JP4839630B2 - ポリスルホン系選択透過性中空糸膜束および血液浄化器 - Google Patents

ポリスルホン系選択透過性中空糸膜束および血液浄化器 Download PDF

Info

Publication number
JP4839630B2
JP4839630B2 JP2005045321A JP2005045321A JP4839630B2 JP 4839630 B2 JP4839630 B2 JP 4839630B2 JP 2005045321 A JP2005045321 A JP 2005045321A JP 2005045321 A JP2005045321 A JP 2005045321A JP 4839630 B2 JP4839630 B2 JP 4839630B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane bundle
less
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005045321A
Other languages
English (en)
Other versions
JP2006230458A (ja
Inventor
公洋 馬淵
英之 横田
勝朗 久世
典昭 加藤
典子 門田
仁 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005045321A priority Critical patent/JP4839630B2/ja
Publication of JP2006230458A publication Critical patent/JP2006230458A/ja
Application granted granted Critical
Publication of JP4839630B2 publication Critical patent/JP4839630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

本発明は、血液適合性に優れ、安全性や性能の安定性が高く、特に血液浄化器用等に適したポリスルホン系選択透過性中空糸膜束および選択透過性に優れ、かつ保存安定性の高い血液浄化器に関する。
腎不全治療などにおける血液浄化療法では、血液中の尿毒素、老廃物を除去する目的で、天然素材であるセルロース、またその誘導体であるセルロースジアセテート、セルローストリアセテート、合成高分子としてはポリスルホン、ポリメチルメタクリレート、ポリアクリロニトリルなどの高分子を用いた透析膜や限外濾過膜を分離材として用いた血液透析器、血液濾過器あるいは血液透析濾過器などのモジュールが広く使用されている。特に中空糸型の膜を分離材として用いたモジュールは体外循環血液量の低減、血中の物質除去効率の高さ、さらにモジュール生産時の生産性などの利点から透析器分野での重要度が高い。
このように血液処理用の選択透過性中空糸膜は目的に応じて特定の物質を選択的に透過せしめなければならない。その性能は、中空糸膜の素材、孔の形状あるいは分布状態、膜厚などによって決定される。ところで、近年、透析患者の長期合併症と関連し、透析アミロイドーシスの原因物質と考えられるβ2−ミクログロブリン(β2−MG、分子量11800)、掻痒感、高脂血症と関係すると考えられる副甲状腺ホルモン(分子量約9500)、貧血に関与する赤芽球抑制因子、関節痛、骨痛に関わると考えられる分子量2〜4万の物質など、比較的中高分子量領域の有害物質の除去の必要性が叫ばれるようになった。一方、人体に必要なアルブミン(分子量66000)の漏出は極力抑えなければならない。すなわち、分子量4〜5万以下の物質の透過性に優れ、分子量6万以上の物質の阻止率のよい分画分子量のシャープな選択透過性膜が望まれる。具体的にはβ2−MGのクリアランスが50mL/min.以上かつアルブミンの漏洩量が4g/4hr以下が望ましい。より好ましくはβ2−MGのクリアランスが60mL/min.以上かつアルブミンの漏洩量が3.5g/4hr以下である。
また、中空糸膜表面への非特異的なタンパク吸着や変性あるいは血小板の吸着や活性化などを起さないことである。
そのため、血液透析療法に用いられる血液透析器や血液透析ろ過器などの血液浄化器には、透水性が高く、かつ分画分子量特性が上記の要求に応ずるように設計された、優れた物質除去性能を有する高分子中空糸膜が求められている。
また、血液が中空糸膜表面と接触することにより生じる血液系の活性化を抑制、低減させ、優れた血液適合性を得るために、膜素材選定、膜構造設計が盛んに検討されている。
上記した膜素材の中で透析技術の進歩に最も合致したものとして透水性能が高いポリスルホン系樹脂が注目されている。しかし、ポリスルホン単体で半透膜を作った場合は、ポリスルホン系樹脂が疎水性であるために血液との親和性に乏しく、エアロック現象を起こしてしまうため、そのまま血液処理用などに用いることはできない。
上記した課題の解決方法として、ポリスルホン系樹脂に親水性高分子を配合し製膜し、膜に親水性を付与する方法が提案されている。例えば、ポリエチレングリコール等の多価アルコールを配合する方法が開示されている(例えば、特許文献1、2参照)。
特開昭61−232860号公報 特開昭58−114702号公報
また、ポリビニルピロリドンを配合する方法が開示されている(例えば、特許文献3、4参照)。
特公平5−54373号公報 特公平6−75667号公報
しかし、このような材料は合成物であるため、生体にとっては異物と認識され、さまざまな生体反応が起こる。たとえば、血液と接触した際には、血小板の付着や白血球の活性化などが起こり、血液適合性が悪いことがある。
上記の選択透過性能を維持し、かつ血液適合性を改善する方法として、該中空糸膜の少なくとも血液接触面をポリマー粒子の集合体とする方法が開示されている(例えば、特許文献5〜7参照)。
特開平7−289866号公報 特開2002−45662号公報 特開2003−10322号公報
また、ポリビニルピロリドンを用いた方法が安全性や経済性の点より注目されており、該方法により上記した課題は解決される。しかしながら、親水性高分子を配合することによる親水性化技術に於いては、透析時に親水性高分子が溶出し浄化された血液に混入するという課題が発生する。該親水性高分子の溶出が多くなると人体に取り異物である親水性高分子の長期透析時の体内蓄積が増え副作用や合併症等を引き起こす可能性がある。そこで、親水性高分子の溶出量は、透析型人工腎臓装置製造承認基準により定められている。該透析型人工腎臓装置製造承認基準においては、ポリビニルピロリドン等の溶出量はUV吸光度で定量されている。該透析型人工腎臓装置製造承認基準で溶出量制御の効果を判定した技術が開示されている(例えば、特許文献8〜10参照)。また、特許文献11には、親水性高分子の半透膜中からの溶出量が10ppm以下である血液処理用半透膜が開示されている。該文献は、血液処理用半透膜からの親水性高分子の溶出を抑える技術について開示しているが、中空糸膜の保存にまで及ぶ経時的な親水性高分子の劣化・分解に関わる過酸化水素の影響については言及されていない。
特許第3314861号公報 特開平6−165926号公報 特開2000−350926号公報 特開2001−170171号公報
本発明者等は該ポリビニルピロリドンの溶出挙動について、詳細に検討した結果、上記の透析型人工腎臓装置製造承認基準により定められた試験法で抽出された抽出液中には、従来公知のUV吸光度では測定できない過酸化水素が含まれていることを見出した。過酸化水素が血液浄化器内および選択透過性分離膜内に存在すると、例えばポリビニルピロリドンの酸化劣化を促進し、中空糸膜束を保存した時に該ポリビニルピロリドンの溶出量が増加するという保存安定性が悪化する事を見出した。
さらに、上記した特許文献8〜11に開示されている従来技術においては、いずれもが中空糸膜束の特定部位について評価されたものである。現実には、モジュール組み立て等において中空糸膜束を乾燥する等の処理を行うと乾燥条件の変動等の影響により、中空糸膜束内で上記した溶出量が大きく変動することが判明し、上記特定部位のみの評価では高度な安全性の要求には答えられない。特に、本発明者らが明らかにした過酸化水素が、中空糸膜束の特定部位に存在した場合、その個所より中空糸膜束素材の劣化反応が開始され中空糸膜束の全体に伝播していくため、モジュールと用いられる中空糸膜束の長さ方向の存在量が全領域に渡り、一定量以下を確保する必要がある。
ポリビニルピロリドンの架橋処理によりポリビニルピロリドンの溶出量を低減させる方法が上記の特許文献10や11等で開示されているが、選択性分離膜中の過酸化水素の存在はもとより架橋処理時における過酸化水素の影響やその生成に関しては全く配慮がなされていない。また、特許文献12〜22にも同様に膜からのポリビニリルピロリドン溶出抑制を達成したことが記載されているが、上記特許文献と同様に選択性分離膜の保存安定性に関して配慮されていない。
特開平6−339620号公報 特開平9−70524号公報 特開平9−70525号公報 特開平9−70526号公報 特開平9−103664号公報 特開平10−66864号公報 特開平10−230148号公報 特開2001−170167号公報 特開2003−201383号公報 特開2003−245526号公報 特許第3474205号公報
また、中空糸膜束の乾燥方法として、乾燥空気を中空糸膜内部を通過させて乾燥する、いわゆる通風乾燥方法が開示されている(例えば、特許文献23〜32参照)。
特開平6−10208号公報 特開平10−43292号公報 特開2001−113139号公報 特開2001−259380号公報 特開2003−175320号公報 特開2003−175321号公報 特開2003−175322号公報 特開2003−245529号公報 特開2003−284930号公報 特開2003−284931号公報
上記の通風乾燥方法は、いずれもが、乾燥空気は乾燥開始より終了まで一定方向から通風されている。したがって、該特許文献では、乾燥時の過酸化水素の生成や乾燥された中空糸膜束の保存安定性等に関しては配慮がなされていない。
本発明は、血液適合性に優れ、安全性や性能の安定性が高く、特に慢性腎不全の治療に用いる高透水性能を有する血液透析法中空糸型血液浄化器用等に適したポリスルホン系選択透過性中空糸膜束および選択透過性に優れ、かつ長期の保存安定性の高い血液浄化器を提供することにある。
本発明は、ポリビニルピロリドンを含有するポリスルホン系選択透過性中空糸膜束において、該中空糸膜の少なくとも血液接触面がポリマー粒子の集合体からなり、該中空糸膜束よりのポリビニルピロリドンの溶出が10ppm以下で、かつ該中空糸膜束を長手方向に10個に分割して、各部位について透析型人工腎臓装置製造承認基準により定められた試験を実施したとき、得られた抽出液の過酸化水素溶出量が全ての部位で5ppm以下であることを特徴とするポリスルホン系選択透過性中空糸膜束である。
この場合において、ポリマー粒子の湿潤状態における平均粒子直径が10〜300nmであることが好ましい。
また、この場合において、ポリマー粒子の乾燥状態における平均粒子直径に対する湿潤状態における平均粒子直径の比が1.1以上であることが好ましい。
また、本発明は、上記ポリスルホン系選択透過性中空糸膜束が充填されてなる血液浄化器において、該血液浄化器を滅菌後室温で1年以上保存した後に、該中空糸膜束を長手方向に10個に分割して、各部位について透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度が全ての部位で0.10以下である血液浄化器である。
本発明のポリスルホン系選択透過性中空糸膜束は、内表面(血液接触表面側)の構造や特性が最適化されており、選択透過性および血液適合性が優れている。また、本発明のポリスルホン系選択透過性中空糸膜は、過酸化水素溶出量が抑制されており、該過酸化水素により引き起こされる中空糸膜束を長期にわたり保存した場合のポリビニルピロリドン等の劣化が抑制されるので、長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持するができる。従って、慢性腎不全の治療に用いる高透水性能を有する血液透析法中空糸型血液浄化器用等として好適であるいう利点がある。また、本発明の血液浄化器は上記特性を有したポリスルホン系選択透過性中空糸膜束が充填されており、かつ滅菌処理時の条件が最適化されているので、選択透過性に優れ、かつ血液浄化器を長期に渡り保存した場合のポリスルホン系選択透過性中空糸膜束中のポリビニルピロリドン等の劣化が抑制されるので、長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持することができ、血液浄化器を長期保存した場合の安全性が確保できるという利点がある。
以下、本発明を詳細に説明する。
本発明に用いる中空糸膜束は、ポリビニルピロリドンを含有するポリスルホン系樹脂で構成されているところに特徴を有する。本発明におけるポリスルホン系樹脂とは、スルホン結合を有する樹脂の総称であり特に限定されないが、例を挙げると
Figure 0004839630
Figure 0004839630
で示される繰り返し単位をもつポリスルホン樹脂やポリエーテルスルホン樹脂がポリスルホン系樹脂として広く市販されており、入手も容易なため好ましい。
本発明に用いられる親水性高分子としては、ポリスルホン系樹脂とミクロな相分離構造を形成するものが好ましく用いられる。ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン等を挙げる事ができるが、安全性や経済性の面よりポリビニルピロリドンを用いるのが好ましい実施態様である。該ポリビニルピロリドンは、N−ビニルピロリドンをビニル重合させた水溶性の高分子化合物であり、BASF社より「コリドン」、ISP社より「プラスドン」、第一工業製薬社より「ピッツコール」の商品名で市販されており、それぞれ各種の分子量の製品がある。一般には、親水性の付与効率では低分子量のものが、一方、溶出量を低くする点では高分子量のものを用いるのが好適であるが、最終製品の中空糸膜束の要求特性に合わせて適宜選択される。単一の分子量のものを用いても良いし、分子量の異なる製品を2種以上混合して用いても良い。また、市販の製品を精製し、例えば分子量分布をシャープにしたものを用いても良い。
本発明においては、過酸化水素含有量が300ppm以下のポリビニルピロリドンを用いて選択透過性中空糸膜束を製造するのが好ましい。原料として用いるポリビニルピロリドン中の該過酸化水素含有量を300ppm以下にすることで、製膜後の中空糸膜束中の過酸化水素溶出量を容易に5ppm以下に抑えることができ、本発明の中空糸膜束の品質安定化が達成できるので好ましい。原料として用いるポリビニルピロリドン中の過酸化水素含有量は250ppm以下がより好ましく、200ppm以下がさらに好ましく、150ppm以下がよりさらに好ましい。
