材3の入射面3aの中心C2とは一致させているから、出射面3bが球面であって入射面3aの中心C2が当該球面の中心であるときには、出射面3bの任意の点Pに立てた法線Nは、発光素子チップ2の中心C1(入射面3aの中心C2)を通る。そこで、発光素子チップ2の出射面の対角線の延長方向をx軸方向とし、発光素子チップ2の出射面の中心C1に立てた法線の方向をy軸方向とするxy平面を考える。   A case where the emission surface 3b of the light extraction increasing member 3 is a spherical surface will be described with reference to FIG. Since the center C1 of the light emitting element chip 2 and the center C2 of the incident surface 3a of the light extraction increasing member 3 coincide with each other, when the exit surface 3b is a spherical surface and the center C2 of the incident surface 3a is the center of the spherical surface. The normal line N standing at an arbitrary point P on the exit surface 3b passes through the center C1 of the light emitting element chip 2 (center C2 of the entrance surface 3a). Therefore, an xy plane is considered in which the extension direction of the diagonal line of the emission surface of the light emitting element chip 2 is the x-axis direction, and the normal direction standing at the center C1 of the emission surface of the light emitting element chip 2 is the y-axis direction.

xy平面内で出射面3bの上の任意の点Pと中心C1とを通る直線を中心線とし、中心線と母線とのなす角度が臨界角θである円錐を設定し、xy平面内で当該円錐の母線が光取出増大部材3の入射面3aと交差する点をQ1,Q2(図3の例ではQ2は得られない)とする。点Q1,Q2のx座標をx1,x2とすれば、設定した円錐の中に発光素子チップ2が含まれる条件は、|x1|>Lかつ|x2|>Lである。いま、点Pから発光素子チップ2の中心C1を見込む直線(つまり、法線N)とx軸とがなす角度をρとすれば、点Pの座標は(1.5L・cosρ,1.5L・sinρ)である。一方、点Pと点Q1とを結ぶ直線の傾きは(ρ+θ)であり、点Pと点Q2とを結ぶ直線の傾きは(ρ−θ)であるから、点Pと点Q1とを結ぶ直線の式と、点Pと点Q2とを結ぶ直線の式とは、それぞれ次式で表される。
y−(1.5L・sinρ)=(θ+ρ){x−(1.5L・cosρ)}
y−(1.5L・sinρ)=(θ−ρ){x−(1.5L・cosρ)}
点Q1,Q2についてはx座標が必要であるから、y=0とおけば、x1,x2は次式のように表される。
x1=(1.5L・cosρ)−(1.5L・sinρ)/(θ+ρ)
x2=(1.5L・cosρ)−(1.5L・sinρ)/(θ−ρ)
この条件では、角度ρと座標x1,x2との関係は、それぞれ表1、表2のようになる。
A straight line passing through an arbitrary point P on the exit surface 3b and the center C1 in the xy plane is set as a center line, and a cone whose angle formed by the center line and the generatrix is a critical angle θ is set. The points at which the cone bus intersects the incident surface 3a of the light extraction increasing member 3 are defined as Q1 and Q2 (Q2 cannot be obtained in the example of FIG. 3). If the x-coordinates of the points Q1 and Q2 are x1 and x2, the condition that the light emitting element chip 2 is included in the set cone is | x1 |> L and | x2 |> L. Now, if the angle formed by the straight line (that is, the normal line N) from the point P and the x axis is ρ, the coordinate of the point P is (1.5L · cos ρ, 1.5L Sin ρ). On the other hand, since the slope of the straight line connecting the point P and the point Q1 is (ρ + θ) and the slope of the straight line connecting the point P and the point Q2 is (ρ−θ), the straight line connecting the point P and the point Q1. And a straight line connecting the point P and the point Q2 are respectively expressed by the following expressions.
y− (1.5 L · sin ρ) = (θ + ρ) {x− (1.5 L · cos ρ)}
y− (1.5 L · sin ρ) = (θ−ρ) {x− (1.5 L · cos ρ)}
Since the x-coordinate is necessary for the points Q1 and Q2, if y = 0, x1 and x2 are expressed as follows.
x1 = (1.5 L · cos ρ) − (1.5 L · sin ρ) / (θ + ρ)
x2 = (1.5 L · cos ρ) − (1.5 L · sin ρ) / (θ−ρ)
Under this condition, the relationship between the angle ρ and the coordinates x1 and x2 is as shown in Tables 1 and 2, respectively.