上記した原料として用いるポリビニルピロリドン中に過酸化水素が存在すると、ポリビニルピロリドンの酸化劣化の引き金となっているものと考えられ、酸化劣化の進行に伴い爆発的に増加し、さらにポリビニルピロリドンの酸化劣化を促進するものと考えられる。従って、過酸化水素含有量を300ppm以下にするということは、選択透過性分離膜の製造工程でポリビニルピロリドンの酸化劣化を抑える第一の手段である。また、原料段階でのポリビニルピロリドンの搬送や保存時の劣化を抑える手段を取る事も有効であり推奨される。例えば、アルミ箔ラミネート袋を用いて遮光し、かつ窒素ガス等の不活性ガスで封入するとか、脱酸素剤を併せて封入し保存することが好ましい実施態様である。また、該包装体を開封し小分けする場合の計量や仕込みは、不活性ガス置換をして行い、かつその保存についても上記の対策を取るのが好ましい。また、中空糸膜束の製造工程においても、原料供給系での供給タンク内を不活性ガスに置換する等の手段をとることも好ましい実施態様として推奨される。また、再結晶法や抽出法で過酸化水素量を低下させたポリビニルピロリドンを用いることも排除されない。
本発明の選択透過性分離膜の製造方法は何ら限定されるものではないが、例えば特開2000−300663号公報で知られるような方法で製造できる中空糸膜タイプのものが好ましい。例えば、該特許文献に開示されているポリエーテルスルホン(4800P、住友化学社製)16質量部とポリビニルピロリドン(K−90、BASF社製)5質量部、ジメチルアセトアミド74質量部、水5質量部を混合溶解し、脱泡したものを製膜溶液として、50%ジメチルアセトアミド水溶液を芯液として使用し、これを2重管オリフィスの外側、内側より同時に吐出し、50cmの空走部を経て、75℃、水からなる凝固浴中に導き中空糸膜を形成し、水洗後まきとり、60℃で乾燥する方法が例示できる。
本発明におけるポリスルホン系高分子に対するポリビニルピロリドンの膜中の構成割合は、中空糸膜に十分な親水性や、高い含水率を付与できる範囲であれば良く、ポリスルホン系高分子が99〜80質量%、ポリビニルピロリドンが1〜20質量%である事が好ましい。ポリスルホン系高分子に対してポリビニルピロリドンの割合が少なすぎる場合、膜の親水性付与効果が不足する可能性があるため、該割合は、1.5質量%以上がより好ましく、2.0質量%以上がさらに好ましく、2.5質量%以上がよりさらに好ましい。一方、該割合が多すぎると、親水性付与効果が飽和し、かつポリビニルピロリドンおよび/または酸化劣化物の膜からの溶出量が増大し、後述するポリビニルピロリドンの膜からの溶出量が10ppmを超える場合がある。したがって、より好ましくは18質量%以下、さらに好ましくは15質量%以下、よりさらに好ましくは13質量%以下、特に好ましくは10質量%以下である。
中空糸膜の膜構造に関しては均一構造に近いスポンジ構造を有するものや、近年、透析効率を向上させる目的で実質的に選択分離を行う緻密層と空隙率が高く膜強度を維持する支持層の組み合わせからなるものがある。
しかし、いずれの膜にせよ老廃物の選択透過を決定する因子は主にスポンジ構造、あるいは緻密層の膜構造であり、通常は被処理液と接触する部分に存在する。また、乾燥状態での膜を形成するポリマーの様態は紡糸原液におけるポリマー濃度や孔構造を形成させる相分離を促す溶媒、非溶媒の比率、紡糸口金の温度等によって制御が可能でポリマー粒子の集合体のような膜構造とポリマー同士が線状に絡み合ったような網目状構造を有するものが存在する。本発明では、膜がポリマー粒子の集合体のような膜構造を形成するよう、紡糸原液中のポリマー濃度を曳糸性の限界よりもやや高めに設定した。紡糸原液中のポリマー濃度は、例えばポリエーテルスルホンであれば18質量%以上の設定が好ましい。
ポリマー粒子径と物質透過の関係は化学工学の分野で砂利の堆積したところに水を透過させるモデルとしてKozenny−Carmannモデルがよく使用されている。この理論式によると、膜を形成するポリマー粒子径が小さいほど低分子タンパクの除去能が小さくなり、ポリマー粒子径が大きいほど有用タンパクの漏洩量が大きくなる。従って、膜を形成するポリマー粒子径を制御することによって、膜自体の物質透過性能を制御できることになる。通常、示差走査型電子顕微鏡観察により乾燥状態での膜表面構造は観察可能である。
しかしながら、電子線を使用して撮影される示差走査型電子顕微鏡では、湿潤状態での膜構造観察は不可能であり、膜構造と物質透過性の関連は水溶性の物質透過特性からモデル式によって膜構造を類推することは可能であっても、膜構造を起点として透過性能を制御することは困難であった。また、乾燥状態と比較して湿潤状態ではポリマー鎖の間隙に水分子等が進入していくことにより、膜のポリマー粒子径が膨潤する現象が起こる。
本発明者等は、湿潤状態でのポリマー粒子径の測定を可能とする手段として、近年測定方法の可能性展開に富み、多方面で期待されている原子間力顕微鏡観察を応用することにより評価を行った。原子間力顕微鏡は物質表面の原子間力を検知し、増幅することによって画像化を可能としている。本発明においては、原子間力顕微鏡を用いて乾燥状態での膜構造と湿潤状態での膜構造を観察し、得られた膜構造情報と湿潤時の膜構造変化や物質透過特性、紡糸製膜条件とを比較検討することにより、血液浄化用膜に求められる構造、特性を改良した。
湿潤状態におけるポリマー粒子径は、平均直径で10〜300nmであることが好ましい。粒子構造であることが本発明の特徴の一つであるが、該粒子構造の各粒子はポリスルホン系樹脂とポリビニルピロリドンが混合された見かけ上相溶してなるポリマーアロイ状態様のポリマー粒子からなると考えられるので、この単一粒子が凝集することにより形成された凝集粒子の表面にはポリビニルピロリドンがほぼ均一な濃度に濃縮されて存在しているものと推察される。従って、中空糸膜におけるもう一つの代表的な構造である網目構造に比べ、中空糸膜の血液接触側表面の親水性の均一度が高く、血液適合性が向上できたものと推察される。また、平均直径が10nmより小さいと、緻密な膜となり目的の物質除去性能が得られないことがある。したがって、湿潤状態におけるポリマー粒子の平均直径は50nm以上がより好ましく、100nm以上がさらに好ましく、150nm以上がよりさらに好ましい。逆に、平均直径が300nmより大きいと、内表面の凹凸が大きくなり、血液の流れに乱流や滞留が起こり、血液凝固の活性化を誘起してしまう可能性がある。 したがって、湿潤状態におけるポリマー粒子の平均直径は280nm以下がより好ましく、260nm以下がさらに好ましく、240nm以下がよりさらに好ましい。
また、湿潤状態での膨潤の程度は乾燥状態と比較して大きいことが好ましい。これは、膜孔内部の流路に媒体としての液体が満たされた場合に効率の良い分画が可能となる。このことから、ポリマー粒子の乾燥状態における平均粒子直径に対する湿潤状態における平均粒子直径の比(膨潤比)は1.1倍以上であることが好ましい。該特性付与により前記の蛋白質リークの選択性のバランス、すなわち、β2−MGに代表される低分子量蛋白質等の不用物質を効率的に除去し、一方では、アルブミンで代表される有用な蛋白質は極力除去しない特性が向上する。治療開始時は蛋白質の透過性を高くしておき、透析の進行による血液の通過によりポリマー粒子の膨潤が進行することによりアルブミンの透過性を低減させることにより上記の蛋白質リークの選択性のバランスを向上させるという効果、すなわち、ポリマー粒子の湿潤膨潤性を利用した蛋白質リークの選択性向上効果が付与できる。したがって、(乾燥状態のポリマー粒子平均直径)/(乾燥状態のポリマー粒子平均直径)は1.2倍以上がより好ましく、1.3倍以上がさらに好ましく、1.4倍以上がよりさらに好ましい。
逆に、膨潤比は2.5倍以下が好ましい。膨潤比が大きすぎると、血液浄化使用時の細孔径が小さくなるため、低分子量蛋白の透過性が低下したり、ポリビニルピロリドンの溶出量が増加する可能性がある。したがって、膨潤比は2.4倍以下がより好ましく、2.3倍以下がさらに好ましく、2.2倍以下がよりさらに好ましい。
上記特性を有することにより、高い選択透過性と血液適合性が得られる。
上記のポリマー粒子特性は以下の方法で評価した。
(1)サンプル調製
乾燥膜は臨界点乾燥により24hr以上乾燥したものを使用した。これを試料台の上で繊維軸方向に切開し、中空糸内表面を露出する形でサンプルとした。湿潤膜は中空糸膜内外に水を通し、これを水中で24hr以上浸積したものを使用した。これを水中に設けた試料台の上で繊維軸方向に切開し、中空糸膜内表面を露出する形でサンプルとした。
(2)測定法
中空糸膜内表面の形態観察は原子間力顕微鏡(AFM)で行った。AFMはSeiko Instruments社製のSPI3800N−SPA300を使用した。湿潤状態での観察は本装置のオプションである、液中観察キットを使用し、純水中で行った。観察中に試料を浸すセルはシャーレセルを使用した。観察モードはDFMモードとした。カンチレバーは長さ450μm、幅60μm、厚さ4μmのSi製矩形型カンチレバーを使用した。カンチレバーはSeiko Instruments社からSi−DF3として市販されているものであり、バネ定数は2N/m程度である。使用するカンチレバーは常に新品で探針先端の汚染がないものを使用した。探針の走査速度は0.25〜1Hzとした。
(3)粒子径測定法
上記測定装置に付属している解析装置を用いて算出した。試料の三次元的なうねりなどを平面化して粒子径測定を行うため、測定後のAFM像は三次元傾斜補正(TILT3)等をかける。場合によってはフラット処理等も必要である。装置付属のソフトに含まれるライン解析処理により、粒子径を決定する。測定する粒子は無作為に選出した120個の粒子であり、異常に大きく見える粒子や異常に小さく見える粒子は測定から除外した。具体的な測定法を図を用いて説明する。図1はライン解析により粒径を決定する粒子の上から見た図である。 図2は 図1の粒子の断面プロファイルである。各測定点の座標を(x,y,z)とする。zはその測定点における高さである。粒子径は点A,C間の距離であるが、ACは粒子の頂点Bを通る線分でなければならない。また、粒子は常に完全な円形とは限らない。点A,Cは頂点Bを通る線分のうち最も長い線分をとるものとする。AC間の距離、すなわち粒子径は以下の式で表される。
D = ((x1−x22+(y1−y221/2
Degital Instruments社製のNanoscope等、市販されている装置でも同様の取り扱いができる。
上記結果を鋭意検討した結果、中空糸膜を製膜する際に、芯液、洗浄液等を乾燥する乾燥条件の設定により湿潤状態での膜構造を制御できることがわかった。具体的には、中空糸を乾燥させる際、湿度が20〜100%RHの気体を通風することで湿潤状態でのポリマー粒子径の制御が達成され、目的に合わせた製膜が可能となった。よって乾燥状態の形態は同一であっても、それらを適当な液中に浸積した場合、湿潤状態でのポリマー粒子径を制御できる手法を見出した。湿度を高くすると湿潤状態と乾燥状態の粒子径の比を大きくすることができ、目的に合わせた透過性能に調整できる。ここで湿潤状態と乾燥状態の粒子径の比(以下膨潤比と称する)は(湿潤状態での平均粒子径)/(乾燥状態での平均粒子径)であらわした。
また、上記の血液適合性、性能安定性に寄与するのは、主として上記構造を有した血液接触面の最表層のポリビニルピロリドンであると考えられる。本発明の血液浄化膜において、血液接触表面最表層のポリビニルピロリドンの含有率は好ましくは5〜50質量%、より好ましくは10〜40質量%、さらに好ましくは15〜40質量%である。親水性高分子含有率がこれより低くても高くても、血液成分の過剰な吸着を招く可能性がある。また、ポリビニルピロリドン含有率がこれよりも高いと、血液との接触で多くのポリビニルピロリドンが溶出する可能性があり、安全性の観点から問題となることがある。
架橋などの処理によって構造の一部を改変したポリビニルピロリドンは、本来そのポリビニルピロリドンが持つ特性と微妙に異なる挙動を示すことが考えられる。血液接触使用時の性能保持性を確保するために、本発明の中空糸型血液浄化膜に含まれるポリビニルピロリドンは実質的に不溶化されていないことが好ましく、具体的には不溶成分の含有率が膜全体に対して2質量%未満であることが好ましい。不溶成分の含有率は、膜10gを取り、100mlのジメチルホルムアミドに溶解した溶液を遠心分離機で1500rpm、10分間かけた後上澄みを除去する。残った不溶物に再度、100mlのジメチルホルムアミドを添加して、撹拌をおこなった後、同条件で遠心分離操作をおこない、上澄みを除去する。再び、100mlのジメチルホルムアミドを添加して撹拌し、同様の遠心分離操作をおこなった後、上澄みを除去する。残った固形物を蒸発乾固して、その量から不溶物の含有率を求めた。
本発明においては、中空糸膜束よりのポリビニルピロリドンの溶出が10ppm以下で、かつ過酸化水素の溶出が5ppm以下であることが好ましい。
ポリビニルピロリドンの溶出量が10ppmを超えた場合は、この溶出するポリビニルピロリドンによる長期透析時の副作用や合併症が起こる可能性がある。該特性を満足させる方法は限定無く任意であるが、例えば、ポリスルホン系高分子に対するポリビニルピロリドンの構成割合を上記した範囲にしたり、中空糸膜束の製膜条件を最適化する等により達成できる。より好ましいポリビニルピロリドンの溶出量は8ppm以下、さらに好ましくは6ppm以下、よりさらに好ましくは4ppm以下である。該ポリビニルピロリドンの溶出量は、透析型人工腎臓装置製造承認基準の溶出試験法に準じた方法で抽出された抽出液を用いて定量し求めたものである。すなわち、乾燥状態の中空糸膜束から任意に中空糸膜を取り出し1.0gをはかりとる。これに100mlのRO水を加え、70℃で1時間抽出を行うことにより得られた抽出液について定量する。
該ポリビニルピロリドンの溶出量を減ずる方策は限定無く任意であるが、例えば、ポリスルホン系樹脂に対するポリビニルピロリドンの構成割合や中空糸膜の製膜条件を最適化する等により達成できる。特に、洗浄方法の最適化が重要である。
過酸化水素の溶出量は5ppm以下であることが好ましい。4ppm以下がより好ましく、3ppm以下がさらに好ましい。該過酸化水素の溶出量が5ppmを超えた場合は、前記したように該過酸化水素によるポリビニルピロリドンの酸化劣化のために保存安定性が悪化し、例えば、長期保存した場合にポリビニルピロリドンの溶出量が増大することがある。保存安定性としては、該ポリビニルピロリドンの溶出量の増加が最も顕著な現象であるが、その他、ポリスルホン系高分子の劣化が引き起こされて中空糸膜が脆くなるとか、モジュール組み立てに用いるポリウレタン系接着剤の劣化を促進しウレタンオリゴマー等の劣化物の溶出量が増加し、安全性の低下に繋がる可能性がある。長期保存における過酸化水素の酸化作用により引き起こされる劣化起因の溶出物量の増加は透析型人工腎臓装置製造承認基準により設定されているUV(220−350nm)吸光度の測定により評価できる。
過酸化水素の溶出量も透析型人工腎臓装置製造承認基準の溶出試験法に準じた方法で抽出された抽出液を用いて定量したものである。
本発明においては、前記したポリスルホン系選択透過性中空糸膜束の長手方向に10個に分割し、各々について測定した時の過酸化水素の溶出量が全ての部位で5ppm以下であることが好ましい実施態様である。先述したように、過酸化水素は中空糸膜束の特定部位に存在しても、その個所より中空糸膜束素材の劣化反応が開始され中空糸膜束の全体に伝播していくため、モジュールと用いられる中空糸膜束の長さ方向の存在量が全領域に渡り、一定量以下を確保する必要がある。すなわち、特定部位の過酸化水素により開始されたポリビニルピロリドンの酸化劣化が連鎖的に中空糸膜束の全体に広がって行き、劣化により過酸化水素量がさらに増大すると共に、劣化したポリビニルピロリドンは分子量が低下するために、中空糸膜束より溶出し易くなる。この劣化反応は連鎖的に進行する。従って、該中空糸膜束は長期保存すると、過酸化水素やポリビニルピロリドンの溶出量が増大し血液浄化器用として使用する場合の安全性の低下に繋がることがある。
過酸化水素の溶出量を上記の規制された範囲に制御する方法としては、例えば、前記したごとく原料として用いるポリビニルピロリドン中の過酸化水素量を300ppm以下にすることが有効な方法であるが、該過酸化水素は上記した中空糸膜束の製造過程でも生成するので、該中空糸膜束の製造条件を厳密に制御する必要がある。特に、該中空糸膜束を製造する際の紡糸溶液の溶解工程および乾燥工程での生成の寄与が大きいので、乾燥条件の最適化が重要である。特に、この乾燥条件の最適化は、中空糸膜束の長手方向の溶出量変動を小さくすることに関して有効な手段となる。
紡糸溶液の溶解工程に関しては、例えば、ポリスルホン系高分子、ポリビニルピロリドン、溶媒からなる紡糸溶液を撹拌、溶解する際、ポリビニルピロリドン中に過酸化水素が含まれていると、溶解タンク内に存在する酸素の影響および溶解時の加熱の影響により、過酸化水素が爆発的に増加することがわかった。したがって、溶解タンクに原料を投入する際には、予め不活性ガスにて置換された溶解タンク内に原料を投入するのが好ましい。不活性ガスとしては、窒素、アルゴンなどが好適に用いられる。また、溶媒、場合によっては非溶媒を添加することもあるが、これら溶媒、非溶媒中に溶存している酸素を不活性ガスで置換して用いるのも好適な実施態様である。
また、過酸化水素の発生を抑制する他の方法として、製膜溶液を溶解する際、短時間に溶解することも重要な要件である。そのためには、通常、溶解温度を高くすることおよび/または撹拌速度を上げればよい。しかしながら、そうすると温度および撹拌線速度、剪断力の影響によりポリビニルピロリドンの劣化・分解が進行してしまう。事実、発明者らの検討によれば、製膜溶液中のポリビニルピロリドンの分子量は溶解温度の上昇に従い、分子量のピークトップが分解方向に移動(低分子側にシフト)したり、または低分子側に分解物と思われるショルダーが現れる現象が認められた。以上より、原料の溶解速度を向上させる目的で温度を上昇させることは、ポリビニルピロリドンの劣化分解を促進し、ひいては選択透過性分離膜中にポリビニルピロリドンの分解物をブレンドしてしまうことから、例えば、得られた中空糸膜を血液浄化に使用する場合、血液中に分解物が溶出するなど、製品の品質安全上、優れたものとはならなかった。そこで、ポリビニルピロリドンの分解を抑制する目的で低温で原料を混合することを試みた。低温溶解とはいっても氷点下となるような極端な条件にするとランニングコストもかかるため、通常5℃以上70℃以下が好ましい。60℃以下がより好ましい。しかし、単純に溶解温度を下げると溶解時間の長時間化によるポリビニルピロリドン劣化分解、操業性の低下や設備の大型化を招くことになり工業的に実施する上では問題がある。特に、ポリビニルピロリドンは低温溶解をしようとするとポリビニルピロリドンが継粉になり、それ以上溶解することが困難となったり、均一溶解に長時間を要するという課題を有する。
低温で時間をかけずに溶解するための溶解条件について検討を行った結果、溶解に先立ち紡糸溶液を構成する成分を混練した後に溶解させることが好ましいことを見出し本発明に到達した。該混練はポリスルホン系高分子、ポリビニルピロリドンおよび溶媒等の構成成分を一括して混練しても良いし、ポリビニルピロリドンとポリスルホン系高分子とを別個に混練しても良い。前述のごとくポリビニルピロリドンは酸素との接触により劣化が促進され過酸化水素の発生につながるので、該混練時においても不活性ガスで置換した雰囲気で行う等、酸素との接触を抑制する配慮が必要であり別ラインで行うのが好ましい。混練はポリビニルピロリドンと溶媒のみとしてポリスルホン系高分子は予備混練をせずに直接溶解タンクに供給する方法も本発明の範疇に含まれる。
該混練は溶解タンクと別に混練ラインを設けて実施し混練したものを溶解タンクに供給してもよいし、混練機能を有する溶解タンクで混練と溶解の両方を実施しても良い。前者の別個の装置で実施する場合の、混練装置の種類や形式は問わない。回分式、連続式のいずれであっても構わない。スタティックミキサー等のスタティックな方法であっても良いし、ニーダーや攪拌式混練機等のダイナミックな方法であっても良い。混練の効率より後者が好ましい。後者の場合の混練方法も限定なく、ピンタイプ、スクリュータイプ、攪拌器タイプ等いずれの形式でもよい。スクリュータイプが好ましい。スクリューの形状や回転数も混練効率と発熱とのバランスより適宜選択すれば良い。一方、混練機能を有する溶解タンクを用いる場合の溶解タンクの形式も限定されないが、例えば、2本の枠型ブレードが自転、公転するいわゆるプラネタリー運動により混練効果を発現する形式の混練溶解機が推奨される。例えば、井上製作所社製のプラネタリュームミキサーやトリミックス等が本方式に該当する。
混練時のポリビニルピロリドンやポリスルホン系高分子等の樹脂成分と溶媒との比率も限定されない。樹脂/溶媒の質量比で0.1〜3が好ましい。0.5〜2がより好ましい。
前述のごとくポリビニルピロリドンの劣化を抑制し、かつ効率的な溶解を行うことが本発明の技術ポイントである。従って、少なくともポリビニルピロリドンが存在する系は窒素雰囲気下、70℃以下の低温で混練および溶解することが好ましい実施態様である。ポリビニルピロリドンとポリスルホン系高分子を別ラインで混練する場合にポリスルホン系高分子の混練ラインに本要件を適用してもよい。混練や溶解の効率と発熱とは二律背反現象である。該二律背反をできるだけ回避した装置や条件の選択が本発明の重要な要素となる。そういう意味で混練機構における冷却方法が重要であり配慮が必要である。
引き続き前記方法で混練されたものの溶解を行う。該溶解方法も限定されないが、例えば、攪拌式の溶解装置による溶解方法が適用できる。低温・短時間(3時間以内)で溶解するためには、フルード数(Fr=n2d/g)が0.7以上1.3以下、攪拌レイノルズ数(Re=nd2ρ/μ)が50以上250以下であることが好ましい。ここでnは翼の回転数(rps)、ρは密度(Kg/m3)、μは粘度(Pa・s)、gは重力加速度(=9.8m/s2)、dは撹拌翼径(m)である。フルード数が大きすぎると、慣性力が強くなるためタンク内で飛散した原料が壁や天井に付着し、所期の製膜溶液組成が得られないことがある。したがって、フルード数は1.25以下がより好ましく、1.2以下がさらに好ましく、1.15以下がよりさらに好ましい。また、フルード数が小さすぎると、慣性力が弱まるために原料の分散性が低下し、特にポリビニルピロリドンが継粉になり、それ以上溶解することが困難となったり、均一溶解に長時間を要することがある。したがって、フルード数は0.75以上がより好ましく、0.8以上がさらに好ましい。
本願発明における製膜溶液は所謂低粘性流体であるため、撹拌レイノルズ数が大きすぎると、撹拌時、製膜溶液中への気泡のかみこみによる脱泡時間の長時間化や脱泡不足が起こるなどの問題が生ずることがある。そのため、撹拌レイノルズ数はより好ましくは240以下、さらに好ましくは230以下、よりさらに好ましくは220以下である。また、撹拌レイノルズ数が小さすぎると、撹拌力が小さくなるため溶解の不均一化が起こりやすくなることがある。したがって、撹拌レイノルズ数は、35以上がより好ましく、40以上がさらに好ましく、55以上がよりさらに好ましく、60以上が特に好ましい。さらに、このような紡糸溶液で中空糸膜を製膜すると気泡による曳糸性の低下による操業性の低下や品質面でも中空糸膜への気泡の噛み込みによりその部位が欠陥となり、膜の気密性やバースト圧の低下などを引き起こして問題となることがわかった。紡糸溶液の脱泡は効果的な対処策だが、紡糸溶液の粘度コントロールや溶剤の蒸発による紡糸溶液の組成変化を伴うこともありうるので、行う場合には慎重な対応が必要となる。
さらに、ポリビニルピロリドンは空気中の酸素の影響により酸化分解を起こす傾向にあることから、紡糸溶液の溶解は不活性気体封入下で行うのが好ましい。不活性気体としては、窒素、アルゴンなどが上げられるが、窒素を用いるのが好ましい。このとき、溶解タンク内の残存酸素濃度は3%以下であることが好ましい。窒素封入圧力を高めてやれば溶解時間短縮が望めるが、高圧にするには設備費用が嵩む点と、作業安全性の面から大気圧以上2kgf/cm2以下が好ましい。
その他、本願発明に用いるような低粘性製膜溶液の溶解に用いられる撹拌翼形状としては、ディスクタービン型、パドル型、湾曲羽根ファンタービン型、矢羽根タービン型などの放射流型翼、プロペラ型、傾斜パドル型、ファウドラー型などの軸流型翼が挙げられるが、これらに限定されるものではない。
以上のような低温溶解方法を用いることにより、親水性高分子の劣化分解が抑制された安全性の高い中空糸膜を得ることが可能となる。さらに付言すれば、製膜には原料溶解後の滞留時間が24時間以内の紡糸溶液を使用することが好ましい。なぜなら製膜溶液が保温されている間に熱エネルギーを蓄積し、原料劣化を起こす傾向が認められたためである。
過酸化水素の溶出量を上記の規制された範囲に制御する方法としては、乾燥工程においても中空糸膜束成分、特にポリビニルピロリドンの劣化を抑制することが重要である。中空糸膜束の長さ方向の乾燥の均一化を図ることが重要である。エアを一定方向から通風して中空糸膜束の乾燥を行うと、中空糸膜束のエア入口部より出口部に向かって順次乾燥が進行するため、エア入口部では速く乾燥が終了し、エア出口部で遅れて乾燥が終了する。すなわち、この乾燥速度の差により中空糸膜束の膜表面へのポリビニルピロリドンのモビリティーに違いが生じ、ポリビニルピロリドンの表面濃度が変化し、該表面に移動したポリビニルピロリドンの酸化劣化により過酸化水素の生成が増進されるものと推測している。また、中空糸膜束内の乾燥の不均一化により発生するポリビニルピロリドンの劣化の程度の違いによる過酸化水素の生成量が変化する要因も加味されているものと推測される。そこで本発明者等は、中空糸膜束の乾燥速度の均一化を図り、均等に乾燥させることを目的とし、乾燥時のエアの向きを定時毎(例えば、1時間毎や30分毎)に180度反転しながら中空糸膜束の乾燥処理を行うことを検討した結果、本発明の中空糸膜束を得ることができた。また、劣化による寄与を抑制する目的で、乾燥時の熱による酸化反応速度を抑制するために、乾燥器内温度および乾燥エアの温度を従来の60℃から40℃に低下させることや乾燥時の雰囲気を窒素ガス等の不活性ガスを用いるのがより好ましい。
本発明においては、前記したごとく、湿潤状態でのポリマー粒子径の制御をするには、湿度が20〜100%RHの気体を通風することが好ましい。従って、上記エアーは該範囲に調湿されたものを用いるのが好ましい。当然であるが、乾燥速度の点より湿度は低い方がよい。従って、20〜80%RHがより好ましく、20〜60%RHがさらに好ましい。該調湿によりポリビニルピロリドンの劣化が抑制され、過酸化水素が低減されるという相乗効果の発現にも繋がる。
乾燥器内の風量および風速は、中空糸膜束の量、総水分量に応じて通風乾燥器を調整すればよいが、通常は風量が0.01〜5L/sec(中空糸膜束1本)程度で足りる。通風媒体としては不活性ガスを用いるのが好ましいが、通常の空気を使用する場合には、除湿したものを使用するのが好ましい。乾燥温度は20〜80℃であればよいが、温度を高くすると、中空糸膜束の損傷を大きくし、乾燥が部分的にアンバランスになりがちであるから、比較的常温から最高60℃程度までにするのが好ましい。例えば、含水率200〜1000質量%のように含水率が高い状態では、60〜80℃と比較的高い温度で乾燥可能であるが、乾燥が進行し、例えば含水率が1〜50質量%程度に低下に伴い比較的温度の低い常温から最高60℃程度の範囲において乾燥するのが好ましい。乾燥は、中空糸膜の中心部分および外周部分は勿論のこと、それを束ねた中空糸膜束の中心部分および外周部分の水分含有率に較差がないのが理想的である。実際には中空糸膜、中空糸膜束の、中心部および外周部の含水率に若干の差がある。したがって、ここでいう中空糸膜束の「含水率」とは、中空糸膜束の中心部、中間部および外周部などの何点かの含水率を算定の根拠にして、それら何点かの含水率の平均値を求めた平均の含水率のことである。勿論それほどの精度を期待しない場合には、中空糸膜束の水分総量を算定の根拠にすることも可能であるが、精度が下がるという弊由がある。そして、中空糸膜束の中心部、中間部および外周部などの含水率の較差が小さいということは、品質のよい製品を造るための好ましい実施態様であるから、それを製造する乾燥方法に技術的な配慮をする必要がある。通風媒体として、例えば、窒素ガス、アルゴンガスなどの不活性ガスを使用する場合には、実質的に無酸素状態での乾燥であるため親水性高分子の劣化分解が起こりにくく、乾燥温度を高めることが可能である。
風量および乾燥温度は、中空糸膜束に含まれる水分総量により決まる。含水率が高い場合に風量を例えば0.1〜5L/sec(中空糸膜束1本)という比較的高く設定し、温度も50〜80℃と比較的高く設定する。乾燥が進行し、中空糸膜束の水分含有量が低くなったら、風量を、例えば0.1L/sec(中空糸膜束1本)以下に徐々に下げるという風量を調整し、一方で、温度もそれに連動させ徐々に常温に近づける乾燥方法を採用することが乾燥の工夫の一つである。中空糸膜束の中心部、中間部および外周部などの含水率の較差が小さいということは、各部の乾燥が同時に均一に進行させることでもある。このため、中空糸膜束を通風乾燥するときに送風向きを交互に逆転させるということは、通風乾燥機における中空糸膜束に対する送風の向きを180度変えた方向から交互に変えて送風することである。勿論、その送風方向の反転は内容物である中空糸膜束それ自体を通風方向に対して180度交互に回転させるというように装置を工夫する場合もある。又、乾燥のための中空糸膜束を固定し、送風装置に工夫して通風方向を交互に180度程度変えた方向から送風する方法もあるが、送風手段に関しては特に限定する必要はない。特に循環型送風乾燥機の場合には、内容物の中空糸膜束それ自体を交互に180度反転させるような装置が設計上は勿論のこと、運転上も合理的に機能する。この一見ありふれたような、反転を含む本発明の乾燥方法は、特に中空糸膜束という、特殊な材料において、ポリビニルピロリドンの局所劣化が抑制されるという品質管理において、汎用の材料の乾燥には見られない、予期しえぬ成果をあげることができたというものである。
乾燥における、通風の交互反転時間は、乾燥するための中空糸膜束の水分総量および風速、風量、乾燥温度、空気の除湿程度などの要因により変わる性格のものであるが、均一乾燥を求めるなら、送風方向をこまめに反転させることが好ましい。工業的に実用上設定される風向反転時間は乾燥開始後の含水率にも影響するが、例えば60〜80℃程度の高温で、例えば65℃で1〜4時間、25〜60℃において、例えば30℃程度において1〜20時間乾燥するという、総乾燥時間が24時間という長い時間を設定した場合に、30〜60分程度の間隔で機械的に風向を反転させることができる。水分総量が多い、初期の乾燥段階において、例えば60〜80℃程度の高温において、0.1〜5L/sec(中空糸膜束1本)程度の比較的風量が多い条件で乾燥する場合には、最初に風の直接当たる部分の乾燥が比較的早いから、10〜120分程度の間隔で風向の反転を、1〜5時間程度繰り返す。特に、最初の段階は10〜40分間隔で風向を反転させることが好ましい。中空糸膜束の中心部および外周部の含水率の較差が少なくなり、安定してきたら、乾燥温度も徐々に30℃程度の常温に近づけ、反転時間も30〜90分程度の間隔で風向の反転を繰り返し、比較的長い1〜24時間程度その風向の反転を繰り返せばよい。その際の風量および温度の切り換えは、中空糸膜束の含水率を考慮して任意に決めることができる。それを定量的に示せば、中空糸膜束の中心部および外周部の水分含有量を算定の根拠にした、含水率が50〜100質量%程度以下になったら、乾燥の状況を観察しながら適宜変更することができる。乾燥ということであるから、固定した時間間隔で機械的に風向反転時間を設定して行うことができる。一方で、乾燥の進行の程度を観察しながら風向反転時間、総乾燥時間を決めるという、状況判断や経験則に頼るような要素もある。なお、本発明でいう含水率とは、中空糸膜束の質量(g)を測定し、その後減圧下(−750mmHg以下)で真空乾燥を12時間実施し、乾燥後の質量(g)を測定する。乾燥前後の差を減量(g)として乾燥後質量(g)を基準にして%で求める。以下の式で含水率は決定する。