Figure 0004839687
Figure 0004839687

Figure 0004839687
Figure 0004839687

すなわち、座標x1,x2の絶対値はすべての角度ρについてLより大きいから、発光素子チップ2から出射し光取出増大部材3に入射した光は、光取出増大部材3の出射面3bにおいて全反射することなく外部に取り出すことができる。なお、座標x2を求めるにあたっては、角度ρについてρ≦θの範囲では座標x2を求めることができないから、図3の位置関係であれば座標x2は90°≧ρ>θの範囲で求めればよい。   That is, since the absolute values of the coordinates x1 and x2 are larger than L for all angles ρ, the light emitted from the light emitting element chip 2 and incident on the light extraction increasing member 3 is totally reflected on the emission surface 3b of the light extraction increasing member 3. It can be taken out without doing. In obtaining the coordinate x2, since the coordinate x2 cannot be obtained in the range of ρ ≦ θ with respect to the angle ρ, the coordinate x2 may be obtained in the range of 90 ° ≧ ρ> θ in the positional relationship of FIG. .

なお、座標x1,x2を求める式において1.5Lを未知数とし、すべての角度ρにおいて座標x1,x2の絶対値がLより大きくなる条件を求めると、1.415Lになる。したがって、光取出増大部材3の入射面3aの直径は1.42L以上であればよいと言える。   In the equation for obtaining the coordinates x1 and x2, 1.5L is an unknown, and when the condition that the absolute values of the coordinates x1 and x2 are greater than L at all angles ρ is obtained, it is 1.415L. Therefore, it can be said that the diameter of the incident surface 3a of the light extraction increasing member 3 may be 1.42L or more.

上述の例では光取出増大部材3の入射面3aと発光素子チップ2の出射面をともに平面として密着させているが、光取出増大部材3の入射面3aが平面でなくとも、封止樹脂5として光取出増大部材3と屈折率が等しい材料を選択すれば、光取出増大部材3の入射面3aと発光素子チップ2の出射面との隙間に封止樹脂5が充填されるから、上述した構成と同様に機能する。   In the above-described example, the incident surface 3a of the light extraction increasing member 3 and the emission surface of the light emitting element chip 2 are both in close contact with each other as a flat surface, but the sealing resin 5 may be used even if the incident surface 3a of the light extraction increasing member 3 is not flat. If a material having a refractive index equal to that of the light extraction increasing member 3 is selected, the sealing resin 5 is filled in the gap between the incident surface 3a of the light extraction increasing member 3 and the emission surface of the light emitting element chip 2. Works the same as the configuration.

(実施形態2)
実施形態1では、光取出増大部材3の出射面3bを球面とした例を示したが、本実施形態は、図4に示すように、光取出増大部材3の出射面3bのうち発光素子チップ2の出射面の中心線に立てた法線方向において発光素子チップ2の出射面から規定の距離範囲内については、前記中心線に直交する断面が同直径の円形になるように形成してある。つまり、光取出増大部材3の一部を円柱状とし、残りの部分を球の一部としたものである。さらに言い換えると、半球をなす球面の一部を円筒で切り取った形状の出射面3bを有している。以下では、出射面3bのうち球面の一部である部分を主面3cと呼び、円柱状の部分を補助面3dと呼ぶ。
(Embodiment 2)
In the first embodiment, an example in which the emission surface 3b of the light extraction increasing member 3 is a spherical surface is shown. However, in the present embodiment, as shown in FIG. In the normal direction standing on the center line of the exit surface 2, the cross section perpendicular to the center line is formed in a circle having the same diameter within a specified distance range from the exit surface of the light emitting element chip 2. . That is, a part of the light extraction increasing member 3 is a columnar shape, and the remaining part is a part of a sphere. In other words, it has an emission surface 3b having a shape obtained by cutting a part of a spherical surface forming a hemisphere with a cylinder. Below, the part which is a part of spherical surface among the output surfaces 3b is called the main surface 3c, and the cylindrical part is called the auxiliary surface 3d.