(減量/乾燥後質量)×100=含水率(質量%)
また、マイクロ波を照射して乾燥するのも有効な手段の一つである。従って、上記通風乾燥法とマイクロ波照射乾燥法とを組み合わせて行ってもよい。例えば、含水率の高い平均水分量が20〜60質量%までは効率のよいマイクロ波照射乾燥法で行い、最後の仕上げを上記通風乾燥法で行うのが好ましい実施態様である。マイクロ波照射乾燥法は減圧下で行うのが好ましい。
過酸化水素の溶出量を上記の規制された範囲に制御する方法としては、乾燥工程においても酸素との接触を低減することも重要である。例えば、不活性ガスで置換した雰囲気で乾燥することが挙げられるが、経済性の点で不利である。経済性のある乾燥方法として、減圧下でマイクロ波を照射して乾燥する方法が有効であり推奨される。被乾燥物から液体を除去して所謂乾燥を行うことにおいて、減圧およびマイクロ波を照射することはそれぞれ単独では公知である。しかし、減圧することとマイクロ波を照射することを同時に行うことは、マイクロ波の特性を勘案すると通常併用しがたい組合せである。本願発明者らは、ポリビニルピロリドンの酸化劣化の防止と中空糸膜からの溶出物量の低減による安全性の向上、生産性の向上を達成するべく、この困難性を伴う組み合わせを採用し、乾燥条件の最適化により経済的にも有利である方法により課題解決可能であることを見出した。
該乾燥方法の乾燥条件としては、20KPa以下の減圧下で出力0.1〜100KWのマイクロ波を照射することが好ましい実施態様である。また、該マイクロ波の周波数は1,000〜5,000MHzであり、乾燥処理中の中空糸膜束の最高到達温度が90℃以下であることが好ましい実施態様である。減圧という手段を併設すれば、それだけで水分の乾燥が促進されるので、マイクロ波の照射出力を低く抑え、照射時間も短縮できる利点もあるが、温度の上昇も比較的低くすることができるので、全体的には中空糸膜束の性能低下に与える影響が少ない。さらに、減圧という手段を伴う乾燥は、乾燥温度を比較的下げることができるという利点があり、特に親水性高分子の劣化分解を著しく抑えることができるという有意な点がある。適正な乾燥温度は20〜80℃で十分足りるということになる。より好ましくは20〜60℃、さらに好ましくは20〜50℃、よりさらに好ましくは30〜45℃である。
減圧を伴うということは、中空糸膜束の中心部および外周部に均等に低圧が作用することになり、水分の蒸発が均一に促進されることになり、中空糸膜の乾燥が均一になされるために、乾燥の不均一に起因する中空糸膜束の障害を是正することになる。それに、マイクロ波による加熱も、中空糸膜束の中心および外周全体にほぼ等しく作用することになるから、均一な加熱において、相乗的に機能することになり、中空糸膜束の乾燥において、特有の意義があることになる。減圧度についてはマイクロ波の出力、中空糸膜束の有する総水分含量および中空糸膜束の本数により適宜設定すれば良いが、乾燥中の中空糸膜束の温度上昇を防ぐため、減圧度は20kPa以下、より好ましくは15kPa以下、さらに好ましくは10kPa以下で行う。20kPa以上では水分蒸発効率が低下するばかりでなく、中空糸膜束を構成するポリマーの温度が上昇してしまい劣化してしまう可能性がある。また、減圧度は高い方が温度上昇抑制と乾燥効率を高める意味で好ましいが、装置の密閉度を維持するためにかかるコストが高くなるので0.1kPa以上が好ましい。より好ましくは0.25kPa以上、さらに好ましくは0.4kPa以上である。
乾燥時間短縮を考慮すると、マイクロ波の出力は高いほうが好ましいが、例えばポリビニルピロリドンを含有する中空糸膜束では過乾燥や過加熱によるポリビニルピロリドンの劣化・分解が起こったり、使用時の濡れ性低下が起こるなどの問題があるため、出力はあまり上げないのが好ましい。また0.1kW未満の出力でも中空糸膜束を乾燥することは可能であるが、乾燥時間が伸びることによる処理量低下の問題が起こる可能性がある。減圧度とマイクロ波出力の組合せの最適値は、中空糸膜束の保有水分量および中空糸膜束の処理本数により異なるものであって、試行錯誤のうえ適宜設定値を求めるのが好ましい。
例えば、本発明の乾燥条件を実施する一応の目安として、中空糸膜束1本当たり50gの水分を有する中空糸膜束を20本乾燥した場合、総水分含量は50g×20本=1,000gとなり、この時のマイクロ波の出力は1.5kW、減圧度は5kPaが適当である。
より好ましいマイクロ波出力は0.1〜80kW、さらに好ましいマイクロ波出力は0.1〜60kWである。マイクロ波の出力は、例えば、中空糸膜束の総数と総水分量により決まるが、いきなり高出力のマイクロ波を照射すると、短時間で乾燥が終了するが、中空糸膜が部分的に変性することがあり、縮れのような変形を起こすことがある。マイクロ波を使用して乾燥するという場合に、例えば、中空糸膜に保水剤のようなものを用いた場合に、高出力やマイクロ波を用いて過激に乾燥することは保水剤の飛散による消失の原因にもなる。それに特に減圧の条件を伴うと、中空糸膜への影響を考えれば、従来においては減圧下でマイクロ波を照射することは意図していなかった。本発明の減圧下でマイクロ波を照射するということは、水性液体の蒸発が比較的温度が低い状態において活発になるため、高出力マイクロ波および高温によるポリビニルピロリドンの劣化や中空糸膜の変形等の中空糸膜の損傷を防ぐという二重の効果を奏することになる。
本発明は、減圧下におけるマイクロ波により乾燥をするという、マイクロ波の出力を一定にした一段乾燥を可能としているが、別の実施態様として、乾燥の進行に応じて、マイクロ波の出力を順次段階的に下げる、いわゆる多段乾燥を好ましい態様として包含している。そこで、多段乾燥の意義を説明すると次のようになる。減圧下で、しかも30〜90℃程度の比較的低い温度で、マイクロ波で乾燥する場合に、中空糸膜束の乾燥の進み具合に合わせて、マイクロ波の出力を順次下げていくという多段乾燥方法が優れている。乾燥する中空糸膜の総量、工業的に許容できる適正な乾燥時間などを考慮して、減圧の程度、温度、マイクロ波の出力および照射時間を決めればよい。多段乾燥は、例えば、2〜6段という任意に何段も可能であるが、生産性を考慮して工業的に適正と許容できるのは、2〜3段乾燥にするのが適当である。中空糸膜束に含まれる水分の総量にもよるが、比較的多い場合に、多段乾燥は、例えば、90℃以下の温度における、5〜20kPa程度の減圧下で、一段目は30〜100kWの範囲で、二段目は10〜30kWの範囲で、三段目は0.1〜10kWというように、マイクロ波照射時間を加味して決めることができる。マイクロ波の出力を、例えば、高い部分で90kW、低い部分で0.1kWのように、出力の較差が大きい場合には、その出力を下げる段数を例えば4〜8段と多くすればよい。本発明の場合に、減圧というマイクロ波照射に技術的な配慮をしているから、比較的マイクロ波の出力を下げた状態でもできるという有利な点がある。例えば、一段目は10〜20kWのマイクロ波により10〜100分程度、二段目は3〜10kW程度で5〜80分程度、三段目は0.1〜3kW程度で1〜60分程度という段階で乾燥する。各段のマイクロ波の出力および照射時間は、中空糸膜に含まれる水分の総量の減り具合に連動して下げていくことが好ましい。この乾燥方法は、中空糸膜束に非常に温和な乾燥方法であり、前掲の特許文献8〜10の先行技術においては期待できないことから、本発明の作用効果を有意にしている。
別の態様を説明すると、中空糸膜束の水分総量が比較的少ないという、いわゆる含水率が400質量%以下の場合には、12kW以下の低出力マイクロ波による照射が優れている場合がある。例えば、中空糸膜束総量の水分量が1〜7kg程度と比較的少量の場合には、80℃以下、好ましくは60℃以下の温度における、3〜10kPa程度の減圧下において、12kW以下の出力の、例えば1〜5kW程度のマイクロ波で10〜240分、0.5〜1kW未満のマイクロ波で1〜240分程度、より好ましくは3〜240分程度、0.1〜0.5kW未満のマイクロ波で1〜240分程度照射するという、乾燥の程度に応じてマイク口波の照射出力および照射時間を調整すれば乾燥が均一に行われる。減圧度は各段において、一応0.1〜20kPaという条件を設定しているが、中空糸膜の水分含量の比較的多い一段目を例えば0.1〜5kPaと減圧を高め、マイクロ波の出力を10〜30kWと高める、ニ段目、三段目を5〜20kPaの減圧下で0.1〜5kWによる一段よりやや高い圧力下でマイクロ波を照射するという、いわゆる各段の減圧度を状況に応じて適正に調整して変えることなどは、中空糸膜束の水分総量および含水率の低下の推移を考慮して任意に設定することが可能である。各段において、減圧度を変える操作は、本発明の減圧下でマイクロ波を照射するという意義をさらに大きくする。勿論、マイクロ波照射装置内におけるマイクロ波の均一な照射および排気には常時配慮する必要がある。
マイクロ波の照射周波数は、中空糸膜束への照射斑の抑制や、細孔内の水を細孔より押出す効果などを考慮すると1,000〜5,000MHzが好ましい。より好ましくは1,500〜4,000MHz、さらに好ましくは2,000〜3,000MHzである。
該マイクロ波照射による乾燥は中空糸膜束を均一に加熱し乾燥することが重要である。上記したマイクロ波乾燥においては、マイクロ波の発生時に付随発生する反射波による不均一加熱が発生するので、該反射波による不均一加熱を低減する手段を取る事が重要である。該方策は限定されず任意であるが、例えば、特開2000−340356号公報において開示されているオーブン中に反射板を設けて反射波を反射させ加熱の均一化を行う方法が好ましい実施態様の一つである。
さらに、中空糸膜は絶乾しないのが好ましい。絶乾してしまうと、ポリビニルピロリドンの劣化が増大し、過酸化水素の生成が大幅に増大することがある。また、使用時の再湿潤化において濡れ性が低下したり、ポリビニルピロリドンが吸水しにくくなるため中空糸膜から溶出しやすくなる可能性がある。乾燥後の中空糸膜の含水率は1質量%以上飽和含水率未満が好ましい。1.5質量%以上がより好ましい。中空糸膜の含水率が高すぎると、保存時菌が増殖しやすくなったり、中空糸膜の自重により糸潰れが発生したり、モジュール組み立て時に接着剤の接着障害が発生する可能性があるため、中空糸膜の含水率は10質量%以下が好ましく、より好ましくは7質量%以下である。
乾燥中の中空糸膜束の最高到達温度は、不可逆性のサーモラベルを中空糸膜束を保護するフィルム側面に貼り付けて乾燥を行い、乾燥後に取り出し表示を確認することで測定できる。この時、乾燥中の中空糸膜束の最高到達温度は90℃以下が好ましく、より好ましくは80℃以下に抑える。さらに好ましくは70℃以下である。最高到達温度が90℃を超えると、膜構造が変化しやすくなり性能低下や酸化劣化を起こしてしまう場合がある。特に親水性高分子を含有する中空糸膜では、熱による親水性高分子の分解等が起こりやすいので温度上昇をできるだけ防ぐ必要がある。
また、上記のごとく原料ポリビニルピロリドンより混入したり、中空糸膜束の製造工程において生成した過酸化水素を、洗浄により除去する方法も前記した特性値を規制された範囲に制御する方法として有効である。
本発明においては、前述したポリビニルピロリドンの溶出量と内毒素であるエンドトキシンの血液側への浸入を阻止したり、中空糸膜束を乾燥する際の中空糸膜束同士の固着を阻止する等の特性をバランスするために中空糸膜束の外表面におけるポリビニルピロリドンの存在割合を特定範囲にすることが好ましい。該要求に答える方法として、例えば、ポリスルホン系高分子に対するポリビニルピロリドンの構成割合を前記した範囲にしたり、中空糸膜束の製膜条件を最適化する等により達成できる。また、製膜された中空糸膜束を洗浄することも有効な方法である。製膜条件としては、ノズル出口のエアギャップ部の湿度調整、延伸条件、凝固浴の温度、凝固液中の溶媒と非溶媒との組成比等の最適化が、また、洗浄工程の導入が有効である。
内部凝固液としては、0〜80質量%のジメチルアセトアミド(DMAc)水溶液が好ましい。より好ましくは、15〜70質量%、さらに好ましくは25〜60質量%、よりさらに好ましくは30〜50質量%である。内部凝固液濃度が低すぎると、血液接触面の緻密層が厚くなるため、溶質透過性が低下する可能性がある。また内部凝固液濃度が高すぎると、緻密層の形成が不完全になりやすく、分画特性が低下する可能性がある。外部凝固液は0〜50質量%のDMAc水溶液を使用するのが好ましい。外部凝固液濃度が高すぎる場合は、外表面開孔率および外表面平均孔面積が大きくなりすぎ、透析使用時エンドトキシンの血液側への逆流入の増大や、バースト圧の低下を起こす可能性がある。したがって、外部凝固液濃度は、より好ましくは40質量%以下、さらに好ましくは30質量%以下、よりさらに好ましくは25質量%以下である。また、外部凝固液濃度が低すぎる場合には、紡糸溶液から持ち込まれる溶媒を希釈するために大量の水を使用する必要があり、また廃液処理のためのコストが増大する。そのため、外部凝固液濃度の下限はより好ましくは5質量%以上、さらに好ましくは10質量%以上、よりさらに好ましくは15質量%以上である。
本発明の中空糸膜束の製造において、完全に中空糸膜構造が固定される以前に実質的に延伸をかけないことが好ましい。実質的に延伸を掛けないとは、ノズルから吐出された紡糸溶液に弛みや過度の緊張が生じないように、紡糸工程中のローラー速度をコントロールすることを意味する。吐出線速度/凝固浴第一ローラー速度比(ドラフト比)は0.7〜1.8が好ましい範囲である。前記比が0.7未満では、走行する中空糸膜束に弛みが生じ生産性の低下に繋がることがあるので、ドラフト比は0.8以上がより好ましく、0.9以上がさらに好ましく、0.95以上がよりさらに好ましい。1.8を超える場合には中空糸膜束の緻密層が裂けるなど膜構造が破壊されることがある。そのため、ドラフト比は、より好ましくは1.7以下、さらに好ましくは1.6以下、よりさらに好ましくは1.5以下、特に好ましくは1.4以下である。ドラフト比をこの範囲に調整することにより細孔の変形や破壊を防ぐことができ、膜孔への血中タンパクの目詰まりを防ぎ経時的な性能安定性やシャープな分画特性を発現することが可能となる。
本発明においては、上述のごとく、過酸化水素の溶出量を低減したり、中空糸膜束の外表面におけるポリビニルピロリドンの存在割合を特定範囲にするための手段として中空糸膜束の製造過程において、前記の乾燥工程の前に洗浄工程を導入することが重要である。例えば、水洗浴を通過した中空糸膜束は、湿潤状態のまま綛に巻き取り、3,000〜20,000本の束にする。ついで、得られた中空糸膜束を洗浄し、過剰の溶媒、ポリビニルピロリドンを除去する。中空糸膜束の洗浄方法として、本発明では、70〜130℃の熱水、または室温〜50℃、10〜40vol%のエタノールまたはイソプロパノール水溶液に中空糸膜束を浸漬して処理するのが好ましい。
(1)熱水洗浄の場合は、中空糸膜束を過剰のRO水に浸漬し70〜90℃で15〜60分処理した後、中空糸膜束を取り出し遠心脱水を行う。この操作をRO水を更新しながら数回繰り返して洗浄処理を行う。
(2)加圧容器内の過剰のRO水に浸漬した中空糸膜束を121℃で2時間程度処理する方法をとることもできる。
(3)エタノールまたはイソプロパノール水溶液を使用する場合も、(1)と同様の操作を繰り返すのが好ましい。
(4)遠心洗浄器に中空糸膜束を放射状に配列し、回転中心から40℃〜90℃の洗浄水をシャワー状に吹きつけながら30分〜5時間遠心洗浄することも好ましい洗浄方法である。
前記洗浄方法を2つ以上組み合わせて行ってもよい。いずれの方法においても、処理温度が低すぎる場合には、洗浄回数を増やす等必要になりコストアップに繋がることがある。また、処理温度が高すぎるとポリビニルピロリドンの分解が加速し、逆に洗浄効率が低下することがある。上記洗浄を行うことにより、外表面ポリビニルピロリドンの存在率の適正化を行い、固着抑制や溶出物の量を減ずることが可能となるとともに、過酸化水素溶出量の低減にも繋がる。
本発明においては、上記特性を有したポリスルホン系選択透過性中空糸膜束が充填されてなる血液浄化器であることが好ましく、該血液浄化器を滅菌後室温で1年以上保存した後に、透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度が全ての部位で0.10以下であるが好ましい。2年以上経過しても該特性が維持されるのがより好ましい。血液浄化器の保障期間は3ヵ年に設定されているので、少なくとも3年間該特性が維持されるのが特に好ましい。1年経過でUV(220〜350nm)吸光度が0.06以下が維持されれば3年間の維持が可能であることを経験的に確認している。
血液浄化器用の選択透過性分離膜は、滅菌処理が不可欠である。滅菌処理方法としては、その信頼性や簡便性よりγ線や電子線を照射する放射線滅菌法が好ましい。しかし、放射線照射により、ポリビニルピロリドンの劣化により過酸化水素が発生すると共に放射線照射時に存在する過酸化水素によりその生成が促進されるので前記のような抑制処置が必要であると共に、長手方向に10個に分割し、各々について測定した時の過酸化水素の溶出が全ての部位で3ppm以下である選択透過性中空糸膜束を放射線照射処理することが好ましい実施態様である。このことにより、本発明の第一の要件である選択透過性中空糸膜束を長手方向に10個に分割し、各々について測定した時の過酸化水素の溶出が全ての部位で5ppm以下とすることが達成可能となる。従って、本発明においては、γ線や電子線照射により滅菌した後においても、選択透過性中空糸膜束を長手方向に10個に分割し、各々について測定した時の過酸化水素の溶出が全ての部位で5ppm以下維持されることが好ましい。
上記特性を付与する手段は限定されないが、滅菌処理時に選択透過性分離膜を取り巻く雰囲気の酸素濃度が1.0容量%以下の状態で放射線および/または電子線照射するのが好ましい。0.5容量%以下がより好ましく、0.1容量%以下がさらに好ましい。1.0容量%を越えた場合は、ポリビニルピロリドンの劣化による過酸化水素生成が増大して前記特性が満たされなくなることがある。
また、選択透過性分離膜をモジュールに装填し、かつモジュールを包装袋で密封した状態で放射線および/または電子線照射するのが好ましい。該方法により、滅菌処理操作が簡便化されると共に滅菌処理の効果が持続される。
選択透過性分離膜を取り巻く雰囲気の酸素濃度を上記範囲にする方法は限定されない。例えば、選択透過性分離膜をモジュールに装填して、モジュール内を不活性ガスで置換する方法が挙げられる。また、モジュールを脱酸素剤と共に包装袋で密封して行ってもよい。
特に、後者が好適である。
上記方法で実施する場合の脱酸素剤は、包装袋内の酸素を吸収し実質的な脱酸素状態を形成するために用いるものである。従って、脱酸素機能を有するものであれば限定されない。例えば、亜硫酸塩、亜硫酸水素塩、亜二チオン酸塩、ヒドロキノン、カテコール、レゾルシン、ピロガロール、没食子酸、ロンガリット、アスコルビン酸および/またはその塩、ソルボース、グルコース、リグニン、ジブチルヒドロキシトルエン、ジブチルヒドロキシアニソール、第一鉄塩、鉄粉等の金属粉等を酸素吸収主剤とする脱酸素剤があげられ、適宜選択できる。また、金属紛主剤の脱酸素剤には、酸化触媒として、必要に応じ、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、塩化アルミニウム、塩化第一鉄、塩化第二鉄、臭化ナトリウム、臭化カリウム、臭化マグネシウム、臭化カルシウム、臭化鉄、臭化ニッケル、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化マグネシウム、ヨウ化カルシウム、ヨウ化鉄等の金属ハロゲン化合物等の1種または2種以上を加えても良い。また、脱臭、消臭剤、その他の機能性フィラーを加えることも何ら制限を受けない。また、脱酸素剤の形状は特に限定されず、例えば、粉状、粒状、塊状、シート状等の何れでも良く、また、各種の酸素吸収剤組成物を熱可塑性樹脂に分散させたシート状またはフイルム状脱酸素剤であっても良い。
本発明において用いられる包装袋は、上記脱酸素剤で脱酸素される空間を形成すると共に、該脱酸素された状態を長期に渡り維持する機能が必要である。従って、酸素ガスの透過度の低い材料で構成されることが必要である。酸素透過度が10cm3/m2・24h・MPa(20℃,90%RH)以下が好ましい。8cm3/m2・24h・MPa(20℃,90%RH)以下がより好ましく、6cm3/m2・24h・MPa(20℃,90%RH)以下がさらに好ましく、4cm3/m2・24h・MPa(20℃,90%RH)以下がよりさらに好ましい。
酸素透過度が10cm3/m2・24h・MPa(20℃,90%RH)を超えた場合は、包装袋で密封していても、外部より包装袋を通じて酸素ガスが通過し、包装袋内の酸素濃度が増大し実質的な脱酸素状態を維持することができなくなる可能性ある。
また、前述のごとく、本発明においては、血液浄化器に充填されている中空糸膜は特定の含水率を保持する必要がある。従って、本発明における包装袋は水蒸気透過度の低い材料で構成することが好ましい。50g/m2・24h・MPa(40℃,90%RH)以下が好ましい。40g/m2・24h・MPa(40℃,90%RH)以下がより好ましく、30g/m2・24h・MPa(40℃,90%RH)以下がさらに好ましく、20g/m2・24h・MPa(40℃,90%RH)以下がよりさらに好ましい。
50g/m2・24h・MPa(40℃,90%RH)を超えた場合は、包装袋で密封していても、包装袋を通じて水蒸気が通過するために、中空糸膜の乾燥が進行し上記前記の好ましい含水率が維持できなくなることがある。
本発明において用いられる上記した包装袋の素材や構成は、上記した特性を有すれば限定なく任意である。アルミ箔、アルミ蒸着フィルム、シリカおよび/またはアルミナ等の無機酸化物蒸着フイルム、塩化ビニリデン系ポリマー複合フイルム等の酸素ガスと水蒸気の両方の不透過性素材を構成材とするのが好ましい実施態様である。また、該包装袋における密封方法も何ら制限はなく任意であり、ヒートシール法、インパルスシール法、溶断シール法、フレームシール法、超音波シール法、高周波シール法等が挙げられ、該シール性を有するフイルム素材と前記した不透過性素材とを複合した構成の複合素材が好適である。特に、酸素ガスおよび水蒸気をほぼ実質的に遮断できるアルミ箔を構成層とした外層がポリエステルフイルム、中間層がアルミ箔、内層がポリエチレンフイルムよりなる不透過性とヒートシール性との両方の機能を有したラミネートシートを適用するのが好適である。
上記方法で実施する場合は、血液浄化器に充填されている中空糸膜周辺の雰囲気が実質的な脱酸素状態に保たれる必要がある。従って、血液浄化器の開口部は開口状態である必要がある。
また、上記方法で実施する場合は、中空糸膜中の含水率や、包装袋内の湿度を最適化するのが好ましい。含水率は1質量%以上が好ましい。また、包装袋内の湿度は、室温における相対湿度を40%RH超にするのが好ましい。包装袋内空間の相対湿度は、50〜90%RH(25℃)がより好ましく、60〜80%RH(25℃)がさらに好ましい。
包装袋内空間の相対湿度が40%RH(25℃)以下になるとγ線照射等の放射線線照射をした場合に、脱酸素された状態においても、極微量に存在する酸素ガスにより中空糸膜成分、特に、ポリビニルピロリドンの酸化劣化が起こり、過酸化水素が発生し前述のような好ましくない現象の発生に繋がる。逆に、相対湿度が90%RH(25℃)を超えた場合は、包装袋内で結露が生じ、血液浄化器の品位が低下することがある。
本発明でいう相対湿度とは、25℃における水蒸気分圧(p)と25℃における飽和水蒸気圧(P)を用いて相対湿度(%RH)=p/P×100の式で表される。測定は温湿度測定器(おんどとりRH型、T&D社製)のセンサーを包装袋内に挿入シールして行った。
包装袋内空間の相対湿度を40%RH(25℃)超にすることにより、ポリビニルピロリドンの劣化が抑制される理由は不明であるが、以下のごとく推定している。ポリビニルピロリドンの劣化は酸素の存在により促進される。本発明においては、包装袋内は酸化を抑制する状態、すなわち、実質的な無酸素状態に保たれているが、完全な無酸素状態は困難であり、極微量の酸素ガスが存在している。従って、中空糸膜表面に存在するポリビニルピロリドンが包装袋内空間に存在するこの微量酸素ガスとの接触により劣化反応が促進される。そのために、ポリビニルピロリドンの劣化反応は中空糸膜表面に存在するポリビニルピロリドンで反応が開始される。理由は不明であるが、中空糸膜中の含水率を高めることにより、上記劣化反応が抑制されることを経験的に認知している。中空糸膜中に存在するポリビニルピロリドンは、局在化して存在している。そのために、包装袋内の相対湿度が高くなると、この包装袋内に存在する水蒸気が中空糸膜表面のポリビニルピロリドンの局在部分に選択的に吸着され、この吸着された水によりポリビニルピロリドンの劣化反応が抑制されるものと考えられる。従って、湿度アップにより、大きな抑制効果が発現するものと推察される。一方、ポリビニルピロリドンを含有する中空糸膜は調湿機能、すなわち、吸、放湿特性を有することが知られている(例えば、特開2004−97918号公報)。従って、包装袋内の相対湿度が低い場合は、中空糸膜表面に存在するポリビニルピロリドンに吸着されている水分は包装袋空間に放出され、特に、上記劣化を受ける極表面に存在するポリビニルピロリドンの吸着水分量が低い状態になり劣化が促進されるものと推察される。これらの現象の相乗効果により、包装袋内の相対湿度がポリビニルピロリドンの劣化反応の抑制に大きく影響するものと推察している。
包装袋内の湿度を上記範囲にする方法は限定されない。例えば、(1)血液浄化器を包装袋で密封する折に湿度を制御した気体を包装袋内に注入あるいは、調湿した環境で密封する、(2)選択透過性分離膜の含水率により調整する、(3)水分を放出する脱酸素剤を使用する、(4)脱酸素剤と共に調湿剤を同時に密封する等の方法が挙げられる。
上記調湿剤は、吸、放湿機能により包装袋内空間の相対湿度を上記範囲にする特性を有しておれば制限されない。調湿剤としては、B型シリカゲルが広く使用されているが限定はされない。例えば、B型シリカゲルと類似の調湿剤としては、シリカゲルの細孔分布をシャープにしたり、あるいはさらにアルカリ金属化合物やアルカリ土類金属化合物よりなる調湿剤補助剤を複合することにより吸、放湿特性を改善した改良型のB型シリカゲル、メソポーラスシリカアルミナゲル、メソポーラス中空繊維状アルミニウムシリケート、ゼオライト等の多孔質無機粒子が挙げられる。また、アクリル酸ナトリウム架橋ポリマーやポリエチレングリコール鎖、ポリビニルピロリドン鎖等を共重合、ブレンドあるいはアロイ化した等の吸水性高分子よりなる粒子、該吸水性高分子を無機マイクロカプセルと複合した複合粒子、塩化アンモニウム等の無機塩調湿剤を吸水性シート(紙、不織布、織布)に含浸した調湿シート、水および界面活性剤等をポリアクリル酸ナトリウムをメタ珪酸アルミン酸マグネシュウム等の無機架橋剤で架橋した網目構造吸水性高分子で固定化したシート状水分ゲル等が好適に使用できる。該調湿剤の形状は特に限定されず、例えば、粉状、粒状、塊状、シート状等の何れでも良い。粉状、粒状のものは、透湿性の包装材で包装して用いるのが好ましい。また、フィルム、シート、紙、不織布、織布等と複合した複合体として用いてもよい。この場合、複合基材は親水性材料よりなることが好ましい。また、調湿剤粒子を親水性のバインダーと複合し、ポリエステルやポリオレフィン等の汎用素材よりなる基材と複合してもよい。吸水性高分子よりなる調湿剤の場合は、該高分子を直接フィルムやシートとして用いてもよい。また、繊維として、紙、不織布、織布等の形状にして用いてもよい。また、発泡剤を用いて発泡シートやホームの形状として用いてもよい。
上記調湿剤は、事前に相対湿度80〜90%RHの環境でシーズニングしてから使用するのが好ましい。
該血液浄化器用として用いる場合は、バースト圧が0.5MPa以上の中空糸膜束よりなることおよび該血液浄化器の透水率が150ml/m2/hr/mmHg以上であることが好ましい。バースト圧が0.5MPa未満では後述するような血液リークに繋がる潜在的な欠陥を検知することができなくなる可能性がある。また、透水率が150ml/m2/hr/mmHg未満では透析効率が低下することがある。透析効率を上げるためには細孔径を大きくしたり、細孔数を増やしたりするが、そうすると膜強度が低下したり欠陥ができるといった問題が生じやすくなる。従って、外表面の孔径を最適化することにより支持層部分の空隙率を最適化し、溶質透過抵抗と膜強度をバランスさせたものであることが好ましい。より好ましい透水率の範囲は200ml/m2/hr/mmHg以上、さらに好ましくは250ml/m2/hr/mmHg以上、よりさらに好ましくは300ml/m2/hr/mmHg以上である。また、透水率が高すぎる場合、血液透析時の除水コントロールがしにくくなるため、2000ml/m2/hr/mmHg以下が好ましい。より好ましくは1800ml/m2/hr/mmHg以下、さらに好ましくは1500ml/m2/hr/mmHg以下、よりさらに好ましくは1300ml/m2/hr/mmHg以下である。
通常、血液浄化に用いるモジュールは、製品となる最終段階で、中空糸やモジュールの欠陥を確認するため、中空糸内部あるいは外部をエアによって加圧するリークテストを行う。加圧エアによってリークが検出されたときには、モジュールは不良品として、廃棄あるいは、欠陥を修復する作業がなされる。このリークテストのエア圧力は血液透析器の保証耐圧(通常500mmHg)の数倍であることが多い。しかしながら、特に高い透水性を持つ中空糸型血液浄化膜の場合、通常の加圧リークテストで検出できない中空糸の微小な傷、つぶれ、裂け目などが、リークテスト後の製造工程(主に滅菌や梱包)、輸送工程、あるいは臨床現場での取り扱い(開梱や、プライミングなど)時に、中空糸の切断やピンホールの発生につながり、ひいては治療時に血液がリークするトラブルの元になるので改善が必要である。該トラブルはバースト圧を前記特性にすることで回避ができる。