補助面3dの範囲は、主面3cと補助面3dとの境界と発光素子チップ2の出射面の頂点(つまり、対角線の一端)とを結ぶ直線が入射面3aに対してなす角度λが臨界角以下になるように設定する。したがって、発光素子チップ2の出射面の対角線の長さを2Lとし、光取出増大部材3の入射面3aの直径を2.88Lとすれば、発光素子チップ2の出射面に立てた法線の方向において主面3cと補助面3dとの境界と入射面3aとの距離は0.44Lになる。言い換えると、出射面3bにおいて入射面3aから規定の距離範囲内の部位に補助面3dが形成される。   As for the range of the auxiliary surface 3d, an angle λ formed by a straight line connecting the boundary between the main surface 3c and the auxiliary surface 3d and the vertex of the emission surface of the light emitting element chip 2 (that is, one end of the diagonal line) with respect to the incident surface 3a is critical. Set it to be less than the corner. Therefore, if the length of the diagonal line of the emission surface of the light emitting element chip 2 is 2L and the diameter of the incident surface 3a of the light extraction increasing member 3 is 2.88L, In the direction, the distance between the boundary between the main surface 3c and the auxiliary surface 3d and the incident surface 3a is 0.44L. In other words, the auxiliary surface 3d is formed at a portion within a specified distance range from the incident surface 3a on the emission surface 3b.

上述した条件では、発光素子チップ2からのすべての出射光が補助面3dに立てた法線に対して発光素子チップ2側から入射することになるから、出射面3dから出射する光は法線に対して発光素子チップ2から離れる向きに屈折する。また、発光素子チップ2から補助面3dに入射した光は必ず臨界角以下になるから、全反射による損失を防止できるのはもちろんのこと、発光素子チップ2から補助面3dに入射する光は、補助面3dに代えて球面を用いる場合に比較すると、入射角が臨界角に近くなり、結果的に発光素子チップ2の出射面における法線方向との角度差を小さくすることができる。また、補助面3dを設けない場合よりも入射面3aのサイズが小さくなるから、小型化にもつながる。   Under the conditions described above, since all the emitted light from the light emitting element chip 2 is incident from the light emitting element chip 2 side with respect to the normal line standing on the auxiliary surface 3d, the light emitted from the emission surface 3d is normal. Refracts in a direction away from the light emitting element chip 2. In addition, since the light incident on the auxiliary surface 3d from the light emitting element chip 2 is always below the critical angle, the light incident on the auxiliary surface 3d from the light emitting element chip 2 can be prevented as well as the loss due to total reflection can be prevented. Compared to the case where a spherical surface is used instead of the auxiliary surface 3d, the incident angle is close to the critical angle, and as a result, the angle difference from the normal direction on the exit surface of the light emitting element chip 2 can be reduced. In addition, since the size of the incident surface 3a is smaller than when the auxiliary surface 3d is not provided, this also leads to miniaturization.

言い換えると、光取出増大部材3において入射面3aに近い領域では、発光素子チップ2から出射面3bに入射する光の入射角は小さくなるから、臨界角に対する角度の余裕が大きくなる。その一方で、入射角が小さくなれば出射角も法線方向に近くなるから、発光素子チップ2の前方ではなく収納凹所11の内側面に向かう方向に反射される。これに対して本実施形態の構成を採用すれば、発光素子チップ2の前方に向かう光量が増加し、収納凹所11の内側面で反射される光束が減少するから、反射損失が少なくなり、パッケージ1から取り出す光量を増加させることができる。つまり、パッケージ1に設けた収納凹所11の開口面積を小さくすることができ、結果的にパッケージ1の小型化が期待できる。また、収納凹所11の開口面積が小さくなるから、波長変換部材4のサイズも小さくすることができる。   In other words, in the region near the incident surface 3a in the light extraction increasing member 3, the incident angle of the light incident from the light emitting element chip 2 to the output surface 3b is small, so that the angle margin with respect to the critical angle is large. On the other hand, if the incident angle is reduced, the emission angle is also close to the normal direction, so that the light is reflected not in front of the light emitting element chip 2 but in the direction toward the inner surface of the housing recess 11. On the other hand, if the configuration of the present embodiment is adopted, the amount of light directed toward the front of the light emitting element chip 2 is increased, and the light flux reflected on the inner surface of the storage recess 11 is reduced, so that the reflection loss is reduced. The amount of light extracted from the package 1 can be increased. That is, the opening area of the storage recess 11 provided in the package 1 can be reduced, and as a result, the package 1 can be expected to be downsized. Moreover, since the opening area of the storage recess 11 is reduced, the size of the wavelength conversion member 4 can also be reduced.

なお、補助面3dは光取出増大部材3の入射面3aに直交する面である必要はなく、発光素子チップ2の出射面における法線方向に直交する断面において、入射面3aに近付くほど断面積が小さくなる形状であってもよい。この場合、断面積の変化率は一定(つまり、発光素子チップ2の出射面における法線を含む断面において直線となる形状)であってもよいし、また変化率が一定ではなく凸曲面になる形状であってもよい。   The auxiliary surface 3d does not have to be a surface orthogonal to the incident surface 3a of the light extraction increasing member 3, and the cross-sectional area of the cross section perpendicular to the normal direction on the emission surface of the light emitting element chip 2 is closer to the incident surface 3a. The shape may be small. In this case, the change rate of the cross-sectional area may be constant (that is, a shape that is a straight line in the cross-section including the normal line on the emission surface of the light emitting element chip 2), or the change rate is not constant but a convex curved surface. It may be a shape.

また、実施形態1,2において、光取出増大部材3の出射面3bである球面の中心を、入射面3aの中心に一致させているが、この条件も必須ではない。たとえば、発光素子チップ2の出射面の法線方向において、入射面3aと出射面3bとの距離を球面の半径以下に設定してもよい。   In the first and second embodiments, the center of the spherical surface that is the exit surface 3b of the light extraction increasing member 3 is made to coincide with the center of the entrance surface 3a, but this condition is not essential. For example, the distance between the entrance surface 3a and the exit surface 3b in the normal direction of the exit surface of the light emitting element chip 2 may be set to be equal to or less than the radius of the spherical surface.

(実施形態3)
本実施形態は、図5に示すように、収納凹所11の底面にチップ収納凹所12を形成し、チップ収納凹所12に発光素子チップ2を配置したものである。チップ収納凹所12は、底面および開口面が発光素子チップ2の出射面と相似形状に形成される(図5(b)参照)。とくに、チップ収納凹所12の底面は発光素子チップ2の出射面と略等しいサイズに形成される。チップ収納凹所12は正方形状に開口する。また、チップ収納凹所12の開口面における最大寸法は、光取出増大部材3の入射面3aの直径よりは小さくしてある。したがって、発光素子チップ2は封止樹脂5とともにチップ収納凹所12に収納されるが、光取出増大部材3はチップ収納凹所12の開口を閉塞するように配置される。ここに、チップ収納凹所12の開口面の最大幅を2Lとするときに、光取出増大部材3の入射面3aの直径が3Lとなるように寸法関係が設定されている。したがって、本実施形態の発光素子チップ2は、実施形態1,2の発光素子チップ2よりは小型になる。
(Embodiment 3)
In the present embodiment, as shown in FIG. 5, a chip housing recess 12 is formed on the bottom surface of the housing recess 11, and the light emitting element chip 2 is arranged in the chip housing recess 12. The chip housing recess 12 has a bottom surface and an opening surface that are similar to the emission surface of the light emitting element chip 2 (see FIG. 5B). In particular, the bottom surface of the chip housing recess 12 is formed to have a size substantially equal to the emission surface of the light emitting element chip 2. The chip storage recess 12 opens in a square shape. The maximum dimension of the opening surface of the chip receiving recess 12 is smaller than the diameter of the incident surface 3 a of the light extraction increasing member 3. Therefore, the light emitting element chip 2 is housed in the chip housing recess 12 together with the sealing resin 5, but the light extraction increasing member 3 is disposed so as to close the opening of the chip housing recess 12. Here, when the maximum width of the opening surface of the chip housing recess 12 is 2L, the dimensional relationship is set so that the diameter of the incident surface 3a of the light extraction increasing member 3 is 3L. Therefore, the light emitting element chip 2 of the present embodiment is smaller than the light emitting element chips 2 of the first and second embodiments.