また中空糸膜束の偏肉度が、上記した潜在的な欠陥の発生抑制に対して有効である。
本発明におけるバースト圧とは、中空糸をモジュールにしてからの中空糸膜束の耐圧性能の指標で、中空糸膜束内側を気体で加圧し、加圧圧力を徐々に上げていき、中空糸が内部圧に耐えきれずに破裂(バースト)したときの圧力である。バースト圧は高いほど使用時の中空糸膜束の切断やピンホールの発生が少なくなるので0.5MPa以上が好ましく、0.55MPa以上がさらに好ましく、0.6MPa以上がよりさらに好ましい。バースト圧が0.5MPa未満では潜在的な欠陥を有している可能性がある。また、バースト圧は高いほど好ましいが、バースト圧を高めることに主眼に置き、膜厚を上げたり、空隙率を下げすぎると所望の膜性能を得ることができなくなることがある。したがって、血液透析膜として仕上げる場合には、バースト圧は2.0MPa未満が好ましい。より好ましくは、1.7MPa未満、さらに好ましくは1.5MPa未満、よりさらに好ましくは1.3MPa未満、特に好ましくは1.0MPa未満である。
本発明における偏肉度とは、中空糸膜束モジュール中の100本の中空糸膜束断面を観察した際の膜厚の偏りのことであり、最大値と最小値の比で示す。100本の中空糸膜の最小の偏肉度は0.6以上であることが好ましい。100本の中空糸膜に1本でも偏肉度0.6未満の中空糸膜が含まれると、その中空糸膜が臨床使用時のリーク発生となることがあるので、該偏肉度は平均値でなく、100本の最小値を表す。偏肉度は高いほうが、膜の均一性が増し、潜在欠陥の顕在化が抑えられバースト圧が向上するので、より好ましくは0.7以上、さらに好ましくは0.8以上、よりさらに好ましくは0.85以上である。偏肉度が低すぎると、潜在欠陥が顕在化しやすく、前記バースト圧が低くなり、血液リークが起こりやすくなる。
該偏肉度を0.6以上にするための達成手段は、例えば、製膜溶液の吐出口であるノズルのスリット幅を厳密に均一にすることが好ましい。中空糸膜束の紡糸ノズルは、一般的に、紡糸溶液を吐出する環状部と、その内側に中空形成剤となる芯液吐出孔を有するチューブインオリフィス型ノズルが用いられるが、スリット幅とは、前記紡糸溶液を吐出する外側環状部の幅をさす。このスリット幅のばらつきを小さくすることで、紡糸された中空糸膜束の偏肉を減らすことができる。具体的にはスリット幅の最大値と最小値の比が1.00以上1.11以下とし、最大値と最小値の差を10μm以下とすることが好ましく、7μm以下とすることがより好ましく、さらに好ましくは5μm以下、よりさらに好ましくは3μm以下である。また、ノズル温度を最適化するのが好ましい実施態様である。ノズル温度は20〜100℃が好ましい。20℃未満では室温の影響を受けやすくなりノズル温度が安定せず、紡糸溶液の吐出斑が起こることがある。そのため、ノズル温度は30℃以上がより好ましく、35℃以上がさらに好ましく、40℃以上がよりさらに好ましい。また100℃を超えると紡糸溶液の粘度が下がりすぎ吐出が安定しなくなることがあるし、ポリビニルピロリドンの熱劣化・分解が進行する可能性がある。よって、ノズル温度は、より好ましくは90℃以下、さらに好ましくは80℃以下、よりさらに好ましくは70℃以下である。
さらに、バースト圧を高くする方策として、中空糸膜束表面の傷や異物および気泡の混入を少なくし潜在的な欠陥を低減するのも有効な方法である。傷発生を低減させる方法としては、中空糸膜束の製造工程のローラーやガイドの材質や表面粗度を最適化する、モジュールの組み立て時に中空糸膜束をモジュール容器に挿入する時に容器と中空糸膜束との接触あるいは中空糸膜束同士のこすれが少なくなるような工夫をする等が有効である。本発明では、使用するローラーは中空糸膜束がスリップして中空糸膜束表面に傷が付くのを防止するため、表面が鏡面加工されたものを使用するのが好ましい。また、ガイドは中空糸膜束との接触抵抗をできるだけ避ける意味で、表面が梨地加工されたものやローレット加工されたものを使用するのが好ましい。中空糸膜束をモジュール容器に挿入する際には、中空糸膜束を直接モジュール容器に挿入するのではなく、中空糸膜束との接触面が例えばエンボス加工されたフィルムを中空糸膜束に巻いたものをモジュール容器に挿入し、挿入した後、フィルムのみモジュール容器から抜き取る方法を用いるのが好ましい。
中空糸膜束への異物の混入を抑える方法としては、異物の少ない原料を用いる、製膜用の紡糸溶液をろ過し異物を低減する方法等が有効である。本発明では、中空糸膜束の膜厚よりも小さな孔径のフィルターを用いて紡糸溶液をろ過してからノズルより吐出するのが好ましく、具体的には均一溶解した紡糸溶液を溶解タンクからノズルまで導く間に設けられた孔径10〜50μmの焼結フィルターを通過させる。ろ過処理は少なくとも1回行えば良いが、ろ過処理を何段階かにわけて行う場合は後段になるに従いフィルターの孔径を小さくしていくのがろ過効率およびフィルター寿命を延ばす意味で好ましい。フィルターの孔径は10〜45μmがより好ましく、10〜40μmがさらに好ましい。フィルター孔径が小さすぎると背圧が上昇し、定量性が落ちることがある。また、気泡混入を抑える方法としては、製膜用のポリマー溶液の脱泡を行うのが有効である。紡糸溶液の粘度にもよるが、静置脱泡や減圧脱泡を用いることができる。この場合、溶解タンク内を−100〜−750mmHgに減圧した後、タンク内を密閉し5分〜30分間静置する。この操作を数回繰り返し脱泡処理を行う。減圧度が低すぎる場合には、脱泡の回数を増やす必要があるため処理に長時間を要することがある。また減圧度が高すぎると、系の密閉度を上げるためのコストが高くなることがある。トータルの処理時間は5分〜5時間とするのが好ましい。処理時間が長すぎると、減圧の影響によりポリビニルピロリドンが分解、劣化することがある。処理時間が短すぎると脱泡の効果が不十分になることがある。
以下、本発明の有効性を実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。
1、透水率の測定
透析器の血液出口部回路(圧力測定点よりも出口側)を鉗子により封止し、全ろ過とする。37℃に保温した純水を加圧タンクに入れ、レギュレーターにより圧力を制御しながら、37℃恒温槽で保温した透析器へ純水を送り、透析液側から流出した濾液量をメスシリンダーで測定する。膜間圧力差(TMP)は
TMP=(Pi+Po)/2
とする。ここでPiは透析器入り口側圧力、Poは透析器出口側圧力である。TMPを4点変化させ濾過流量を測定し、それらの関係の傾きから透水率(mL/hr/mmHg)を算出する。このときTMPと濾過流量の相関係数は0.999以上でなくてはならない。また回路による圧力損失誤差を少なくするために、TMPは100mmHg以下の範囲で測定する。中空糸膜束の透水率は膜面積と透析器の透水率から算出する。
UFR(H)=UFR(D)/A
ここでUFR(H)は中空糸膜束の透水率(mL/m2/hr/mmHg)、UFR(D)は透析器の透水率(mL/hr/mmHg)、Aは透析器の膜面積(m2)である。
2、膜面積の計算
透析器の膜面積は中空糸膜の内径基準として求める。
A=n×π×d×L
ここで、nは透析器内の中空糸膜本数、πは円周率、dは中空糸膜の内径(m)、Lは透析器内の中空糸膜の有効長(m)である。
3、バースト圧
約10,000本の中空糸膜束よりなるモジュールの透析液側を水で満たし栓をする。血液側から室温で乾燥空気または窒素を送り込み1分間に0.5MPaの割合で加圧していく。圧力を上昇させ、中空糸膜束が加圧空気によって破裂(バースト)し、透析液側に満たした液に気泡が発生した時点の空気圧をバースト圧とする。
4、偏肉度
中空糸膜100本の断面を200倍の投影機で観察する。一視野中、最も膜厚差がある一本の中空糸膜断面について、最も厚い部分と最も薄い部分の厚みを測定する。
偏肉度=最薄部/最厚部
偏肉度=1で膜厚が完璧に均一となる。
5、ポリビニルピロリドンの溶出量
透析型人工腎臓装置製造基準に定められた方法で抽出し、該抽出液中のポリビニルピロリドンを比色法で定量した。
乾燥中空糸膜モジュールの場合には、中空糸膜束1gに純水100mlを加え、70℃で1時間抽出する。得られた抽出液2.5ml、0.2モルクエン酸水溶液1.25ml、0.006規定のヨウ素水溶液0.5mlをよく混合し、室温で10分間放置した、後に470nmでの吸光度を測定した。定量は標品のポリビニルピロリドンを用いて上記方法に従い測定する事により求めた検量線にて行った。
湿潤中空糸膜モジュールの場合は、モジュールの透析液側流路に生理食塩水を500mL/minで5分間通液し、ついで血液側流路に200mL/minで通液した。その後血液側から透析液側に200mL/minでろ過をかけながら3分間通液した後にフリーズドライして乾燥膜を得て、該乾燥膜を用いて上記定量を行った。
6、UV(220−350nm)吸光度
ポリビニルピロリドンの溶出量測定法において記載した方法で抽出した抽出液を分光光度計(日立製作所製、U−3000)を用いて波長範囲200〜350nmの吸光度を測定し、この波長範囲での最大の吸光度を求めた。
該測定は、中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり全サンプルについて測定した。
湿潤中空糸膜モジュールの場合は、ポリビニルピロリドン溶出量の測定と同様に処理することにより得た乾燥膜を用いて測定した。
7、過酸化水素の定量
前記した方法で抽出した抽出液2.6mlに塩化アンモニウム緩衝液(PH8.6)0.2mlとモル比で当量混合したTiCl4の塩化水素溶液と4−(2−ピリジルアゾ)レゾルシノールのNa塩水溶液との混合液を加え、さらに0.4mMに調製した発色試薬0.2mlを加え、50℃で5分間加温後、室温に冷却し508nmの吸光度を測定した。標品を用いて同様に測定して求めた検量線を利用して定量値を求めた。
該測定は、中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり全サンプルについて測定した。
湿潤中空糸膜モジュールの場合は、ポリビニルピロリドン溶出量の測定と同様に処理することにより得た乾燥膜を用いて測定した。また、湿潤状態の中空糸膜束について定量する場合は、フリーズドライ法で乾燥して得た乾燥膜について測定した。
8、ポリマー粒子径の測定
以下の方法で実施した。
(1)サンプル調製
乾燥膜は臨界点乾燥により24hr以上乾燥したものを使用した。これを試料台の上で繊維軸方向に割腹し、中空糸内表面を露出する形でサンプルとした。湿潤膜は中空糸内外に水を通し、これを水中で24hr以上浸積したものを使用した。これを水中に設けた試料台の上で繊維軸方向に割腹し、中空糸内表面を露出する形でサンプルとした。
(2)測定法
中空糸膜内表面の形態観察は原子間力顕微鏡(AFM)で行った。AFMはSeiko Instruments社製のSPI3800N−SPA300を使用した。湿潤状態での観察は本装置のオプションである、液中観察キットを使用し、純水中で行った。観察中に試料を浸すセルはシャーレセルを使用した。観察モードはDFMモードとした。カンチレバーは長さ450μm、幅60μm、厚さ4μmのSi製矩形型カンチレバーを使用した。カンチレバーはSeiko Instruments社からSi−DF3として市販されているものであり、バネ定数は2N/m程度である。使用するカンチレバーは常に新品で探針先端の汚染がないものを使用した。探針の走査速度は0.25〜1Hzとした。
(3)粒子径測定法
上記測定装置に付属している解析装置を用いて算出した。試料の三次元的なうねりなどを平面化して粒子径測定を行うため、測定後のAFM像は三次元傾斜補正(TILT3)等をかける。場合によってはフラット処理等も必要である。装置付属のソフトに含まれるライン解析処理により、粒子径を決定する。測定する粒子は無作為に選出した120個の粒子であり、異常に大きく見える粒子や異常に小さく見える粒子は測定から除外した。具体的な測定法を図を用いて説明する。図1はライン解析により粒径を決定する粒子の上から見た図である。図2は図1の粒子の断面プロファイルである。各測定点の座標を(x,y,z)とする。zはその測定点における高さである。粒子径は点A,C間の距離であるが、ACは粒子の頂点Bを通る線分でなければならない。また粒子は常に完全な円形とは限らない。点A,Cは頂点Bを通る線分のうち最も長い線分をとるものとする。AC間の距離、すなわち粒子径は以下の式で表される。
D = ((x1−x22+(y1−y221/2
9、血液リークテスト
クエン酸を添加し、凝固を抑制した37℃の牛血液を、血液浄化器に200mL/minで送液し、20mL/minの割合で血液をろ過する。このとき、ろ液は血液に戻し、循環系とする。60分間後に血液浄化器のろ液を採取し、赤血球のリークに起因する赤色を目視で観察する。この血液リーク試験を各実施例、比較例ともに各30本の血液浄化器を用い、血液リークしたモジュール本数を調べた。
10、血液浄化器の保存安定性
放射線照射後のモジュールを室温で一年間保存した後、前記した方法でUV(220−350nm)吸光度を測定した。該保存によるUV(220−350nm)吸光度の増加度で安定性を判定した。該増加度は中空糸膜束を長手方向に10個に等分し、それぞれのサンプルについて測定し、その最大値で判定した。最大値が0.10を超えないものを合格とした。
(実施例1)
2本の枠型ブレードが自転、公転するいわゆるプラネタリー運動により混練効果を発現する形式の混練溶解機に、ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)4800P)1質量部、ポリビニルピロリドン(BASF社製コリドン(登録商標)K90)0.144質量部およびジメチルアセトアミド(DMAc)1質量部を仕込み、2時間攪拌し混練をおこなった。引き続き3.02質量部のDMAcとRO水0.16質量部の混合液を1時間を要して添加した。攪拌機の回転数を上げてさらに1時間攪拌を続行し均一に溶解した。このとき、混練および溶解は窒素雰囲気下で行なった。混練および溶解時の温度は40℃を超えないように冷却した。最終溶解時の攪拌のフルード数および撹拌レイノルズ数はそれぞれ1.0および100であった。ついで真空ポンプを用いて系内を−500mmHgまで減圧した後、溶媒等が蒸発して製膜溶液の組成が変化しないように、直ぐに系内を密閉し15分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。脱泡が完了した後、系内は再度窒素置換を行い弱加圧状態で維持した。なお、上記ポリビニルピロリドンは、過酸化水素含有量130ppmのものを用いた。得られた製膜溶液を30μm、15μmの2段の焼結フィルターに順に通した後、75℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで30分間脱気処理した50℃の53質量%DMAc水溶液とともに吐出、紡糸管により外気と遮断された400mmの乾式部を通過後、60℃の20質量%DMAc水溶液中で凝固させ、湿潤状態のまま綛に捲き上げた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.1であった。紡糸工程中、中空糸膜束が接触するローラーは全て表面が鏡面加工されたもの、ガイドは全て表面が梨地加工されたものを使用した。該中空糸膜約10,000本の束の周りに中空糸束側表面が梨地加工されたポリエチレン製のフィルムを巻きつけた後、27cmの長さに切断し、80℃の熱水中で30分間×4回洗浄した。これを長手方向に流路のとられた通風乾燥機にて60℃で3時間加温したのち、50℃で20時間乾燥させた。乾燥開始から乾燥終了までの間、1時間おきに通風の向きを180度反転させて乾燥を実施した。また、通風に用いるエアーは、35%RHに調湿したものを用いた。これにより乾燥した中空糸膜束を得た。得られた中空糸膜の内径は200.1μm、膜厚は28.0μm、含水率は3.0質量%、疎水性高分子に対する親水性高分子の質量割合は3.1質量%であった。PVP溶出量は7ppmであり問題ないレベルであった。