チップ収納凹所12は収納凹所11と同様に内側面がテーパ状に形成されている。つまり、チップ収納凹所12の内側面は底面から開口に向かって昇り傾斜する。この内側面は反射面12aであって、発光素子チップ2において出射面以外から出射した光を反射面12aにより前方に変向することができるようになっている。この構成では、チップ収納凹所12の開口面が実質的な発光面であって、この発光面に対して実施形態1,2のように光取出増大部材3の入射面3aが密着されるのである。チップ収納凹所12の開口面を発光面(つまり、光の出射面)とみなすことにより、実質的に実施形態1,2と同様に機能する。   The chip receiving recess 12 has an inner surface formed in a taper shape like the storing recess 11. That is, the inner side surface of the chip storage recess 12 rises and inclines from the bottom surface toward the opening. The inner surface is a reflecting surface 12a, and light emitted from other than the emitting surface in the light emitting element chip 2 can be redirected forward by the reflecting surface 12a. In this configuration, the opening surface of the chip receiving recess 12 is a substantial light emitting surface, and the incident surface 3a of the light extraction increasing member 3 is in close contact with the light emitting surface as in the first and second embodiments. is there. By considering the opening surface of the chip housing recess 12 as the light emitting surface (that is, the light emitting surface), the chip housing recess 12 functions substantially the same as in the first and second embodiments.

本実施形態では、発光素子チップ2において出射面以外から出射する光も光取出増大部材3に入力するから、光の利用効率が実施形態1,2よりも高くなる。しかも、実施形態1,2の構成よりも発光素子チップ2を小型化することが可能である。他の構成および動作は上述した実施形態と同様である。   In the present embodiment, since light emitted from other than the emission surface in the light emitting element chip 2 is also input to the light extraction increasing member 3, the light use efficiency is higher than those in the first and second embodiments. In addition, it is possible to reduce the size of the light emitting element chip 2 as compared with the configurations of the first and second embodiments. Other configurations and operations are the same as those of the above-described embodiment.

チップ収納凹所12の内側面である反射面12aの形状は、図5に示すようにチップ収納凹所12の開口面に直交する方向を含む断面において直線状になる形状(円錐面の一部)のほか、図6のように同断面において放物線となる凹曲面(放物面の一部)や双曲面、球面、楕円面などの二次曲面を採用することができる。図6の形状では、反射面12aが放物面の一部を形成するから、発光素子チップ2から出射した光をほぼ同じ方向に変向することができ、円錐面を用いる場合よりも光の取出効率を高めることができる。要するに、発光素子チップ2の側面からの出射光を、光取出増大部材3の入射面3aに略直交する向きに変向することができる形状を採用することにより、光取出増大部材3への光の入射効率を高めることができる。反射面12aとして放物面や楕円面のような二次曲面を採用する場合には、発光素子チップ2の側面が焦点の位置付近になるように設計する。   The shape of the reflecting surface 12a, which is the inner side surface of the chip receiving recess 12, is a shape that is linear in a cross section including a direction orthogonal to the opening surface of the chip storing recess 12 as shown in FIG. In addition, a concave curved surface (part of a paraboloid), a hyperboloid, a spherical surface, an elliptical surface, or the like can be employed as shown in FIG. In the shape of FIG. 6, since the reflecting surface 12a forms a part of the paraboloid, the light emitted from the light emitting element chip 2 can be redirected in substantially the same direction, and the light is emitted more than when the conical surface is used. The extraction efficiency can be increased. In short, by adopting a shape that can change the emitted light from the side surface of the light emitting element chip 2 in a direction substantially orthogonal to the incident surface 3 a of the light extraction increasing member 3, light to the light extraction increasing member 3 is obtained. The incident efficiency can be increased. When a quadratic curved surface such as a parabolic surface or an elliptical surface is adopted as the reflecting surface 12a, the side surface of the light emitting element chip 2 is designed to be near the focal position.

本実施形態の構成では、チップ収納凹所12の開口面が発光素子チップ2の出射面と相似形状に形成されており、またチップ収納凹所12の深さ方向の各部位においても開口面に平行な断面が発光素子チップ2の出射面と相似形状に形成されている。したがって、発光素子チップ2と反射面12aとの距離を近付けることができることにより、チップ収納凹所12の中での多重反射を防止することができ、発光素子チップ2からチップ収納凹所12の中に出射された光でも反射面12aで1回反射されるだけで光取出増大部材3に導入されるから、反射を繰り返すことによる光の損失を防止することができる。また、チップ収納凹所12のサイズを発光素子チップ2のサイズに近付けることができるから、チップ収納凹所12を小さくすることができ、結果的にパッケージ1のサイズの小型化につながる。   In the configuration of the present embodiment, the opening surface of the chip housing recess 12 is formed in a shape similar to the emission surface of the light emitting element chip 2, and also in each part in the depth direction of the chip housing recess 12. A parallel cross section is formed in a shape similar to the emission surface of the light emitting element chip 2. Therefore, since the distance between the light emitting element chip 2 and the reflecting surface 12a can be reduced, multiple reflections in the chip housing recess 12 can be prevented, and the light emitting element chip 2 to the chip housing recess 12 can be prevented. Since the light emitted to the light is only reflected once by the reflecting surface 12a and introduced into the light extraction increasing member 3, it is possible to prevent light loss due to repeated reflection. In addition, since the size of the chip storage recess 12 can be made close to the size of the light emitting element chip 2, the chip storage recess 12 can be reduced, resulting in a reduction in the size of the package 1.

(実施形態4)
上述した各実施形態では、発光素子チップ2がフリップチップ実装される例を示したが、本実施形態は図7に示すように、実施形態3と同様にチップ収納凹所12を形成するとともに、チップ収納凹所12の底面にサファイア基板を固着したフェイスアップ実装を行い、ボンディングワイヤ13を用いて配線パターン(図示せず)に電気的に接続したものである。チップ収納凹所12の深さはボンディングワイヤ13がチップ収納凹所12の開口面から突出しないように設定される。発光素子チップ2から出射した光はチップ収納凹所12に充填された封止樹脂5を通して光取出増大部材3の入射面3aに導入される。つまり、チップ収納凹所12の開口面は実施形態1における発光素子チップ2の出射面と実質的に同様の機能を持つ。他の構成および動作は上述した他の実施形態と同様である。
(Embodiment 4)
In each of the above-described embodiments, an example in which the light-emitting element chip 2 is flip-chip mounted has been shown. However, in the present embodiment, as shown in FIG. A face-up mounting is performed in which a sapphire substrate is fixed to the bottom surface of the chip housing recess 12 and electrically connected to a wiring pattern (not shown) using a bonding wire 13. The depth of the chip storage recess 12 is set so that the bonding wire 13 does not protrude from the opening surface of the chip storage recess 12. The light emitted from the light emitting element chip 2 is introduced into the incident surface 3 a of the light extraction increasing member 3 through the sealing resin 5 filled in the chip housing recess 12. That is, the opening surface of the chip housing recess 12 has substantially the same function as the light emitting surface of the light emitting element chip 2 in the first embodiment. Other configurations and operations are the same as those of the other embodiments described above.

(実施形態5)
上述した各実施形態では、1個の発光素子チップ2に1個の光取出増大部材3を対応付けていたが、本実施形態は、図8に示すように、1個の光取出増大部材3に対して複数個の発光素子チップ2を配列したものである。図示例では9個の発光素子チップ2を縦横に3列ずつ配置してある。ただし、実施形態1と寸法関係は同様であって、光取出増大部材3の入射面3aの直径を3Lとするとき、発光素子チップ2を配列する正方形の領域の対角線の長さは2Lになる。要するに、実施形態1における発光素子チップ2の出射面を9分割したことに相当する。なお、発光素子チップ2の個数は9個に限定されるものではなく、また発光素子チップ2を配置した領域が正方形ではなく他の形状になるようにしてもよい。他の構成および動作は上述した他の実施形態と同様である。
(Embodiment 5)
In each of the above-described embodiments, one light extraction increasing member 3 is associated with one light emitting element chip 2, but in this embodiment, one light extraction increasing member 3 is used as shown in FIG. A plurality of light emitting element chips 2 are arranged with respect to the above. In the illustrated example, nine light emitting element chips 2 are arranged in three rows vertically and horizontally. However, the dimensional relationship is the same as in the first embodiment, and when the diameter of the incident surface 3a of the light extraction increasing member 3 is 3L, the length of the diagonal line of the square region in which the light emitting element chips 2 are arranged is 2L. . In short, this corresponds to dividing the emission surface of the light emitting element chip 2 in Embodiment 1 into nine. Note that the number of the light emitting element chips 2 is not limited to nine, and the area where the light emitting element chips 2 are arranged may be other than a square. Other configurations and operations are the same as those of the other embodiments described above.