得られた中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり、過酸化水素を定量した。過酸化水素は全部位において低レベルで安定していた。該定量値を表1、2に示した。
得られた中空糸膜束を充填率60容量%でモジュールハウジングに装填し、端部をウレタン樹脂で接着し、樹脂を切り出して中空糸膜端部を開口させて血液浄化器を組み立てた。中空糸膜束のモジュールハウジングへの装填は、モジュールハウジングに上記バンドルを挿入し、該バンドルよりポリエチレン製のフィルムを抜き取ることによって行った。得られた血液浄化器のリークテストを行った結果、中空糸同士の固着に起因するような接着不良は認められなかった。該血液浄化器を汎用タイプの脱酸素剤(王子タック株式会社製タモツ(登録商標))2個および細孔容積1.05cc/g、表面積320m2/g、粒径8メッシュのシリカゲルに塩化カルシウムを10質量%担持した改良シリカゲルBを紙パックに封入した調湿剤とともに外層がポリエステルフイルム、中間層がアルミ箔、内層がポリエチレンフイルムよりなる酸素透過率および水蒸気透過率がそれぞれ1cm3/m2・24h・MPa(20℃,90%RH)以下および5g/m2・24h・MPa(40℃,90%RH)以下のアルミラミネートシートよりなる包装袋にて熱シール法でシールし密封した。調湿剤は、事前に相対湿度85%RHの環境で24時間シーズニングしたものを用いた。包装体を室温で3日間保存した後に、25kGyのγ線を照射し滅菌を行った。滅菌処理品と同時に密封した包装体の包装袋内の酸素濃度を測定した。0.1容量%以下で実質的な無酸素状態になっていた。
血液浄化器は3個作製した。
血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mmAq以下のリークテスト合格品を以後の試験に用いた。また、血液浄化器より中空糸膜を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200mL/min、ろ過速度10mL/(min・m2)で血液浄化器に流したが、血球リークはみられなかった。中空糸膜外側から中空糸膜内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。
また、牛血系の膜性能評価を実施した。また、それとは別にこの中空糸膜のAFM観察を実施した。ポリマー粒子径およびポリマー粒子の膨潤比は適切であり、選択透過性が良好であった。
また、本実施例で得られた中空糸膜束の保存安定性は良好であり、滅菌処理後1年間保存後の中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.04であり、基準値の0.10以下が維持されていた。
Figure 0004839630
Figure 0004839630
Figure 0004839630
(比較例1)
実施例1において、通風乾燥に用いるエアーとして7%RHの除湿エアーを用いるように変更し、2段目の乾燥温度を30℃に変更する以外は、実施例1と同様の方法で比較例1および2の中空糸膜束および血液浄化器を得た。該製造方法の条件、中空糸膜および血液浄化器の評価結果をそれぞれ表1および2に示す。
本比較例で得られた中空糸膜は選択透過性が劣っていた。中空糸膜の乾燥に除湿エアーを用いたために、ポリマー粒子の膨潤比が低くなったために引き起こされたものと考えられる。
(比較例2)
比較例1において、中空糸膜束の乾燥を長手方向に流路のとられた通風乾燥機にて60℃で20時間加温し、通風方向を一方向からのみにして乾燥するように変更した以外は、比較例1と同様にして血液浄化器を得た。得られた中空糸膜束および血液浄化器の特性を表1および2に示す。本比較例で得られた中空糸膜束は比較例1で得られた中空糸膜の課題に加え、過酸化水素溶出量が多かった。また、UV(220−350nm)吸光度はレベルが高く、かつサンプリング個所による変動が大きく、軽度ではあるが部分固着が発生し、モジュール組み立ての作業性が良くなかった。
(比較例3)
比較例1の方法において、脱酸素剤を密封することなく滅菌処理するように変更する以外は、比較例1と同様にして血液浄化器を得た。得られた中空糸膜束および血液浄化器の特性を表1〜3に示す。本比較例で得られた中空糸膜束は比較例1で得られた中空糸膜の課題に加え、血液浄化器の保存安定性が劣っていた。
(比較例4)
実施例1において、過酸化水素含有量が500ppmのポリビニルピロリドンを原料とし、混練および溶解温度を85℃とし、原料供給系や溶解槽の窒素ガス置換を取り止め、かつ中空糸膜束の乾燥を常圧下でマイクロ波を照射して乾燥するように変更した以外は、実施例1と同様にして中空糸膜束を得た。マイクロ波の照射は中空糸膜束中の含水率が65質量%になるまでは2kW、それ以降は0.8kWとし含水率が0.5質量%になるまで乾燥した。また、乾燥開始時から乾燥終了時までの間、各中空糸膜束の下部から8m/秒の風速にて除湿空気(湿度10%RH以下)を糸束の下部から上部へと通風した。該乾燥時の中空糸膜束の最高到達温度は65℃であった。得られた中空糸膜束および血液浄化器の特性を表1および2に示す。本比較例で得られた中空糸膜束の過酸化水素溶出量はレベルが高く、かつ過酸化水素溶出量のサンプリング個所による変動が大きく低品質であった。
上記中空糸膜束を用いて、実施例1と同様の方法で血液浄化器の組立ておよび滅菌処理を行った。本比較例で得られた血液浄化器は選択透過性および保存安定性が劣っていた。
これらの結果を表1〜3に示す。
(実施例2)
ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)4800P)1質量部ポリビニルピロリドン(BASF社製コリドン(登録商標)K−90)0.21質量部、DMAc1.5質量部を2軸のスクリュータイプの混練機で混練した。得られた混練物をDMAc2.57質量部および水0.28質量部を仕込んだ攪拌式の溶解タンク内に投入し、3時間攪拌し溶解した。混練および溶解は内温が30℃以上に上がらないように冷却した。ついで真空ポンプを用いて系内を−700mmHgまで減圧した後、溶媒等が揮発して製膜溶液組成が変化しないように直ぐに溶解タンクを密閉し10分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量100ppmのものを用い、原料供給系での供給タンクや前記の溶解タンクを窒素ガス置換した。また、溶解時のフルード数および撹拌レイノルズ数はそれぞれ1.1および120であった。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、70℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで2時間脱気処理した50℃の50質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された350mmのエアギャップ部を通過後、60℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均45μmであり、最大45.5μm、最小44.5μm、スリット幅の最大値、最小値の比は1.02、ドラフト比は1.2であった。凝固浴から引き揚げられた中空糸膜束は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後巻き上げた。該中空糸膜約10,000本の束の周りに実施例1と同様のポリエチレン製のフィルムを巻きつけた後、30℃の40vol%イソプロパノール水溶液で30分×2回浸漬洗浄した。
得られた湿潤中空糸膜束をオーブン中に反射板を設置し均一加熱ができるような構造を有したマイクロ波照射方式の乾燥器に導入し、以下の条件で乾燥した。7kPaの減圧下、1.5kWの出力で30分間中空糸膜束を加熱した後、マイクロ波照射を停止すると同時に減圧度1.5kPaに上げ3分間維持した。つづいて減圧度を7kPaに戻し、かつマイクロ波を照射し0.5kWの出力で10分間中空糸膜束を加熱した。この際の中空糸膜束表面の最高到達温度は65℃であった。乾燥前の中空糸膜束の含水率は315質量%、1段目終了後の中空糸膜束の含水率は29質量%、2段目終了後の中空糸膜束の含水率は16質量%であった。引き続き実施例1と同様の調湿エアーを用いた交互通風方向切り替え法で乾燥を行い含水率は3.3質量%の乾燥中空糸膜を得た。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られた中空糸膜束の内径は200μm、膜厚は27μmであった。
得られた乾燥中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり、過酸化水素溶出量を定量した。該過酸化水素溶出量は全部位において低レベルで安定していた。該定量値を表1、2に示した。
このようにして得られた中空糸膜束を用いて、血液浄化器を組み立てた。リークテストを行った結果、中空糸膜同士の固着に起因するような接着不良は認められなかった。該血液浄化器を実施例1と同様の方法で処理を行った。γ線照射後の血液浄化器より中空糸膜束を切り出し、溶出物試験に供したところ、PVP溶出量は6ppm、過酸化水素溶出量の最大値は2ppmであり問題ないレベルであった。また、本実施例で得られた中空糸膜束の保存安定性は良好であり、1年間保存後の中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.06であり、基準値の0.1以下が維持されていた。また血液浄化器より中空糸膜束を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。牛血液を用いた血液リークテストでは血球リークはみられなかった。また、ポリマー粒子径およびポリマー粒子の膨潤比は適切であり、選択透過性が良好であった。分析結果を表3に示した。
(比較例5)
ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)5200P)16質量%、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−90)5.4質量%、ジメチルアセトアミド(DMAc)75.6質量%、水3質量%を攪拌機を有した溶解タンクに直接仕込み、75℃で溶解した。このとき、溶解のフルード数および撹拌レイノルズ数はそれぞれ1.0および120で行った。ついで真空ポンプを用いて系内を−500mmHgまで減圧した後、溶媒等が揮発して製膜溶液組成が変化しないように直ぐに系内を密閉し15分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量450ppmのものを用い、原料供給系での供給タンクや前記の溶解タンクを窒素ガス置換しなかった。この製膜溶液を30μmのフィルターに通した後、60℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで2時間脱気処理した50℃の30質量%DMAc水溶液を用いて同時に吐出、紡糸管により外気と遮断された600mmの乾式部を通過後、濃度10質量%、60℃のDMAc水溶液中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均100μmであり、最大110μm、最小90μm、スリット幅の最大値、最小値の比は1.22、ドラフト比は2.4であった。得られた中空糸膜束は40℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後、湿潤状態のまま巻き上げ比較例4と同様にして乾燥した。得られた中空糸膜束の内径は197μm、膜厚は29μmであった。本比較例で得られた中空糸膜束の過酸化水素およびポリビニルピロリドン溶出量はレベルが高く、かつ過酸化水素溶出量のサンプリング個所による変動が大きい。
このようにして得られた中空糸膜束を用いて、実施例1と同様の方法で、血液浄化器を組み立ておよび滅菌処理を行った。血液浄化器より中空糸膜束を切り出し、溶出物試験に供したところ、PVP溶出量は12ppm、過酸化水素溶出量の最大値は20ppmであった。本比較例で得られた中空糸膜束は過酸化水素溶出量が高いため、保存安定性が劣っていた。本比較例で得られた中空糸膜束は約3ヵ月の保存で既に透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持することができなくなった。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mmAq以下のモジュールを試験に用いた。牛血液を用いた血液リークテストではモジュール30本中、2本に血球リークがみられた。偏肉度が小さいことと外表面孔径が大きすぎることより、ピンホールの発生及び/または破れが発生したものと思われる。分析結果を表1、2、3に示した。
(実施例3)
実施例2と同様の方法で、ポリスルホン(アモコ社製P−3500)18質量%、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−60)9質量%、ジメチルアセトアミド(DMAc)68質量%、水5質量%よりなる製膜溶液を調製した。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量100ppmのものを用いた。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、40℃に加温したチューブインオリフィスノズルから中空形成剤として予め減圧脱気した60℃の55質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された600mmのエアギャップ部を通過後、50℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.1であった。凝固浴から引き揚げられた中空糸膜束は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後巻き上げた。該中空糸膜約10,000本の束を純水に浸漬し、121℃×1時間オートクレーブにて洗浄処理を行った。引き続き実施例1と同様にして乾燥した。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られた中空糸膜束の内径は201μm、膜厚は43μmであった。表1、2より明らかなごとく、過酸化水素溶出量は全部位において低レベルで安定していた。