(a)は実施形態1を示す断面図、(b)は同上の要部平面図である。(A) is sectional drawing which shows Embodiment 1, (b) is a principal part top view same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 実施形態2を示す要部断面図である。FIG. 6 is a cross-sectional view of a main part showing Embodiment 2. (a)は実施形態3を示す断面図、(b)は同上の平面図である。(A) is sectional drawing which shows Embodiment 3, (b) is a top view same as the above. 同上の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example same as the above. 実施形態4を示す断面図である。FIG. 6 is a cross-sectional view showing a fourth embodiment. (a)は実施形態5を示す断面図、(b)は同上の要部平面図である。(A) is sectional drawing which shows Embodiment 5, (b) is a principal part top view same as the above.

符号の説明Explanation of symbols

1 パッケージ(実装基板)
2 発光素子チップ
3 光取出増大部材
3a 入射面
3b 出射面
3c 主面
3d 補助面
12 チップ収納凹所
12a 反射面
1 Package (Mounting board)
2 Light-Emitting Element Chip 3 Light Extraction Increasing Member 3a Incident Surface 3b Outgoing Surface 3c Main Surface 3d Auxiliary Surface 12 Chip Storage Recess 12a Reflecting Surface

Claims (3)

発光素子チップを収納するチップ収納凹所を有した実装基板と、発光素子チップの出射面と光結合され発光素子チップからの出射光が入射する入射面と入射面から入射した光を出射させる出射面とを有した光取出増大部材と、発光素子チップと光取出増大部材の一部とを封止する封止樹脂とを備え、光取出増大部材の材料は出射側の媒質よりも高屈折率であって、光取出増大部材の出射面上のすべての位置において、当該位置の法線を中心線とし臨界角を中心線と母線とのなす角度とする円錐内に発光素子チップの出射面およびチップ収納凹所の開口面が含まれるように、光取出増大部材の出射面の形状が設定され、さらに封止樹脂は光取出増大部材の屈折率以上の材料が選択され、チップ収納凹所の開口面は光取出増大部材の入射面に対向して光取出増大部材により閉塞され、チップ収納凹所の内側面は発光素子チップからの出射光を反射させて光取出増大部材の入射面に入射させるように底面から開口に向かって昇り傾斜する反射面を形成していることを特徴とする発光装置。 A mounting substrate having a chip housing recess for storing a light emitting element chip, an incident surface that is optically coupled to an emission surface of the light emitting element chip, and an incident surface on which light emitted from the light emitting element chip is incident, and an emission that emits light incident from the incident surface And a sealing resin for sealing the light emitting element chip and a part of the light extraction increasing member, and the material of the light extraction increasing member is higher in refractive index than the medium on the output side. a is, at every position on the exit surface of the light extraction increasing element, the exit surface of the light-emitting element chips in a cone to the angle between the center line and the bus a critical angle to the center line normal of the position and The shape of the exit surface of the light extraction increasing member is set so that the opening surface of the chip storage recess is included, and the sealing resin is selected from a material having a refractive index higher than that of the light extraction increasing member . The aperture surface faces the incident surface of the light extraction increasing member The inner surface of the chip housing recess reflects the light emitted from the light emitting element chip so as to be incident on the incident surface of the light extraction increasing member. emitting apparatus characterized by forming the surface. 前記チップ収納凹所に形成した反射面は二次曲面であって、発光素子チップの側面付近に焦点が位置するように設定されていることを特徴とする請求項1記載の発光装置。 2. The light emitting device according to claim 1, wherein the reflecting surface formed in the chip housing recess is a quadratic curved surface, and is set so that a focal point is located near a side surface of the light emitting element chip . 前記チップ収納凹所は、底面が前記発光素子チップと相似形であることを特徴とする請求項1または請求項2記載の発光装置。 It said chip receiving recess claim 1 or claim 2 emission equipment in, wherein the bottom surface is similar in shape to the light emitting device chip.
JP2005175599A 2005-06-15 2005-06-15 Light emitting device Active JP4839687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175599A JP4839687B2 (en) 2005-06-15 2005-06-15 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175599A JP4839687B2 (en) 2005-06-15 2005-06-15 Light emitting device