このようにして得られた中空糸膜束を用いて、血液浄化器を組み立てた。リークテストを行った結果、中空糸膜同士の固着に起因するような接着不良は認められなかった。該血液浄化器の滅菌処理を行った。該滅菌処理は脱酸素剤として水分放出型である(三菱ガス化学社製エージレスZ−200PT(商標登録))に切換え、かつ調湿剤の使用を取り止める以外は、実施例1と同様の方法で実施した。血液浄化器より中空糸膜束を切り出し、溶出物試験に供したところ、PVP溶出量は7ppm、過酸化水素溶出量の最大値は3ppmであり問題ないレベルであった。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mmAq以下のリークテスト合格品を以後の試験に用いた。また、血液浄化器より中空糸膜束を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200mL/min、ろ過速度10mL/minで血液浄化器に流したが、血球リークはみられなかった。中空糸外側から中空糸内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。また、本実施例で得られた中空糸膜束の保存安定性は良好であり、1年間保存後の中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.05であり、基準値の0.1以下が維持されていた。リークテストを行った結果、中空糸同士の固着に起因するような接着不良は認められなかった。また、ポリマー粒子径およびポリマー粒子の膨潤比は適切であり、選択透過性が良好であった。分析結果を表3に示した。
(実施例4)
実施例2と同様の方法で、ポリスルホン(アモコ社製P−1700)17質量%、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−60)5質量%、ジメチルアセトアミド(DMAc)73質量%、水5質量%よりなる製膜溶液を調製した。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量120ppmのものを用いた。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、40℃に加温したチューブインオリフィスノズルから中空形成剤として減圧脱気された60℃の35質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された600mmのエアギャップ部を通過後、50℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.1であった。凝固浴から引き揚げられた中空糸膜束は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後巻き上げた。該中空糸膜約10,000本の束を純水に浸漬し、121℃×1時間オートクレーブにて洗浄処理を行い、実施例1と同様の方法で乾燥を行った。含水率は3.8質量%であった。乾燥処理中の中空糸膜束の最高到達温度は56℃であった。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られた中空糸膜束の内径は200μm、膜厚は43μmであった。表1、2より明らかなごとく、過酸化水素溶出量は全部位において低レベルで安定していた。
このようにして得られた中空糸膜束を用いて、血液浄化器を組み立てた。リークテストを行った結果、中空糸膜同士の固着に起因するような接着不良は認められなかった。該血液浄化器を実施例3と同様の方法で滅菌処理を行った。γ線照射後の血液浄化器より中空糸膜束を切り出し、溶出物試験に供したところ、PVP溶出量8ppm、過酸化水素溶出量の最大値は3ppmであり問題ないレベルであった。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mmAq以下のリークテスト合格品を以後の試験に用いた。また、血液浄化器より中空糸膜束を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200mL/min、ろ過速度10mL/minで血液浄化器に流したが、血球リークはみられなかった。中空糸外側から中空糸内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。また、本実施例で得られた中空糸膜束の保存安定性は良好であり、1年間保存後の中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.06であり、基準値の0.10以下が維持されていた。また、ポリマー粒子径およびポリマー粒子の膨潤比は適切であり、選択透過性が良好であった。分析結果を表3に示した。
従来、中空糸膜束において、過酸化水素の挙動に着目した品質管理の手法は全く知られていない。中空糸膜束の品質の良さという点については多くの観点から検討することができるが、例えば、中空糸膜束を長手方向に27cmに切断し、それを2.7cmの10等分間隔にして、それぞれの部位で過酸化水素の溶出量を測定する。最大溶出量、最小溶出量をもとに、較差Aが求められる。そして、それを平均することにより平均溶出量を算定する。また、最大溶出量または最小溶出量と、平均溶出量の較差の最大値Bを品質のバラツキ度の程度とする。図3は、実施例1のバラツキの状態を示す。比較例4の場合も同様に求めることができる。このようにして算定した値を表2に纏める。
過酸化水素溶出量が、特に5ppm程度を境界にして、中空糸膜束の品質のバラツキ度の関係を調べると、図4のようになる。過酸化水素溶出量が多くなると、中空糸膜束の10等分における各部位の過酸化水素溶出量にアンバランスが生じるため、各部位の溶出量の較差が大きくなる。そうすると、同じ材料で、過酸化水素の溶出に違いがあるということは、その分、中空糸膜の性能、機能にも影響するから、品質の管理上好ましくない。中空糸膜束の各部位にアンバランスがないということは、中空糸膜の品質においても優れていることが理解できる。そして、5ppm程度の範囲は、バラツキ度を抑制するという点で、臨界的な範囲であることが理解できる。
図5は、中空糸膜束より溶出するポリビニルピロリドンの溶出量を10ppm以下に抑え、かつ中空糸膜束からの過酸化水素の溶出量を5ppm以下に抑えた乾燥状態の中空糸膜束を、湿度50%RHに調湿されたドライボックス中(雰囲気は空気)で1年保存した場合のUV吸光度の挙動を示す。過酸化水素の溶出量を5ppm以下に抑えたものは、長期間保存してもUV吸光度を0.1以下に抑えることができるため、中空糸膜束中の過酸化水素存在量を5ppm以下に抑えることは品質の安定に著しく寄与すると言える。
本発明のポリスルホン系選択透過性中空糸膜束は、内表面(血液接触表面側)の構造や特性が最適化されており、選択透過性および血液適合性が優れている。また、本発明のポリスルホン系選択透過性中空糸膜は、過酸化水素溶出量が抑制されており、該過酸化水素により引起される中空糸膜束を長期に渡り保存した場合のポリビニルピロリドン等の劣化が抑制されるので、長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持するができる。従って、慢性腎不全の治療に用いる高透水性能を有する血液透析法中空糸型血液浄化器用等として好適であるいう利点がある。また、本発明の血液浄化器は上記特性を有したポリスルホン系選択透過性中空糸膜束が充填されており、かつ滅菌処理時の条件が最適化されているので、選択透過性に優れ、かつ、該血液浄化器を長期に渡り保存した場合のポリスルホン系選択透過性中空糸膜束中のポリビニルピロリドン等の劣化が抑制されるので、長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持することができ、血液浄化器を長期保存した場合の安全性が確保できるという利点がある。従って、産業界に寄与することが大である。
ライン解析により粒径を決定する粒子の上から見た図である。 図1の粒子の断面プロファイルを示す図である。 中空糸膜を10等分したときの各部位の過酸化水素溶出量を示す模式図である。 中空糸膜束内の品質のバラツキ度を示す模式図である。 中空糸膜束の過酸化水素存在量と保存後のUV吸光度の関係を示す模式図である。

Claims (3)

  1. 過酸化水素含有量が300ppm以下のポリビニルピロリドンを原料として用いる、ポリビニルピロリドンを含有するポリスルホン系選択透過性中空糸膜束において、膜中のポリスルホン系高分子が99〜80質量%、ポリビニルピロリドンが1〜20質量%であり、該中空糸膜の少なくとも血液接触面が湿潤状態における平均粒子直径が10〜300nmであるポリマー粒子の集合体からなり、該中空糸膜束よりのポリビニルピロリドンの溶出が10ppm以下で、かつ該中空糸膜束を長手方向に10個に分割して、各部位について透析型人工腎臓装置製造承認基準により定められた試験を実施したとき、得られた抽出液の過酸化水素溶出量が全ての部位で5ppm以下の中空糸膜であって、最終含水率が1〜10質量%であることを特徴とするポリスルホン系選択透過性中空糸膜束。
  2. ポリマー粒子の乾燥状態における平均粒子直径に対する湿潤状態における平均粒子直径の比が1.1以上であることを特徴とする請求項1に記載のポリスルホン系選択透過性中空糸膜束。
  3. 請求項1または2に記載のポリスルホン系選択透過性中空糸膜束が充填されてなる血液浄化器を滅菌後、室温で1年以上保存した後に、該中空糸膜束を長手方向に10個に分割して、各部位について透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度が全ての部位で0.10以下である血液浄化器。
JP2005045321A 2005-02-22 2005-02-22 ポリスルホン系選択透過性中空糸膜束および血液浄化器 Active JP4839630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045321A JP4839630B2 (ja) 2005-02-22 2005-02-22 ポリスルホン系選択透過性中空糸膜束および血液浄化器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045321A JP4839630B2 (ja) 2005-02-22 2005-02-22 ポリスルホン系選択透過性中空糸膜束および血液浄化器

Publications (2)

Publication Number Publication Date
JP2006230458A JP2006230458A (ja) 2006-09-07
JP4839630B2 true JP4839630B2 (ja) 2011-12-21

Family

ID=37038758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045321A Active JP4839630B2 (ja) 2005-02-22 2005-02-22 ポリスルホン系選択透過性中空糸膜束および血液浄化器

Country Status (1)

Country Link
JP (1) JP4839630B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2021687B1 (en) * 2018-09-24 2020-05-07 Lely Patent Nv Milking system with sampling device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901090A (nl) * 1989-04-28 1990-11-16 X Flow Bv Werkwijze voor het vervaardigen van een microporeus membraan en een dergelijk membraan.
JP3314861B2 (ja) * 1996-12-24 2002-08-19 東洋紡績株式会社 中空糸膜
JP2000300663A (ja) * 1999-04-19 2000-10-31 Toyobo Co Ltd 選択分離膜
JP4061798B2 (ja) * 1999-12-21 2008-03-19 東レ株式会社 血液処理用半透膜およびそれを用いた血液処理用透析器
JP4029312B2 (ja) * 2000-08-07 2008-01-09 東洋紡績株式会社 選択透過性中空糸膜
JP4683402B2 (ja) * 2001-06-29 2011-05-18 旭化成クラレメディカル株式会社 血液浄化用中空糸膜とその製造方法、及び血液浄化器
JP4254283B2 (ja) * 2003-03-18 2009-04-15 東レ株式会社 複合加工糸およびそれを用いた布帛
JP2004305840A (ja) * 2003-04-03 2004-11-04 Toyobo Co Ltd 中空糸膜の保存方法
JP3551971B1 (ja) * 2003-11-26 2004-08-11 東洋紡績株式会社 ポリスルホン系選択透過性中空糸膜

Also Published As

Publication number Publication date
JP2006230458A (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
JP3642065B1 (ja) 選択透過性分離膜および選択透過性分離膜の製造方法
JP3772909B1 (ja) 血液浄化器
JPWO2006016573A1 (ja) ポリスルホン系選択透過性中空糸膜モジュール及びその製造方法
JP3636199B1 (ja) ポリスルホン系選択透過性中空糸膜束とその製造方法および血液浄化器
JP4843988B2 (ja) ポリスルホン系中空糸膜型血液浄化器
JP4839631B2 (ja) ポリスルホン系選択透過性中空糸膜束および血液浄化器
JP4483651B2 (ja) 血液浄化用モジュールの滅菌方法
JP4876704B2 (ja) 血液浄化器
JP2013009962A (ja) 中空糸膜型血液浄化器
JP2006304826A (ja) 血液浄化器
JP4839630B2 (ja) ポリスルホン系選択透過性中空糸膜束および血液浄化器
JP2006288415A (ja) ポリスルホン系選択透過性中空糸膜束および血液浄化器
JP2006068689A (ja) 中空糸膜束の乾燥方法
JP3659256B1 (ja) ポリスルホン系選択透過性中空糸膜束およびその乾燥方法
JP4843993B2 (ja) 血液浄化器
JP4501155B2 (ja) ポリスルホン系選択透過性中空糸膜束の製造方法
JP4748348B2 (ja) ポリスルホン系選択透過性中空糸膜束
JP2006288413A (ja) 中空糸膜型血液浄化器
JP4446173B2 (ja) 選択透過性分離膜および血液浄化器
JP4379803B2 (ja) 中空糸膜束の乾燥方法
JP5580616B2 (ja) ポリスルホン系選択透過性中空糸膜束の乾燥方法
JP4843992B2 (ja) 血液浄化器
JP4807608B2 (ja) 中空糸膜束の乾燥方法
JP2006230905A (ja) 血液浄化器
JP2006068716A (ja) 中空糸膜束の乾燥方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4839630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350