Publications (2)

Publication Number Publication Date
JP2006351809A JP2006351809A (en) 2006-12-28
JP4839687B2 true JP4839687B2 (en) 2011-12-21

Family

ID=37647336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175599A Active JP4839687B2 (en) 2005-06-15 2005-06-15 Light emitting device

Country Status (1)

Country Link
JP (1) JP4839687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292695A (en) * 2015-09-03 2018-07-17 丸文株式会社 Deep ultraviolet led and its manufacturing method
WO2022203452A1 (en) * 2021-03-25 2022-09-29 서울바이오시스 주식회사 Light-emitting diode package

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167977B2 (en) * 2007-09-06 2013-03-21 日亜化学工業株式会社 Semiconductor device
TWI360238B (en) 2007-10-29 2012-03-11 Epistar Corp Photoelectric device
JP2009176923A (en) * 2008-01-24 2009-08-06 Shogen Koden Kofun Yugenkoshi Photoelectron device
EP2293354B1 (en) 2008-05-30 2020-05-06 Sharp Kabushiki Kaisha Light emitting device, planar light source, liquid crystal display device
JP2010147446A (en) 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd Light-emitting device
JP5689225B2 (en) * 2009-03-31 2015-03-25 日亜化学工業株式会社 Light emitting device
WO2012014758A1 (en) * 2010-07-26 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and lighting device
JP6274240B2 (en) * 2016-03-28 2018-02-07 日亜化学工業株式会社 Light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077425A (en) * 1999-08-31 2001-03-23 Yoshinobu Suehiro Light-emitting element
AU2003235453A1 (en) * 2002-05-28 2003-12-12 Matsushita Electric Works, Ltd. Light emitting element, light emitting device and surface emission illuminating device using it
US7009213B2 (en) * 2003-07-31 2006-03-07 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
JP4192742B2 (en) * 2003-09-30 2008-12-10 豊田合成株式会社 Light emitting device
JP4288481B2 (en) * 2003-10-02 2009-07-01 シチズン電子株式会社 Light emitting diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292695A (en) * 2015-09-03 2018-07-17 丸文株式会社 Deep ultraviolet led and its manufacturing method
EP3346509A4 (en) * 2015-09-03 2019-04-17 Marubun Corporation Deep-ultraviolet led and method for manufacturing same
CN108292695B (en) * 2015-09-03 2021-01-22 丸文株式会社 Deep ultraviolet LED and manufacturing method thereof
WO2022203452A1 (en) * 2021-03-25 2022-09-29 서울바이오시스 주식회사 Light-emitting diode package

Also Published As

Publication number Publication date
JP2006351809A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4839687B2 (en) Light emitting device
TWI725121B (en) Optical lens and light emitting module including the same
US9240533B2 (en) Ultraviolet light emitting device
JP5150039B2 (en) LED with optical system to increase brightness by recirculation of synchrotron radiation
US7897977B2 (en) Semiconductor component emitting electromagnetic radiation and component housing
JP5380052B2 (en) LED lighting device
KR102538448B1 (en) Light emitting module
RU2728830C2 (en) Light-emitting device
JP2011129932A (en) Light emitting device and light unit employing the same
US10879440B2 (en) Light emitting device including light emitting unit arranged in a tube
JP7077202B2 (en) Light emitting device
US10663120B2 (en) Light source module
KR20170096370A (en) Optical lens, light emitting module and light unit having thereof
US10096753B2 (en) Light emitting device
US9054286B1 (en) Light emitting diode module
JP2007081063A (en) Light-emitting device
KR102425317B1 (en) Optical lens, light emitting module and light unit having thereof
JP2005197423A (en) Led light source
US10884172B2 (en) Light emitting device
JP2006196569A (en) Light emitting device
US10825971B2 (en) Light-emitting device including a Distributed Bragg Reflector (DBR) film
JP2016018893A (en) Light-emitting device
US9082938B2 (en) Light emitting device
TWI390767B (en) Led package and backlight module having the same
JP2018085447A (en) Led light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4839687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3